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What Do We Mean by ‘Bayesian Brittleness’?

Bayesian procedures give posterior distributions for quantities of
interest in the form of Bayes’ rule

p(parameters|data) ∝ L(data|parameters)p(parameters)

given the following data:
◮ a prior probability distribution on parameters — later denoted u ∈ U;
◮ a likelihood function;
◮ observations / data — later denoted y ∈ Y .

It is natural to ask about the robustness, stability, and accuracy of
such procedures.

This is a subtle topic, with both positive and negative results,
especially for large/complex systems, with fine geometrical and
topological considerations playing a key role.
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What Do We Mean by ‘Bayesian Brittleness’?

p(parameters|data) ∝ L(data|parameters)p(parameters)

Frequentist questions: If the data are generated from some ‘true’
distribution, will the posterior eventually/asymptotically identify the
‘true’ value? Are Bayesian credible sets also frequentist confidence
sets? What if the model class doesn’t even contain the ‘truth’?

Numerical analysis questions: Is Bayesian inference a well-posed
problem, in the sense that small perturbations of the prior, likelihood,
or data (e.g. those arising from numerical discretization) lead to small
changes in the posterior? Can effective estimates be given?

For us, ‘brittleness’ simply means the strongest possible negative
result: under arbitrarily small perturbations of the problem setup the
posterior conclusions change as much as possible — i.e. extreme
discontinuity. (More precise definition later on.)
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Bayesian Modelling Setup

Parameter space U, equipped with a prior π ∈ P(U).

Observed data with values in Y are explained using a likelihood
model, i.e. a function L : U→ P(Y ) with

L(E |u) = P
[
y ∈ E

∣∣ u
]
.

This defines a (non-product) joint measure µ on U× Y by

µ(E ) := Eu∼π,y∼L( · |u)
[
1E (u, y)

]
≡

∫

U

∫

Y

1E (u, y)L(dy |u)π(du).

The Bayesian posterior on U is just µ conditioned on a Y -fibre, and
re-normalized to be a probability measure. Bayes’ Rule gives this as

π(E |y) =
Eu∼π[1E (u)L(y |u)]

Eu∼π[L(y |u)]
.
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This defines a (non-product) joint measure µ on U× Y by

µ(E ) := Eu∼π,y∼L( · |u)
[
1E (u, y)

]
≡

∫

U

∫

Y

1E (u, y)L(dy |u)π(du).

The Bayesian posterior on U is just µ conditioned on a Y -fibre, and
re-normalized to be a probability measure. Bayes’ Rule gives this as

dπ( · |y)

dπ
∝ L(y | · ).
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Bayesian Modelling Setup

Traditional Setting

U is a finite set or Rd for small d ∈ N.

More Modern Applications

A very high-dimensional or infinite-dimensional U, e.g. an inverse problem
for a PDE:

−∇ · (u∇p) = f ,

boundary conditions(p) = 0.

in which we attempt to infer the permeability u from e.g. some noisy point
observations of the pressure/head p.
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Bayesian Modelling Setup

Prior measure π on U:

Joint measure µ on U× Y :

↑
Y

↓

← U→

y

Posterior measure π( · |y) ∝ µ|U×{y} on U:
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Specification of Bayesian Models

Parameter space U, equipped with a prior π ∈ P(U).

Observed data with values in Y are explained using a likelihood
model, i.e. a function L : U→ P(Y ) with

L(E |u) = P
[
y ∈ E

∣∣ u
]
.

Definition (Frequentist well-specification)

If data are generated according to µ† ∈ P(Y ), then the Bayesian model is
called well-specified if there is some u† ∈ U such that µ† = L( · |u†);
otherwise, the model is called misspecified.

Tim Sullivan (Warwick) Bayesian Brittleness WCPM, 15 Jan 2015 9 / 28



Consistency of Bayesian Models

Suppose that the observed data consists of a sequence of independent
µ†-distributed samples (y1, y2, . . . ), and let

π(n)(u) := π(u|y1, . . . , yn) ∝ L(y1, . . . , yn|u)π(u)

be the posterior measure obtained by conditioning the prior π with respect
to the first n observations using Bayes’ rule.

Definition (Frequentist consistency)

A well-specified Bayesian model with µ† = L( · |u†) is called consistent (in
an appropriate topology on P(U)) if

lim
n→∞

π(n) = δu† ,

i.e. the posterior asymptotically gives full mass to the true parameter value.
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Bernstein–von Mises Theorem

The classic positive result regarding posterior consistency is the
Bernstein–von Mises theorem or Bayesian CLT, historically first envisioned
by Laplace (1810) and first rigorously proved by Le Cam (1953):

Theorem (Bernstein–von Mises)

If U and Y are finite-dimensional, then, subject to regularity assumptions

on L and π, any well-specified Bayesian model is consistent provided

u† ∈ supp(π). Furthermore, π(n) is asymptotically normal about

ûMLE
n → u†, with precision proportional to the Fisher information I(u†):

Pyi∼µ†

[∥∥∥∥π
(n) −N

(
ûMLE
n ,

I(u†)−1

n

)∥∥∥∥
TV

> ε

]
−−−→
n→∞

0,

where I(u†)ij = Ey∼L( · |u†)

[
∂ log L(y |u)

∂ui

∂ log L(y |u)

∂uj

∣∣∣∣
u=u†

]
.
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Bernstein–von Mises Theorem

Informally, the BvM theorem says that a well-specified model is
capable of learning any ‘truth’ in the support of the prior.

If we obey Cromwell’s Rule

“I beseech you, in the bowels of Christ, think it possible that you

may be mistaken.”

by choosing a globally supported prior π, then everything should turn
out OK — and the limiting posterior should be independent of π.

Unfortunately, the BvM theorem is not always true if dimU =∞,
even for globally supported priors — but nor is it always false.

Applications of Bayesian methods in function spaces are increasingly
popular, so it is important to understand the precise circumstances in
which we do or do not have the BvM property.
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Some Positive and Negative Consistency Results

Positive

Barron, Schervish &
Wasserman (1999): K–L
and Hellinger

Castillo & Rousseau and
Nickl & Castillo (2013):
Gaussian seq. space model,
modified ℓ2 balls

Szabó, Van der Vaart,
Van Zanten (2014)

Stuart & al. (2010+):
Gaussian / Besov measures

Dirichlet processes

Negative

Freedman (1963, 1965):
prior supported on P(N0)
sees i.i.d. yi ∼ Geom(14 ), but
posterior → Geom(34 )

Diaconis & Freedman
(1998): such ‘bad’ priors are
of small measure, but are
topologically generic

Johnstone (2010) and
Leahu (2011): further
Freedman-type results

→ Owhadi, Scovel & S.

Main moral: the geometry and topology play a critical role in consistency.

Tim Sullivan (Warwick) Bayesian Brittleness WCPM, 15 Jan 2015 13 / 28



Consistency of Misspecified Bayesian Models

By definition, if the model is mis-specified, then we cannot hope for
posterior consistency in the sense that π(n) → δu† where
L( · |u†) = µ†, because no such u† ∈ U exists.

However, we can still hope that π(n) → δû for some ‘meaningful’
û ∈ U, and that we get consistent estimates for the values of suitable
quantities of interest, e.g. the posterior asymptotically puts all mass
on û ∈ U such that L( · |û) matches the mean and variance of µ†, if
not the exact distribution.

For example, Berk (1966, 1970), Kleijn & Van der Vaart (2006),
Shalizi (2009) have results of the type:

Theorem (Minimum relative entropy)

Under suitable regularity assumptions, the posterior concentrates on

û ∈ argmin
{
DKL

(
µ†
∥∥L( · |u)

)∣∣∣u ∈ supp(π0)
}
.
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Setup for Brittleness

For simplicity, U and Y will be complete and separable metric spaces
— see arXiv:1304.6772 for weaker but more verbose assumptions.

Fix a prior π0 ∈ P(U) and likehood model L0, and the induced joint
measure (Bayesian model) µ0; we will consider other models µα ‘near’
to µ0.

Given π0 and any quantity of interest q : U→ R,

π0 -ess inf
u∈U

q(u) := sup
{
t ∈ R

∣∣ q(u) ≥ t π0-a.s.
}
,

π0 -ess sup
u∈U

q(u) := inf
{
t ∈ R

∣∣ q(u) ≤ t π0-a.s.
}
.

To get around difficulties of data actually having measure zero, and
with one eye on the fact that real-world data is always discretized to
some precision level 0 < δ <∞, we assume that our observation is
actually that the ‘exact’ data lies in a metric ball Bδ(y) ⊆ Y .

Slight modification: y could actually be (y1, . . . , yn) ∈ Y n.
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Setup for Brittleness

The brittleness theorem covers three notions of closeness between models:

total variation distance: for α > 0 (small), ‖µ0 − µα‖TV < α; or

Prohorov distance: for α > 0 (small), dΠ
(
µ0, µα

)
< α (for separable

U, this metrizes the weak convergence topology on P(U)); or

common moments: for α ∈ N (large), for prescribed measurable
functions φ1, . . . , φα : U× Y → R,

Eµ0 [φi ] = Eµα
[φi ] for i = 1, . . . , α,

or, for εi > 0,

∣∣Eµ0 [φi ]− Eµα
[φi ]

∣∣ ≤ εi for i = 1, . . . , α.
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Brittleness Theorem
Owhadi, Scovel & S. arXiv:1304.6772, 2013

Theorem (Brittleness)

Suppose that the original model (π0, L0) permits observed data to be

arbitrarily unlikely in the sense that

lim
δ→0

sup
y∈Y

u∈supp(π0)⊆U

L0
(
Bδ(y)

∣∣ u
)
= 0, (AU)

and let q : U→ R be any measurable function. Then, for all

v ∈

[
π0 -ess inf

u∈U
q(u), π0 -ess sup

u∈U
q(u)

]
,

and all α > 0, there exists δ∗(α) > 0 and a model µα ‘α-close’ to µ0 such

that the posterior value Eπα

[
q
∣∣Bδ(y)

]
for q given data of precision

0 < δ < δ∗(α) is the chosen value v .
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Brittleness Theorem — Proof Sketch

Idea of Proof

Optimize over the set Aα of models that are α-close to the original
model. (Cf. construction of Bayesian least favourable priors and
frequentist minimax estimators.)

This involves understanding extreme points of Aα and the
optimization of affine functionals over such sets — Choquet theory
and results of von Weizsäcker & Winkler — and previous work by
S. and collaborators on Optimal UQ (SIAM Rev., 2013).

The three notions of closeness considered (moments, Prohorov, TV),
plus the (AU) condition, together permit models µα ∈ Aα to ‘choose
which data to trust’ when forming the posterior.

In our proof as written, the perturbations used to produce the ‘bad’
models use point masses; a slight variation would produce the same
result using absolutely continuous perturbations.

Tim Sullivan (Warwick) Bayesian Brittleness WCPM, 15 Jan 2015 19 / 28



Brittleness Theorem — Proof Sketch

Schematically, the perturbation from µ0 to µα looks like
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Brittleness Theorem — Proof Sketch

Schematically, the perturbation from µ0 to µα looks like

∼ α
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Brittleness Theorem — Interpretation

Misspecification has profound consequences for Bayesian robustness
on ‘large’ spaces — in fact, Bayesian inferences become extremely
brittle as a function of measurement resolution δ.

If the model is misspecified, and there are possible observed data that
are arbitrarily unlikely under the model, then under fine enough
measurement resolution the posterior predictions of nearby priors differ
as much as possible regardless of the number of samples observed.

Figure. As measurement
resolution δ → 0, the
smooth dependence of
Eπ0[q] on the prior π0
(top-left) shatters into a
patchwork of diametrically
opposed posterior values
Eπ(n) [q] ≡ Eπ0 [q|Bδ(y)].
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Brittleness Rates — A Moment-Based Example

Estimate the mean of a random variable X , taking values in [0, 1],
given a single observation y of X

Set A of admissible priors for the law of X : anything that gives
uniform measure to the mean, uniform measure to the second
moment given the mean, uniform measure to the third moment given
the second, . . . up to k th moment. (Note that dimA =∞ but
codimA = k .)

So, in particular, for any prior π ∈ A, Eπ[E[X ]] = 1
2 .

Can find priors π1, π2 ∈ A with

Eπ1[E[X ]|y ] ≤ 4e

[
2kδ

e

] 1
2k+1

≈ 0,

Eπ2 [E[X ]|y ] ≥ 1− 4e

[
2kδ

e

] 1
2k+1

≈ 1.
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Ways to Restore Robustness and Consistency
Or: What Would Break This Argument?

Restrict to finite-precision data, i.e. keep δ bounded away from zero.
Physically quite reasonable. The universe may be granular enough
that δ1/(2k+1) ≫ 0 for all ‘practical’ δ > 0.

Ask the robustness question before seeing the data, not after. This
leads to a very large minimax problem, the computation of
data-schema-specific optimal statistical estimators.

Ask the robustness question about the limiting posterior, not each
π(n) individually. The brittleness theorem and “limn→∞” might not
commute.
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Closing Remarks on Brittleness

In contrast to the classical robustness and consistency results for
Bayesian inference for discrete or finite-dimensional systems, the
situation for infinite-dimensional spaces is complicated.

Bayesian inference is extremely brittle in some topologies, and so
cannot be consistent, and high-precision data only worsens things.

Consistency can hold for complex systems, with careful choices of
prior, geometry and topology — but, since the situation is so
sensitive, all assumptions must be considered carefully.

And, once a ‘mathematical’ prior is agreed upon, just as with classical
numerical analysis of algorithms for ODEs and PDEs, the onus is on
the algorithm designer to ensure that the ‘numerical’ prior is close to
the ‘mathematical’ one in a ‘good’ topology.
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Some Questions

What happens if we do the physically reasonable thing of restricting
to finite-precision data, i.e. keeping δ bounded away from zero? —
Need quantitative versions of these theorems! The one-dimensional
k-moments example suggests that the rate is not too bad, but what is
the general picture?

What happens if we ask the robustness question before seeing the
data, not after?

What happens if we ask the robustness question about the limiting
posterior, not each π(n) individually? The brittleness theorem and
“limn→∞” might not commute.

How does this relate to the phenomenon of Bayesian dilation?
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Thank You

H. Owhadi & C. Scovel, arXiv:1304.7046

H. Owhadi, C. Scovel & T. J. Sullivan, arXiv:1304.6772

H. Owhadi, C. Scovel & T. J. Sullivan, arXiv:1308.6306

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns & M. Ortiz,
SIAM Rev. 55(2):271–345, 2013. arXiv:1009.0679

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi &
M. Ortiz, Math. Model. Numer. Anal. 47(6):1657–1689, 2013.
arXiv:1202.1928
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