
What	is	good	research	software?
How	can	it	be	engineered?

Is	it	deliverable	within	academia?
Christopher	Woods

EPSRC	Research	Software	Engineer
Advanced	Computing	Research	Centre	/	School	of	Chemistry

University	of	Bristol

The	Great	Unknown

What’s	the	problem	with	
research	software?

Research	Problem
Research	Software	Solution

Research	Software	Solution
applied	to	scaled-up	problem

Research	Software	Solution
put	into	production

Researcher	
(Explorer	of	the	unknown)

Significant	cost	to	apply	ad-hoc	research	software	
solutions	at	scale	or	in	production
Re-engineering	for	scale-up	or	production	use	is	expensive…
...especially	if	the	researcher	is	no	longer	exploring	this	land...
...and	they	didn’t	leave	great	notes...
...and	a	production	solution	is	fundementally	different	to	the	ad-hoc	solution.

Well-engineered	
Research	Software	Solution

Well-engineered	
Research	Software	Solution
Supports	initial	scale-up

Well-engineered	
Research	Software	Solution

Modular	– can	be	readily	put	into	production
More	easily	translated	to	industry

Any	later	re-engineering	can	build	upon	the	
documentation	and	experience	provided	by	

the	Research	Software	Engineer
Research	Software	Engineers

will	know	of	any	modern	existing	solutions

Research	Software	Engineers	(RSEs)

Research	Software	Engineers
“Sherpas”	to	support	the	
researcher	explorers

UKRSE

• RSE	groups	all	over	the	country
– UCL,	Bristol,	Manchester,	Sheffield	etc.	etc.
– Support	researchers	via	collaboration	and	training

• EPSRC	RSE	Fellowship	(6	fellows,	more	coming?)
• UK	Research	Software	Engineers	Association

– http://rse.ac.uk
• Annual	conference

– September	7-8	2017,	Manchester	(>200	attendees)

1.	What	is	good	research	software?

2.	How	can	it	be	engineered?

3.	Is	it	deliverable	in	academia?

1.	What	is	good	research	software?

2.	How	can	it	be	engineered?

3.	Is	it	deliverable	in	academia?

What	is	good research	software?

Unit	Tests	/	Regression	Tests
Examples	/	Tutorials
Good	Documentation

Library	/	Module
Building	Blocks
Re-usability

Unit	Tests	/	Regression	Tests
Examples	/	Tutorials
Good	Documentation

Use	standards	(OpenMP,	MPI,	TBB)
Use	libraries	(BLAS)
Common	API	to	different	back-ends

Library	/	Module
Building	Blocks
Re-usability

Unit	Tests	/	Regression	Tests
Examples	/	Tutorials
Good	Documentation

Three-Layer	Model

Library of Building Blocks
(Compiled	language,	e.g. C++,	with	
OpenMP,	MPI,	TBB,	OpenCL,	etc.

Three-Layer	Model

Scripting Layer
Expose	all	building	blocks
to	scripting	language,	

e.g.	Python

Library of Building Blocks
(Compiled	language,	e.g. C++,	with	
OpenMP,	MPI,	TBB,	OpenCL,	etc.

Three-Layer	Model

Application
Small	“apps”	

written	using	the	
scripting	layer

Scripting Layer
Expose	all	building	blocks
to	scripting	language,	

e.g.	Python

Library of Building Blocks
(Compiled	language,	e.g. C++,	with	
OpenMP,	MPI,	TBB,	OpenCL,	etc.

Hide	implementation	behind	clean	API
(can	swap	different	backends	for	different	hardware)

(can	rewrite	or	add	new	blocks	without	breaking	above	layers)

Library of Building Blocks
(Compiled	language,	e.g. C++,	with	
OpenMP,	MPI,	TBB,	OpenCL,	etc.

Application
Small	“apps”	

written	using	the	
scripting	layer

Scripting Layer
Expose	all	building	blocks
to	scripting	language,	

e.g.	Python

Flexible	- can	quickly	write	new	scripts	using	the	blocks
Can	fully	test	the	blocks	using	scripted	unit	tests

Easy	starting	layer	for	new	programmers	(if	documented)

Scripting Layer
Expose	all	building	blocks
to	scripting	language,	

e.g.	Python

Library of Building Blocks
(Compiled	language,	e.g. C++,	with	
OpenMP,	MPI,	TBB,	OpenCL,	etc.

Application
Small	“apps”	

written	using	the	
scripting	layer

Easy	to	write	apps	as	small	scripts	(using	blocks)
Easy	to	modify	apps	/	Easy	to	prototype	new	apps
Easy	to	combine	apps	together	into	workflows

Application
Small	“apps”	

written	using	the	
scripting	layer

Scripting Layer
Expose	all	building	blocks
to	scripting	language,	

e.g.	Python

Library of Building Blocks
(Compiled	language,	e.g. C++,	with	
OpenMP,	MPI,	TBB,	OpenCL,	etc.

Interoperable	Frameworks

• Writing	this	encourages	you	to	develop	a	
software	framework

• You	should	aim	to	be	interoperable	with	other	
frameworks	– allow	developers	to	mix	and	match	
bits	of	your	framework	with	others

• Your	code	is	less	famous,	but	it	is	much	more	
widely	used	and	useful
– Your	code	is	part	of	something	bigger

• You	will	be	surprised	by	how	people	use	your	
code

1.	What	is	good	research	software?

2.	How	can	it	be	engineered?

3.	Is	it	deliverable	in	academia?

WhoHow
is	the

what
when
whyand

of	software engineering

WhoHow
is	the

what
when
whyand

of	software engineering

are you writing for?

you need to do

you need to do it

it is important

Who are you writing for?

Most	of	the	time,	we	write	code	that	
will	only	be	used	by	ourselves.

(e.g.	small	scripts,	simple	analysis	scripts,	workflows	etc.)

YouMe

Who are you writing for?

what you need to do

when you need to do it

why it is important

You!

Just	write	your	code	and	make	sure	it	works.

While	writing	your	code

The	code	is	to	complete	a	job	now.
Spending	time	now	on	software	sustainability	is	not	worth	it	for	a	
single-user,	single-use	script.

Who are you writing for?

YouMe

Who	else	is	another	important	
audience	/	user	of	your	code?

Who are you writing for?

The	software	you	write	today…
…you	may	want	to	re-use	in	the	future.	

(e.g.	re-run	an	analysis,	regenerate	results	to
respond	to	referee	comments	etc.)

YouMe Future	YouFuture	Me

Who
what

when

why

are you writing for?

you need to do

you need to do it

it is important

“Future	you”

Add	comments	to	your	code	that	“future	you”	
can	understand.	Add	a	simple	README	on	how	to	use	it.

While	you	are	writing	your	code	(“future	you”	can’t	remember)

To	allow	“future	you”	to	understand	what	has	been	written,	
what	the	program	does,	and	how	to	use	it	again.

Who are you writing for?

You

Your	friends	and	co-workers	may	want	to	use	your software
(or	your	supervisor	wants	to	pass	it	to	the	next	student…)

and	your	friends	/	co-workers

Who Your	friends	and	co-workers

what why&
1. Add documentation on how to use your program.

Why? To	stop	you	being	treated	as	an	interactive	manual.

3. Add tests to ensure your program does what it says
and has no known bugs.

Why? To	minimise	the	risk	of	a	bug	in	your	code	breaking	your	
friends	research	and	wasting	their	time.

2. Add useful output and error messages / handling.
Why? To	give	useful	information	to	users	while	the	code	is	
running,	and	to	give	useful	error	messages	if	the	code	cannot	
handle	the	user’s	input.

Who Your	friends	and	co-workers

what why&
1. Add documentation on how to use your program.

Why? To	stop	you	being	treated	as	an	interactive	manual.

3. Add tests to ensure your program does what it says
and has no known bugs.

Why? To	minimise	the	risk	of	a	bug	in	your	code	breaking	your	
friends	research	and	wasting	their	time.

2. Add useful output and error messages / handling.
Why? To	give	useful	information	to	users	while	the	code	is	
running,	and	to	give	useful	error	messages	if	the	code	cannot	
handle	the	user’s	input.

whenyou need to do it

Before	you	share	the	code!

Who are you writing for?

You,

The	more	your	friends	/	co-workers	use	your	
code,	the	more	they	may	want	to	modify	it.

who	want	to	
modify	your	code

and	your	friends	/	co-workers

Who Friendly	/	local	developers

what why&

1. Fully document your code (APIs, public/private code,
broken parts, roadmap of features, simple developer guide
etc.)
Why? To	allow	other	developers	to	understand	the	intent	of	the	code	
and	how	they	can	safely	make	modifications.

2. Add you code to a version control system.
Why? To	allow	others	to	contribute	their	code	to	a	shared	space	
and	let	you	merge	and	manage	different	contributions.

Who Friendly	/	local	developers

what why&

3. Set up an issue tracker and forum to co-ordinate releases.
Why? To	allow	you	to	communicate	with	developers,	and	share	
knowledge	of	what	code	is	broken,	and	co-ordinate	what	all	of	you	
are	doing.	Provides	a	visible	written	record	(avoids	fights!)

4. Create robust regression tests to catch breakage.
Why? To	stop	others	from	breaking	important	features	in	your	
code	whenever	they	commit	a	change.	Detects	faults	early	(assigns	
blame,	places	onus	on	developers	not	to	break	code,	or	to	fix	it	
themselves.)

Who Friendly	/	local	developers

what why&

3. Set up an issue tracker and forum to co-ordinate releases.
Why? To	allow	you	to	communicate	with	developers,	and	share	
knowledge	of	what	code	is	broken,	and	co-ordinate	what	all	of	you	
are	doing.	Provides	a	visible	written	record	(avoids	fights!)

4. Create robust regression tests to catch breakage.
Why? To	stop	others	from	breaking	important	features	in	your	
code	whenever	they	commit	a	change.	Detects	faults	early	(assigns	
blame,	places	onus	on	developers	not	to	break	code,	or	to	fix	it	
themselves.)

whenyou need to do it

While you are writing your code and before
other developers start trying to contribute

Who are you writing for?

Used	by	people	in	other	friendly	research	groups,	e.g.
your	collaborators,	friends,	former	colleagues	who

have	moved	jobs	or	been	promoted

Who Non-local	collaborators

what why&
1. Add good user-level documentation (user manual, simple
tutorials and examples)
Why? To	allow	new	people	to	use	your	code	without	you	providing	
training	(else	you	will	have	to	travel/skype!)

2. Add web-based forums, issue trackers, version control.
Why? To	allow	you	to	co-ordinate	use	and	development	without	
being	physically	present	or	able	to	meet	face-to-face.	Web-based,	
as	must	exist	outside	your	university	(or	be	accessible	to	people	
who	don’t	work	at	your	uni)

Who Non-local	collaborators

what why&
3. Add easy install scripts, ensure code is portable.
Why? To	allow	your	code	to	compile	and	install	on	collaborators	
computers,	which	may	have	different	OSs	than	yours	(some	may	use	
OS	X	or	Windows…!)

4. Create a governance structure for the software
Why? Many	people	depend	on	you	and	your	software.	You	need	to	
plan	for	your	succession,	e.g.	if	you	are	promoted,	leave	for	
industry,	or	suffer	a	bus	error.	Increasingly,	the	code	is	no	longer	
“yours”,	but	is	beginning	to	belong	to	its	community.

Who Non-local	collaborators

what why&
3. Add easy install scripts, ensure code is portable.
Why? To	allow	your	code	to	compile	and	install	on	collaborators	
computers,	which	may	have	different	OSs	than	yours	(some	may	use	
OS	X	or	Windows…!)

4. Create a governance structure for the software
Why? Many	people	depend	on	you	and	your	software.	You	need	to	
plan	for	your	succession,	e.g.	if	you	are	promoted,	leave	for	
industry,	or	suffer	a	bus	error.	Increasingly,	the	code	is	no	longer	
“yours”,	but	is	beginning	to	belong	to	its	community.

whenyou need to do it

While you are writing your code and before you
release it to your collaborators

Certificate of Brilliance
This certifies that you are known
to produce absolutely amazing
software

Who are you writing for?

So	far	everyone	uses	your	software	
does	so	because	they	know	and	trust	you…

Who are you writing for?

You	want	to	write	software	for	 anyone	to	use,	anywhere	in	the	World.

You don’t know them, and they don’t know you.

Who Anyone	(e.g.	People	Who	Don’t	Know	You)

what why&
1. Create a website to market and allow people to discover
your code.
Why? To	allow	others	to	quickly	find	and	install	your	code.	You	need	
to	market	it,	or	else	it	is	invisible.

2. Package the code. Make it extremely easy to install.
Why? To	allow	others	to	use	your	code	as	easily	and	quickly	as	
possible	after	download.	From	my	experience,	PWDKYs	will	give	up	
on	your	software	if	they	cannot	install	it	and	have	it	working	within	
five	minutes.	Everyone	hates	dependency	hell.

Who Anyone	(e.g.	People	Who	Don’t	Know	You)

what why&
3. Develop on-line training workshops and examples.
Why? To	allow	others	to	independently	learn	how	to	use	your	
software.	They	will	never	meet	you	or	talk	to	you,	so	give	them	
everything	they	need	to	learn	independently.

4. Create a good suite of unit and regression tests.
Why? To	allow	others	to	independently	verify	your	code	is	
working.	Remember,	they	don’t	know	you,	so	they	should	not	trust	
you	or	your	software.	Give	them	tests	so	that	they	can	learn	to	trust	
your	code.

Who Anyone	(e.g.	People	Who	Don’t	Know	You)

what why&
5. Make your code compatible with other software and with
data standards (e.g. standard input/output formats such as
PDB, mol2, etc. etc.)

Why? To	allow	others	to	maximise	your	code’s	usefulness	by	merging	
it	into	their	workflows	and	developing	derived		software.	Try	to	make	
your	code	a	“good	citizen”	and	play	nicely	with	other	software	
packages.	If	you	do,	then	your	users	will	thank	you,	and	they	will	
create	interesting	workflows	that	are	beyond	anything	you	can	
imagine.

Who Anyone	(e.g.	People	Who	Don’t	Know	You)

what why&
5. Make your code compatible with other software and with
data standards (e.g. standard input/output formats such as
PDB, mol2, etc. etc.)

Why? To	allow	others	to	maximise	your	code’s	usefulness	by	merging	
it	into	their	workflows	and	developing	derived		software.	Try	to	make	
your	code	a	“good	citizen”	and	play	nicely	with	other	software	
packages.	If	you	do,	then	your	users	will	thank	you,	and	they	will	
create	interesting	workflows	that	are	beyond	anything	you	can	
imagine.

whenyou need to do it

While you are writing your code, and (ideally) before
you release it to the public.

(*) Don’t leave these things as jobs for the final release, and
then subject your users to unfinished alpha, beta or pre-
release candidates. You don’t want your code to develop a
reputation of being difficult to install, difficult to learn,
broken or buggy

Who are you writing for?

You	want	anyone	to	be	able	to	download
and	use	your	program,	anywhere	in	the	World

Who are you writing for?

and you want it to be sustainable
and useful long into the future.

You	want	anyone	to	be	able	to	download
and	use	your	program,	anywhere	in	the	World

Who Anyone,	and	for	a	long	time	into	the	future

what why&
1. Create a management team, with release planning, feature
planning, and change management.
Why? To	ensure	there	is	a	clear	roadmap	for	the	software,	and	that	
there	is	succession	planning	in	place	to	keep	development	going	as	
people	join	and	leave	the	project

2. Create a support team to deal with support requests,
feature requests etc.
Why? To	ensure	that	users	are	supported,	and	that	the	software	
adapts	to	changes	in	operating	systems,	hardware	and	use	cases	for	
the	code.	To	keep	the	trust	of	your	community,	you	will	need	to	
spend	a	lot	of	time	supporting	them	and	keeping	them	engaged.

Who Anyone,	and	for	a	long	time	into	the	future

what why&
3. Create a training team to handle creation and
management of documentation, training materials,
workshops.

Why? To	ensure	that	knowledgeable	user	and	developer	
communities	can	grow	and	feel	engaged.	So	that	you	have	the	people	
to	develop	and	host	training	events	around	the	World.

4. Create a clear funding mechanism that will support the
team and software long into the future.
Why? To	ensure	that	people	and	teams	are	funded,	and	that	
people	can	be	employed	to	do	the	unglamorous	and	otherwise	
unrewarding	jobs.

Who Anyone,	and	for	a	long	time	into	the	future

what why&
3. Create a training team to handle creation and
management of documentation, training materials,
workshops.

Why? To	ensure	that	knowledgeable	user	and	developer	
communities	can	grow	and	feel	engaged.	So	that	you	have	the	people	
to	develop	and	host	training	events	around	the	World.

4. Create a clear funding mechanism that will support the
team and software long into the future.
Why? To	ensure	that	people	and	teams	are	funded,	and	that	
people	can	be	employed	to	do	the	unglamorous	and	otherwise	
unrewarding	jobs.

whenyou need to do it

While you are managing the software project
(you may not now have time for any coding…)

Who has the time for all of this?
• Not	every	code	needs	to	be	released	sustainably	for	
anyone	to	use	for	all	time.	
• Recognise	early	on	WHO	you	are	writing	your	code	
for.	

• Don’t	share	personal	“quick	and	dirty”	software	with	
others	unless	you	have	a	plan	for	how	to	support	
and	develop	it	into	the	future.

• Have	an	exit	plan.	How	will	you	ensure	that	you	are	
not	the	one	supporting	the	code	for	the	rest	of	your	
life…

Who has the time for all of this?

• Work	with	others.	Rather	than	start	a	new	code	from	
scratch,	join	an	existing	community.	Contribute	to	
existing	code	and	projects.	That	way,	you	don’t	need	to	
set	everything	up	yourself.

• Be	warned,	other	projects	don’t	appreciate	“code	
dumps”	of	unsupportable	code…	At	the	very	least	expect	
to	have	to	write	documentation,	tests,	examples	and	to	
answer	support	requests	on	the	forums

1.	What	is	good	research	software?

2.	How	can	it	be	engineered?

3.	Is	it	deliverable	in	academia?

Lessons from Developing Sire

http://siremol.org

What does it do?
• Molecular	simulation	framework
• Written	in	C++.	Objects	exposed	to	Python
• >	200,000	lines	of	code,	developed	since	2005
• Provides	building	blocks	to	rapidly	write	new	molecular	
simulation	programs	(apps)

• Example	apps	include	“waterswap”,	“ligandswap”,	
“nautilus”,	“sommd”,	“FESetup”

Who develops Sire?
• Software	development	led	from	Bristol
• Secondary	team	at	Edinburgh
• Community	development	in	partnership	with	
CCP-BioSim	and	STFC

• Funding	from	EPSRC/BBSRC/EU	and	Industry	
– but	no	specific	funding	for	Sire	– grants	fund	
method	development	and	scientific	research

How is it published?
• Sire	is	open	source	(GPL2)
• Main	website	is	http://siremol.org
• Release	planning	on	GitHub	wiki	/	GitHub	issues
• Development	on	a	public	GitHub	repository
• Unit	testing	+	Continuous	integration	via	Travis-CI
• Published	as	source	and	binary	regularly	through	the	
year,	i.e.	2016.3.1

./sire_16_3_1_OSX.run

~/sire.app/bin/python

~/sire.app/bin/waterswap

~/sire.app/bin/sire_test

Reproducibility

• Binaries	bundle	all	
dependent	libraries
– Linux	64bit	>	2008
– OS	X	>=	10.8	(2008)
– Win64	>=	7	(2009)

• Old	versions	always	
available

Usage Tracking

• From	Sire	2015.1	we	have	“phonehome”	
analytics	built	into	Sire

• Sends	usage	information	back	to	siremol.org

• Country of user
• Which app is being used
• Operating system
• Version of Sire
• Compile options etc.
• Basic computer info

• Country of user
• Which app is being used
• Operating system
• Version of Sire
• Compile options etc.
• Basic computer info

• Country of user
• Which app is being used
• Operating system
• Version of Sire
• Compile options etc.
• Basic computer info

• Country of user
• Which app is being used
• Operating system
• Version of Sire
• Compile options etc.
• Basic computer info

Just started download tracking - ~40 downloads per week, from around the World

Conclusions

• Research	software	engineering	is	more	work	
than	just	writing	code…

• It	is	deliverable	within	academia,	but	time	and	
effort	have	to	be	provided

• It	is	difficult	to	do	everything	yourself
• Contributing	to	an	existing	project	is	more	
sustainable	and	requires	less	effort

• Write	a	software	management	plan	before	
embarking	on	writing	a	new	code

Acknowledgements

• Research	Software	Engineering
– Neil	Chue Hong,	Software	Sustainability	Institute
– UKRSE:	http://rse.ac.uk
– EPSRC	RSE	Fellowship	scheme

• Sire
– Julien	Michel,	University	of	Edinburgh

• Antonia	Mey,	Gaetano	Calabró
– Hannes	Loeffler,	STFC
– Adrian	Mulholland,	University	of	Bristol

