WCPM Seminar Series, Feb. 12, 2015 - Warwick

## Electronic, thermal, and thermoelectric transport in nanostructures

Neophytos Neophytou

School of Engineering, University of Warwick, Coventry, U.K.



## Outline

# Introduction – design at the nanoscale Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics: control scattering
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

## Why nano ?

#### New low-dimensional materials:

- 2D ultra thin layers
- 1D nanowires
- OD quantum dots
- 2D graphene, 1D carbon nanotubes

#### Design degrees of freedom for design:

- Length scale geometry
- Quantum effects (electrons behave differently)
- Atomistic effects



2D graphene



thin layers Uchida et al., IEDM 03



nanowires Trivedi, 2011



quantum dots



nanotube

#### Applications for nanodevices



Boukai et al., Nature 2008

4

Nano Lett., 2009

Photovoltaics

#### Nano-design for transistors



## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

#### Attempt similar design for thermoelectrics



7

#### Abundance issues with good TE materials



http://pubs.usgs.gov/fs/2002/fs087-02/

Abundance issues for Te, toxicity for Pb

#### Design targets for nano-TE materials



Hicks and Dresselhaus -1993, Dresselhaus - 2001

Low dimensionality – improves S



 Nanostructuring phonon engineering
 Scatter phonons only



#### How to proceed further ?



Case for Si:

Bulk : 140 W/mK, ZT=0.01 NWs: 1-2 W/mK, ZT~1

Vineis et al., Adv. Mater. 22, 3790, 2010

- $\kappa_l$  reduction benefits are reaching their limits (easily)
- we need to look into  $\sigma S^2$

#### This talk's focus

(1) Electronic properties: model and simulations Interplay between  $\sigma$ , S at the nanoscale (Si @ T=300K)



Phonon properties: model and simulations Possibility of further reduction in  $\kappa_{I}$ 



## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

## Channel description: Atomistic Tight-Binding



Compromise: between ab-initio methods and continuum methods
 Able to handle 10s of thousands of atoms

#### Valleys-from bulk, to quantum wells, and to NWs



#### Electronic structure examples



#### Length scale dependent properties



Electronic structure is geometry dependent

D [nm]

#### TB coupled to Linearized Boltzmann transport



$$\Xi(\varepsilon) = \sum_{\vec{k}} \vec{v}_{\vec{k}} \vec{v}_{\vec{k}} \tau_{\vec{k}} \delta(\varepsilon - \varepsilon(k))$$
$$= g(\varepsilon) v(\varepsilon)^2 \tau(\varepsilon)$$

$$R^{(\alpha)} = q_0^2 \int_{E_0}^{\infty} d\varepsilon \left( -\frac{\partial f_0}{\partial \varepsilon} \right) \Xi \left( \varepsilon \right) \left( \frac{\varepsilon - \mu}{k_B T} \right)^{\alpha}$$

$$\sigma = R^{(0)} \qquad S = \frac{k_B}{q_0} \frac{R^{(1)}}{R^{(0)}}$$
$$\kappa_e = \frac{k_B^2 T}{q_0^2} \left[ R^{(2)} - \frac{\left[ R^{(1)} \right]^2}{R^{(0)}} \right]$$

17

#### Linearized Boltzmann transport: 2D



Relaxation times
 (of every k-state, at every subband)

- phonon scattering (acoustic/optical)
- surface roughness scattering
- ionized impurity scattering

#### Basic features for TE coefficients – simple guidelines



$$\sigma = q_0^2 \int_{E_0}^{\infty} d\varepsilon \left( -\frac{\partial f_0}{\partial \varepsilon} \right) \Xi(\varepsilon)$$
  
$$\sigma \sim 1/m_{\text{eff}}^* \exp(-\eta_F) \qquad \eta_F = E_0 - E_F$$
  
$$S = \frac{k_B q_0}{\sigma} \int_{E_0}^{\infty} d\varepsilon \left( -\frac{\partial f_0}{\partial \varepsilon} \right) \Xi(\varepsilon) \underbrace{\left( \varepsilon - E_F \right)}_{k_B T} \qquad \int_{0}^{\text{n-type NW}} \prod_{\substack{n_0 = 10^{19}/\text{cm}^3 \\ k_1 = 0 \\ 0 \\ \text{S} \sim \eta_F}}$$

Power factor maximum around Ef

#### Design direction for $\sigma S^2$ at low dimensions



Neophytou and Kosina, PRB, 83, 245305, 2011



#### A thorough investigation for Si: $\sigma$ determines $\sigma S^2$



Neophytou and Kosina, PRB, 83, 245305, 2011

## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics: control scattering
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

#### Transport: Impurity dominated



#### Self-consistent computational model



#### Hole dispersions under confinement



#### The effect of gating on NW mobility



Benefit from not using dopants

Gating seems beneficial, even with surface roughness (accumulation is achieved with weaker fields)

#### Power factor improvement



#### Power factor improvement versus diameter



Power factor improvements:

- Still observed at D=20nm we were able to simulate
- Might be retained up to D~40nm

#### Power factor - anisotropy



Strong anisotropy:

[111] NWs ~2x higher performance than [110]
 ~3x higher performance than [100]

#### Summary: Design strategies for low-D

# 1) Optimize the materials bandstructure: > Best choice of geometry/confinement, η<sub>F</sub> > But in general, use of strain, alloying etc.

2) Avoid the most degrading scattering mechanisms:
 > Remove dopant impurities by gate field
 > But also modulation doping, would work

## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

#### Modified Valence Force Field Method (MVFF)



$$U_{bs}^{ij} = \frac{3}{8} \alpha \frac{\left(r_{ij}^2 - d_{ij}^2\right)^2}{d_{ij}^2} \quad \text{bond-stretching}$$

$$U_{bb}^{jik} = \frac{3}{8}\beta \frac{\left(\Delta \theta_{jik}\right)^2}{d_{ij}d_{ik}}$$
 bond-bending

$$U_{bs-bs}^{jik} = \frac{3}{8} \delta \frac{\left(r_{ij}^2 - d_{ij}^2\right) \left(r_{ik}^2 - d_{ik}^2\right)}{d_{ii}d_{ik}}$$

cross bond stretching

$$U_{bs-bb}^{jik} = \frac{3}{8} \gamma \frac{\left(r_{ij}^2 - d_{ij}^2\right) \left(\Delta \theta_{jik}\right)}{d_{ij} d_{ik}}$$

cross bond stretching/ bending

$$U_{bb-bb}^{jikl} = \frac{3}{8} \upsilon \frac{\left(\Delta \theta_{jik}\right) \left(\Delta \theta_{ikl}\right)}{\sqrt{d_{ij} d_{ik}^2 d_{kl}}}$$

coplanar bond bending

#### Modified Valence Force Field Method (MVFF)



$$U \approx \frac{1}{2} \sum_{i \in N_A} \left[ \sum_{j \in nn_i} U_{bs}^{ij} + \sum_{j,k \in nn_i}^{j \neq k} \left( U_{bb}^{jik} + U_{bs-bs}^{jik} + U_{bs-bb}^{jik} \right) + \sum_{j,k,l \in COP_i}^{j \neq k \neq l} U_{bb-bb}^{jikl} \right]$$
$$D_{mn}^{ij} = \frac{\partial^2 U_{mn}^{ij}}{\partial r_m^i \partial r_n^j} \qquad D_{ij} = \begin{bmatrix} D_{xx}^{ij} & D_{xy}^{ij} & D_{xz}^{ij} \\ D_{yx}^{ij} & D_{yy}^{ij} & D_{yz}^{ij} \\ D_{yx}^{ij} & D_{yy}^{ij} & D_{yz}^{ij} \\ D_{zx}^{ij} & D_{zy}^{ij} & D_{zz}^{ij} \end{bmatrix} \qquad D + \sum_l D_l \exp\left(i\vec{q}.\vec{\Delta}R_l\right) - \omega^2\left(q\right)I = 0$$

#### MVFF: Benchmarked to bulk Si



#### MVFF: Low-dimensional phonon spectrum



#### Phonon thermal conductivity (diffusive)

#### BTE for phonons (bulk formalism)

#### Umklapp scattering

$$\frac{1}{\tau_U} = B\omega_i(q)^2 T \exp(-\frac{C}{T})$$

#### **Boundary scattering**

$$\frac{1}{\tau_{B,i}(q)} = \frac{1 - p(q)}{1 + p(q)} \frac{v_{g,i}(q)}{W}$$
$$p(q) = \exp(-4q^2 \Delta_{rms}^2)$$

<u>P: specularity parameter</u><u>P=1, fully specular</u>**P=0, fully diffusive** 



#### Higher order scattering

$$\frac{1}{\tau_{U2}} = A_0 T^2$$

#### ZT figure of merit



Just low-D is not enough 37

## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

#### Nanocomposite channels for increased Seebeck

Make S and  $\sigma$  really independent? How to increase both simultaneously?



#### Nanocrystalline Si

Make S and  $\sigma$  really independent? How to increase both simultaneously?



Neophytou et al., J. Electr. Mat., 2012, ICT 2012

Collaboration: Prof. X. Zianni (Chalkida) and Prof. D. Narducci (Milano)

#### Nanocrystalline Si

Make S and  $\sigma$  really independent? How to increase both simultaneously?



Neophytou *et* al., J. Electr. Mat., 2012, ICT 2012, nanotechnology, 2013 <u>Collaboration:</u> Prof. X. Zianni (Chalkida) and Prof. D. Narducci (Milano)

#### Nanocrystalline Si: Simulations vs. experiments



Neophytou *et* al., J. Electr. Mat., 2012, ICT 2012, nanotechnology, 2013 <u>Collaboration:</u> Prof. X. Zianni (Chalkida) and Prof. D. Narducci (Milano)

## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

#### Si nanomeshes

Nanoporous membranes of single-crystalline Si ("holey" Si)



Tang et al, Nano Lett. 2010

#### Method: Solve BTE using Monte Carlo

Boltzmann Transport Equation for phonon

$$\frac{\partial f}{\partial t} + v \cdot \nabla f = \left[\frac{\partial f}{\partial t}\right]_{scatt}$$

Relaxation time approximation

$$\left[\frac{\partial f}{\partial t}\right]_{scatt} = -\frac{f - f^0}{\tau}$$

Solve BTE using Monte-Carlo (MC)



Wolf, Neophytou, and Kosina, JAP, 2014



#### Thermal conductivity vs porosity/roughness



random pore arrangement

[4] Randomized pores [2,3] Ordered arrays (rectangular/hexagonal) Phonon coherent effects are present !

## Non-Equilibrium Green's Function (NEGF)



- Device Green's function:  $G(E) = [(E+i0^+)I - H - \Sigma_1 - \Sigma_2]^{-1}$ 



- Density of states:  $D(E) = \frac{1}{2\pi} Trace(G\Gamma G^{+}),$ where  $\Gamma = i(\Sigma - \Sigma^{+})$
- Transmission:

 $T(E) = Trace(\Gamma_1 G \Gamma_2 G^+)$ 

- Very powerful approach
  Can include scattering (decoherence)
  Can be computationally very expensive
- For both electrons (Hamiltonian) and phonons (dynamic matrix)

#### Graphene nano-ribbon thermoelectrics



## Outline

Introduction – design at the nanoscale
 Nanoscale thermoelectrics – design targets

- Low-dimensional TEs (atomistic tight-binding + BTE)
- Gated thermoelectrics
- Phonons transport for low-D (Modified Valence Force Field)
  ZT figure of merit for low-D channel
- Nanostructured thermoelectrics
- Other studies: Nanomeshes (MC), Graphene (NEGF)
- Future directions and conclusions

## Hierarchy in geometry



Hierarchical scattering of phonons Biswas et al. (Kanatzidis group)

Very low  $\kappa_{\rm I}$ 



<u>Very high PF:</u> 2-phase materials: 15 mW/K<sup>2</sup>m<sup>-1</sup> 3-phase materials: 22 mW/K<sup>2</sup>m<sup>-1</sup> (~7x compared to bulk) larger S with 3<sup>rd</sup> phase

Neophytou, Narducci, *et* al., Nanotechnology 2013, J. Electronic Materials 2014

## ZT figure of merit





 $\kappa_{i}$ =140 W/mK (bulk)  $\kappa_{i}$ =8 W/mK (our nano-grains, calculations)



## Transport in multi-phase materials using NEGF

We start with 1DThen extend to 2D

#### Transport through wells and barriers:

- Include acoustic and optical phonons
- Energy relaxation as current flows
- Include quantum effects.
- Can retrieve ballistic and diffusive regimes







#### Conclusions

Nanostructures offer the additional length scale degree of freedom in design

- Thermoelectric properties can be largely improved.
  Very low thermal conductivities can be achieved
  Very high power factors can be achieved
- Advanced simulation techniques are required
  Atomistic models for electronic and phonon bandstructure
  Linearized BTE, Monte Carlo, NEGF methods for transport

#### Future work

Use all appropriate design guidelines to target TE performance of nanocomposites (bandstructure, doping, κ<sub>l</sub>)
 Collaborate with experimentalists and material scientists to establish technologies