Predictive Coarse-Graining

M. Schöberl1, N. Zabaras2,3, P.S. Koutsourelakis1

1Continuum Mechanics Group
Technische Universität München

2Institute for Advanced Study
Technische Universität München

3Warwick Centre of Predictive Modeling
University of Warwick

November 27, 2015
Motivation Coarse-Graining

Atomistic simulation for obtaining insights of chemical and physical process of complex systems.

Difficulty

- Complex interactions
- Long-range interactions
- Small time- and length-scales

→ Exceeding computational tractability

A coarse description allows us

- to evaluate larger systems during larger time intervals
- to gain understanding of physics of the system.

Figure: Coarse-graining water
Motivation

Approach

- Describing system with less degrees of freedom
- Determining optimal parameter set for given parametrization of a coarse-grained potential
- Leading to point estimates of its parametrization and thus also in predictions
- Predictions performed on coarse scale

How can we quantify the uncertainty induced by a coarse description and the loss of information?

How can we reconstruct fine configurations given a coarse configuration?
General coarse-graining problem

Fine-scale degrees of freedom \(x \in \mathcal{M} \) with \(\mathcal{M} \subset \mathbb{R}^n \), \(n \gg 1 \) in equilibrium described by a Boltzmann-type PDF:

\[
p_f(x|\beta) = \frac{\exp \{- \beta U(x)\}}{Z(\beta)}
\]

- Potential \(U(x) \)
- Inverse Temperature \(\beta = \frac{1}{k_b T} \), with temperature \(T \)
- Partition function \(Z(\beta) = \int_{\mathcal{M}} \exp \{- \beta U(x)\} \, dx \)
General coarse-graining problem

Coarse-scale description

\[p_c(X|\beta) = \frac{\exp\{-\beta U_c(X, \theta_c)\}}{Z_c(\theta_c, \beta)} \]

- Coarse variables \(X \in M_c, M_c \subseteq \mathbb{R}^{n_c}, n_c \ll n \)
- Coarse-grained potential selected \(\hat{U}_c \) selected out of candidate potentials \(\hat{U}_c \in U_c \)
- Parametrization and shape selected by assuming \(U_c(X, \theta_c) \) but any potential possible

How are fine and coarse configurations connected?
Connecting fine variables \(x \) with coarse variables \(X \) with coarse-graining map

\[\xi : M \rightarrow M_c \]

\[X = \xi(x) \]
How to determine the effective coarse potential U_c?

Analytical solution for the effective coarse-grained potential:

$$U_c(X) = -\beta^{-1} \ln \int_M \exp \{-\beta U(x)\} \delta(\xi(x) - X) dx$$

Potential of mean force with respect to coarse-grained coordinates $\xi(x)$. → intractable!

Numerical coarse-graining strategies:

- iterative Boltzmann inversion [5]
- inverse Monte Carlo [8]
- force matching [6]
- variational mean-field theory [9]
- relative entropy [10]
The relative entropy method\[10\]

→ minimize a distance metric between $p_f(X|\beta)$ and $p_c(X|\beta)$ with the PDF $p_f(X|\beta)$ sampling configuration x that maps to configuration X

$$p_f(X|\beta) \propto \int_{\mathcal{M}} p_f(x|\beta) \delta(\xi(x) - X) dx$$

Relative entropy method\[10, 4, 2\] (or KL-divergence)

$$\text{KL}(p_f||p_c) = \int_{\mathcal{M}_c} p_f(X|\beta) \ln \left(\frac{p_f(X|\beta)}{p_c(X|\beta)} \right) dX$$

Formulation in \mathcal{M}:

$$\text{KL}(p_f||p_c) = \int_{\mathcal{M}} p_f(x|\beta) \ln \left(\frac{p_f(x|\beta)}{p_c(\xi(x)|\beta)} \right) dx + S_{\text{map}}(\xi(x))$$

▷ with $S_{\text{map}} = \left\langle \int_{\mathcal{M}} \delta(\xi(x) - X) dx \right\rangle_{p_f(x|\beta)}$ measures the information loss induced by mapping $\xi(x)$.
Relative entropy method

$S_{\text{map}}(\xi(x))$ is independent of \hat{U}_c, the minimization of the KL-divergence is equivalent to minimization of

$$\mathcal{F}(\hat{U}_c) = \left\langle \ln \frac{p_f(x|\beta)}{p_c(\xi(x)|\beta)} \right\rangle_{p_f(x|\beta)}$$

For any given m-dimensional parametrization $\theta_c \in \Theta_c \subset \mathbb{R}^m$ of the potential, the optimization problem follows:

$$\theta_c^* = \arg \min_{\theta_c \in \Theta_c} \mathcal{F}(U_c(X, \theta_c))$$
Relative entropy method

Model Restrictions

- Relative entropy method has no capability to predict fine-scale configurations (no mapping coarse to fine)
 - Eg. for predicting correlations within fine configurations
- Predicting quantities of interest (QoI) by evaluating on fine-scale
 \[
 \langle f(x) \rangle_{p_f(x|\beta)} = \int_{\mathcal{M}} f(x) p_f(x|\beta) dx
 \]
- With coarse-grained description \(p_c(X|\beta) \) predictions in \(\mathcal{M}_c \) but not in \(\mathcal{M} \)
 - Difficulty:
 - How to define observable \(g(X) \) for desired QoI in \(\mathcal{M}_c \)?
 - Are you able to predict same QoI with \(\langle g(X) \rangle_{p_c(X|\beta)} = \int_{\mathcal{M}_c} g(X) p_c(X|\beta) dX \)?
- No quantification of epistemic uncertainty: determine \(S_{\text{map}}(\xi(x)) \)
Proposed Model

Framework following **generative probabilistic models** and builds upon:

1. Coarse-scale PDF \(p_c(X|\theta_c, \beta) \propto \exp\{ -\beta U_c(X, \theta_c) \} \)
 - Describing statistics of coarse variables \(X \)
 - Parametrized by \(\theta_c \), no restrictions in shape of \(p_c \)

2. Probabilistic mapping from **coarse to fine** \(p_{cf}(x|X, \theta_{cf}) \)
 - Conditional PDF of \(x \) given the coarse variables \(X \)
 - Parametrization of the probabilistic mapping by \(\theta_{cf} \in \Theta_{cf} \subset \mathbb{R}^{m_{cf}} \)
 - Deterministic mapping \(\xi(x) \) is not invertible (many to one map)
 → Probabilistic relation necessary
 - \(S_{map} \) not fixed for per definition. → Optimization with respect to \(\theta_{cf} \) possible.

3. Prior PDF for model parametrization
 - \(p(\theta_c) \)
 - \(p(\theta_{cf}) \)
Proposed Model

- Proposed model describes a **Bayesian perspective** of coarse-graining equilibrium atomistic ensembles
- Model is data driven by N data points $x^{(i)}$ in the fine-scale, denoted as $x^{(1:N)} = \{x^{(1)}, \ldots, x^{(N)}\}$

Given the data $x^{(1:N)}$ a posterior distribution on the model parameters θ_{cf}, θ_c and the **latent** variables $X^{(1:N)}$ can be defined.

- Coarse variables seen as **latent**
- To each observable $x^{(i)}$ one latent Variable $X^{(i)}$ is assigned
- $X^{(i)}$ represents pre-image of the fine-scale observation $x^{(i)}$
Bayesian coarse-graining - posterior

Posterior distribution

\[p(\theta_{cf}, \theta_c, X^{(1:N)} | x^{(1:N)}) \propto p(x^{(1:N)} | \theta_{cf}, \theta_c, X^{(1:N)}) p(\theta_{cf}, \theta_c, X^{(1:N)}) \]

\[= \left(\prod_{i=1}^{N} p_{cf}(x^{(i)} | \theta_{cf}, X^{(i)}) p_c(X^{(i)} | \theta_c) \right) p(\theta_{cf}) p(\theta_c) \]

Use given data \(x^{(1:N)} \) for inferring the posterior distribution or for determining MAP estimates of the model parameters \(\theta_{cf}^*, \theta_c^* \).

- Bayesian formulation answers the questions of
 - model validation and
 - prediction
Bayesian coarse-graining

The posterior distribution leads to the predictive distribution for fine-scale configurations x:

Predictive distribution

$$p(x|x^{(1:N)}) = \int p_{cf}(x|X, \theta_{cf}) p_c(X|\theta_c) p(\theta_c, \theta_{cf}|x^{(1:N)}) dX d\theta_{cf} d\theta_{cf}$$

Simulate fine-scale system

1. Draw sample $\theta^*_c, \theta^*_{cf} \sim p(\theta_c, \theta_{cf}|x^{(1:N)})$
2. Draw sample of coarse-scale description $X^* \sim p_c(X|\theta^*_c)$
3. Draw sample of fine-scale description $x^* \sim p_{cf}(x^*|X^*, \theta^*_{cf})$
Bayesian coarse-graining: ensemble averages

Approximating ensemble averages by

\[
\langle f(x) \rangle_{p_f(x)} = \int_{\mathcal{M}} f(x) p_f(x) dx
\]

\[
= E[f(x)] \approx E[f(x) | x^{(1:N)}]
\]

\[
= \int_{\mathcal{M}} f(x) p(x | x^{(1:N)}) dx
\]

\[
= \int_{\mathcal{M}} f(x) p_{cf}(x | \mathbf{X}, \theta_{cf}) p_c(\mathbf{X} | \theta_c) p(\theta_c, \theta_{cf} | x^{(1:N)}) dx d\mathbf{X} d\theta_c d\theta_{cf}
\]

Error arising from discrepancy between \(E[f(x)]\) and \(E[f(x) | x^{(1:N)}]\)
Bayesian coarse-graining: coarse-scale model p_c

Coarse-scale model

$$p_c(X|\theta_{cf}) = \frac{\exp\{-\beta U_c(X, \theta_c)\}}{Z_c(\theta_c)}$$

Requirements

- Allow sufficient flexibility of $p_c(X)$
- U_c built from high-order interactions affording flexibility in $p_c(X)$
Bayesian coarse-graining: reconstruction map p_{cf}

Map from coarse to fine: $p_{cf}(x|X, \theta_{cf})$

- Several fine-configurations map to same coarse-configuration
 - Probabilistic relation between a given coarse-configuration and a fine-configuration takes account of it. [7]
- Fast reconstruction ([7, 1]) of fine-scale configurations x given a coarse-configuration X desired.

Influence of p_{cf}

- What is expected from the coarse variables X in terms of predicting the given data $x^{(1:N)}$?
- Adjusting $p_c(X|\theta_c)$ so that X agrees best with data $x^{(1:N)}$ connected with probabilistic mapping p_{cf}.

Figure: Configurations x given X
Optimization

For learning the model parameters θ_c and θ_{cf} the expectation maximization algorithm is applied.

- Point estimates for maximizing the likelihood or posterior distribution are obtained.
- Approximation of posterior on θ_{cf} by Laplace (validated by full posterior sampling)

MAP estimate

$$\theta_{MAP} = \arg \max_{\theta} \left[\log p(\theta_c, \theta_{cf}, x^{(1:N)}) \right]$$

$$= \arg \max_{\theta} \left[\log p(x^{(1:N)}|\theta_{cf}, \theta_{cf}) + \log p(\theta_c) + \log p(\theta_{cf}) \right]$$

- In the following the ML-estimate is shown and will be extended by prior distributions $p(\theta)$ in a next step by adding log-priors $\log p(\theta_c) + \log p(\theta_{cf})$.
Optimization

To obtain point estimates with MLE for the model parameters θ_c and θ_cf we maximize the log-likelihood by using the EM algorithm.

The likelihood is defined as

$$p(x^{(1:N)}|\theta_\text{c}, \theta_\text{cf}) = \int p(x^{(1:N)}, x^{(1:N)}|\theta_\text{c}, \theta_\text{cf}) dx^{(1:N)}$$

$$= \int p_\text{cf}(x^{(1:N)}|x^{(1:N)}, \theta_\text{cf}) p_\text{c}(x^{(1:N)}|\theta_\text{c}) dx^{(1:N)}$$

$$= \int \prod_{i=1}^{N} p_\text{cf}(x^{(i)}|x^{(i)}, \theta_\text{cf}) p_\text{c}(x^{(i)}|\theta_\text{c}) dx^{(1:N)}$$

augmenting the log-likelihood with an arbitrary density $q(x^{(1:N)})$

$$\log p(x^{(1:N)}|\theta_\text{c}, \theta_\text{cf}) = \log \int q(x^{(1:N)}) \frac{p_\text{cf}(x^{(1:N)}|x^{(1:N)}, \theta_\text{cf}) p_\text{c}(x^{(1:N)}|\theta_\text{c})}{q(x^{(1:N)})} dx^{(1:N)}$$

$$\geq \int q(x^{(1:N)}) \log \frac{p_\text{cf}(x^{(1:N)}|x^{(1:N)}, \theta_\text{cf}) p_\text{c}(x^{(1:N)}|\theta_\text{c})}{q(x^{(1:N)})} dx^{(1:N)}$$

$$= \mathcal{L}(q(x^{(1:N)}), \theta_\text{c}, \theta_\text{cf})$$
Expectation maximization

It holds the following decomposition for the lower bound:

\[
\mathcal{L}(q(X^{(1:N)}), \theta_c, \theta_{cf}) = \int q(X^{(1:N)}) \log \frac{p(x^{(1:N)}|X^{(1:N)}, \theta_{cf})p(X^{(1:N)}|\theta_c)}{q(X^{(1:N)})} dX \\
= -\text{KL}(q(X^{(1:N)})||p(X^{(1:N)}|x^{(1:N)}, \theta_{cf}, \theta_{cf})) + \log p(x^{(1:N)})
\]

Decomposition of the log likelihood

\[
\log p(x^{(1:N)}|\theta_c, \theta_{cf}) = \mathcal{L}(q(X^{(1:N)}), \theta_c, \theta_{cf}) + \text{KL}(q(X^{(1:N)})||p(X^{(1:N)}|x^{(1:N)}, \theta_{cf}, \theta_{cf})).
\]

Maximizing \(\mathcal{L}(q(X^{(1:N)}), \theta_c, \theta_{cf}) \) is equal to minimizing \(\text{KL}(q(X^{(1:N)})||p(X^{(1:N)}|x^{(1:N)}, \theta_{cf}, \theta_{cf})) \)

\(p(X^{(1:N)}|x^{(1:N)}, \theta_{cf}, \theta_{cf}) \) PDF over pre-images for \(X \) for the given data \(x^{(1:N)} \) and parameters \(\theta \).
For given parameters θ_{cf}, θ_{c} the lower bound is maximized if we choose

$$q(X^{(1:N)}) \propto p_{\text{cf}}(x^{(1:N)}|X^{(1:N)}, \theta_{\text{cf}})p_c(X^{(1:N)}|\theta_{\text{c}}).$$

Therefore,

$$\Rightarrow KL(q(X^{(1:N)})||p(X^{(1:N)}|x^{(1:N)}, \theta_{\text{c}}, \theta_{\text{cf}})) = 0.$$
First order derivatives

\[
\frac{\partial L}{\partial \theta_c} = \beta \left(N \left\langle \frac{\partial U_c(\mathbf{X}, \theta_c)}{\partial \theta_c} \right\rangle_{p_c(\mathbf{X}^{(i)}|\theta^t_c)} - \sum_{i=1}^{N} \left\langle \frac{\partial U_c(\mathbf{X}^{(i)}, \theta_c)}{\partial \theta_c} \right\rangle_{q(\mathbf{X}^{(i)}|\mathbf{X}^{(i)}, \theta^t_c, \theta^t_c)} \right)
\]

\[
\frac{\partial L}{\partial \theta_{cf}} = \left\langle \frac{1}{p_{cf}(\mathbf{X}^{(1:N)}|\mathbf{X}, \theta_{cf})} \frac{\partial p_{cf}(\mathbf{X}^{(1:N)}|\mathbf{X}, \theta_{cf})}{\partial \theta_{cf}} \right\rangle_{q(\mathbf{X}^{(1:N)}|\mathbf{X}^{(1:N)}, \theta^t_{cf}, \theta^t_c)}
\]

Second order derivatives

\[
\frac{\partial^2 L}{\partial \theta_k \partial \theta_l} = -\beta \sum_{i=1}^{N} \left\langle \frac{\partial^2 U_c(\mathbf{X}^{(i)}, \theta_c)}{\partial \theta_k \partial \theta_l} \right\rangle_{q(\mathbf{X}^{(i)}|\mathbf{X}^{(i)}, \theta^t_{cf}, \theta^t_c)} + \beta N \left\langle \frac{\partial^2 U_c(\mathbf{X}, \theta_c)}{\partial \theta_k \partial \theta_l} \right\rangle_{p_c(\mathbf{X}|\theta_c)}
\]

\[
- \beta^2 N \left\langle \frac{\partial U_c(\mathbf{X}, \theta_c)}{\partial \theta_k} \frac{\partial U_c(\mathbf{X}, \theta_c)}{\partial \theta_l} \right\rangle_{p_c(\mathbf{X}|\theta_c)} + \beta^2 N \left\langle \frac{\partial U_c(\mathbf{X}, \theta_c)}{\partial \theta_k} \right\rangle_{p_c(\mathbf{X}|\theta_c)} \left\langle \frac{\partial U_c(\mathbf{X}, \theta_c)}{\partial \theta_l} \right\rangle_{p_c(\mathbf{X}|\theta_c)}
\]
Second order derivatives

\[
\frac{\partial^2 \mathcal{L}(q(X^{(1:N)}), \theta_c, \theta_{cf})}{\partial \theta_{cf}^2} = \sum_{i=1}^{N} \left(\frac{1}{p_{cf}(x^{(i)}|X^{(i)}, \theta_{cf})} \cdot \frac{\partial^2 p_{cf}(x^{(i)}|X^{(i)}, \theta_{cf})}{\partial \theta_{cf}^2} \right) - \frac{1}{p_{cf}(x^{(i)}|X^{(i)}, \theta_{cf})^2} \left(\frac{\partial p_{cf}(x^{(i)}|X^{(i)}, \theta_{cf})}{\partial \theta_{cf}} \right)^2
\]
Robbins-Monro Optimization

Gradients are sample averages → noise afflicted.

Robbins-Monro Algorithm

\[\theta^{t+1} = \theta^t + \alpha_t \nabla_{\theta} \mathcal{L}(\theta^t) \]

with

\[\alpha_t = \frac{\alpha}{(t + A)^\rho}, \text{ with } \frac{1}{2} < \rho \leq 1. \]

- Convergence is guaranteed to the true optimum \(\theta^* \) if infinite steps performed.
- \(\alpha_t \) is a sequence of real numbers and has to fulfill:

\[\sum_{t=1}^{\infty} \alpha_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty \]
Laplace Approximation

Approximating a density function \(p(z) = \frac{1}{Z} f(z) \) by

\[
q(z) = \mathcal{N}(z|z_0, \Sigma)
\]

with \(\Sigma = (-\nabla\nabla f(z)|_{z=z_0})^{-1} \) and \(\nabla f(z)|_{z=z_0} = 0 \).

For the given problem using a noninformative prior it follows

Laplace approximation

\[
\frac{\partial^2 \log p(\theta_{cf}|x^{(1:N)})}{\partial \theta^2_{cf}} = \sum_i^N \left\langle \frac{\partial^2 \log p_{cf}(x^{(i)}|X^{(i)}, \theta_{cf})}{\partial \theta^2_{cf}} \right\rangle_{q(X^{(i)})}
\]
Predictive uncertainty

Propagate uncertainty induced by mapping

1. $\theta_{cf}^i \sim \mathcal{N}(\theta_{cf}^{MAP}, \Sigma)$ with $\Sigma = \left(-\frac{\partial^2 \log p(\theta_{cf}|x^{(1:N)})}{\partial \theta_{cf}^2}\right)^{-1}$

2. $X^{ij} \sim p_c(X|\theta_{c}^{MAP})$

3. $x^{ij}_k \sim p_{cf}(x|X^{ij}, \theta_{cf}^i)$

Predictive uncertainty of properties:

$\langle f|_{\theta_c, \theta_{cf}'} = \rangle = \int f(x)p_{cf}(x|X, \theta_{cf}^i)p_c(X|\theta_{c}^{MAP})dx dX$
Example Problem: Coarse-graining 1D Ising Model

- Applying proposed method ('predCg') for coarse-graining a one dimensional Ising Model
- Comparison between 'predCg' and the deterministic formulation of minimizing the KL-divergence ('relEntr') by Shell (2008)
- Assessed by predictive capabilities for magnetization and correlation
The Ising-model regarded in the following discussion is one dimensional. It has the properties:

- System size n_f in fine- and n_c in coarse-scale
- Level of coarse-graining $l_c = \frac{n_f}{n_c}$
- Inverse temperature β
- External field μ
- Regarded interaction length L_f in fine- and L_c in coarse scale, including all interactions $k \leq L$
- $J_0 = 1$ overall interaction strength
Ising Model - Potential in Fine-Scale

Fine variables take the values $x_i \in \{-1, 1\}$ following

$$p_f(x|\beta) \propto \exp(-\beta U(x, J_k, \mu))$$

Fine-scale potential

$$U(x, J_k, \mu) = -\frac{1}{2} \sum_{k=1}^{L_f} J_k \sum_{|i-j|=k} x_i x_j - \mu \sum_{i=1}^{n_f} x_i$$

with $i, j \in \{1, \ldots, n_f\}$ having n_f lattice sites.

- Maximal interactions of L_f sites apart are regarded in the potential.
- $|i-j|=k$ interpreted as summation over neighbors k over all sites i sites apart
- J_k, strength of the k-th interaction.

with J_k following a power law for a given overall strength J_0 and exponent a,

$$J_k = \frac{K}{Lk^a}$$

with,

$$K = J_0 L^{1-a} \sum_{k=1}^{L} k^{-a}$$

in order to normalize the interaction strength [1].
Coarse variables take the values $X_i \in \{-1, 1\}$, $p_c \propto \exp\{-\beta U_c(X, \theta_c, \mu)\}$

Coarse-scale potential

$$U_c(X, \theta_c, \mu) = -\frac{1}{2} (\theta_{\text{lin}}^c \sum_{i=1}^{n_c} X_i$$

$$+ \sum_{k=1}^{L_c} \theta_{\text{two}}^c \sum_{|i-j|=k} X_i X_j$$

$$+ \sum_{i=1}^{n_c} \theta_{\text{trip}}^c \sum_{m=1}^{n} \sum_{n=1}^{n} X_i X_{i \pm m} X_{i \pm m \pm n})$$

$$- \mu \sum_{i=1}^{n_c} X_i$$

with $i, j \in \{1, \ldots, n_c\}$ and $n_c \ll n_f$ lattice sites.
Each coarse variable $X_r, \ r = \{1, \ldots, R\}$ describes S fine-scale variables $x_{r,s}$ with $s = \{1, \ldots, S\}$. The mapping from fine-scale variables $x_{r,s}$ to coarse variable X_r is defined as,

$$X_r = \begin{cases}
+1, & \frac{1}{S} \sum_{s} x_{r,s} > 0 \\
-1, & \frac{1}{S} \sum_{s} x_{r,s} < 0 \\
U(-1, +1), & \text{otherwise}
\end{cases}$$

Figure: Mapping from fine-scale x to coarse-scale X
Coarse-to-fine mapping \(p_{cf}(x|X, \theta_{cf}) \)

\[
p_{cf}(x_r,s|X_r) = \theta_{cf} \left(\frac{1+x_{r,s}X_r}{2} \right) \left(1 - \theta_{cf} \right) \left(\frac{1-x_{r,s}X_r}{2} \right)
\]

Assumption: \(x_i \) conditionally independent for given \(X \):

\[
p(x^{1:N}|X^{1:N}, \theta_{cf}) = N \prod_{i=1}^{N} p_{cf}(x^{(t)}|X^{(t)}, \theta_{cf})
\]

\[
= \prod_{i=1}^{N} \prod_{r=1}^{R} \prod_{s=1}^{S} \left(\theta_{cf} \frac{1+x_{r,s}X_r}{2} \left(1 - \theta_{cf} \right) \frac{1-x_{r,s}X_r}{2} \right)
\]

\[
= \theta_{cf}^{\sum_{i=1}^{N} \sum_{r=1}^{R} \sum_{s=1}^{S} \frac{1+x_{r,s}X_r}{2}}
\]

\[
\left(1 - \theta_{cf} \right)^{\sum_{i=1}^{N} \sum_{r=1}^{R} \sum_{s=1}^{S} \frac{1-x_{r,s}X_r}{2}}
\]

Figure: Probabilistic mapping form coarse to fine: \(p_{cf}(x|X, \theta_{cf}) \)
Which properties to predict?

The magnetization m is given:

Magnetization in the fine-scale

$$m_{\text{fine}} = \int \frac{1}{n} \sum_{i} x_i \ p_f(x) \, dx$$

Magnetization calculated with proposed method ('predcg')

$$m_{\text{ML,fine}} = \int \frac{1}{n} \sum_{i} x_i \ p_{\text{cf}}(x|X, \theta_{\text{cf}}) p_c(X|\theta_c) p(\theta_{\text{cf}}, \theta_c|x^{(1:N)}) \ d\theta_{\text{cf}} d\theta_c dX dx$$
Quantity of Interest: Magnetization

Magnetization calculated with relative entropy method ‘relEntr’

(deterministic mapping fine to coarse: $X = \xi(x)$)

- For each μ calculate optimal model parameter $\theta_{cg, \det}^*$
- Since we want to compare the magnetization on the same (fine) scale a mapping is introduced
 - if $X_r = -1$, select randomly a possible configuration $x_{r,s}$ where either all $x_{r,s} = -1$ or one is $x_{r,s} = -1$ and the other $x_{r,s} = 1$ (for given r: $s \in \{1 \ldots l_c\}$)
 - if $X_r = +1$, select randomly a possible configuration $x_{r,s}$ where either all $x_{r,s} = +1$ or one is $x_{r,s} = +1$ and the other $x_{r,s} = -1$ (for given r: $s \in 1, 2$)
- For a given coarse-state the selected fine-states x_{\det} are used for calculating the magnetization

Relative error in magnetization,

$$\text{err}_{mag} = \frac{\|m - m_{\text{truth}}\|}{\|m_{\text{truth}}\|}.$$
The correlation R_l of all sites being separated by l sites is measured as,

$$R_l = \frac{1}{n} \sum_{|i-j|=l}^{n} < x_i x_j > .$$

Relative correlation error,

$$\text{err}_\text{corr} = \frac{\| R - R_{\text{truth}} \|}{\| R_{\text{truth}} \|} .$$
1: for $\mu = \mu_{\text{min}}$ to μ_{max} do
2: set initial fine-scale parameter: J_0, n_f, μ
3: create data set: $x^{(1:S_f)} \sim p(x^{(1:S_f)} | J_0, \mu, \beta)$ with S_f samples
4: set initial coarse-graining parameter: θ_{c0}, θ_{cf0}, $n_c = \frac{n_f}{l_c}$, μ
5: $\theta^t_c \leftarrow \theta_{c0}$
6: $\theta^t_{cf} \leftarrow \theta_{cf0}$
7: while !(Convergence check passed) do
8: function E-STEP
9: $X \sim q(X|x^{(1:N)}, \theta^t_c, \theta^t_{cf}, \mu) \propto p_{cf}(x^{(1:N)}|X, \theta^t_{cf})p_c(X|\theta^t_c, \mu)$ with S_q per data point $x^{(i)}$
10: function M-STEP
11: $\frac{\partial L}{\partial \theta^t_c} = -\beta \left< \frac{\partial}{\partial \theta^t_c} U_c(X, \theta_t^c) \right> q(x^{(1:N)}|x, \theta^t_c, \theta^t_{cf}) + \beta \left< \frac{\partial}{\partial \theta^t_c} U_c(X, \theta_t^c) \right> p_c(X|\theta^t_c)$
12: $\frac{\partial L}{\partial \theta^t_{cf}} = \left< \frac{1}{p_{cf}(x^{(1:N)}|X, \theta_{cf})} \frac{\partial p_{cf}(x^{(1:N)}|X, \theta_{cf})}{\partial \theta_{cf}} \right> q(x^{(1:N)}|x, \theta^t_c, \theta^t_{cf})$
13: $\theta^{t+1}_c \leftarrow \theta^t_c + \alpha \theta^t_c \frac{\partial L}{\partial \theta^t_c}$
14: $\theta^{t+1}_{cf} \leftarrow \theta^t_{cf} + \alpha \theta^t_{cf} \frac{\partial L}{\partial \theta^t_{cf}}$
15: end while
16: $x^{\text{pred}} \sim \tilde{p}(x_{\text{new}}|\theta^t_c, \theta^t_{cf})$ with $S^*_{\text{pred}} \cdot S_c$ samples
17: function EVALMAG($x^{\text{pred}}, x^{(1:N)}$)
18: function EVALCORR($x^{\text{pred}}, x^{(1:N)}$)
19: end for=0
Ising Model - Posterior and Prediction

Coarse-Scale Sample
\(X \sim p(X^i | x^i, \theta_c, \theta_{cf}) \)

Predicted Fine-Scale Sample
\(x_{pred}^i \sim p_{cf}(x^i | X^i, \theta_{cf}) \)

Fine-Scale Data Point \(x^i \)
Overview

1. Behavior of parameters with respect to μ
2. Influence of available data S_f for training the model
3. Level of coarse-graining
4. Aspects of coarse-grained models
Behavior of parameters with respect to μ

Constant attributes:

- $S_c = 200$ (samples $\mathbf{X} \sim p_c(\mathbf{X}|\theta_c)$)
- $S_q = 50$ (samples $\mathbf{X} \sim q(\mathbf{X}^{(i)}|\mathbf{x}^{(i)}, \theta_c, \theta_{cf})$)
- $J_0 = 1$ (overall interaction strength)
- $S_{pred} = 100S_c$ (samples for prediction step after learning the model)

Furthermore:

- $n_f = 32$, system size fine-scale
- $L_f = L_c = 1$, in fine- and coarse scale nearest-neighbor interactions are regarded
Behavior of parametrization with respect to μ

The potentials follows to,

$$U(J, \mu) = -\frac{1}{2} J \sum_{|i-j|=1} x_i x_j - \mu \sum_{i=1}^{n_f} x_i$$

$$U_c(\theta_c, \mu) = -\frac{1}{2} \theta_c \sum_{|i-j|=1} X_i X_j - \mu \sum_{i=1}^{n_c} X_i.$$

- Learn two parameters θ_c and θ_{cf} of the mapping p_{cf}
- Learning for every evaluated μ: $\mu = [-4.5, 4.5]$ with a step size of 0.6
Figure: θ_c: Parameter of potential U_c

Figure: θ_{cf}: Parameter of the mapping $p_{cf}(x | X, \theta_{cf})$
Key aspects

- True magnetization based on data set and predicted by 'predCg' coincides.
- Method 'relEntr' not able to predict data set due to missing mapping capabilities from coarse to fine.
- Parameters θ_c and θ_{cf} behave symmetrical with respect to $\mu = 0$.
- Stronger interaction θ_c for bigger $|\mu|$ but also higher probability θ_{cf} that the coarse configuration reflects the fine configuration.
Behavior with respect to size of data-set

- Learn θ_c and θ_{cf} at each evaluated μ
- Given different size of data-set S_f with $S_f \in \{5, 10, 20, 50\}$.
- Interaction length in fine-scale $L_f = 10$ with exponential decay of overall strength $J_0 = 1.5$

Potentials

$U_f(J, \mu) = -\frac{1}{2} \sum_{k}^{L_f} J_k \sum_{|i-j|=k} x_i x_j - \mu \sum_{i=1}^{n_f} x_i$

$U_c(\theta_c, \mu) = -\frac{1}{2} \theta_c \sum_{|i-j|=1} x_i x_j - \frac{1}{2} \theta_{c}^{lin} \sum_{i}^{n_c} x_i - \mu \sum_{i=1}^{n_c} x_i$.
Behavior with respect to size of data-set

Figure: Uncertainty in magnetization $S_f = 5$

Figure: Uncertainty in magnetization $S_f = 10$
Behavior with respect to size of data-set

Figure: Uncertainty in magnetization $S_f = 20$

Figure: Uncertainty in magnetization $S_f = 50$
Behavior with respect to size of data-set

Figure: Relative mean error of magnetization with respect to increasing amount of data S_f, $S_f \in \{5, 10, 20, 50, 100\}$

Figure: Relative mean error of correlation with respect to increasing amount of data S_f, $S_f \in \{5, 10, 20, 50, 100\}$
Behavior with respect to size of data-set

Uncertainty decreasing with increasing amount of data available

By using $S_f = 5$ predictions resembling true magnetization well

Figure: Correlation R_l for $\mu = 0$ with $S_f \in \{5, 10, 20, 50, 100\}$
Predictability by various levels of coarse-gaining

- Choose various level of coarse-graining l_c
- Mapping $p_{cf}(x|X, \theta_{cf})$ responsible for $l_c \in \{2, 4, 8, 16\}$ fine variables
- Coarse-grained potential $U_c(X, \theta_c)$ as given before
Predictability by various levels of coarse gaining

Figure: Uncertainty in magnetization $l_c = 16$

Figure: Uncertainty in magnetization $l_c = 8$
Predictability by various levels of coarse gaining

Figure: Uncertainty in magnetization $l_c = 4$

Figure: Uncertainty in magnetization $l_c = 2$
Predictability by various levels of coarse gaining

Figure: Correlation R_l at $\mu = 0$ with $l_c \in \{2, 4, 8, 16\}$

- Applying $l_c = 8$ leads already to good predictions in magnetization.
- Predicting correlations needs finer resolution in coarse-scale.
Model Comparison

- Assumption before: Model is given for potential $U_c(X, \theta_c)$
- Using different order of interactions and interaction lengths
Model Comparison

Model [abc]

- (a) $a = 0$ no linear term, $a = 1$ linear term
- (b) $b = 0$ no 2nd order term, $b = x$ 2nd order term up to interaction length $L_c = x$
- (c) $c = 0$ no third order term, $c = 1$ third order term on (nearest correlation)
Model Comparison

- Linear term necessary to describe data
- Second order interaction necessary
- In correlation: errors decreasing for including 2nd order interactions with higher interaction lengths L_c
- No further improvement for longer ranged third order interactions
Outline

Numerical issues / efficiency
 ▶ Use advanced sampling methods / optimization methods, using curvature information (in progress)
 ▶ Variational approximations

Coarse-Graining
 ▶ Hierarchical coarse-graining
 ▶ How to select mappings from coarse to fine?
 ▶ Probit- or Logit-classification model, O model for coarse variables

Algorithmic
 ▶ Approach with sparsity priors for model selection (in progress).

I. Bilionis and N. Zabaras.
A stochastic optimization approach to coarse-graining using a relative-entropy framework.

C. M. Bishop.
Pattern Recognition and Machine Learning.

A. Chaimovich and M. S. Shell.
Coarse-graining errors and numerical optimization using a relative entropy framework.

F. Ercolessi and J. B. Adams.
Interatomic potentials from first-principles calculations: The force-matching method.

Multiscale coarse graining of liquid-state systems.

Numerical and statistical methods for the coarse-graining of many-particle stochastic systems.

A. P. Lyubartsev and A. Laaksonen.
Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach.
D. Ming and M. E. Wall.
Allostery in a coarse-grained model of protein dynamics.

M. S. Shell.
The relative entropy is fundamental to multiscale and inverse thermodynamic problems.