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Motivation Coarse-Graining

Atomistic simulation for obtaining insights of
chemical and physical process of complex systems.

Difficulty
I Complex interactions

I Long-range interactions

I Small time- and length-scales

→ Exceeding computational tractability

A coarse description allows us
I to evaluate larger systems during larger time

intervals

I to gain understanding of physics of the system. Figure :
Coarse-graining water
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Motivation

Approach
I Describing system with less degrees of freedom

I Determining optimal parameter set for given parametrization of a
coarse-grained potential

I Leading to point estimates of its parametrization and thus also in predictions

I Predictions performed on coarse scale

How can we quantify the uncertainty induced by a coarse
description and the loss of information?

How can we reconstruct fine configurations given a coarse
configuration?
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General coarse-graining problem

Fine-scale degrees of freedom x ∈M with M⊂ Rn, n� 1 in equilibrium
described by a Boltzmann-type PDF:

Fine-scale description

pf(x|β) =
exp {−βU(x)}

Z (β)

I Potential U(x)

I Inverse Temperature β = 1
kbT

, with temperature T

I Partition function Z(β) =
∫
M exp {−βU(x)} dx
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General coarse-graining problem

Coarse-scale description

pc(X|β) =
exp {−βUc(X,θc)}

Zc(θc, β)

I Coarse variables X ∈Mc, Mc ⊂ Rnc , nc � n

I Coarse-grained potential selected Ûc selected out of candidate potentials
Ûc ∈ Uc

I Parametrization and shape selected by assuming Uc(X,θc) but any potential
possible

How are fine and coarse configurations connected?
Connecting fine variables x with coarse variables X with coarse-graining map
ξ :M−→Mc

X = ξ(x)
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How to determine the effective coarse potential Uc?

Analytical solution for the effective coarse-grained potential:

Uc(X) = −β−1 ln

∫
M

exp {−βU(x)} δ(ξ(x)− X)dx

Potential of mean force with respect to coarse-grained coordinates ξ(x). →
intractable!

Numerical coarse-graining strategies:

I iterative Boltzmann inversion [5]

I inverse Monte Carlo [8]

I force matching [6]

I variational mean-field theory [9]

I relative entropy [10]
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The relative entropy method[10]

→ minimize a distance metric between pf(X|β) and pc(X|β) with the PDF
pf(X|β) sampling configuration x that maps to configuration X

pf(X|β) ∝
∫
M

pf(x|β)δ(ξ(x)− X)dx

Relative entropy method[10, 4, 2] (or KL-divergence)

KL(pf||pc) =

∫
Mc

pf(X|β) ln

(
pf(X|β)

pc (X|β)

)
dX

Formulation in M:

KL(pf ||pc) =

∫
M

pf(x|β) ln

(
pf(x|β)

pc (ξ(x)|β)

)
dx + Smap(ξ(x))

I with Smap =
〈∫
M δ(ξ(x)− X)dx

〉
pf(x|β)

measures the information loss

induced by mapping ξ(x).
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Relative entropy method

Smap(ξ(x)) is independent of Ûc, the minimization of the KL-divergence is
equivalent to minimization of

F(Ûc) =

〈
ln

pf(x|β)

pc(ξ(x)|β)

〉
pf(x|β)

For any given m-dimensional parametrization θc ∈ Θc ⊂ Rm of the potential, the

optimization problem follows:

θ∗c = arg min
θc∈Θc

F(Uc(X,θc))
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Relative entropy method

Model Restrictions
I Relative entropy method has no capability to predict fine-scale configurations

(no mapping coarse to fine)
I Eg. for predicting correlations within fine configurations

I Predicting quantities of interest (QoI) by evaluating on fine-scale

〈f (x)〉pf(x|β) =

∫
M

f (x)pf(x|β)dx

I With coarse-grained description pc(X|β) predictions in Mc but not in M
Difficulty:

I How to define observable g(X) for desired QoI in Mc?
I Are you able to predict same QoI with 〈g(X)〉pc(X|β) =

∫
Mc

g(X)pc(X|β)dX

I No quantification of epistemic uncertainty: determine Smap(ξ(x))
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Proposed Model

Framework following generative probabilistic models and builds upon:

1 Coarse-scale PDF pc(X|θc, β) ∝ exp {−βUc(X,θc)}
I Describing statistics of coarse variables X
I Parametrized by θc, no restrictions in shape of pc

2 Probabilistic mapping from coarse to fine pcf(x|X,θcf)
I Conditional PDF of x given the coarse variables X
I Parametrization of the probabilistic mapping by θcf ∈ Θcf ⊂ Rmcf

I Deterministic mapping ξ(x) is not invertible (many to one map)

→ Probabilistic relation necessary
I Smap not fixed for per definition. → Optimization with respect to θcf possible.

3 Prior PDF for model parametrization
I p(θc)
I p(θcf)
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Proposed Model

I Proposed model describes a Bayesian perspective of coarse-graining
equilibrium atomistic ensembles

I Model is data driven by N data points x(i) in the fine-scale, denoted as
x(1:N) = {x(1), · · · , x(N)}

Given the data x(1:N) a posterior distribution on the model parameters θcf, θc and
the latent variables X(1:N) can be defined.

I Coarse variables seen as latent

I To each observable x(i) one latent Variable X(i) is assigned

I X(i) represents pre-image of the fine-scale observation x(i)
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Bayesian coarse-graining - posterior

Posterior distribution

p(θcf,θcf,X
(1:N)|x(1:N)) ∝ p(x(1:N)|θcf,θc,X

(1:N))p(θcf,θc,X
(1:N))

=

(
N∏

i=1

pcf(x(i)|θcf,X
(i))pc(X(i)|θc)

)
p(θcf)p(θc)

Use given data x(1:N) for inferring the the posterior
distribution or for determining MAP estimates of the
model parameters θ∗cf, θ

∗
c .

I Bayesian formulation answers the questions of
I model validation and
I prediction

X(n)

θc

x(n)

θcf

N
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Bayesian coarse-graining

The posterior distribution leads to the predictive distribution for fine-scale
configurations x:

Predictive distribution

p(x|x(1:N)) =

∫
pcf(x|X,θcf)pc(X|θc)p(θc,θcf|x(1:N))dXdθcfdθcf

Simulate fine-scale system

1 Draw sample θ∗c , θ∗cf ∼ p(θc,θcf|x(1:N))

2 Draw sample of coarse-scale description X∗ ∼ pc(X|θ∗c )

3 Draw sample of fine-scale description x∗ ∼ pcf(x∗|X∗,θ∗cf)
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Bayesian coarse-graining: ensemble averages

Approximating ensemble averages by

〈f (x)〉pf(x) =

∫
M

f (x)pf(x)dx

= E [f (x)]≈E [f (x)|x(1:N)]

=

∫
M

f (x)p(x|x(1:N))dx

=

∫
f (x)pcf(x|X,θcf)pc(X|θc)p(θc,θcf|x(1:N))dxdXdθcdθcf

I Error arising from discrepancy between E [f (x)] and E [f (x)|x(1:N)]
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Bayesian coarse-graining: coarse-scale model pc

Coarse-scale model

pc(X|θcf) =
exp {−βUc(X,θc)}

Zc(θc)

Requirements

I Allow sufficient flexibility of pc(X)

I Uc built from high-order interactions affording flexibility in pc(X)
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Bayesian coarse-graining: reconstruction map pcf

Map from coarse to fine: pcf(x|X,θcf)

I Several fine-configurations map to same coarse-configuration
I Probabilistic relation between a given coarse-configuration and a

fine-configuration takes account of it. [7]

I Fast reconstruction ([7, 1]) of fine-scale configurations x given a
coarse-configuration X desired.

Influence of pcf

I What is expected from the coarse variables X in
terms of predicting the given data x(1:N)?

I Adjusting pc(X|θc) so that X agrees best with data
x(1:N) connected with probabilistic mapping pcf.

coarse coordinate X

possible set of fine coordinates xi for given coarse coordinate X 

pcf (xi|X)

(...)

Figure : Configurations x
given X
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Optimization

For learning the model parameters θc and θcf the expectation maximization
algorithm is applied.

I Point estimates for maximizing the likelihood or posterior distribution are
obtained.

I Approximation of posterior on θcf by Laplace (validated by full posterior
sampling)

MAP estimate

θMAP = arg max
θ

[
log p(θc,θcf, x

(1:N))
]

= arg max
θ

[
log p(x(1:N)|θcf,θcf) + log p(θc) + log p(θcf)

]
I In the following the ML-estimate is shown and will be extended by prior

distributions p(θ) in a next step by adding log-priors log p(θc) + log p(θcf).
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Optimization

I To obtain point estimates with MLE for the model parameters θc and θcf we
maximize the log-likelihood by using the EM algorithm.

I The likelihood is defined as

p(x(1:N)|θc, θcf) =

∫
p(x(1:N)

,X(1:N)|θc, θcf)dX(1:N)

=

∫
pcf(x(1:N)|X(1:N)

, θcf)pc(X(1:N)|θc)dX(1:N)

=

∫ N∏
i=1

pcf(x(i)|X(i)
, θcf)pc(X(i)|θc)dX(1:N)

I augmenting the log-likelihood with an arbitrary density q(X(1:N))

log p(x(1:N)|θc, θcf) = log

∫
q(X(1:N))

pcf(x(1:N)|X(1:N), θcf)pc(X(1:N)|θc)

q(X(1:N))
dX(1:N)

≥
∫

q(X(1:N)) log
pcf(x(1:N)|X(1:N), θcf)pc(X(1:N)|θc)

q(X(1:N))
dX(1:N)

= L(q(X(1:N)), θc, θcf)
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Expectation maximization

It holds the following decomposition for the lower bound:

L(q(X(1:N)), θc, θcf) =

∫
q(X(1:N)) log

p(x(1:N)|X(1:N), θcf)p(X(1:N)|θc)

q(X(1:N))
dX

= −KL(q(X(1:N))||p(X(1:N)|x(1:N)
, θcf, θcf)) + log p(x(1:N))

Decomposition of the log likelihood

log p(x(1:N)|θc, θcf) = L(q(X(1:N)), θc, θcf) + KL(q(X(1:N))||p(X(1:N)|x(1:N)
, θc, θcf)).

Maximizing L(q(X(1:N)),θc,θcf) is equal to minimizing

KL(q(X(1:N))||p(X(1:N)|x(1:N),θcf,θcf))

p(X(1:N)|x(1:N),θcf,θcf) PDF over pre-images for X for the given data x(1:N) and
parameters θ.
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Expectation maximization

For given parameters θcf, θc the lower bound is maximized if we choose
q(X(1:N)) ∝ pcf(x(1:N)|X(1:N),θcf)pc(X(1:N)|θc).

Therefore,
⇒ KL(q(X(1:N))||p(X(1:N)|x(1:N),θc,θcf)) = 0.

Expectation maximization

1 Initial parameter setting for iteration t = 0: θ0
cf and θ0

c

2 E-step: q(t+1) = arg maxq L(q,θt)

Involves MCMC to obtain samples X ∼ q(X(1:N)|x(1:N),θt
cf,θ

t
cf)

3 M-step: θt+1 = arg maxθ L(qt+1,θt)

4 t → t + 1
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Derivatives

First order derivatives

∂L
∂θc

= β

N

〈
∂Uc(X, θc)

∂θc

〉
pc(X(i)|θt

c)

−
N∑

i=1

〈
∂Uc(X(i), θc)

∂θc

〉
q(X(i)|x(i),θt

cf
,θt

c)


∂L
∂θcf

=

〈
1

pcf(x(1:N)|X, θcf)

∂pcf(x(1:N)|X, θcf)

∂θcf

〉
q(X(1:N)|x(1:N),θt

cf
,θt

c)

Second order derivatives

∂2L
∂θk∂θl

=− β
N∑

i=1

〈
∂2Uc(X(i), θc)

∂θk∂θl

〉
q(X(i)|x(i),θ′

cf
,θ′c)

+ βN

〈
∂2Uc(X, θc)

∂θk∂θl

〉
pc(X|θc)

− β2N

〈
∂Uc(X, θc)

∂θk

∂Uc(X, θc)

∂θl

〉
pc(X|θc)

+ β
2N

〈
∂Uc(X, θc)

∂θk

〉
pc(X|θc)

〈
∂Uc(X, θc)

∂θl

〉
pc(X|θc)
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Derivatives

Second order derivatives

∂2L(q(X(1:N)), θc, θcf)

∂θ2
cf

=
N∑

i=1

〈
1

pcf(x(i)|X(i), θcf)

∂2pcf(x(i)|X(i), θcf)

∂θ2
cf

−
1

pcf(x(i)|X(i), θcf)2

(
∂pcf(x(i)|X(i), θcf)

∂θcf

)2〉
q(X(i)|x(i),θ′

cf
,θ′c)
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Robbins-Monro Optimization

Gradients are sample averages → noise afflicted.

Robbins-Monro Algorithm

θt+1 = θt + αt∇θL(θt)

with

αt =
α

(t + A)ρ
, with

1

2
< ρ ≤ 1.

I Convergence is guaranteed to the true optimum θ∗ if infinite steps performed.

I αt is a sequence of real numbers and has to fulfill:

∞∑
t=1

αt =∞ and
∞∑

t=1

α2
t <∞
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Laplace Approximation

Approximating a density function p(z) = 1
Z f (z) by

q(z) = N (z|z0,Σ)

with Σ = (−∇∇f (z)|z=0 )−1 and ∇f (z)|z=z0 = 0.

Figure : Laplace approximation[3]

For the given problem using a noniformative prior it follows

Laplace approximation

∂2 log p(θcf|x(1:N))

∂θ2
cf

=
N∑
i

〈
∂2 log pcf(x(i)|X(i), θcf)

∂θ2
cf

〉
q(X(i))
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Predictive uncertainty

Propagate uncertainty induced by mapping

1 θi
cf ∼ N (θMAP

cf ,Σ) with Σ =
(
−∂

2 log p(θcf|x(1:N))
∂θ2

cf

)−1

2 Xij ∼ pc(X|θMAP
c )

3 xij
k ∼ pcf(x|Xij ,θi

cf)

Predictice uncertainty of properties:

〈
f |θc,θi

cf
=
〉

=

∫
f (x)pcf(x|X,θi

cf)pc(X|θMAP
c )dXdx
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Example Problem: Coarse-graining 1D Ising Model

I Applying proposed method (’predCg’) for coarse-graining a one dimensional
Ising Model

I Comparison between ’predCg’ and the deterministic formulation of
minimizing the KL-divergence (’relEntr’) by Shell (2008)

I Assessed by predictive capabilities for magnetization and correlation
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Ising Model - System Setting

The Ising-model regarded in the following discussion is one dimensional. It has the
properties:

I System size nf in fine- and nc in coarse-scale

I Level of coarse-graining lc = nf

nc

I Inverse temperature β

I External field µ

I Regarded interaction length Lf in fine- and Lc in coarse scale, including all
interactions k ≤ L

I J0 = 1 overall interaction strength
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Ising Model - Potential in Fine-Scale

Fine variables take the values xi ∈ {−1, 1} following
pf(x|β) ∝ exp(−βU(x, Jk , µ)):

Fine-scale potential

U(x, Jk , µ) = −1

2

Lf∑
k=1

Jk

∑
|i−j|=k

xixj − µ
nf∑

i=1

xi

with i , j ∈ {1, . . . , nf} having nf lattice sites.
I Maximal interactions of Lf sites apart are regarded in the potential.
I |i − j | = k interpreted as summation over neighbors k over all sites i sites

apart
I Jk , strength of the k-th interaction.

with Jk following a power law for a given overall strength J0 and exponent a,
Jk = K

Lka with,

K = J0L
1−a

L∑
k=1

k−a

in order to normalize the interaction strength [1].
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Ising Model - Potential in Coarse-Scale

Coarse variables take the values Xi ∈ {−1, 1}, pc ∝ exp{−βUc(X,θc, µ)}

Coarse-scale potential

Uc(X, θc, µ) =−
1

2
(θlin

nc∑
i=1

Xi

+

Lc∑
k=1

θ
twop
k

∑
|i−j|=k

Xi Xj

+

nc∑
i=1

θ
trip
mn

∑
m=1

∑
n=1

xi xi±mxi±m±n)

− µ
nc∑

i=1

Xi

with i , j ∈ {1, . . . , nc} and nc � nf lattice sites.
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Ising Model - Mapping Fine to Coarse (for relative entropy)

Each coarse variable Xr , r = {1, . . . ,R} describes S fine-scale variables xr ,s with
s = {1, . . . ,S}. The mapping from fine-scale variables xr ,s to coarse variable Xr is
defined as,

Fine-to-coarse mapping

Xr =


+1, 1

S

∑S
s xr ,s > 0

−1, 1
S

∑S
s xr ,s < 0

U(−1,+1), otherwise

.

Figure : Mapping from fine-scale x to coarse-scale X
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Ising Model - Mapping Coarse to Fine

Coarse-to-fine mapping pcf(x|X, θcf)

pcf(xr ,s |Xr ) = θ
1+xr,s Xr

2

cf (1− θcf)
1+xr,s Xr

2

Assumption: xi conditionally
independent for given X:

p(x(1:N)|X(1:N)
, θcf) =

N∏
i=1

pcf(x(t)|X(t)
, θcf)

=
N∏

i=1

R∏
r=1

S∏
s=1

θ 1+xi
r,s X i

r
2

cf (1− θcf)
1−xi

r,s X i
r

2


= θ

∑N
i=1

∑R
r=1

∑S
s=1

1+xi
r,s X i

r
2

cf

(1− θcf)
∑N

i=1
∑R

r=1
∑S

s=1

1−xi
r,s X i

r
2

Figure : Probabilistic mapping form coarse to
fine: pcf(x|X, θcf)
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Which properties to predict?

The magnetization m is given:

Magnetization in the fine-scale

mfine =

∫
1

n

n∑
i

xi pf(x)dx

Magnetization calculated with proposed method (’predcg ’)

mML,fine =

∫
1

n

n∑
i

xi pcf(x|X,θcf)pc(X|θc)p(θcf,θc|x(1:N)) dθcfdθcdXdx
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Quantity of Interest: Magnetization

Magnetization calculated with relative entropy method ‘relEntr ’

(deterministic mapping fine to coarse: X = ξ(x))

I For each µ calculate optimal model parameter θ∗cg, det

I Since we want to compare the magnetization on the same (fine) scale a
mapping is introduced

I if Xr = −1, select randomly a possible configuration xr,s where either all
xr,s = −1 or one is xr,s = −1 and the other xr,s = 1 (for given r : s ∈ {1 . . . lc})

I if Xr = +1, select randomly a possible configuration xr,s where either all
xr,s = +1 or one is xr,s = +1 and the other xr,s = −1 (for given r : s ∈ 1, 2)

I For a given coarse-state the selected fine-states xdet are used for calculating
the magnetization

Relative error in magnetization,

errmag =
‖m −mtruth‖
‖mtruth‖

.
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Quantity of Interest: Correlation

The correlation Rl of all sites being separated by l sites is measured as,

Rl =
1

n

n∑
|i−j|=l

< xixj > .

Relative correlation error,

errcorr =
‖R − Rtruth‖
‖Rtruth‖

.
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Ising Model - ML Algorithm

1: for µ = µmin to µmax do
2: set initial fine-scale parameter: J0, nf, µ

3: create data set: x(1:Sf ) ∼ p(x(1:Sf )|J0, µ, β) with Sf samples

4: set initial coarse-graining parameter: θc0, θcf0, nc =
nf
lc
, µ

5: θt
c ← θc0

6: θt
cf ← θcf0

7: while !(Convergence check passed) do
7: function E-Step
8: X ∼ q(X|x(1:N), θt

c, θ
t
cf, µ) ∝ pcf(x(1:N)|X, θt

cf)pc(X|θt
c, µ) with Sq per data point x(i)

8: function M-Step

9: ∂L
∂θc

=−β
〈
∂Uc(X,θc)
∂θc

〉
q(X|x(1:N),θt

cf
,θt

c)
+β

〈
∂Uc(X,θc)
∂θc

〉
pc(X|θt

c)

10: ∂L
∂θcf

=

〈
1

pcf(x(1:N)|X,θcf)

∂pcf(x(1:N)|X,θcf)
∂θcf

〉
q(X|x,θt

cf
,θt

c)

11: θt+1
c ← θt

c + αθc
∂L
∂θc

12: θt+1
cf
← θt

cf + αθcf
∂L
∂θcf

13: end while
14: xpred ∼ p̃(xnew|θt

c, θ
t
cf) with Spred ∗ Sc samples

14: function EvalMag(xpred, x(1:N))

14: function EvalCorr(xpred, x(1:N))

15: end for=0
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Ising Model - Posterior and Prediction
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Overview

1 Behavior of parameters with respect to µ

2 Influence of available data Sf for training the model

3 Level of coarse-graining

4 Aspects of coarse-grained models
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Behavior of parameters with respect to µ

Constant attributes:

I Sc = 200 (samples X ∼ pc(X|θc))

I Sq = 50 (samples X ∼ q(X(i)|x(i),θc,θcf))

I J0 = 1 (overall interaction strength)

I Spred = 100Sc (samples for prediction step after learning the model)

Furthermore:

I nf = 32, system size fine-scale

I Lf = Lc = 1, in fine- and coarse scale nearest-neighbor interactions are
regarded

WCPM Seminar Predictive Coarse-Graining November 27, 2015 38 / 56



Behavior of parametrization with respect to µ

The potentials follows to,

U(J, µ) = −1

2
J
∑
|i−j|=1

xixj − µ
nf∑

i=1

xi

Uc(θc, µ) = −1

2
θc

∑
|i−j|=1

XiXj − µ
nc∑

i=1

Xi .

I Learn two parameters θc and θcf of the mapping pcf

I Learning for every evaluated µ: µ = [−4.5, 4.5] with a step size of 0.6
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Figure : θc: Parameter of potential Uc
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Figure : θcf: Parameter of the mapping pcf(x|X, θcf)
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Figure : Magnetization

Key aspects
I True magnetization based on data set and predicted by ’predCg’ coincides.

I Method ’relEntr’ not able to predict data set due to missing mapping
capabilities from coarse to fine.

I Parameters θc and θcf behave symmetrical with respect to µ = 0.

I Stronger interaction θc for bigger |µ| but also higher probability θcf that the
coarse configuration reflects the fine configuration.
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Behavior with respect to size of data-set

I Learn θc and θcf at each evaluated µ

I Given different size of data-set Sf with Sf ∈ {5, 10, 20, 50}.
I Interaction length in fine-scale Lf = 10 with exponential decay of overall

strength J0 = 1.5

Potentials

Uf(J, µ) = −1

2

Lf∑
k

Jk

∑
|i−j|=k

xixj − µ
nf∑

i=1

xi

Uc(θc, µ) = −1

2
θc

∑
|i−j|=1

XiXj −
1

2
θlin

c

nc∑
i

Xi − µ
nc∑

i=1

Xi .
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Behavior with respect to size of data-set
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Figure : Uncertainty in magnetization Sf = 5
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Figure : Uncertainty in magnetization Sf = 10
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Behavior with respect to size of data-set
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Figure : Uncertainty in magnetization Sf = 20
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Figure : Uncertainty in magnetization Sf = 50
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Behavior with respect to size of data-set
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Figure : Relative mean error of magnetization
with respect to increasing amount of data Sf,
Sf ∈ {5, 10, 20, 50, 100}
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Figure : Relative mean error of correlation with
respect to increasing amount of data Sf,
Sf ∈ {5, 10, 20, 50, 100}
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Behavior with respect to size of data-set
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Figure : Correlation Rl for µ = 0 with
Sf ∈ {5, 10, 20, 50, 100}

I Uncertainty decreasing with
increasing amount of data available

I By using Sf = 5 predictions
resembling true magnetization well
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Predictability by various levels of coarse-gaining

I Choose various level of coarse-graining lc
I Mapping pcf(x|X,θcf) responsible for lc ∈ {2, 4, 8, 16} fine variables

I Coarse-grained potential Uc(X,θc) as given before

lc = 2

lc = 4

lc = 8

lc = 16
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Predictability by various levels of coarse gaining

−2 0 2
−1

−0.5

0

0.5

1

µ

〈m
(µ

)〉

Figure : Uncertainty in magnetization lc = 16

−2 0 2
−1

−0.5

0

0.5

1

µ

〈m
(µ

)〉
99% confidence interval 95% confidence interval

Posterior mean Truth

Data

Figure : Uncertainty in magnetization lc = 8
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Predictability by various levels of coarse gaining
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Figure : Uncertainty in magnetization lc = 4
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Figure : Uncertainty in magnetization lc = 2
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Predictability by various levels of coarse gaining
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Figure : Correlation Rl at µ = 0 with
lc ∈ {2, 4, 8, 16}

I Applying lc = 8 leads already to
good predictions in magnetization

I Predicting correlations needs finer
resolution in coarse-scale
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Model Comparison

I Assumption before: Model is given for potential Uc(X,θc)
I Using different order of interactions and interaction lengths

Linear

2nd order
Interaction length 2

3rd order
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Model Comparison
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Model [abc]

I (a) a = 0 no linear term, a = 1 linear term

I (b) b = 0 no 2nd order term, b = x 2nd order term up to interaction length
Lc = x

I (c) c = 0 no third order term, c = 1 third order term on (nearest correlation)
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Model Comparison

I Linear term necessary to describe data

I Second order interaction necessary

I In correlation: errors decreasing for including 2nd order interactions with
higher interaction lengths Lc

I No further improvement for longer ranged third order interactions
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Outline

Numerical issues / efficiency

I Use advanced sampling methods / optimization methods, using curvature
information (in progress)

I Variational approximations

Coarse-Graining

I Hierarchical coarse-graining

I How to select mappings from coarse to fine?

I Probit- or Logit-classification model, O model for coarse variables

Algorithmic

I Approach with sparsity priors for model selection (in progress).
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