RStan: Efficient MCMC in R

Jack Jewson
Warwick R user group: 2 March 2017
Problem

You're doing a statistical analysis:

• Want to impose some prior information.
• Ultimately you care about prediction.
• So you decide to be Bayesian.
• However… you don't have conjugate priors.
• You could spend ages coding up a Metropolis-Hastings, optimising acceptance rates and proposals.
• Or you could use RStan!
HMC

- HMC is a method to produce proposals for a MH algorithm that are accepted with high probability.
- Rather than have a proposal distribution we appeal to Hamiltonian dynamics.
- Consider the target distribution as an inverted ice rink:
 - Give the particle some momentum.
 - It slides around the ice rink spending most time where the density is high.
 - Taking snap shots of this trajectory gives a proposal sample for the posterior.
 - We then correct using Metropolis-Hastings.

Original paper Alder and Wainwright (1959) or see Neal and others (2011) for an easier read
NUTS

- HMC, like RWMH, requires some tuning, the number and size of the leapfrog steps.
- The "No-U-Turn Sampler" or NUTs (Hoffman and Gelman (2014)), optimises these adaptively.
- Too small number and size of steps leads to RW type behaviour while too big the trajectory starts to come back on itself.
- NUTS builds up a set of likely candidate points and stops immediately when a trajectory starts to come back on itself.
Advantages of Stan

- Can produce high dimensional proposals that are accepted with high probability without having to spend time tuning.
- Has inbuilt diagnostics to analyse the MCMC output.
- Built in C++ so runs quickly but outputs to R.
Example

• What to build a Bayesian linear regression model using LASSO shrinkage.
• Build a Stan model:
 - Data: n, p, Y, X, prior parameters, hyper-parameters
 - Parameters: β, σ^2
 - Model: Gaussian likelihood, Laplacian and Gamma priors.
 - Output: Posterior samples, posterior predictive samples.
• see example bayes_LASSO.stan model file.
Data

data {
 int<lower=0> n;
 int<lower=0> p;
 matrix[n,p+1] X;
 vector[n] y;
 real<lower=0> a;
 real<lower=0> b;
 real<lower=0> w;
}
Parameters

parameters {

 vector[p+1] beta;
 real<lower=0> sigma;
}

Transformed parameters (optional)

transformed parameters {

 vector[n] linpred;
 linpred = X*beta;
}

Model

model {

 beta ~ double_exponential(0,w);
 sigma ~ gamma(a,b);

 y~ normal(linpred,sigma);
}

or without vectorisation,

 for(i in 1:n){
 y[i]~normal(X[i,]*beta,sigma);
 }

Generated quantities (optional)

generated quantities {

 vector[n] y_predict;
 for(i in 1:n){
 y_predict[i] = normal_rng(linpred[i], sigma);
 }
}

• evaluates this code once for every element of the posterior sample.
library(rstan)
setwd("C:/Users/jack/Documents/OxWaSP_Yr2/Presentations")
data<-list(n=102,p=3,X=cbind(Prestige$education, Prestige$women, Prestige$prestige,rep(1,102)),y=Prestige$income,a=10,b=10,w=100)
chain1 <- stan(file="bayes_LASSO.stan",data=data,iter=50000, chains=1, cores=1)
params<-extract(chain1)

- Runs 25000 warmups and 25000 samples in 3.5 seconds.
- Compiles c++ code the first time so that may take longer.
Plotting posterior distributions

```r
par(mfrow=c(1,2))
plot(density(params$beta[,1]), xlab="beta1", ylab="Density", main="")
plot(density(params$beta[,2]), xlab="beta2", ylab="Density", main="")
```
and predictive distributions

```r
par(mfrow=c(1,2))
plot(density(params$y_predict[,1]),xlab="Income",ylab="Density",main="")
plot(density(params$y_predict[,100]),xlab="Income",ylab="Density",main="")
```
sampler_params <- get_sampler_params(chain1, inc_warmup = FALSE)
sampler_params[[1]][1:5,]

accept_stat__ stepsize__ treedepth__ n_leapfrog__ divergent__
[1,] 0.9803107 0.1240111 4 15 0
[2,] 0.9025821 0.1240111 4 31 0
[3,] 0.9662435 0.1240111 5 31 0
[4,] 0.8553821 0.1240111 5 31 0
[5,] 0.8977977 0.1240111 5 31 0

energy__
[1,] 6588.685
[2,] 6587.883
[3,] 6589.927
[4,] 6591.606
[5,] 6589.096
Chain Diagnostics

traceplot(chain1, pars="beta")
Chain Diagnostics

pairs(chain1,pars="beta")
more Chain Diagnostics

Stan can also extract various other diagnostics from the chain

- Credibility intervals.
- Effective sample size and the Markov chain squared error.
- Comparison plots between the values of the chain and various chain properties, log-likelihood, acceptance rate and step size.

For more information see Rstan Diagnostic Plots
When *Stan* goes wrong

- "Divergent transitions after warmup"
- Means *Stan* is taking steps that are too big.
- Can fix by manually increasing the desired average acceptance probably, *adapt_delta*, above its default of 0.8

```r
chain1 <- stan(file="bayes_LASSO.stan",data=data,iter=50000, chains=1, cores=1,control = list(adapt_delta = 0.99, max_treedepth = 15))
```

- This will slow your chain down but may result in a better sample
- see http://mc-stan.org/misc/warnings.html for more info.
Self-made function

- *Stan* also has compatibility with self-made function.
- Useful if your prior or likelihood is not standard.

```stan
model {

    beta ~ double_exponential(0, w);
    sigma ~ gamma(a, b);

    for (i in 1:n) {
        increment_log_prob(-0.5 * fabs(1 - (exp(normal_log(y[i], linpred[i],
                                          sigma))/y_dense[i])))
    }
}
```
Conclusion

- Don't waste your time coding and tuning RWMH!
- *Stan* will run faster, is automatically tuned and should produce superior samples.
- Inbuilt functions make analysing your chain easy.
For more information

- Google groups: http://mc-stan.org/community/.
- R-package documentation: https://cran.r-project.org/web/packages/rstan/index.html.
References

