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Motivation Coarse-Graining

Atomistic simulation for obtaining insights of
chemical and physical process of complex systems.
Difficulty

» Complex interactions

> Long-range interactions

» Small time- and length-scales

— Exceeding computational tractability

A coarse description allows us

> to evaluate larger systems during larger time
intervals

> to gain understanding of physics of the system. Figure :

Coarse-graining water
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Motivation

Approach
> Describing system with less degrees of freedom

» Determining optimal parameter set for given parametrization of a
coarse-grained potential

v

Leading to point estimates of its parametrization and thus also in predictions

v

Predictions performed on coarse scale

How can we quantify the uncertainty induced by a coarse
description and the loss of information?

How can we reconstruct fine configurations given a coarse
configuration?
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General coarse-graining problem

Fine-scale degrees of freedom x € M with M C R"”, n > 1 in equilibrium
described by a Boltzmann-type PDF:

Fine-scale description

_ exp{-pUX)}

> Potential U(x)
> Inverse Temperature 5 = k,%r with temperature T

> Partition function Z(8) = [, exp {—BU(x)} dx

WCPM Seminar Predictive Coarse-Graining November 27, 2015 4 /56



General coarse-graining problem

Coarse-scale description

exp{—BU(X,0.)}
Z(0c, B)

pc(xlﬂ) =

» Coarse variables X € M., M. CR"™, n. < n
» Coarse-grained potential selected U. selected out of candidate potentials
U e U

» Parametrization and shape selected by assuming U.(X, 8.) but any potential
possible

How are fine and coarse configurations connected?
Connecting fine variables x with coarse variables X with coarse-graining map

&M — M,
X =¢(x)
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How to determine the effective coarse potential U.?

Analytical solution for the effective coarse-grained potential:

Ue(X) = —B~1In /M exp {—BU(X)} 5(£(x) — X)dx

Potential of mean force with respect to coarse-grained coordinates £(x). —
intractable!

Numerical coarse-graining strategies:
> iterative Boltzmann inversion [5]
> inverse Monte Carlo [8]

» force matching [6]
» variational mean-field theory [9]

> relative entropy [10]
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The relative entropy method!*”!

— minimize a distance metric between p¢(X|S) and p.(X|3) with the PDF
pe(X|B) sampling configuration x that maps to configuration X

pr(XI5) /M pr(xIB)3(E(x) — X)dx

Relative entropy method® # 2 (or KL-divergence)

KL(pt|[pc) = /M pe(X|3)In <:(())((||”Bﬁ))> dX

Formulation in M:

_ W3y in [ —Prx8) « N
KUiprllod) = [ prxs)in (B0 i 5 (e0)

> with Smap = <fM 0(&(x) — X)dx>pf(xlﬂ) measures the information loss
induced by mapping &(x).
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Relative entropy method

Smap(&(x)) is independent of U, the minimization of the KL-divergence is
equivalent to minimization of

0 = (805 )

For any given m-dimensional parametrization 8. € ®. C R™ of the potential, the
Yg

>

optimization problem follows:

9? = arg Gmelg) F(Uc(X,0c))
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Relative entropy method

Model Restrictions

> Relative entropy method has no capability to predict fine-scale configurations
(no mapping coarse to fine)

» Eg. for predicting correlations within fine configurations

> Predicting quantities of interest (Qol) by evaluating on fine-scale

(Wi = | Fpixl8)ax

> With coarse-grained description p.(X|3) predictions in M. but not in M
Difficulty:
» How to define observable g(X) for desired Qol in M.?
> Are you able to predict same Qol with (g(X)), x5 = ch g(X)p(X|B8)dX

> No quantification of epistemic uncertainty: determine Spap(£(x))
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Proposed Model

Framework following generative probabilistic models and builds upon:

@ Coarse-scale PDF p.(X|0c, 8) x exp {—BU(X,6.)}
» Describing statistics of coarse variables X
» Parametrized by 0., no restrictions in shape of pc

@® Probabilistic mapping from coarse to fine p.(x|X, 0f)
» Conditional PDF of x given the coarse variables X
» Parametrization of the probabilistic mapping by O € O C R™f
> Deterministic mapping &(x) is not invertible (many to one map)

— Probabilistic relation necessary
> Smap not fixed for per definition. — Optimization with respect to @ possible.

©® Prior PDF for model parametrization

> p(6c)
> p(ecf)
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Proposed Model

» Proposed model describes a Bayesian perspective of coarse-graining
equilibrium atomistic ensembles

» Model is data driven by N data points x() in the fine-scale, denoted as
x(EN) = [x(@) ... x(M)}

Given the data x(*V) a posterior distribution on the model parameters 8, 6. and
the latent variables X(“) can be defined.

> Coarse variables seen as latent
» To each observable x() one latent Variable X() is assigned

» x() represents pre-image of the fine-scale observation x(/)
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Bayesian coarse-graining - posterior

Posterior distribution
P(acﬂ O, X (L:N) |x(1:N)) o~ p(x(lzN) |0, O, X(l:N))p(ecf7 0., X(l:N))

N
- <H Pcf(x(i) |0cf7 X(I))pc(x(’) |0c)> p(ecf)p(ec)
i=1

Use given data x(:N) for inferring the the posterior
distribution or for determining MAP estimates of the @ @
model parameters 07, 6.

» Bayesian formulation answers the questions of
» model validation and @
» prediction

N
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Bayesian coarse-graining

The posterior distribution leads to the predictive distribution for fine-scale
configurations x:

Predictive distribution

p(x|xM)) = / Pe(X|X, Ocf) pe(X]0) p(Bec, O XM dX dO 1 d 0 ¢

Simulate fine-scale system
® Draw sample 67, 0% ~ p(0., O4/xEM)
® Draw sample of coarse-scale description X* ~ p.(X|07)
® Draw sample of fine-scale description x* ~ p.s(x*|X*, 0%)
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Bayesian coarse-graining: ensemble averages

Approximating ensemble averages by

(W) = [ FOOmr(x)0x
~ ELF(IELF ()
:/ f(x)p(x|xEM))dx
M

= / F(X)per(xX|X, Ocg) pe (X]0) p(Oc, Oct|x M) dxd X dO.d O

» Error arising from discrepancy between E[f(x)] and E[f(x)|x(::M)]
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Bayesian coarse-graining: coarse-scale model p.

Coarse-scale model

_exp{—pU(X,0.)}
pc(x|0cf) - Zc(9c)

Requirements
> Allow sufficient flexibility of p.(X)
> U built from high-order interactions affording flexibility in p.(X)
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Bayesian coarse-graining: reconstruction map pcs

Map from coarse to fine: p(x|X, Oc)

> Several fine-configurations map to same coarse-configuration
> Probabilistic relation between a given coarse-configuration and a
fine-configuration takes account of it. [7]
> Fast reconstruction ([7, 1]) of fine-scale configurations x given a
coarse-configuration X desired.

Influence of pt .

pet (il

» What is expected from the coarse variables X in per SN
terms of predicting the given data x(1'V)? 1 "k =

> Adjusting p.(X|6.) so that X agrees best with data

x('N) connected with probabilistic mapping pes. Figure - Configurations x

given X
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Optimization

For learning the model parameters 8. and 6. the expectation maximization
algorithm is applied.

» Point estimates for maximizing the likelihood or posterior distribution are
obtained.

» Approximation of posterior on @ by Laplace (validated by full posterior
sampling)

MAP estimate

oMAP — arg max [Iog p(Oc, Oct, x(l:N))}

= arg max {log p(x"M|6., Ocf) + log p(6.) + log P(ecf):|

» In the following the ML-estimate is shown and will be extended by prior
distributions p(0) in a next step by adding log-priors log p(6.) + log p(6cs)-
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Optimization

» To obtain point estimates with MLE for the model parameters 6. and 8 we
maximize the log-likelihood by using the EM algorithm.
» The likelihood is defined as

p(x*M 6., 6c) = / p(xM, xEM g, 6er)adx M)

_ /pcf(x(uv)‘xuz/v), ch)pC(X“:N)\BC)dX(LN)

N
= [ TTpatx X2, 0:0p(x 10 ax "
i=1

> augmenting the log-likelihood with an arbitrary density q(X(liN))

) ) (1:N) X (1:N) , 64 X(l N) 0.
log p(x™) 6., Br) = |og/q(x(1./v))Pcf(x | £)pe( 16c) ax@
q(X®EM)
> (X(liN)) log pCf(x (1N IX (10 ecf)Pc(x |9 )dX 1:N)
=/ g(X(W)

= £(q(x""), 6., 65)
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Expectation maximization

It holds the following decomposition for the lower bound:

p(xEM|XEN | g )p(XEM |0,
q(X(:M)

= — KL(g(X®™)||p(X*M|xIV g, 6cr)) + log p(xM))

dX

£(q(x*M), 6., 0cr) = / a(x"™) log

Decomposition of the log likelihood

log p(xM)|6., 6.r) = L(q(XEV), 8¢, 6cr) + KL(G(XEM)[[p(XEM xEW g, 0.1)).

Maximizing £(g(X3M), 8., 0) is equal to minimizing
KL(g(XE™)[p(XEM Y, 6cr, 6c1))

p(XENM|x(EN) g . 6.¢) PDF over pre-images for X for the given data x3:N) and
parameters 6.
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Expectation maximization

For given parameters O, 0. the lower bound is maximized if we choose
(X 1:N)) x Pcf(x(l:N)‘X(l:N),ch)pc(x(l:N)|0c).

Therefore,
= KL(g(XEM)||p(XEMxEN) g 6)) = 0.

Expectation maximization

@ Initial parameter setting for iteration t = 0: % and °
@ E-step: () = argmax, £(q, 0")
Involves MCMC to obtain samples X ~ g(XM|x(1:N) gt gt
© M-step: 8" = argmaxg L(g"1, 0%)
0t—t+1
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Derivatives

First order derivatives

aL <N<auc(x, 0.)

06. 98. >pc(X<i}I95) i=1

oL 1 Aper(xTM X, 6¢)
00¢ pcf(x(l:N) |x7 Bcf) 00¢

96, ax() [x(), 6t 0t)

>q(x(1:N) |x(L:N) ,6%;.68)

Second order derivatives

62N<8U°(x’ 0.) AU(X, 9C)>
9 90/ pe(xioo)

aak 8‘91

AU(X, 6. OU(X, 6.
g (2K (2ux.00
pPc(X[6c)

8L N /02U (xD, e,
96,00 :_'BZ< z-;;ae 2 ey
kel i—1 Ly ax([x(),67 07)

>Pc(x\9<:)

8?U(X, 0.)

9909, >pc(ch)

v

WCPM Seminar Predictive Coarse-Graining

November 27, 2015

21/ 56



Derivatives

Second order derivatives

P2L(q(XM™M), 6c,0cr) _ zNj < ; 3%ps(x|X?, 6cr) 1 (apcf(x“nx("), ocf)>

aezf =il pCf(x(f) Ix(i), 0cr) aegf - Pcf(X(") |x(i)y 0)? 00
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Robbins-Monro Optimization

Gradients are sample averages — noise afflicted.

Robbins-Monro Algorithm

0" = 0" 4 a,VeL(6")
with

1

(t+ A)r

» Convergence is guaranteed to the true optimum 6" if infinite steps performed.
> «; is a sequence of real numbers and has to fulfill:

Zat oo and Zat<oo

t=1
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Laplace Approximation

Approximating a density function p(z) = 3f(z) by

0.8

CI(Z) = N(ZlZo, Z) 06

0.4

with £ = (=VV£(2)|,=,) " and V£(2)|z—z, = 0.

2 - 0 1 2 3 4
Figure : Laplace approximation[3]

For the given problem using a noniformative prior it follows
Laplace approximation

0” log p(Oc¢lx"Y)) i <a2 log per(x” X, 6.5) >
2 - 2
96 i 96 ax()

i
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Predictive uncertainty

Propagate uncertainty induced by mapping
i . 2 o, | xEW) =il
0 0l ~ N(64*°, X) with X = (- ZlesrGe ™))

cf
@ X7 ~ p (X|6M)
© xJ ~ p(x|X7, 6L)

Predictice uncertainty of properties:

(Flo.oy =) = [ FIpalxX, B0 (X16 X
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Example Problem: Coarse-graining 1D Ising Model

> Applying proposed method ('predCg') for coarse-graining a one dimensional
Ising Model

» Comparison between 'predCg’ and the deterministic formulation of
minimizing the KL-divergence ('relEntr') by Shell (2008)

> Assessed by predictive capabilities for magnetization and correlation
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Ising Model - System Setting

The Ising-model regarded in the following discussion is one dimensional. It has the
properties:

L
i
n

System size ns in fine- and n in coarse-scale

Level of coarse-graining /. = -t

Inverse temperature

External field u

vV vV v v Y

Regarded interaction length L¢ in fine- and L. in coarse scale, including all
interactions k < L

» Jo = 1 overall interaction strength
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Ising Model - Potential in Fine-Scale

Fine variables take the values x; € {—1,1} following
pf(x|ﬂ) ES exp(fﬂU(x, ka M))

Fine-scale potential

U(x, Jk, 1) = _*ZJ/( > xix— uzx,

k=1 |i—jl=k

with i,j € {1,..., n;} having ns lattice sites.
» Maximal interactions of L¢ sites apart are regarded in the potential.
> |i —j| = k interpreted as summation over neighbors k over all sites i sites

apart

» Ji, strength of the k-th interaction.
with Jk following a power law for a given overall strength Jy and exponent a

L
K= Jol'—? Z k=2
k=1

in order to normalize the interaction strength [1].
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Ising Model - Potential in Coarse-Scale

Coarse variables take the values X; € {—1,1}, pc o exp{—8U.(X, O, 1)}

Coarse-scale potential

I
Ue(X, 0c, 1) = = = (0" Zx,-

+Zofw°" >XX

li—jl=k

+ Z 0P > " XiXitmXitm=n)

m=1 n=1

- #ZX,'
=i

with i,j € {1,...,n.} and n. < nf lattice sites.
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Ising Model - Mapping Fine to Coarse (for relative entropy)

Each coarse variable X,, r = {1,..., R} describes S fine-scale variables x, s with
s ={1,...,5}. The mapping from fine-scale variables x, s to coarse variable X is
defined as,

Fine-to-coarse mapping
+1, 152 %s>0
X, =< —1, ézfxr7s<0.
U(—1,+1), otherwise

ECE
Oom
ECE
Oom]

Figure : Mapping from fine-scale x to coarse-scale X
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Ising Model - Mapping Coarse to Fine

Coarse-to-fine mapping pes(x|X, Ocf)

Ltxr,sXr 1+xr,sXr

pcf(Xr,s|Xr) = ecf 2 (1 - 9cf) 2

Assumption: x; conditionally
independent for given X:

‘.
N

B /N .
I-’ Pl X)) P IX)
. . . . . [}

N R S Ibxp X7 1—xi X/ . ! \ :
=TITIII (6 2 @-0) 2 pur Yy P, )
= of cf o \/ 1Peft%rs

i '\. 'I
‘ - “T -

1exi xi Figure : Probabilistic mapping form coarse to
(1- acf)Z,N:l SRy, —5 L fine: per(x|X, O¢f)

N
PN XEM o) = TT per(x? X1, 0r)
i=1
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Which properties to predict?

The magnetization m is given:

Magnetization in the fine-scale

1
Mfine = /;ZXI pf(X)dX

Magnetization calculated with proposed method (' predcg’)

1o _
mML,fine:/;ZXi Pcf(xlxaocf)Pc(X|0c)p(0cf70c|x(1'N)) dOsdO.dXdx
i

WCPM Seminar Predictive Coarse-Graining November 27, 2015 32 /56



Quantity of Interest: Magnetization

Magnetization calculated with relative entropy method ‘relEntr’

(deterministic mapping fine to coarse: X = &(x))
> For each y calculate optimal model parameter 87, 4.
> Since we want to compare the magnetization on the same (fine) scale a

mapping is introduced

> if X; = —1, select randomly a possible configuration x. s where either all

Xr,s = —1 or one is x,,s = —1 and the other x, s = 1 (for given r: s € {1.../.})
» if X, = +1, select randomly a possible configuration x. s where either all

Xr,s = +1 or one is x; s = +1 and the other x,,s = —1 (for given r: s € 1,2)

» For a given coarse-state the selected fine-states xqet are used for calculating

the magnetization

Relative error in magnetization,

_ ||m - mtruth”
efMmag = — 1

H Myruth ||

November 27, 2015 33 /56

WCPM Seminar Predictive Coarse-Graining



Quantity of Interest: Correlation

The correlation Ry of all sites being separated by / sites is measured as,

Relative correlation error,

WCPM Seminar

1 n
R':E Z < XX >

li—jl=I

|| Rtruth ”

. ||R - RtruthH

errcorr -

Predictive Coarse-Graining

November 27, 2015
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Ising Model - ML Algorithm

11:
12:

13:
14:

14:
14:
15:

© O ONNDO AW N

for o = ppin t0 max do
set initial fine-scale parameter: Jy, ng, p

create data set: x(l‘sf) ~ p(x(l:sf) [Jos 1, B) with S¢ samples
set initial coarse-graining parameter: 8cq, B¢, nc = 71, it
c
t
GC < O¢cp
t
Gcf <~ B0
while !(Convergence check passed) do
function E-%‘l'lil—’ )
X ~ a(X[xTN), 6L, 0%, 1) oc per(x(1N)|X, 0%)pe(X|6Z, 1) with S per data point x(/)

function M-STEP
oL :,ﬁ<auc(x,ec>> " <auc<x,ec)>
98¢ 9%c [ qx|x(1:N) 0t 0t) 90c /pe(x|68)
oL ,< 1 Opcp(xt: )\X,ecf)>
e : 26,
o\ per(x(EN) X, 0) f a(X|x.6%,.68)

t+1 t oL
9C — BC + g b0,
t+1 t oL
Of < Okt 2o DO,
end while
Xored ™~ Blxnew| 0L, 8L with Spred * Sc samples
(l:N))

(1:N)y

function E\r'ALI\IA(:(Xpred, x|
function EVALCORR(x,

end for=0

pred s X
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Ising Model

Iteration 149

Coarse—ScaIe Sample

~ p(X'x', 0, Ocr)

Posterior and Prediction

Predicted Fine- Scale Sample

Xproq ~ Pef (XX 0,

E [x'[X'] Fine-Scale Data Point x’

Predicted Fine- Scale Sample

Xprea ~ Pes (XX, 6

K] <J ][> =l +]

WCPM Seminar
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Overview

@ Behavior of parameters with respect to p
® Influence of available data S for training the model
© Level of coarse-graining

@ Aspects of coarse-grained models
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Behavior of parameters with respect to

Constant attributes:

> S. =200 (samples X ~ p.(X|0.))

> S, =50 (samples X ~ g(XV|x("), 0., 6))

> Jo =1 (overall interaction strength)

> Spred = 100S. (samples for prediction step after learning the model)
Furthermore:

» n; = 32, system size fine-scale

» L= L. =1, in fine- and coarse scale nearest-neighbor interactions are
regarded
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Behavior of parametrization with respect to p

The potentials follows to,

u(J, :—f./ Z XiXj — ,uZX,

li—jl=1

1 &
Ue(Be, 1) = — 56 S OXiXi—pd X
i=1

li—jl=1

> Learn two parameters 8. and O of the mapping pcr
> Learning for every evaluated p: pu = [—4.5,4.5] with a step size of 0.6
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_e_gc,pred(:g !
_“_ec,reIEntr
0.9 |- -
O Y
= <
17 |
0.8 |- -
0 : : : ‘ 0.7 L ! ! ! !
-4 -2 0 2 4 -4 —2 0 2 4
/‘ I

Figure : 0c: Parameter of potential U Figure : O: Parameter of the mapping pcr(x|X, Ocf)
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1 —e— Twuth
—4— relEntr
| =l predCg

0.5
= 0
£

Figure : Magnetization

Key aspects
» True magnetization based on data set and predicted by 'predCg’ coincides.

» Method 'relEntr’ not able to predict data set due to missing mapping
capabilities from coarse to fine.

» Parameters 6. and O behave symmetrical with respect to p = 0.

> Stronger interaction 6. for bigger |u| but also higher probability ¢ that the
coarse configuration reflects the fine configuration.

v
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Behavior with respect to size of data-set

» Learn 0. and O at each evaluated p
> Given different size of data-set S¢ with S¢ € {5, 10, 20, 50}.

> Interaction length in fine-scale Ly = 10 with exponential decay of overall
strength Jo = 1.5

Potentials

L¢ ng
Uf(J,,LL):—%ZJk Z x,-xj—,uZx,-
i=1

Kk li—jl=k

Ue(Bc, 1) = —%9c > XX - %eﬁ”ZX,- —py X
i i=1

li—jl=1
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Behavior with respect to size of data-set

1 1
0.5 |- N 0.5 | B
S of . S of :
£ E
—0.5 |- 8 —0.5 |- B
1 | | 1 | |
-2 0 2 -2 0 2
I
Figure : Uncertainty in magnetization Sf =5 99% - 1% conf. interval 95% - 5% conf. interval
Pred. mean Truth
Data

Figure : Uncertainty in magnetization S = 10
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Behavior with respect to size of data-set

Figure : Uncertainty in magnetization Sf = 20 Figure : Uncertainty in magnetization Sy = 50
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Behavior with respect to size of data-set

0.1
&
£
o 5-1072 | .
D
0 | | | |
20 40 60 80 100

S¢

Figure : Relative mean error of magnetization
with respect to increasing amount of data Sy,

St € {5, 10,20, 50, 100}

0.8
0.6 - -
S 04l .
o
0.2 .
0 @ I ——
0 20 40 60 80 100
S¢

Figure : Relative mean error of correlation with
respect to increasing amount of data S,

St € {5, 10,20, 50, 100}
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Behavior with respect to size of data-set

» Uncertainty decreasing with
increasing amount of data available

» By using S¢ = 5 predictions
resembling true magnetization well

0 5 10 15
| sites apart

Figure : Correlation R; for p = 0 with
St € {5, 10,20, 50,100}
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Predictability by various levels of coarse-gaining

» Choose various level of coarse-graining /.
» Mapping pcr(x|X, ) responsible for . € {2,4,8,16} fine variables
> Coarse-grained potential U.(X, 6.) as given before

Y

Egg

pmlm
—
I
=
[0)]
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Predictability by various levels of coarse gaining

—~ —~
—~ —~
3 3
£ £
< <
H H
Figure : Uncertainty in magnetization I = 16 99% confidence interval 95% confidence interval

Posterior mean Truth

Data

Figure : Uncertainty in magnetization /c = 8
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Predictability by various levels of coarse gaining

Figure : Uncertainty in magnetization | = 4 Figure : Uncertainty in magnetization I = 2
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Predictability by various levels of coarse gaining

1% w » Applying /. = 8 leads already to
B 3_ :Z;j good predictions in magnetization
0.8 =2 | » Predicting correlations needs finer
PRl resolution in coarse-scale
- 0.6 | e Truth H

0.4 -

0.2 | * X e
| MR 225
0 5 10 15
| sites apart

Figure : Correlation R; at u = 0 with
l € {2,4,8,16}
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Model Comparison

> Assumption before: Model is given for potential U.(X, 6.)
» Using different order of interactions and interaction lengths

Linear

2nd order
Interaction length 2

3rd order

WCPM Seminar Predictive Coarse-Graining November 27, 2015 51 / 56



Model Comparison

T T T T T T T
T T T T T
. N 0.1
g4 u ) R =
= T 5.1072 .
Py
0 | | | | | | | |
I S ) S B OO0 4O = =4 = = = &
EEEEEEEEEE =mB88HBRAAAN
o
Model
Model [abc]
> (a) a=0 no linear term, a =1 linear term
> (b) b =0 no 2nd order term, b = x 2nd order term up to interaction length
L=

> (c) ¢ =0 no third order term, ¢ = 1 third order term on (nearest correlation)

WCPM Seminar Predictive Coarse-Graining November 27, 2015 52 / 56



Model Comparison

v

Linear term necessary to describe data

v

Second order interaction necessary

v

In correlation: errors decreasing for including 2nd order interactions with
higher interaction lengths L.

v

No further improvement for longer ranged third order interactions
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Outline

Numerical issues / efficiency

> Use advanced sampling methods / optimization methods, using curvature
information (in progress)

» Variational approximations
Coarse-Graining

» Hierarchical coarse-graining

» How to select mappings from coarse to fine?

> Probit- or Logit-classification model, O model for coarse variables
Algorithmic

» Approach with sparsity priors for model selection (in progress).
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