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Basic underlying idea now widely used in practice:

Johnson & Lindenstrauss (1984): for Hilbert spaces

various surveys and books: Vempala, 2004; Mahoney et al., 2011
Cormode et al., 2012
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Classical sketching for constrained least-squares

=
y A

SSy SA

Sketched problem: data (Sy, SA) ∈ R
m × R

m×d:

x̂ = argmin
x∈C

‖SAx− Sy‖22

Some history:
random projections and Johnson-Lindenstrauss: 1980s onwards

sketching for unconstrained least-squares: Sarlos, 2006

leverage scores, cores sets: Drineas et al., 2010, 2011

overview paper: Mahoney et al., 2011



Sketches based on randomized orthonormal systems

Step 1: Choose some fixed orthonormal matrix H ∈ R
n×n.

Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

(E.g., Ailon & Liberty, 2010)
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Step 1: Choose some fixed orthonormal matrix H ∈ R
n×n.

Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=
D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ R

m×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)



Different notions of approximation

Given a convex set C ⊆ R
d:

Original least-squares problem Sketched solution

xLS = argmin
x∈C

{
‖Ax− y‖22︸ ︷︷ ︸

f(x)

}
x̂ = argmin

x∈C

{
‖SAx− Sy‖22

}

Question: When is sketched solution x̂ a “good” approximation to xLS?



Different notions of approximation

Given a convex set C ⊆ R
d:

Original least-squares problem Sketched solution

xLS = argmin
x∈C

{
‖Ax− y‖22︸ ︷︷ ︸

f(x)

}
x̂ = argmin

x∈C

{
‖SAx− Sy‖22

}

Question: When is sketched solution x̂ a “good” approximation to xLS?

Cost approximation

Sketched solution x̂ ∈ C is a δ-accurate cost approximation if

f(xLS) ≤ f(x̂) ≤ (1 + δ)2 f(xLS).
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Given a convex set C ⊆ R
d:

Original least-squares problem Sketched solution

xLS = argmin
x∈C

{
‖Ax− y‖22︸ ︷︷ ︸

f(x)

}
x̂ = argmin

x∈C

{
‖SAx− Sy‖22

}

Question: When is sketched solution x̂ a “good” approximation to xLS?

Cost approximation

Sketched solution x̂ ∈ C is a δ-accurate cost approximation if

f(xLS) ≤ f(x̂) ≤ (1 + δ)2 f(xLS).

Solution approximation

Sketched solution x̂ ∈ C is a δ-accurate solution approximation if

‖x̂− xLS‖A︸ ︷︷ ︸
1√
n
‖A(x̂−xLS)‖2

≤ δ



Cost approx. for unconstrained LS
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What if solution approximation is our goal?

often the least-squares solution xLS itself is of primary interest

unfortunately, δ-accurate cost approximation does not ensure high
solution accuracy
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What if solution approximation is our goal?

often the least-squares solution xLS itself is of primary interest

unfortunately, δ-accurate cost approximation does not ensure high
solution accuracy

Thought experiment: Consider random ensembles of linear regression
problems:

y = Ax∗ + w, where x∗ ∈ R
d, and w ∼ N(0, σ2In).

Least-squares solution xLS has mean-squared error at most

E‖xLS − x∗‖2A -
σ2 rank(A)

n︸ ︷︷ ︸
Nominal δ

Martin Wainwright (UC Berkeley) July 2015 7 / 28



Unconstrained LS: Solution approximation
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Theorem (Pilanci & W, 2014)

Any possible estimator (Sy, SA) 7→ x̃ has error lower bounded as

sup
x∗∈C

ES,w

[
‖x̃− xLS‖2A

]
% σ2 logP1/2(C)
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where P1/2(C) is the 1/2-packing number of C ∩ B2(1) in the norm ‖ · ‖A.
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Theorem (Pilanci & W, 2014)

Any possible estimator (Sy, SA) 7→ x̃ has error lower bounded as

sup
x∗∈C

ES,w

[
‖x̃− xLS‖2A

]
% σ2 logP1/2(C)

min{n,m}

where P1/2(C) is the 1/2-packing number of C ∩ B2(1) in the norm ‖ · ‖A.

Concretely: For unconstrained least-squares, we have

sup
x∗∈C

ES,w

[
‖x̃− xLS‖2A

]
% σ2 rank(A)

min{n,m} .

Consequently, we need m ≥ n to match least-squares performance in
estimating x∗.
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xTATAx− 〈AT y, x〉

}
.

Consider sketching only quadratic component:

x̃ := argmin
x∈C

{1

2
‖SAx‖22 − 〈AT y, x〉

}
.

For a broad class of sketches, as long sketch dimension m % (1/δ2) W2(AK),
can prove that

‖x̃− xLS‖A - δ ‖xLS‖A

Key point:

This one-step method is also provably sub-optimal, but...
...the construction can be iterated to obtain an optimal method.
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An optimal method: Iterative Hessian sketch
Given an iteration number T ≥ 1:

(1) Initialize at x0 = 0.

(2) For iterations t = 0, 1, 2, . . . , T − 1, generate an independent sketch matrix
St+1 ∈ R

m×n, and perform the update

xt+1 = argmin
x∈C

{1

2
‖St+1A(x− xt)‖22 − 〈AT (y −Axt), x〉

}
.

(3) Return the estimate x̂ = xT .

Intuition

Step 1 returns the plain Hessian sketch x̃ = x1.

Step t is sketching a problem for which xt − xLS is the optimal solution.

The error is thus successively “localized”.



Theory for unconstrained least-squares

Theorem (Pilanci & W., 2014)

Given a sketch dimension m % rank(A), the error decays geometrically

‖xt+1 − xLS‖A ≤
(1
2

)t ‖xLS‖A for all t = 0, 1, . . . , T − 1

with probability at least 1− c1Te
−c2m.



Theory for unconstrained least-squares

Theorem (Pilanci & W., 2014)

Given a sketch dimension m % rank(A), the error decays geometrically

‖xt+1 − xLS‖A ≤
(1
2

)t ‖xLS‖A for all t = 0, 1, . . . , T − 1

with probability at least 1− c1Te
−c2m.

applies to any sub-Gaussian sketch; same result for fast JL sketches with
additional logarithmic factors

total number of random projections scales as T m

for any ǫ > 0, taking T = log
( 2‖xLS‖A

ǫ ) iterations yields ǫ-accurate
solution.



Geometric convergence for unconstrained LS
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Experiments for planted ensembles

Linear regression problems with A ∈ R
n×d and n > d:

y = Ax∗ + w, where x∗ ∈ C, and w ∼ N(0, σ2In).

Least-squares solution has error

E‖xLS − x∗‖A -

√
σ2d

n

Scaling behavior:

Fix σ2 = 1 and sample size n = 100d, and vary d ∈ {16, 32, 64, 128, 256}.
Run IHS with sketch size m = 4d for T = 4 iterations.

Compare to classical sketch with sketch size 16d.



Sketched accuracy: IHS versus classical sketch

16 32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Dimension

E
rr

or
Least−squares vs. dimension



Extensions to constrained problems
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Extensions to constrained problems

xLS

K

C

Constrained problem

xLS = argmin
x∈C

‖Ax− y‖22

where C ⊆ R
d is a convex set.

Tangent cone K at xLS

Set of feasible directions at the optimum xLS

K =
{
∆ ∈ R

d | ∆ = t (x− xLS) for some x ∈ C.
}
.



Illustration: Binary classification with SVM

Observe labeled samples (bi, Li) ∈ R
D × {−1,+1}.

Goal: Find linear classifier b 7→ sign(〈w, b〉) with low classification error.



Illustration: Binary classification with SVM

Observe labeled samples (bi, Li) ∈ R
D × {−1,+1}.

Support vector machine: produces classifier that depends only on samples
lying on the margin

Number of support vectors k typically ≪ total number of samples n



Sketching the dual of the SVM
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Sketching the dual of the SVM
Primal form of SVM:

ŵ = arg min
w∈Rn

{ 1

2γ

d∑

i=1

max
{
0, 1− Li 〈w, bi〉

}
+

1

2
‖w‖22

}
.

Dual form of SVM

xLS := arg min
x∈Pn

‖diag(L)Bx‖22,

where Pn :=
{
x ∈ R

n | x ≥ 0 and
n∑

i=1

xi = γ
}
.

Sketched dual SVM

x̂ := arg min
x∈Pn

‖S diag(L)Bx‖22
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Favorable dependence on optimum x∗
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Gaussian width of transformed tangent cone

Gaussian width of set
AK ∩ Sn−1 = {A∆ | ∆ ∈ K, ‖A∆‖2 = 1}

W(AK) := E

[
sup

z∈AK∩Sn−1

〈g, z〉
]

where g ∼ N(0, In×n).



Gaussian width of transformed tangent cone

Gaussian width of set
AK ∩ Sn−1 = {A∆ | ∆ ∈ K, ‖A∆‖2 = 1}

W(AK) := E

[
sup

z∈AK∩Sn−1

〈g, z〉
]

where g ∼ N(0, In×n).

Gaussian widths used in many areas:
Banach space theory: Pisier, 1986

Empirical process theory: Ledoux & Talagrand, 1991, Bartlett et al., 2002

Compressed sensing: Mendelson et al., 2008; Chandrasekaran et al., 2012



A general guarantee

Tangent cone at xLS:

K = {∆ ∈ R
d | ∆ = t(x− xLS) ∈ C for some t ≥ 0.

Width of transformed cone AK ∩ Sn−1:

W(AK) = E

[
sup

z∈AK∩Sn−1

〈g, z〉
]

where g ∼ N(0, In×n).

Theorem (Pilanci & W., 2014)

Given a sketch dimension m % W2(AK), the error decays geometrically

‖xt+1 − xLS‖A ≤
(1
2

)t ‖xLS‖A for all t = 0, 1, . . . , T − 1

with probability at least 1− c1Te
−c2m.
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Ilustration: Width calculation for dual SVM

Relevant constraint set is simplex in R
n:

Pn :=
{
x ∈ R

n | x ≥ 0 and
n∑

i=1

xi = γ
}
.

in practice, SVM dual solution x̂dual is often sparse, with relatively few
non-zeros

under mild conditions on A, it can be shown that

E

[
sup
x∈Pn

‖x‖0≤k, ‖Ax‖2≤1

〈g, Ax〉
]

-
√
k log n.

Conclusion

For a SVM solution with k support vectors, a sketch dimension m % k log n is
sufficient to ensure geometric convergence.

Martin Wainwright (UC Berkeley) July 2015 22 / 28



Geometric convergence for SVM
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Sketched accuracy: IHS versus classical sketch

16 32 64 128 256
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Dimension

E
rr

or
Sparse classifier vs. dimension
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A more general story: Newton Sketch

Convex program over set C ⊆ R
d:

xopt = argmin
x∈C

f(x), where f : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = argmin
x∈C

{1

2
‖∇2f(xt)1/2(x− xt)‖22 + 〈∇f(xt), x− xt〉

}
,

where ∇2f(xt)1/2 is a matrix square of the Hessian at xt.

Sketched Newton steps:

x̃t+1 = argmin
x∈C

{1

2
‖St∇2f(xt)1/2(x− x̃t)‖22 + 〈∇f(x̃t), x− x̃t〉

}
.

Question:

What is the minimal sketch dimension required to ensure that {x̃t}Tt=0 stays
uniformly close to {xt}Tt=0?
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Running time comparisons
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Summary
important distinction: cost versus solution approximation

classical least-squares sketch is provably sub-optimal for solution
approximation

iterative Hessian sketch: fast geometric convergence with guarantees in
both cost/solution approximation

sharp dependence of sketch dimension on geometry of solution and
constraint set

a more general perspective: sketched forms of Newton’s method
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