Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models

(with special attention to epidemics of *Escherichia coli* O157:H7 in cattle)

Simon Spencer

3rd May 2016

・ロト ・得ト ・ヨト ・ヨト … ヨ

Acknowledgements

Panayiota Touloupou

Bärbel Finkenstädt Rand Peter Neal TJ McKinley Nigel French, Tom Besser and Rowland Cobbold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

1. Introduction

2. Bayesian inference for epidemics

3. Model selection for epidemics

4. Scalable inference for epidemics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

5. Conclusion

Introduction

A typical epidemic model:

$\textit{Susceptible} \rightarrow \textit{Exposed} \rightarrow \textit{Infected} \rightarrow \textit{Removed}$

Infections occur according to an inhomogeneous Poisson process with rate $\propto S(t)I(t)$.

A simulation

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

- Statistical inference for epidemic models is hard.
- Intractable likelihood need to know infection times.
- Usual solution: large scale data augmentation MCMC.

• What are the observed data?

Epidemic data

- Historically: final size (single number).
 - Final size in many sub-populations, e.g. households.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Markov models: removal times.
 - Who is removed is not needed / recorded.

Epidemic data

- Historically: final size (single number).
 - Final size in many sub-populations, e.g. households.

- Markov models: removal times.
 - Who is removed is not needed / recorded.
- Individual level diagnostic test results.
 - To be realistic, tests are imperfect.
 - Temporal resolution of 1 day.

Epidemic data

- Historically: final size (single number).
 - Final size in many sub-populations, e.g. households.
- Markov models: removal times.
 - Who is removed is not needed / recorded.
- Individual level diagnostic test results.
 - To be realistic, tests are imperfect.
 - Temporal resolution of 1 day.

\Rightarrow View epidemic as hidden Markov model

Motivating example: Escherichia coli O157

- E. coli O157 is a highly pathogenic form of Escherichia coli.
- It can cause severe gastroentestinal illness, haemorrhagic diarrhoea and even death.
- Outbreaks and endemic cases are associated with food, water or direct contact with infected animals.

- Cattle are the main reservoir.
- Additional economic burden due to impacts on trade.

- Natural colonization and faecal excretion of *E. coli* O157 in commercial feedlot.
- 20 pens containing 8 calves were sampled 27 times over a 99 day period.
- Each sampling event included a faecal pat sample and a recto-anal mucosal swab (RAMS).
- Tests were assumed to have perfect *specificity* but imperfect *sensitivity*.

Patterns of infection

Positive Tests, Pen 5 (South)

▲ロ → ▲ 圖 → ▲ 画 → ▲ 画 → の Q ()~

Patterns of infection

Positive Tests, Pen 7 (North)

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Bayesian inference for epidemics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Intractable likelihood: $\pi(\mathbf{y}|\boldsymbol{\theta})$.
- Need to impute infection status of individuals x for augmented likelihood $\pi(y|x, \theta)$.

• Missing data x typically very high dimensional.

Updating the infection status

- Standard method by O'Neill and Roberts (1999) involves 3 steps:
 - **Add** a period of infection
 - Remove a period of infection
 - Move an end-point of a period of infection
- This method was designed for SIR models (where individuals can't be infected twice).

• Easily adapted to discrete time models.

- Choose a block of zeros at random.
- Propose changing zeros to ones.
- O Accept or reject based on ratio of posteriors.

- Choose a complete block of ones.
- Propose changing ones to zeros.
- S Accept or reject based on ratio of posteriors.

- Choose an endpoint of a block of ones.
- Propose a new location for that endpoint.
- O Accept or reject based on ratio of posteriors.

✓ Considerably fast

- ✓ Can handle non-Markov models
- X Most of the hidden states are not updated
- imes High degree of autocorrelation
 - Slow mixing of the chain and long run length

X Tuning of the maximum block length required.

- Discrete time epidemic is a hidden Markov model.
- Gibbs step: sample from the full condition distribution of the hidden states.

• Use Forward Filtering Backward Sampling algorithm (Carter and Kohn, 1994).

Some pros and cons

✓ Very good mixing of the MCMC chains

✓ No tuning required

- × Computationally intensive
 - At each timepoint we need to calculate N^C summations • $\mathcal{O}(TN^{2C})$

× High memory requirements

- All T forward variables must be stored
- The transition matrix is of dimension $N^C \times N^C$
- N = number of infection states (e.g. 2)
- C = number of cows (e.g. 8)
- T = number of timepoints (e.g. 99)

Example: SIS model

- Stochastic SIS (Susceptible-Infected-Susceptible) transmission model in discrete time.¹
- $X_{p,i,t}$ infection status for animal *i* in pen *p* on day *t*.
 - $X_{p,i,t} = 1 \text{infected/colonized}$.
 - $X_{p,i,t} = 0$ uninfected/susceptible.
- We treat $X_{p,i,t}$ as missing data and infer it using MCMC.
- Epidemic model parameters updated via Metropolis-Hastings and test sensitivities updated using Gibbs.

¹Spencer *et al.* (2015) 'Super' or just 'above average'? Supershedders and the transmission of *Escherichia coli* O157:H7 among feedlot cattle. *Interface* **12**, 20150446.

Colonization duration: NegativeBinomial(r, μ)

Pens: $p = 1 \cdots 20$

Animals: $i = 1 \cdots 8$ Time: $t = 1 \cdots 99$ days

Example: Posterior infection probabilities

Time (days)

 We can calculate the posterior infection probability for every day of the study.

Model selection for epidemics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model selection for epidemics

A lot of epidemiologically interesting questions take the form of model selection questions.

- What is the transmission mechanism of this disease?
- Do infected individuals really exhibit an exposed period?

• Do water troughs spread *E. coli* O157?

Posterior probabilities and marginal likelihoods

Would like the posterior probability in favour of model i.

$$\mathrm{P}(M_i|\boldsymbol{y}) = \frac{\pi(\boldsymbol{y}|M_i)\mathrm{P}(M_i)}{\sum_j \pi(\boldsymbol{y}|M_j)\mathrm{P}(M_j)}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Posterior probabilities and marginal likelihoods

Would like the posterior probability in favour of model i.

$$\mathrm{P}(M_i | \boldsymbol{y}) = \frac{\pi(\boldsymbol{y} | M_i) \mathrm{P}(M_i)}{\sum_j \pi(\boldsymbol{y} | M_j) \mathrm{P}(M_j)}$$

Equivalently, the Bayes factor comparing models i and j.

$$B_{ij} = \frac{\pi(\boldsymbol{y}|M_i)}{\pi(\boldsymbol{y}|M_j)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Posterior probabilities and marginal likelihoods

Would like the posterior probability in favour of model *i*.

$$P(M_i|\boldsymbol{y}) = \frac{\pi(\boldsymbol{y}|M_i)P(M_i)}{\sum_j \pi(\boldsymbol{y}|M_j)P(M_j)}$$

Equivalently, the Bayes factor comparing models i and j.

$$B_{ij} = rac{\pi(oldsymbol{y}|oldsymbol{M}_i)}{\pi(oldsymbol{y}|oldsymbol{M}_j)}$$

All we need is the marginal likelihood,

$$\pi(\mathbf{y}|M_i) = \int \pi(\mathbf{y}|\boldsymbol{ heta}, M_i) \pi(\boldsymbol{ heta}|M_i) \,\mathrm{d} \boldsymbol{ heta}$$

but how can we calculate it?

Marginal likelihood estimation

- Many existing approaches:
 - Chib's method
 - Power posteriors
 - Harmonic mean
 - Bridge sampling
- Most direct approach: importance sampling.
- Use asymptotic normality of the posterior to find efficient proposal.

Dr Peter Neal

• But how to deal with the missing data?

Marginal likelihood estimation using importance sampling

Run MCMC as usual.

2 Fit normal distribution to posterior samples² \Rightarrow $q(\theta)$.

3 Draw *N* samples from $q(\theta)$.

$$\pi(\mathbf{y}) = \int \pi(\mathbf{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \,\mathrm{d}\boldsymbol{\theta}.$$

²To avoid problems, make q overdispersed relative to the posterior. $e = -9 \circ e$

Marginal likelihood estimation using importance sampling

- Run MCMC as usual.
- **2** Fit normal distribution to posterior samples² \Rightarrow $q(\theta)$.
- **3** Draw *N* samples from $q(\theta)$.

$$\pi(oldsymbol{y}) pprox \sum_{i=1}^N rac{\pi(oldsymbol{y}|oldsymbol{ heta}_i)\pi(oldsymbol{ heta}_i)}{q(oldsymbol{ heta}_i)}.$$

²To avoid problems, make q overdispersed relative to the posterior. $e = -9 \circ e$

Marginal likelihood estimation with missing data

- Run MCMC as usual.
- **2** Fit normal distribution to posterior samples $\rightarrow q(\theta)$.
- **3** Draw *N* samples from $q(\theta)$.
- For each sampled θ_i draw missing data x_i from the full conditional using FFBS.

$$\pi(\mathbf{y}) \approx \sum_{i=1}^{N} \frac{\pi(\mathbf{y}|\mathbf{x}_i, \mathbf{\theta}_i) \ \pi(\mathbf{x}_i|\mathbf{\theta}_i) \ \pi(\mathbf{\theta}_i)}{\pi(\mathbf{x}_i|\mathbf{y}, \mathbf{\theta}_i) \ q(\mathbf{\theta}_i)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simulation study: pneumococcol carriage

- Panayiota performed a thorough simulation study³ based on Melegaro *at al.* (2004).
- Household based longitudinal study on carriage of *Streptococcus Pneumoniae*.
- Data consist of repeated diagnostic tests.
- Multi-type model with 11 parameters, 2600 observed data and 6500 missing data.

³Touloupou *et al.* (2016) Model comparison with missing data using MCMC and importance sampling. arXiv 1512.04743 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Xi \rangle$

Results: marginal likelihood estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Results: Bayes factor estimation

Do adults and children acquire infection at the same rate?

(b) Data simulated from model M_2 イロト イポト イヨト イヨト

э

Results: Evolution of the log Bayes factor

HM PP RJcor Chib IS

Application 1: E. coli O157 in feedlot cattle

Do animals develop immunity over time?

- We compare two models for infection period:
 - Geometric: lack of memory.
 - Negative Binomial: probability of recovery depends on duration of infection.
- The Negative Binomial is a generalisation of the Geometric:
 - Setting Negative Binomial dispersion parameter $\kappa=1$ leads to Geometric.

Application 1: Results

- **RJMCMC** and **IS** agree on the estimate of the Bayes factor
- IS estimator: faster convergence

- Bayes factor supports the Negative Binomial model
- The longer the colonization, the greater the probability of clearance – may indicate an immune response in the host

Application 2: Role of pen area/location

Application 2: Role of pen area/location

Do north and south pens have different risk of infection?

- Allow different external (α_s, α_n) and/or within-pen (β_s, β_n) transmission rates.
- Candidate models:

	Exte	ernal	Within-pen			
Model	North	South	North	South		
1	α_n	α_s	β_n	β_s		
2	α	α	β_n	β_s		
3	α_n	α_{s}	β	eta		
4	α	α	β	eta		

Application 2: Posterior probabilities

- **RJMCMC** and **IS** provide identical conclusions.
- Evidence to support different within-pen transmission rates.
- Animals in smaller pens more at risk of within-pen infection

Application 3: Investigating transmission between pens

Additional dataset: pens adjacent in a 12×2 rectangular grid.

- No direct contact across feed buck.
- Shared waterers between pairs of adjacent pens.

Pen 24	Pen 23	Pen 22	Pen 21	Pen 20	Pen 19	Pen 18	Pen 17	Pen 16	Pen 15	Pen 14	Pen 13
Pen 1	Pen 2	Pen 3	Pen 4	Pen 5	Pen 6	Pen 7	Pen 8	Pen 9	Pen 10	Pen 11	Pen 12

Application 3: Investigating transmission between pens

(a) Model 1: No contacts between pens

(b) Model 2: Transmission via a waterer

(c) Model 3: Transmission via any boundary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Application 3: Posterior probabilities

- **RJMCMC**: hard to design jump mechanism
- Using **IS** results still possible.
- Evidence for transmission between pens sharing a waterer rather than another boundary.

Scalable inference for epidemics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Thus far we have been doing inference for small populations.
 - Households
 - Pens
- The FFBS algorithm scales very badly with population size.
- We would like an inference method that scales better with population size.

Graphical representation

Diagram of the Markovian epidemic model. Circles are hidden states and rectangles are observed data. Arrows represent dependencies.

A new approach – the iFFBS algorithm

Update one individual at a time by sampling from the full conditional:

$$P(\boldsymbol{x}_{1:T}^{[c]} \mid \boldsymbol{y}_{1:T}^{[1:C]}, \boldsymbol{x}_{1:T}^{[-c]}, \boldsymbol{\theta}).$$

⇒ View as **coupled** hidden Markov model

◆□> ◆□> ◆豆> ◆豆> □豆

A new approach – the iFFBS algorithm

Update one individual at a time by sampling from the full conditional:

$$\mathbf{P}(\boldsymbol{x}_{1:T}^{[c]} \mid \boldsymbol{y}_{1:T}^{[1:C]}, \boldsymbol{x}_{1:T}^{[-c]}, \boldsymbol{\theta}).$$

⇒ View as **coupled** hidden Markov model

- Computational complexity reduced from $\mathcal{O}(TN^{2C})$ to $\mathcal{O}(TCN^2)$.
- N = number of infection states (e.g. 2)
- C = number of cows (e.g. 8)
- T = number of timepoints (e.g. 99)

Comparison of methods

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Larger populations

Conclusion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- FFBS algorithm generates better mixing MCMC for parameter inference.
- Unlocks direct approach to marginal likelihood estimation.
- Allows important epidemiological questions to be answered via model selection.
- iFFBS can perform inference in large populations exploits dependence structure in epidemic data.

- All of this work (and much more!) has been done by Panayiota.
- FFBS and iFFBS can also be used as a Metropolis-Hastings proposal to fit non-Markovian epidemic models.
- Can we do model selection with iFFBS?
- Power of iFFBS allows more complex models to be fitted, e.g. multi-strain epidemic models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Current work

