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Motivation WARWICK

Multiphase flows in porous media

APPLICATIONS

Primary and secondary Oil Recovery, Groundwater remediation, Biological flows,
Catalysis, Fluidized beds
Upscaled (effective, homogenized, averaged) transport models rely on physical
and empirical parameters:

1. Absolute permeability (pure advection)

v

K PR
AP

2. Dispersivity (diffusion +advection) D = D(V, D,,,)
3. Relative permeability model

4. Capillary pressure model P, = P;(P,C)

HOW TO QUANTIFY THE VALIDITY OF THE STANDARD DARCY'S MODELS?
HOW TO CHECK THEIR ACTUAL PREDICTIVITY?
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Single-phase flow WARWICK

Decoupled solute transport

PORE-SCALE MODEL
Steady Navier Stokes equations in the pore space

1
V-u=0 u~Vu:—7Vp+HAu
p p
Advection Diffusion Reaction:
dc

a—l—V-(ue—i—DOVc):O

DARCY-SCALE MODEL

v.v—o v--Svp
I

Advection-Dispersion-Reaction:

%+v~(vc+o¢v0)=o
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Two phase immiscible flow

WARWICK

PORE-SCALE MODEL:

3}
ap+V~(pu)—0

7]
p&(u) +pu-V(Uu) = —Vp + pAu + kond(T)

Interface advection:

dc
E‘FV'(UC)—O

DARCY-SCALE MODEL
Wang/Beckermann mixture model

AK,)K ov
(VP*PE)

ap _ _
E+V-(p\/)—0 V—

Advection-Dispersion-Reaction (saturation equation):

%juv.[vc(m)mrowcq:o
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Bayesian UQ WARWICK

In our predictions there exist many sources of error/uncertainty:
numerics, model, randomness, parameters

experiments

V=
Design of ex-
[ Data d ] [ periments ]
7(0]d) x (d|6)m (0 7
J ([ Quantity of interest Q )
AIRpUEpATAMEETEn| Jd=7(0)+e probability distribution
/
/
/7
Model 7 (0)
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Multiscale Bayesian UQ WARWICK

Subsurface flows

HETEROGENEOUS AND MULTISCALE DATA ASSIMILATION

» Data come from Experiments at different scales

» Accurate physical models exists for pore-scale (Navier-Stokes) flow

» How to combine all these data?

» Development of stochastic models for upscaling and modelling errors

PROPAGATION ACROSS SCALES

» Variability starts at the Navier-Stokes scale with random geometry

» It propagates to stochastic effective transport parameters of
phenomenological or homogenized models?

» With the help of spatial statistical model assumptions we can link to the
macro-scale stochastic models

9Random and periodic homogenization can be used only for global quantities with specific norms
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Pore-scale (aka DNS) WARWICK

Virtual validation data

Pore-scale simulation videos

+ Promising tool for model development, calibration and validation

— Still not fully predictive for complex flow problems due to numerical and
geometrical approximations, sample size and physical assumptions

Pore-scale simulation of solute transport (Icardi et. al, 2014)

Pore-scale simulation of CO5 injection (Icardi et. al, in preparation)
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https://www.youtube.com/channel/UC34VWjEeNK-O1dagdXtvK4w

Monte Carlo and Multilevel MC  wARwWICK

Given a random variable X and a quantity of interest Q

M
B[Q(X)] = % S QX)+e  with e~ (0, V“EQ))
i=1

MULTILEVEL MONTE CARLO Gites, 2008

Given different accuracy levels ¢ and solution Qﬂf) = Q,(X;), the multilevel

estimator is defined as
L M, (i) )
— ) -1
A =20

£=0i=1 MZ

with M, number of samples on level £and Q_; = 0.

» WEAK (mean) ERROR: |E[Q — Q]| = 27¢
» MULTILEVELVARIANCES:  Var(Q, — Q, ;) ~ 2/
» COMPUTATIONAL WORK: E[COSt(Q, — Q)] ~ 27¢
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Improving MLMC WARWICK

Icardi, Boccardo, Tempone (2015, Adv Water Res)
Hoel, Icardi, Tempone (in preparation)
Diffusion and Navier-Stokes equations in random perforated domains

MuLTIscALE MLMC

» Using models at different scales via averaging/homogenization (e.g.,
Navier-Stokes/Darcy)

» Upscaled model should be fast = approximate/reduced model

HiIGH-ORDER MLMC

» Differences with high-order stencils

» Richardson extrapolation for reducing bias (Giles, 2008; Lemaire, Pagés, 2013)
» Multi-Index Monte Carlo (MIMC, Haji-Ali, Nobile, Tempone, 2014)

» Weighted MLMC for reducing variance

CoQy—Cp1Qp 1 +Cy 5Q o

where C; can be optimized to minimize the total variance of the estimator

These improvements are particularly important for complex black-box solvers
when the convergence properties (a, 3) are not guaranteed or non asymptotic
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Bayesian model validation WARWICK

The validation pyramid

Calibration, Validation, Prediction

1. startwith priors on unknown parameters

m(6) The Prediction Pyramid
N N for validating If model predicts Qol
2. compute posterior 7(6|d,.) given data d,, a single model wiltn prescrbed accuracy
in the Ca“bration SCenariO the model is said to be not invalidated
3. forward propagation = (6|d,.) in a new F—
v 5 ¢ ! N '
validation scenario to obtain 7(Q..) of Qol PO D_a"’a 3
. Q, Prediction i Availsble
4, incorporate new data d,, and recompute Scenarol \ T
w(0|d,,d,)and m(Qg4) :
Sy [E)xperllr)nental
5. compute a "distance” A (e.g., KL Validation Scenario(s) \ | o waiikion
diVergenCe) between W(Qd) and TI'(QC) (more complex than calibration) scenario(s)
a 2 9 S, Experimental
6. if A < TOL model is valid e ) “— | pata D
Calibration Scenarios “— | on calibration
7. predlctlon and forward propagatlon to (As simple as possible, numerous) scenarios

obtain final Qol 7(Q,,)

Ingredients: prior, data, error models
Strongly depends on: choice of measurements, choice of Qol

TBabuska, Nobile, Tempone; Oden, Moser, Ghattas 14133



Calibration experiment WARWICK

Let us focus on an simple virtual experiment condition:
Pore-scale results are exactup to a small Gaussian uncorrelated error
One single sample

alpha.nw
12

g 075
0.5

0.25

% ¢ -219e-13 =0 S “2.19e-13 -0

surfactant flooding experiment studied by Landry et al (2014)
Low density and viscosity ratio (~ 1)

Quasi-neutral wetting (95 degrees contact angle)

5imposed pressure gradients 103 — 107 Pa/m

Measured mean saturation in the volume

vV v.v v VY
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Models to calibrate WARWICK

DARCY-SCALE MODEL

Wang/Beckermann mixture model

dp
or (pV) = V= _
8t+v (pV) =0 I ot

Advection-Dispersion-Reaction (saturation equation):

8 19 V. (K,)C +DgVC] =0

» 1D Advection-Diffusion Equation
K, =1
0 ={K,D/AP}
» 1D ADE with Corey-Brook relative permeability

K, x(1—-C)
0= {K,D/AP,~}
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Implementation WARWICK

» Geometry (random packing): Blender + random packing code (Python)
» Pore-scale DNS: OpenFOAM (Algebraic VOF)

2-PARAMETERS MODEL

» Forward problem: analytical solution of Advection-Diffusion in semi-infinite
domain

» Bayesian inversion: Chebfun with full representation of 2D prior and posterior
PDF

» Resampling: Chebfun to compute marginals and acceptance-rejection
probabilities

» Surrogate: Chebfun (expensive)

3-PARAMETERS MODEL

» Forward problem: Chebfun with pde1ss
» Bayesian inversion: Matlab MCMC toolbox
» Surrogate: ??
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Advection Dispersion Equation WARWICK

Assimilation of single data sets

05 1 15 2 25 05 1 15 2 25 3 35 4 45
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Advection Dispersion Equation ~ WARWICK

Assimilation of single data sets




Advection Dispersion Equation

Sequential assimilation of data sets 1to 5

WARWICK
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Advection Dispersion Equation WARWICK

Sequential assimilation of data sets 2 to 4
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Advection Dispersion Equation ~ WARWICK

Sequential assimilation of data sets 2 to 4

DA P

N3
N
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Brooks-Corey relative permeability wARwI1CK

Second data set

-7.8 -76 -7.4 -7.2
Log(D/AP)
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Brooks-Corey relative permeability wARwI1CK

Second+third data set
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Log(K) Log(D/AP)
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Brooks-Corey relative permeability wARwI1CK

Second+third+fourth data set
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Conclusions WARWICK

ACHIEVEMENTS

Usage of few global measurements and simple models for complex phenomena
leads to

» Surprisingly good fit of simple ADE for single data sets though with large
uncertainties

» Improvement with relative permeability models but affected by overfitting
More efforts are needed for:
» Better error models and uncertainty for pore-scale data (ongoing)

» Adding wetting and higher-order (Forchheimer) terms to capture the whole
range of flow rate (ongoing)

FUTURE WORKS

» Choose different validation and prediction scenarios

» Study influence of measurements and quantity of interest
» Modelling error for Darcy's scale models

» Assimilate data computed on different samples
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Research overview | WARWICK

Multiphase flows simulation

Drop impacts on random micro-surfaces

Interphase tracking in unsaturated
porous media

Adaptive Mesh Refinement, Numerical validation, Sensitivity to discretization
parameters and convergence properties
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Research overview |l WARWICK

Groundwater flows
Carbon storage and groundwater remediation
Pictures courtesy of IPCC (left) and Groundwater Engineering group at Politecnico di Torino (right)
R

l Overview of Geological Storage Options |

Produced o or gas
1 Depleted s roser o)
e

ced o,
S SwedCO,

g recovery
ofshore o) onshore

4 Use of CO, n enhanced coal bed methane recovery
5 Doop unmineable coal seams

6 Otner suggested optons (basals, i shales cauies)

Saturazione_—

residua

=

DNAPL pools

Multi-scale models, stochastic PDEs, data assimilation, HPC implementation,
Numerical and analytical upscaling (homogenization, volume averaging)
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Research overview lli WARWICK

Random heterogeneous materials

Granular random packings, PDE discretisation in large complex geometry,
Anomalous transport and mixing properties
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Research overview IV WARWICK

Turbulent multiphase systems

Population balance for gas-liquid flows
Icardi, Ronco, Marchisio, Labois, 2014

(mm)

bubble_siu
620

Micro-reactors modelling

D.~1-10mm Vortex Reactor

Confined Impinging
Jets Reactor

005 0.17 033 057 118 374 571
s)

Tee mixer
Gas supertical vlocity )

o T ".

Turbulence and LES, Nano-scale non-equilibrium fluids, Coagulation and transport
of inertial particles, Micro-mixing models, Kinetic (Boltzmann, PDF) models
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Mesoscale and kinetic models

Particle size distribution

WARWICK

Retain micro-scale and fluctuating properties through statistical description
(Generalised Population Balance Model / Fokker-Planck)

e.g., Particle Size Distribution f(L;x,t) = / f(L,U,;x,t)dU,
R3

8000
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4000

[N]
[=]
Q
=]

/\ —Exact distribution
10 20 30 40

Particle diameter (um)

Particles of different size behave very differently according to their Stokes number.
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Example: particle-laden flow WARWICK

Quadrature-based moment methods

—— PSD reconstruction —— PSD reconstruction
1 —¥ DQMOM nodes —3¥ DOMOM nodes
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