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Introduction



Introduction

A typical epidemic model:

Susceptible → Exposed → Infected → Removed

Infections occur according to an inhomogeneous Poisson process
with rate ∝ S(t)I (t).



A simulation
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Comments

Statistical inference for epidemic models is hard.

Intractable likelihood – need to know infection times.

Usual solution: large scale data augmentation MCMC.

What are the observed data?



Epidemic data

Historically: final size (single number).

Final size in many sub-populations, e.g. households.

Markov models: removal times.

Who is removed is not needed / recorded.

Individual level diagnostic test results.

To be realistic, tests are imperfect.
Temporal resolution of 1 day.

⇒ View epidemic as hidden Markov model
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Motivating example: Escherichia coli O157

E. coli O157 is a highly pathogenic form of Escherichia coli.

It can cause severe gastroentestinal illness, haemorrhagic
diarrhoea and even death.

Outbreaks and endemic cases are associated with food, water
or direct contact with infected animals.

Cattle are the main reservoir.

Additional economic burden due to impacts on trade.



Study design

Natural colonization and faecal excretion of E. coli O157 in
commercial feedlot.

20 pens containing 8 calves were sampled 27 times over a 99
day period.

Each sampling event included a faecal pat sample and a
recto-anal mucosal swab (RAMS).

Tests were assumed to have perfect specificity but imperfect
sensitivity.



Patterns of infection
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Patterns of infection

0 20 40 60 80 100

1
2

3
4

5
6

7
8

Positive Tests, Pen 7 (North)

Time (days)

A
ni

m
al

● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

●

●

●

● ● ● ● ● ●

●

● ●

● ●

●

● ● ●

● ●

●

● ● ●

●

● ● ● ● ●

● ● ● ●

● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ● ● ● ● ●

●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ●

● ● ●

●

RAMS
Faecal
Negative



Bayesian inference for epidemics



Bayesian inference for epidemics

Intractable likelihood: π(y |θ).

Need to impute infection status of individuals x for
augmented likelihood π(y |x ,θ).

Missing data x typically very high dimensional.



Updating the infection status

Standard method by O’Neill and Roberts (1999) involves 3
steps:

1 Add a period of infection
2 Remove a period of infection
3 Move an end-point of a period of infection

This method was designed for SIR models (where individuals
can’t be infected twice).

Easily adapted to discrete time models.



Add a period of infection

Current: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

?

Propose: 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 Choose a block of zeros at random.

2 Propose changing zeros to ones.

3 Accept or reject based on ratio of posteriors.



Remove a period of infection

Current: 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

?

Propose: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 Choose a complete block of ones.

2 Propose changing ones to zeros.

3 Accept or reject based on ratio of posteriors.



Move an endpoint

Current: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

?

Propose: 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

1 Choose an endpoint of a block of ones.

2 Propose a new location for that endpoint.

3 Accept or reject based on ratio of posteriors.



Some pros and cons

! Considerably fast

! Can handle non-Markov models

% Most of the hidden states are not updated

% High degree of autocorrelation

Slow mixing of the chain and long run length

% Tuning of the maximum block length required.



Alternative approach: FFBS

Discrete time epidemic is a hidden Markov model.

Gibbs step: sample from the full condition distribution of the
hidden states.

Use Forward Filtering Backward Sampling algorithm
(Carter and Kohn, 1994).



Some pros and cons

! Very good mixing of the MCMC chains

! No tuning required

% Computationally intensive

At each timepoint we need to calculate NC summations
O(TN2C )

% High memory requirements

All T forward variables must be stored
The transition matrix is of dimension NC × NC

N = number of infection states (e.g. 2)
C = number of cows (e.g. 8)
T = number of timepoints (e.g. 99)



Example: SIS model

Stochastic SIS (Susceptible-Infected-Susceptible) transmission
model in discrete time.1

Xp,i ,t infection status for animal i in pen p on day t.

Xp,i,t = 1 – infected/colonized.
Xp,i,t = 0 – uninfected/susceptible.

We treat Xp,i ,t as missing data and infer it using MCMC.

Epidemic model parameters updated via Metropolis-Hastings
and test sensitivities updated using Gibbs.

1Spencer et al. (2015) ‘Super’ or just ‘above average’? Supershedders and
the transmission of Escherichia coli O157:H7 among feedlot cattle. Interface
12, 20150446.



Susceptible 
Xp,i,t  =  0 

Colonized 
Xp,i,t  =  1 

Colonization probability: 

P 𝑋𝑝,𝑖,𝑡+1 = 1 𝑋𝑝,𝑖,𝑡 = 0 = 1 − exp⁡ −𝛼 − 𝛽 𝑋𝑝,𝑗,𝑡⁡𝜌
𝕀(𝑆𝑝,𝑗,𝑡⁡>⁡𝜏)

8

𝑗=1

 

Colonization duration: NegativeBinomial(𝑟, 𝜇) 

Pens:  𝑝 = 1⋯20  Animals:  𝑖 = 1⋯8 Time: ⁡𝑡 = 1⋯99 days 



Example: Posterior infection probabilities
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We can calculate the
posterior infection
probability for every day of
the study.
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Model selection for epidemics



Model selection for epidemics

A lot of epidemiologically interesting questions take the form of
model selection questions.

What is the transmission mechanism of this disease?

Do infected individuals really exhibit an exposed period?

Do water troughs spread E. coli O157?



Posterior probabilities and marginal likelihoods

Would like the posterior probability in favour of model i .

P(Mi |y) =
π(y |Mi )P(Mi )∑
j π(y |Mj)P(Mj)

Equivalently, the Bayes factor comparing models i and j .

Bij =
π(y |Mi )

π(y |Mj)

All we need is the marginal likelihood,

π(y |Mi ) =

∫
π(y |θ,Mi )π(θ|Mi ) dθ

but how can we calculate it?
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Marginal likelihood estimation

Many existing approaches:

Chib’s method
Power posteriors
Harmonic mean
Bridge sampling

Most direct approach:
importance sampling.

Use asymptotic normality of the posterior
to find efficient proposal.

But how to deal with the missing data?

Dr Peter Neal



Marginal likelihood estimation using importance sampling

1 Run MCMC as usual.

2 Fit normal distribution to posterior samples2 ⇒ q(θ).

3 Draw N samples from q(θ).

π(y) =

∫
π(y |θ)π(θ) dθ.

2To avoid problems, make q overdispersed relative to the posterior.



Marginal likelihood estimation using importance sampling

1 Run MCMC as usual.

2 Fit normal distribution to posterior samples2 ⇒ q(θ).

3 Draw N samples from q(θ).

π(y) ≈
N∑
i=1

π(y |θi )π(θi )

q(θi )
.

2To avoid problems, make q overdispersed relative to the posterior.



Marginal likelihood estimation with missing data

1 Run MCMC as usual.

2 Fit normal distribution to posterior samples → q(θ).

3 Draw N samples from q(θ).

4 For each sampled θi draw missing data x i from the full
conditional using FFBS.

π(y) ≈
N∑
i=1

π(y |x i ,θi ) π(x i |θi ) π(θi )

π(x i |y ,θi ) q(θi )
.



Simulation study: pneumococcol carriage

Panayiota performed a thorough simulation study3 based on
Melegaro at al. (2004).

Household based longitudinal study on carriage of
Streptococcus Pneumoniae.

Data consist of repeated diagnostic tests.

Multi-type model with 11 parameters, 2600 observed data and
6500 missing data.

3Touloupou et al. (2016) Model comparison with missing data using
MCMC and importance sampling. arXiv 1512.04743



Results: marginal likelihood estimation
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Results: Bayes factor estimation

Do adults and children acquire infection at the same rate?

M1 : kA 6= kC
M2 : kA = kC
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Results: Evolution of the log Bayes factor
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Application 1: E. coli O157 in feedlot cattle

Do animals develop immunity over time?

We compare two models for infection period:

Geometric: lack of memory.
Negative Binomial: probability of recovery depends on
duration of infection.

The Negative Binomial is a generalisation of the Geometric:

Setting Negative Binomial dispersion parameter κ = 1 leads to
Geometric.



Application 1: Results
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Application 2: Role of pen area/location
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Application 2: Role of pen area/location

Do north and south pens have different risk of infection?

Allow different external (αs , αn) and/or within-pen (βs , βn)
transmission rates.

Candidate models:

External Within-pen
Model North South North South

1 αn αs βn βs
2 α α βn βs
3 αn αs β β
4 α α β β



Application 2: Posterior probabilities
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Application 3: Investigating transmission between pens

Additional dataset: pens adjacent in a 12× 2 rectangular grid.

No direct contact across feed buck.

Shared waterers between pairs of adjacent pens.
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Application 3: Investigating transmission between pens

Do waterers spread infection?

(a) Model 1: No con-
tacts between pens

(b) Model 2: Transmis-
sion via a waterer

(c) Model 3: Transmis-
sion via any boundary



Application 3: Posterior probabilities
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Scalable inference for epidemics



Scalable inference for epidemics

Thus far we have been doing inference for small populations.

Households
Pens

The FFBS algorithm scales very badly with population size.

We would like an inference method that scales better with
population size.



Graphical representation

Diagram of the Markovian epidemic model. Circles are hidden
states and rectangles are observed data. Arrows represent
dependencies.
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A new approach – the iFFBS algorithm

Reformulate graph:
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⇒ View as coupled hidden
Markov model

Computational complexity
reduced from O(TN2C ) to
O(TCN2).

N = number of infection states (e.g. 2)
C = number of cows (e.g. 8)
T = number of timepoints (e.g. 99)
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Comparison of methods
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Larger populations
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Conclusion



Conclusion

FFBS algorithm generates better mixing MCMC for parameter
inference.

Unlocks direct approach to marginal likelihood estimation.

Allows important epidemiological questions to be answered via
model selection.

iFFBS can perform inference in large populations – exploits
dependence structure in epidemic data.



What I didn’t say

All of this work (and much more!) has been done by
Panayiota.

FFBS and iFFBS can also be used as a Metropolis-Hastings
proposal to fit non-Markovian epidemic models.

Can we do model selection with iFFBS?

Power of iFFBS allows more complex models to be fitted, e.g.
multi-strain epidemic models.



Current work
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