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Sketching via random projections

Massive data sets require fast algorithms but with rigorous guarantees.
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A general purpose tool:
@ Choose a random subspace of “low” dimension m.

@ Project data into subspace, and solve reduced dimension problem.
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Sketching via random projections

A general purpose tool:
@ Choose a random subspace of “low” dimension m.
@ Project data into subspace, and solve reduced dimension problem.
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Basic underlying idea now widely used in practice:
@ Johnson & Lindenstrauss (1984): for Hilbert spaces
@ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012



Classical sketching for constrained least-squares

Original problem: data (y, A) € R™ x R"*¢ and convex constraint set C C R?
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Classical sketching for constrained least-squares

Sketched problem: data (Sy, SA) € R™ x R™*4:

7 = argmin ||S Az — Sy||3
zeC

Some history:
@ random projections and Johnson-Lindenstrauss: 1980s onwards

@ sketching for unconstrained least-squares: Sarlos, 2006
@ leverage scores, cores sets: Drineas et al., 2010, 2011

@ overview paper: Mahoney et al., 2011



Sketches based on randomized orthonormal systems

Step 1: Choose some fixed orthonormal matrix H € R"*".
Example: Hadamard matrices

1 (1 1
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Kronecker product ¢ times

(E.g., Ailon & Liberty, 2010)



Sketches based on randomized orthonormal systems

Step 1: Choose some fixed orthonormal matrix H € R"*".
Example: Hadamard matrices

1 (1 1
HQZ\/EL J Hy = Hy®@ Hy®---® Hy

Kronecker product ¢ times

I - D
Sy

Step 2:
A) Multiply data vector y with a diagonal matrix of random signs {—1, 41
g

(B) Choose m rows of H to form sub-sampled matrix H € R™*x"

(C) Requires O(nlogm) time to compute sketched vector Sy = H Dy.
(E.g., Ailon & Liberty, 2010)



Different notions of approximation

Given a convex set C C R%:

Original least-squares problem Sketched solution
Trs :argmin{ ||Ax—y\|§} E:argmin{HSAm—SyH%}
2€C \ e — zeC
f(=)

Question: When is sketched solution 7 a “good” approximation to z;5?
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Different notions of approximation

Given a convex set C C R%:

Original least-squares problem Sketched solution
Trs :argmin{ ||Ax—y\|§} E:argmin{HSAm—SyH%}
2€C \ e — zeC
f(=)

Question: When is sketched solution 7 a “good” approximation to z;5?

Cost approximation

Sketched solution Z € C is a d-accurate cost approximation if

flzis) < f(@) < (1+5)2 f(@es)-

Solution approximation

Sketched solution Z € C is a d-accurate solution approximation if

1T = @eslla <6
~——

7= lA@E—zLs) |2




Cost approx. for unconstrained LS

Unconstrained Least Squares : d = 500
70,

Randomized Hadamard
—+— Gaussian
—— Rademacher

Approx. ratio f(x)/f(x*)
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Sketch size m = 4« rank(A)



What if solution approximation is our goal?

@ often the least-squares solution xq itself is of primary interest

@ unfortunately, §-accurate cost approximation does not ensure high
solution accuracy
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What if solution approximation is our goal?

@ often the least-squares solution xq itself is of primary interest

@ unfortunately, §-accurate cost approximation does not ensure high
solution accuracy

Thought experiment: Consider random ensembles of linear regression
problems:

y = Ax" 4+ w, where z* € RY, and w ~ N(0,0%1,).

Least-squares solution x;5 has mean-squared error at most

. o? rank(A
R
—_———

Nominal ¢
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Unconstrained LS: Solution approximation

Mean-squared pred. error vs. row dimension
1 T T T T

Mean-squared prediction error

0.001 : 3
10 10 10
Row dimension n

Sketch size m - rank(A) logn.
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Fundamental cause of poor performance?
Recall planted ensembles of problems:
y = Az" + w, where 2* € C, and w ~ N(0,021,).
Any random sketching matrix S € R™*™ such that

m
IE[S7(557) 7S]l

OPN

Theorem (Pilanci & W, 2014)

Any possible estimator (Sy,SA) — T has error lower bounded as

log Py /2(C)
Es|IF - 2ulld] £ oo 20
Isuep sw(llF = zuslla] £ o min{n, m}

where Py 5(C) is the 1/2-packing number of C N By (1) in the norm || - || 4.




Fundamental cause of poor performance?

Any random sketching matrix S € R™*™ such that

m

IE[S7(557) 78]l 3
Theorem (Pilanci & W, 2014)
Any possible estimator (Sy,SA) — T has error lower bounded as

210g P1/2(C)

B |17 — 2l
Sup g w ||LT,' xLS”A ~0 min{n,m}

z*eC

where P /5(C) is the 1/2-packing number of C N By(1) in the norm || - ||a

Concretely: For unconstrained least-squares, we have

rank(A)
E w[ 2} p_tanils)
fuep S H.’IJ ‘TLS"A ~0 min{n,m}

Consequently, we need m > n to match least-squares performance in
estimating z*.



A slightly different approach: Hessian sketch
Observe that
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A slightly different approach: Hessian sketch
Observe that

. e
Tos = argmin [|Az — y||3 = argmin {ngATAw —(ATy, w>}~
Consider sketching only quadratic component:
Z = arg min {1||SAx||§ —(ATy x>}
zeC (2 ’

For a broad class of sketches, as long sketch dimension m = (1/§%) W?(AK),
can prove that

1Z — zuslla T 0|zsa

Key point:

This one-step method is also provably sub-optimal, but...
...the construction can be iterated to obtain an optimal method.
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Given an iteration number T > 1:
(1) Initialize at 2° = 0.
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An optimal method: Iterative Hessian sketch
Given an iteration number T > 1:
(1) Initialize at 2° = 0.

(2) For iterations t =0,1,2,...,T — 1, generate an independent sketch matrix
S+l € R™*" and perform the update

1
1 _ Lottt VN2 _ (AT () At
T = argrglelg{2\|5 Az —2")||5 — (A" (y — Az’), x)}

(3) Return the estimate 7 = 27

Intuition

o Step 1 returns the plain Hessian sketch Z = z!

@ Step t is sketching a problem for which z — 4 is the optimal solution
@ The error is thus successively “localized”.




Theory for unconstrained least-squares

Theorem (Pilanci & W., 2014)

Given a sketch dimension m 7 rank(A), the error decays geometrically
t+1 Lyt
|7 —z6)la < (5) | L] forallt=0,1,..., T —1

with probability at least 1 — cyTe™ ™.




Theory for unconstrained least-squares

Theorem (Pilanci & W., 2014)

Given a sketch dimension m 7 rank(A), the error decays geometrically
1\+
|7 —z6)la < (5) | L] forallt=0,1,..., T —1

with probability at least 1 — cyTe™ ™.

@ applies to any sub-Gaussian sketch; same result for fast JL sketches with
additional logarithmic factors

@ total number of random projections scales as T'm

2 . . .
@) iterations yields e-accurate

o for any € > 0, taking 7" = log (
solution.



Geometric convergence for unconstrained LS

Error to least—squares solution versus iteration

Log error to least-squares soln
I
(2]

-10

——y=28
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Experiments for planted ensembles

Linear regression problems with A € R"*¢ and n > d:

y = Az* +w, where z* € C, and w ~ N(0,021,).

Least-squares solution has error

o2d
Ellzis —2*[|a 3 o

Scaling behavior:

@ Fix 02 = 1 and sample size n = 100d, and vary d € {16,32, 64,128, 256}.
@ Run IHS with sketch size m = 4d for T = 4 iterations.

@ Compare to classical sketch with sketch size 16d.



Sketched accuracy: IHS versus classical sketch

Least-squares vs. dimension
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Extensions to constrained problems

Constrained problem

Zrs = argmin || Az — y||§
zeC

where C C R? is a convex set.




Extensions to constrained problems

Constrained problem

Ty = argmin | Az — y||
zeC

where C C R? is a convex set.

Tangent cone /C at x

Set of feasible directions at the optimum ;g

K={AeR? | A=t(x—z) forsomezeC.}.




lllustration: Binary classification with SVM
Observe labeled samples (b;, L;) € RP x {—1,+1}.

Goal: Find linear classifier b — sign((w, b)) with low classification error.



lllustration: Binary classification with SVM
Observe labeled samples (b;, L;) € RP x {—1,+1}.

@ Support vector machine: produces classifier that depends only on samples
lying on the margin

@ Number of support vectors k typically < total number of samples n
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Sketching the dual of the SVM
Primal form of SVM:

U)GR”

d
. . 1 1
W = arg min {Z ;:1 max {0,1 — L; (w, b;) } + §Hw||§}

Dual form of SVM
rus = arg min | diag(L) Bz,

where P":= {z € R" |z >0and Y z; =~}.
i=1

Sketched dual SVM

T :=arg 3«12"}7111 |S diag(L)Bz||3



Unfavorable dependence on optimum z*

Tangent cone K at

Set of feasible directions at the optimum ;g

K={AeR?| A=t(z—a) forsomezeC.}.




Favorable dependence on optimum z*

Set of feasible directions at the optimum x; g

K={AeR'| A=t(z— =) forsomexzeC.}.




Gaussian width of transformed tangent cone

Gaussian width of set
AKNS™ = {AA | A€ K,||AA|2 =1}

W(AK) :=E[ S (g, z>]
z€ n—1

where g ~ N(0, Iyxn)-



Gaussian width of transformed tangent cone

Gaussian width of set
AKNS™ = {AA | A€ K,||AA|2 =1}

W(AK) :=E[ S (g, zﬂ
z€ n—1

where g ~ N(0, Iyxn)-

Gaussian widths used in many areas:
@ Banach space theory: Pisier, 1986

@ Empirical process theory: Ledoux & Talagrand, 1991, Bartlett et al., 2002
@ Compressed sensing: Mendelson et al., 2008; Chandrasekaran et al., 2012



A general guarantee
Tangent cone at x,g:
K={AecR?| A=t(x—x)€C forsomet>0.
Width of transformed cone AKX N S™1:

W(AK) = IE[ Aslc?% (9, z)} where g ~ N (0, Iyxn)-
z€e n-1

Theorem (Pilanci & W., 2014)
Given a sketch dimension m =5 W?(AK), the error decays geometrically

1

||17H—1 - st”A < (2

)t||xLS||A forallt=0,1,...,T —1

with probability at least 1 — cyTe™ ™.

Martin Wainwright (UC Berkeley) July 2015
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llustration: Width calculation for dual SVM

@ Relevant constraint set is simplex in R™:

P"::{IGR"|x20and in:'y}.

i=1
@ in practice, SVM dual solution %4, is often sparse, with relatively few
non-zeros
@ under mild conditions on A, it can be shown that

B[ sw (g An)| 3 VElogn.

n

lzllo<k, ||Az|2<1

Conclusion

For a SVM solution with k support vectors, a sketch dimension m = klogn is
sufficient to ensure geometric convergence.
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Log error

Geometric convergence for SVM

Sparse error vs. iteration
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Sketched accuracy: IHS versus classical sketch

Sparse classifier vs. dimension
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A more general story: Newton Sketch
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A more general story: Newton Sketch

Convex program over set C C R%:

Top = Arg Min f(z), where f:R? — R is twice-differentiable.
TE

Ordinary Newton steps:
. 1
2! = argmin { S |[V2 ()2 (2 — a") [} + (VS (a"), @ ")},

where V2 f(x*)!/? is a matrix square of the Hessian at z*.

Sketched Newton steps:

1
S+l _ s et o2 pN1/20,.  AEN||2 ~t At
i argglelg{g\ls Vif(a) Fa =2 +(Vf@E"), 2 -2 >}-

Question:

What is the minimal sketch dimension required to ensure that {Z*}~, stays
uniformly close to {z?}1_,?




Sketching the central path: m =d

Trial 1

Trial 2

—— Exact Newton
——Newton's Sketch

Trial 3
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Sketching the central path: m = 16d

——— Exact Newton
——Newton's Sketch

Trial 1 Trial 2 Trial 3




optimality gap
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Summary

@ important distinction: cost versus solution approximation

@ classical least-squares sketch is provably sub-optimal for solution

approximation

iterative Hessian sketch: fast geometric convergence with guarantees in
both cost/solution approximation

sharp dependence of sketch dimension on geometry of solution and
constraint set

a more general perspective: sketched forms of Newton’s method
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