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Motivation
Multiphase flows in porous media

Applications
Primary and secondary Oil Recovery, Groundwater remediation, Biological flows,
Catalysis, Fluidized beds

Upscaled (effective, homogenized, averaged) transport models rely on physical
and empirical parameters:

1. Absolute permeability (pure advection)

𝐾 ∝ 𝑉
Δ𝑃

2. Dispersivity (diffusion + advection)𝐷 = 𝐷(𝑉 , 𝐷𝑚)
3. Relative permeability model

𝐾𝑖 = 𝐾𝑖(𝐶) ∝ 𝑉𝑖
Δ𝑃𝑖

4. Capillary pressuremodel 𝑃𝑖 = 𝑃𝑖(𝑃 , 𝐶)

How to quantify the validity of the standard Darcy’s models?
How to check their actual predictivity?
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Single-phase flow
Decoupled solute transport

Pore-scale model
Steady Navier Stokes equations in the pore space

∇ ⋅ u = 0 u ⋅ ∇u = − 1
𝜌 ∇𝑝 + 𝜇

𝜌 Δu

Advection Diffusion Reaction:

𝜕𝑐
𝜕𝑡 + ∇ ⋅ (u𝑐 +D0∇𝑐) = 0

Darcy-scale model

∇ ⋅ V = 0 V = −K𝜇 ∇𝑃

Advection-Dispersion-Reaction:

𝜕𝐶𝜙
𝜕𝑡 + ∇ ⋅ (V𝐶 +D𝜙∇𝐶) = 0
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Two phase immiscible flow

Pore-scale model:
𝜕
𝜕𝑡 𝜌 + ∇ ⋅ (𝜌u) = 0

𝜌 𝜕
𝜕𝑡 (u) + 𝜌u ⋅ ∇(u) = −∇𝑝 + 𝜇Δu+ 𝜅𝜎n𝛿(Γ)

Interface advection:

𝜕𝑐
𝜕𝑡 + ∇ ⋅ (u𝑐) = 0

Darcy-scale model
Wang/Beckermannmixturemodel

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌V) = 0 V = − 𝜆(𝐾𝑟)K

𝜇 (∇𝑃 − 𝜌 𝜕V
𝜕𝑡 )

Advection-Dispersion-Reaction (saturation equation):

𝜕𝐶𝜙
𝜕𝑡 + ∇ ⋅ [V𝑐 (𝐾𝑟) 𝐶 +D𝜙∇𝐶] = 0
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Bayesian UQ

In our predictions there exist many sources of error/uncertainty:
numerics, model, randomness, parameters

Input parameter: 𝜃

Model ℱ(𝜃)

Quantity of interest𝑄
probability distribution

Design of ex-
perimentsData d

experiments

d = ℱ(𝜃) + e

𝜋(𝜃|d) ∝ 𝜋(d|𝜃)𝜋(𝜃)
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Multiscale Bayesian UQ
Subsurface flows

Heterogeneous andMultiscale data assimilation
▶ Data come from Experiments at different scales
▶ Accurate physical models exists for pore-scale (Navier-Stokes) flow
▶ How to combine all these data?
▶ Development of stochastic models for upscaling andmodelling errors

Propagation across scales
▶ Variability starts at the Navier-Stokes scale with random geometry
▶ It propagates to stochastic effective transport parameters of
phenomenological or homogenizedmodelsa

▶ With the help of spatial statistical model assumptions we can link to the
macro-scale stochastic models

aRandom and periodic homogenization can be used only for global quantities with specific norms
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Pore-scale (aka DNS)
Virtual validation data

Pore-scale simulation videos

+ Promising tool for model development, calibration and validation

– Still not fully predictive for complex flow problems due to numerical and
geometrical approximations, sample size and physical assumptions

Pore-scale simulation of solute transport (Icardi et. al, 2014)

Pore-scale simulation of CO2 injection (Icardi et. al, in preparation)
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Monte Carlo andMultilevel MC

Given a random variable𝑋 and a quantity of interest𝑄

𝐸[𝑄(𝑋)] = 1
𝑀

𝑀
∑
𝑖=1

𝑄(𝑋𝑖) + 𝑒 with 𝑒 ∼ 𝒩 (0, 𝑉 𝑎𝑟(𝑄)
𝑀 )

Multilevel Monte Carlo Giles, 2008

Given different accuracy levels ℓ and solution𝑄(𝑖)
ℓ = 𝑄ℓ(𝑋𝑖), themultilevel

estimator is defined as

𝒜
𝑀𝐿

=
𝐿

∑
ℓ=0

𝑀ℓ

∑
𝑖=1

𝑄(𝑖)
ℓ − 𝑄(𝑖)

ℓ−1
𝑀ℓ

with𝑀ℓ number of samples on level ℓ and𝑄−1 = 0.

▶ WEAK (mean) ERROR: |𝐸[𝑄 − 𝑄ℓ]| ≈ 2−𝛼ℓ

▶ MULTILEVEL VARIANCES: 𝑉 𝑎𝑟(𝑄ℓ − 𝑄ℓ−1) ≈ 2−𝛽ℓ

▶ COMPUTATIONALWORK: 𝐸[Cost (𝑄ℓ − 𝑄ℓ−1)] ≈ 2𝛾ℓ
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Improving MLMC

Icardi, Boccardo, Tempone (2015, AdvWater Res)
Hoel, Icardi, Tempone (in preparation)

Diffusion and Navier-Stokes equations in random perforated domains

Multiscale MLMC
▶ Usingmodels at different scales via averaging/homogenization (e.g.,
Navier-Stokes/Darcy)

▶ Upscaledmodel should be fast⇒ approximate/reducedmodel

High-orderMLMC
▶ Differences with high-order stencils
▶ Richardson extrapolation for reducing bias (Giles, 2008; Lemaire, Pagés, 2013)
▶ Multi-IndexMonte Carlo (MIMC, Haji-Ali, Nobile, Tempone, 2014)
▶ WeightedMLMC for reducing variance

𝐶ℓ𝑄ℓ − 𝐶ℓ−1𝑄ℓ−1 + 𝐶ℓ−2𝑄ℓ−2

where𝐶𝑖 can be optimized tominimize the total variance of the estimator

These improvements are particularly important for complex black-box solvers
when the convergence properties (𝛼, 𝛽) are not guaranteed or non asymptotic
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Bayesian model validation

The validation pyramid1

Calibration, Validation, Prediction

1. start with priors on unknown parameters
𝜋(𝜃)

2. compute posterior 𝜋(𝜃|𝑑𝑐) given data 𝑑𝑐
in the calibration scenario

3. forward propagation 𝜋(𝜃|𝑑𝑐) in a new
validation scenario to obtain 𝜋(𝑄𝑐)

4. incorporate new data 𝑑𝑣 and recompute
𝜋(𝜃|𝑑𝑐, 𝑑𝑣) and 𝜋(𝑄𝑑)

5. compute a ”distance”∆ (e.g., KL
divergence) between 𝜋(𝑄𝑑) and 𝜋(𝑄𝑐)

6. if∆ < 𝑇 𝑂𝐿model is valid

7. prediction and forward propagation to
obtain final QoI 𝜋(𝑄𝑣)

The Prediction Pyramid

for validating

a single model

of QoI

Prediction

QP

If model predicts QoI
within prescribed accuracy

the model is said to be not invalidated

SV

Prediction

Scenario

Validation Scenario(s)

SC

Calibration Scenarios

S
P

Experimental

Data DC

on calibration

scenarios

Experimental

Data

on validation

scenario(s)

DV

(As simple as possible, numerous)  

(more complex than calibration)

No
Data

Available

Ingredients: prior, data, errormodels
Strongly depends on: choice of measurements, choice of QoI

1Babuska, Nobile, Tempone; Oden,Moser, Ghattas 14 / 33



Calibration experiment

Let us focus on an simple virtual experiment condition:
Pore-scale results are exactup to a small Gaussian uncorrelated error

One single sample

▶ surfactant flooding experiment studied by Landry et al (2014)
▶ Low density and viscosity ratio (≈ 1)
▶ Quasi-neutral wetting (95 degrees contact angle)
▶ 5 imposed pressure gradients 103 − 107 Pa/m
▶ Measuredmean saturation in the volume
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Models to calibrate

Darcy-scale model
Wang/Beckermannmixturemodel

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌V) = 0 V = − 𝜆(𝐾𝑟)K

𝜇 (∇𝑃 − 𝜌 𝜕V
𝜕𝑡 )

Advection-Dispersion-Reaction (saturation equation):

𝜕𝐶𝜙
𝜕𝑡 + ∇ ⋅ [V𝑐 (𝐾𝑟) 𝐶 + D𝜙∇𝐶] = 0

▶ 1D Advection-Diffusion Equation

𝐾𝑟 = 1

𝜃 = {𝐾, 𝐷/Δ𝑃}
▶ 1D ADEwith Corey-Brook relative permeability

𝐾𝑟 ∝ (1 − 𝐶)𝛾

𝜃 = {𝐾, 𝐷/Δ𝑃, 𝛾}
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Implementation

▶ Geometry (random packing): Blender + random packing code (Python)
▶ Pore-scale DNS:OpenFOAM (Algebraic VOF)

2-parameters model
▶ Forward problem: analytical solution of Advection-Diffusion in semi-infinite
domain

▶ Bayesian inversion: Chebfunwith full representation of 2D prior and posterior
PDF

▶ Resampling: Chebfun to computemarginals and acceptance-rejection
probabilities

▶ Surrogate: Chebfun (expensive)

3-parameters model
▶ Forward problem: Chebfunwith pde15s
▶ Bayesian inversion: MatlabMCMC toolbox
▶ Surrogate: ??
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Advection Dispersion Equation
Assimilation of single data sets
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Advection Dispersion Equation
Assimilation of single data sets
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Advection Dispersion Equation
Sequential assimilation of data sets 1 to 5
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Advection Dispersion Equation
Sequential assimilation of data sets 2 to 4
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Advection Dispersion Equation
Sequential assimilation of data sets 2 to 4
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Brooks-Corey relative permeability
Second data set
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Brooks-Corey relative permeability
Second+third data set

24 / 33



Brooks-Corey relative permeability
Second+third+fourth data set
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Conclusions

Achievements
Usage of few global measurements and simplemodels for complex phenomena
leads to

▶ Surprisingly good fit of simple ADE for single data sets thoughwith large
uncertainties

▶ Improvementwith relative permeability models but affected by overfitting

More efforts are needed for:
▶ Better errormodels and uncertainty for pore-scale data (ongoing)
▶ Addingwetting and higher-order (Forchheimer) terms to capture thewhole
range of flow rate (ongoing)

Future works
▶ Choose different validation and prediction scenarios
▶ Study influence ofmeasurements and quantity of interest
▶ Modelling error for Darcy’s scalemodels
▶ Assimilate data computed on different samples
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Research overview I

Multiphase flows simulation

Interphase tracking in unsaturated
porousmedia

Drop impacts on randommicro-surfaces

AdaptiveMesh Refinement, Numerical validation, Sensitivity to discretization
parameters and convergence properties
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Research overview II

Groundwater flows
Carbon storage and groundwater remediation

Pictures courtesy of IPCC (left) and Groundwater Engineering group at Politecnico di Torino (right)

Multi-scalemodels, stochastic PDEs, data assimilation, HPC implementation,
Numerical and analytical upscaling (homogenization, volume averaging)
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Research overview III

Random heterogeneousmaterials

Granular random packings, PDE discretisation in large complex geometry,
Anomalous transport andmixing properties
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Research overview IV

Turbulentmultiphase systems

Micro-reactorsmodelling

Population balance for gas-liquid flows
Icardi, Ronco, Marchisio, Labois, 2014

Turbulence and LES, Nano-scale non-equilibrium fluids, Coagulation and transport
of inertial particles, Micro-mixingmodels, Kinetic (Boltzmann, PDF)models
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Mesoscale and kinetic models

Retainmicro-scale and fluctuating properties through statistical description
(Generalised Population BalanceModel / Fokker-Planck)

e.g., Particle Size Distribution 𝑓(𝐿; x, 𝑡) = ∫
ℛ3

𝑓(𝐿,U𝑝; x, 𝑡)𝑑U𝑝

St = 𝜏𝑝
𝜏𝑓

Particles of different size behave very differently according to their Stokes number.

32 / 33



Example: particle-laden flow

Quadrature-basedmomentmethods
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