On the predictive capabilities of multiphase Darcy flow models

Matteo Icardi

WMI

Mathematics Institute, University of Warwig

Formerly:

SRI-UQ center (KAUST) & ICES (UT Austin)

October 6, 2015
Warwick Centre for Predictive Modeling (WCPM) Seminar

Acknowledgments

KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

- ► Raúl Tempone
- ▶ Häkon Hoel
- ► Stochastic Numerics group
- ▶ SRI-UQ center

ICES, THE UNIVERSITY OF TEXAS AT AUSTIN

- Serge Prudhomme (now at EP Montreal)
- ▶ Ivo Babuska
- ► Masha Prodanovic (Petrol. Eng.)

POLITECNICO DI TORINO (ITALY)

- ▶ D. Marchisio, R. Sethi, G. Boccardo (Eng)
- ► Nathan Quadrio and Claudio Canuto (Maths)

Introduction, subsurface flow models

UQ, pore-scale simulation and upscaling

Model calibration and validation

Conclusions

APPLICATIONS

Primary and secondary Oil Recovery, Groundwater remediation, Biological flows, Catalysis, Fluidized beds

Upscaled (effective, homogenized, averaged) transport models rely on physical and empirical parameters:

1. Absolute permeability (pure advection)

$$K \propto \frac{V}{\Delta P}$$

- 2. Dispersivity (diffusion + advection) $D = D(V, D_m)$
- 3. Relative permeability model

$$K_i = K_i(C) \propto \frac{V_i}{\Delta P_i}$$

4. Capillary pressure model $P_i = P_i(P, C)$

Single-phase flow Decoupled solute transport

PORE-SCALE MODEL

Steady Navier Stokes equations in the pore space

$$\nabla \cdot \mathbf{u} = 0 \qquad \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \Delta \mathbf{u}$$

Advection Diffusion Reaction:

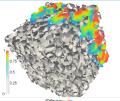
$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{u}c + \mathbf{D}_0 \nabla c) = 0$$

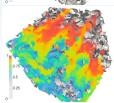
DARCY-SCALE MODEL

$$\nabla \cdot \mathbf{V} = 0$$
 $\mathbf{V} = -\frac{\mathbf{K}}{\mu} \nabla P$

Advection-Dispersion-Reaction:

$$\frac{\partial C\phi}{\partial t} + \nabla \cdot (\mathbf{V}C + \mathbf{D}\phi \nabla C) = 0$$





Two phase immiscible flow

PORE-SCALE MODEL:

$$\frac{\partial}{\partial t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\rho \frac{\partial}{\partial t}(\mathbf{u}) + \rho \mathbf{u} \cdot \nabla (\mathbf{u}) = -\nabla p + \mu \Delta \mathbf{u} + \kappa \sigma \mathbf{n} \delta(\Gamma)$$

Interface advection:

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{u}c) = 0$$

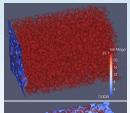
DARCY-SCALE MODEL

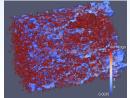
Wang/Beckermann mixture model

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \qquad \mathbf{V} = -\frac{\lambda(K_r)\mathbf{K}}{\mu}(\nabla P - \rho \frac{\partial \mathbf{V}}{\partial t})$$

Advection-Dispersion-Reaction (saturation equation):

$$\frac{\partial C\phi}{\partial t} + \nabla \cdot \left[\mathbf{V}_{c} \left(\underline{K_{r}} \right) C + \mathbf{D}\phi \nabla C \right] = 0$$





Introduction, subsurface flow models

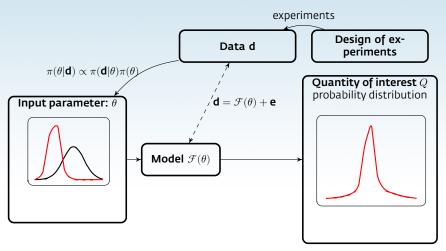
UQ, pore-scale simulation and upscaling

Model calibration and validation

Conclusions

Bayesian UQ

In our predictions there exist many sources of error/uncertainty: numerics, model, randomness, parameters



Multiscale Bayesian UQ Subsurface flows

HETEROGENEOUS AND MULTISCALE DATA ASSIMILATION

- ▶ Data come from Experiments at different scales
- Accurate physical models exists for pore-scale (Navier-Stokes) flow
- ► How to combine all these data?
- ► Development of stochastic models for upscaling and modelling errors

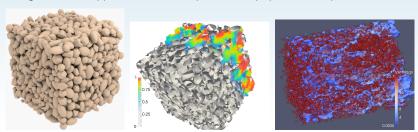
PROPAGATION ACROSS SCALES

- ► Variability starts at the Navier-Stokes scale with random geometry
- It propagates to stochastic effective transport parameters of phenomenological or homogenized models^a
- With the help of spatial statistical model assumptions we can link to the macro-scale stochastic models

^aRandom and periodic homogenization can be used only for global quantities with specific norms

Pore-scale simulation videos

- + Promising tool for model development, calibration and validation
- Still not fully predictive for complex flow problems due to numerical and geometrical approximations, sample size and physical assumptions



Pore-scale simulation of solute transport (lcardi et. al, 2014)

Pore-scale simulation of CO₂ injection (lcardi et. al, in preparation)

Monte Carlo and Multilevel MC

Given a random variable X and a quantity of interest Q

$$E[Q(X)] = \frac{1}{M} \sum_{i=1}^{M} Q(X_i) + e \qquad \text{with} \quad e \sim \mathcal{N}\left(0, \frac{Var(Q)}{M}\right)$$

MULTILEVEL MONTE CARLO GILES. 2008

Given different accuracy levels ℓ and solution $Q_\ell^{(i)}=Q_\ell(X_i)$, the multilevel estimator is defined as

$$\mathcal{A}_{_{ML}} = \sum_{\ell=0}^{L} \sum_{i=1}^{M_{\ell}} \frac{Q_{\ell}^{(i)} - Q_{\ell-1}^{(i)}}{M_{\ell}}$$

with M_{ℓ} number of samples on level ℓ and $Q_{-1}=0$.

► WEAK (mean) ERROR: $|E[Q-Q_{\ell}]| \approx 2^{-\alpha \ell}$

▶ MULTILEVEL VARIANCES: $Var(Q_{\ell} - Q_{\ell-1}) \approx 2^{-\beta \ell}$

► COMPUTATIONAL WORK: $E[\mathsf{Cost}(Q_{\ell} - Q_{\ell-1})] \approx 2^{\gamma \ell}$

Improving MLMC

Icardi, Boccardo, Tempone (2015, Adv Water Res)
Hoel, Icardi, Tempone (in preparation)
Diffusion and Navier-Stokes equations in random perforated domains

MULTISCALE MLMC

- Using models at different scales via averaging/homogenization (e.g., Navier-Stokes/Darcy)
- ▶ Upscaled model should be fast ⇒ approximate/reduced model

HIGH-ORDER MLMC

- ► Differences with high-order stencils
- ► Richardson extrapolation for reducing bias (Giles, 2008; Lemaire, Pagés, 2013)
- ► Multi-Index Monte Carlo (MIMC, Haji-Ali, Nobile, Tempone, 2014)
- ► Weighted MLMC for reducing variance

$$C_{\ell}Q_{\ell} - C_{\ell-1}Q_{\ell-1} + C_{\ell-2}Q_{\ell-2}$$

where ${\cal C}_i$ can be optimized to minimize the total variance of the estimator

These improvements are particularly important for complex black-box solvers when the convergence properties (α, β) are not quaranteed or non asymptotic

Introduction, subsurface flow models

UQ, pore-scale simulation and upscaling

Model calibration and validation

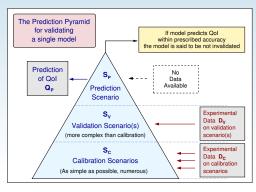
Conclusions

Bayesian model validation

The validation pyramid¹ Calibration, Validation, Prediction

- 1. start with priors on unknown parameters $\pi(\theta)$
- 2. compute posterior $\pi(\theta|d_c)$ given data d_c in the calibration scenario
- 3. forward propagation $\pi(\theta|d_c)$ in a new validation scenario to obtain $\pi(Q_c)$
- **4.** incorporate new data d_v and recompute $\pi(\theta|d_c,d_v)$ and $\pi(Q_d)$
- 5. compute a "distance" Δ (e.g., KL divergence) between $\pi(Q_d)$ and $\pi(Q_c)$
- **6.** if $\Delta < TOL$ model is valid
- 7. prediction and forward propagation to obtain final QoI $\pi(Q_n)$

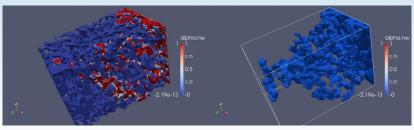
Ingredients: prior, data, error models
Strongly depends on: choice of measurements, choice of Qol



¹Babuska, Nobile, Tempone; Oden, Moser, Ghattas

Calibration experiment

Let us focus on an simple virtual experiment condition: Pore-scale results are exactup to a small Gaussian uncorrelated error One single sample



- ► surfactant flooding experiment studied by Landry et al (2014)
- ▶ Low density and viscosity ratio (≈ 1)
- ▶ Quasi-neutral wetting (95 degrees contact angle)
- ▶ 5 imposed pressure gradients $10^3 10^7$ Pa/m
- ▶ Measured mean saturation in the volume

Models to calibrate

DARCY-SCALE MODEL

Wang/Beckermann mixture model

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathsf{V}) = 0 \qquad \mathsf{V} = -\frac{\lambda(\underline{K_r})\mathsf{K}}{\mu} (\nabla P - \rho \frac{\partial \mathsf{V}}{\partial t})$$

Advection-Dispersion-Reaction (saturation equation):

$$\frac{\partial C\phi}{\partial t} + \nabla \cdot \left[\mathsf{V}_{c} \left(\underline{K_{r}} \right) C + \mathsf{D}\phi \nabla C \right] = 0$$

▶ 1D Advection-Diffusion Equation

$$K_r = 1$$

$$\theta = \{K, D/\Delta P\}$$

▶ 1D ADE with Corey-Brook relative permeability

$$K_r \propto (1-C)^{\gamma}$$

$$\theta = \{K, D/\Delta P, \gamma\}$$

Implementation

- ► Geometry (random packing): Blender + random packing code (Python)
- ► Pore-scale DNS: **OpenFOAM** (Algebraic VOF)

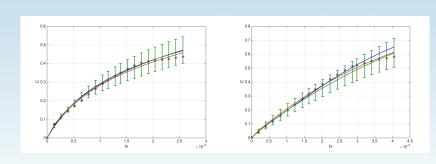
2-PARAMETERS MODEL

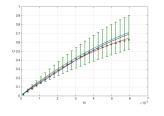
- Forward problem: analytical solution of Advection-Diffusion in semi-infinite domain
- Bayesian inversion: Chebfun with full representation of 2D prior and posterior PDF
- Resampling: Chebfun to compute marginals and acceptance-rejection probabilities
- ► Surrogate: Chebfun (expensive)

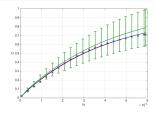
3-PARAMETERS MODEL

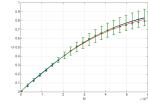
- ► Forward problem: Chebfun with pde15s
- ▶ Bayesian inversion: Matlab MCMC toolbox
- ► Surrogate: ??

Advection Dispersion Equation Assimilation of single data sets

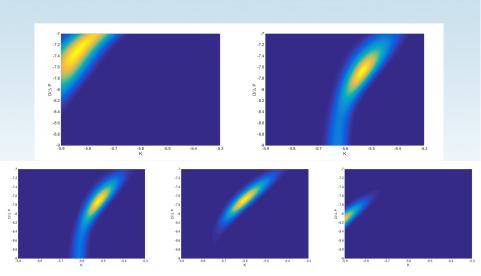






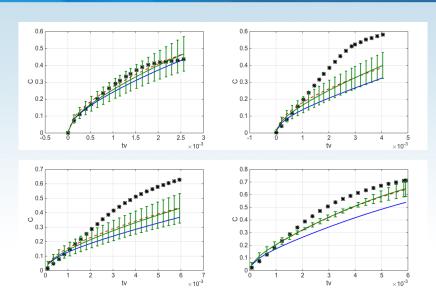


Advection Dispersion Equation Assimilation of single data sets

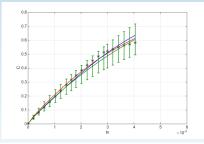


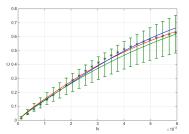
Advection Dispersion Equation

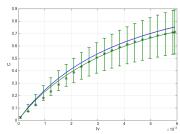
Sequential assimilation of data sets 1 to 5



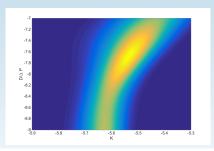
Advection Dispersion Equation Sequential assimilation of data sets 2 to 4

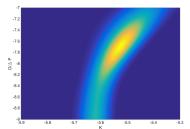


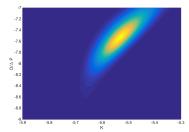




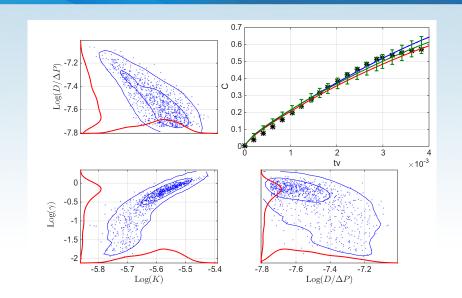
Advection Dispersion Equation Sequential assimilation of data sets 2 to 4





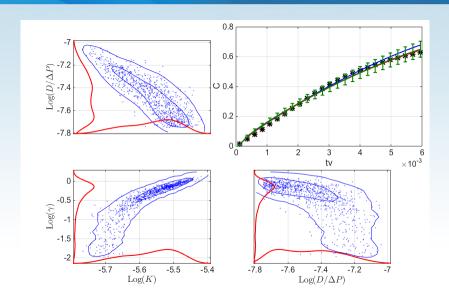


Brooks-Corey relative permeability WARWICK Second data set



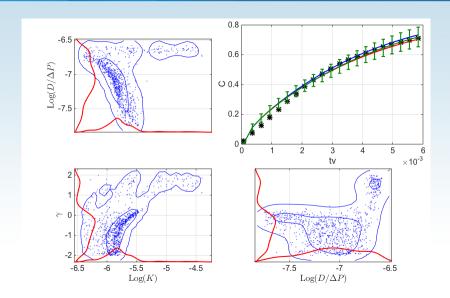
Brooks-Corey relative permeability WARWICK

Second+third data set



Brooks-Corey relative permeability WARWICK

Second+third+fourth data set



Outline

Introduction, subsurface flow models

UQ, pore-scale simulation and upscaling

Model calibration and validation

Conclusions

Conclusions

ACHIEVEMENTS

Usage of few global measurements and simple models for complex phenomena leads to

- Surprisingly good fit of simple ADE for single data sets though with large uncertainties
- ► Improvement with relative permeability models but affected by overfitting More efforts are needed for:
 - ▶ Better error models and uncertainty for pore-scale data (ongoing)
 - Adding wetting and higher-order (Forchheimer) terms to capture the whole range of flow rate (ongoing)

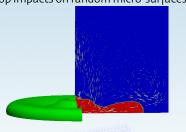
FUTURE WORKS

- ► Choose different validation and prediction scenarios
- ► Study influence of measurements and quantity of interest
- ► Modelling error for Darcy's scale models
- ► Assimilate data computed on different samples

Research overview I

Multiphase flows simulation

Interphase tracking in unsaturated porous media

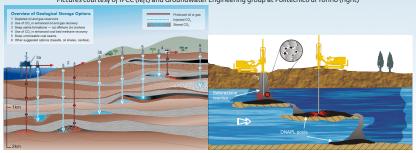


Adaptive Mesh Refinement, Numerical validation, Sensitivity to discretization parameters and convergence properties

Research overview II

Groundwater flows Carbon storage and groundwater remediation

Pictures courtesy of IPCC (left) and Groundwater Engineering group at Politecnico di Torino (right)



Multi-scale models, stochastic PDEs, data assimilation, HPC implementation, Numerical and analytical upscaling (homogenization, volume averaging)

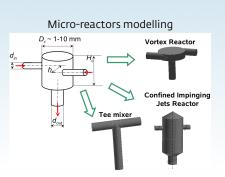
Research overview III



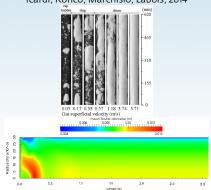
Granular random packings, PDE discretisation in large complex geometry, Anomalous transport and mixing properties

Research overview IV

Turbulent multiphase systems



Population balance for gas-liquid flows Icardi, Ronco, Marchisio, Labois, 2014

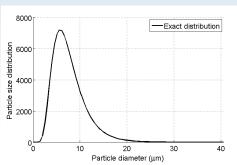


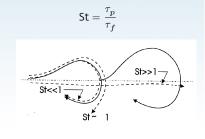
Turbulence and LES, Nano-scale non-equilibrium fluids, Coagulation and transport of inertial particles, Micro-mixing models, Kinetic (Boltzmann, PDF) models

Mesoscale and kinetic models

Retain micro-scale and fluctuating properties through statistical description (Generalised Population Balance Model / Fokker-Planck)

$$f(L; \mathbf{X}, t) = \int_{\mathcal{P}^3} f(L, \mathbf{U}_p; \mathbf{X}, t) \, d\mathbf{U}_p$$





Particles of different size behave very differently according to their Stokes number.

Example: particle-laden flow

