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Machine Learning (ML)
 "Field of study that gives computers the ability to learn 

without being explicitly programmed“ (A. Samuel, 1959)
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 Original purpose (1950s): creating AI, simulating 
intelligence

 Current use: finding trends in large complex data, 
recognising patterns (speech, image and semantics)

Artificial 
Neural 
Networks

•Deep learning

Tree-based 
methods

•Decision trees

•Random forests

Instance-
based 
learning

• k-Nearest 
Neighbour

Kernel 
methods

•Support Vector 
machines

Genetic 
algorithms

•Evolutionary 
theory 



 Machine Learning (ML)  - indispensable tool in Bioinformatics [1,2]

 Still a relatively slow take up in biomedical engineering and healthcare

Cost

•Expensive 
experiments

•Living tissue

•Clinical data

Standards

•Institutional bias

•Ethical approvals

•International data 
transfer

“Big Data”?

•Too few events

•Exclusion criteria

•Missing data

•Class imbalance

Why Biomedical/Clinical data are small?

Insufficient training data

Insufficient test data

High volatility 

Generalisation issues

Why is ML rarely 

viewed in the context 

of “Small Data”? 
(<10 observations per 

predictor variable)
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ML and Small Data: making it work

Method of multiple runs
 What does it do?

 How does it work?

 “Run” = thousands of ML models trained 
in parallel

 A range of well- and poorly-performing 
models

 Allows for iterative design optimisation

 Performance measured collectively across 
the run

 Use output of the best-performing model

Surrogate data 

 What does it do?

 Quantifies random effects due 
to small data 

 Model validation despite  
insufficient number of test
samples

 How does it work?

 Generate synthetic samples that 
mimic the real dataset

 Train and test ML model on 
surrogate data

 Highest performing surrogate 
model  = lowest performance 
threshold for real  data models
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Small data  
many 

ML models

Reduces 
volatility

Increases 
consistency



Case 1: Neural Networks (NNs) 

and Hard Tissue Engineering



Case study 1: Background and Model

The model 

 35 trabecular bone samples [4]

 20% reserved for tests

 Feedforward backpropagation 

NN with 5 input features and 1 

output [5]

 Multiple run of 2000 NNs

Regression task: to predict 
compressive strength (CS) of 
trabecular bone  in severe 
osteoarthritis

Osteoarthritic hip 

joint
damaged 
cartilagetrabecular 

bone
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NN performance

 Regression between actual and 
predicted CS:

• across all samples, R = 99.3% 

• across 7 test samples, R = 98.3% 

 Standard error = 0.85 MPa

Validation with surrogates

 Wilcoxon rank test (200000 NNs)

 Hypothesis rejected 
(p<0.000001) 

 Mean values 

 Surrogates, R = 0.33 

 Real data, R = 0.68 

 Surrogate threshold  R = 0.87
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Comparison with NN ensembles
NN ensembles – powerful extension to NNs:

• Performed with 96% generalising accuracy on large-data 

concrete model (2% improvement)

• Underperformed with small-data
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Case 2: Tree-Based models in 

Kidney Transplantation 



Case study 2: Background of the task

 wide data problem

Dataset [6,7] - 80 patients

• 15 predictors

• age, gender, tissue mismatches, 
antibody levels, dialysis, etc.  

• Well balanced : 46 R and 34 NR

• Issues: missing data, heterogeneity 

• Computational intensity: 60960 splits

Model

• Standard CART implemented in MATLAB

• Tree pruning: complexity penalised 

• Multiple run of 600 DTs

• Random Forest (RF) extension to 
improve classifier robustness

13
Classification task: to predict rejection (R/NR) of kidney 

transplants  in early (<30 days)post-transplant period

Secondary tasks:

 Identify risk factors

 Dangerous antibody 
subclasses (IgG1-4)

 Harmful antibody 
levels



Case study 2: DT model

 Only 6 (out of 15 possible) 
predictors were used by the DT: 

𝑿𝟏 < 834   ⃝  ≥ 834

𝑿𝟐 < 36.5   ⃝ ≥ 36.5

𝑿𝟑 ∈ [0,1,2,3,6] ⃝ [4,5]

𝑿𝟒 < 199   ⃝ ≥ 199

𝑿𝟓 = 𝟎 ⃝ = 𝟏

1 = Rejected 
0 = Not rejected

highest antibody level

total IgG4

tissue mismatches

total IgG2

delayed graft function 

total IgG1

𝑿𝟏

𝑿𝟐

𝑿𝟑

𝑿𝟒

𝑿𝟓

𝑿𝟔

Risk levels:

 ≥ 36.5

 ≥ 904

𝑿𝟔 < 904   ⃝ ≥ 904

614



Receiver Operating Characteristic

Case study 2: DT model results

Training accuracy = 86.7% 
Sensitivity  = 87.9%
Specificity  = 85.2%

Generalising accuracy = 85.0% 
Sensitivity = 84.6%
Specificity = 85.7%

Confusion matrices
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Summary

 Machine learning is able to learn from small biomedical data:

 Our framework produces well-generalising predictive models built with 
limited data, which outperform some state-of-the-art alternative models

 How much data is enough remains a compromise

 NN model for strength estimation in trabecular bone

 Non-destructive estimation of bone fracture risk 

 Highly-accurate (98.3%)

 Compressive Strength accurate to 0.85 MPa

 DT as a predictive tool in Kidney transplantation:

 Classified AMR/Non-AMR with 85% accuracy

 Identified key risk factors

 Estimated specific levels of antibodies
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