

Predicting distortion in vehicle body assemblies

Iain Masters & Xinmin Fan

EuroPAM 5th October 2005

> Advantage West Midlands

This project has been assisted by the region's development agency www.advantagewm.co.uk

Outline

PARD Programme

Background

Causes of Deformation

Software Requirements

Initial results with Steel assemblies

Future work

PARD Programme

- Collaboration between Advantage West Midlands, Jaguar Land Rover, Warwick Manufacturing Group and the automotive supplier base
- Objective is to improve competitiveness of OEM's and their suppliers, through partnership in the programme, to develop leading edge technologies and best practices

Background

Dimensional Variation in body assemblies associated with:-

- Component variation
 - DVA type software assumes rigid parts

- Fixture / Jig
 - Wear addressed by regular maintenance

- Joining method
 - Mechanical, thermal distortions not addressed

Need for Simulation tool

- More accurate control of BiW assembly variation
- Optimising manufacturing cycle times and quality
- Reduced jig/fixture development time
- Introduction of 'new' materials
- Aid to decision making

Joining Methods

Resistance Spot Weld (RSW)

Self Piercing Rivet

6

Observed Distortions with RSW and SPR in AI Top-Hat Assemblies

sequence: spiral gaps: 1 mm pich: 25 mm clamp: fired
Seguence: spinel 30p: 1 mill potets: 25 mm clamp: treed

Aluminium Top-hat / Top-hat assemblies showing deformation caused by Resistance Spot Welding and Self Pierce Riveting

Observed Distortions with RSW and SPR in Top-Hat Assemblies

Maximum distortion across the flanges of two top hats joined flange to flange

Resistance Spot Welding

- Distortion around RSW caused by sheet separation
- Sheet separation arises from expansion and contraction in the fusion zone

New Automotive materials

- Reduce environmental impact of vehicles
- Issues for RSW Joining
 - High Strength Low Alloy steels
 - higher energy input than conventional steels
 - short hold time to avoid quenching
 - Aluminium
 - High welding currents
 - High electrode forces
 - Short weld times

Software requirements

- Ability to model local distortions around a spot weld
 - Electro / Thermal / Mechanical interactions

Modelling of assembly process

- Welding sequence
- Clamping conditions

Local - Global Modelling Technique

Validation of Local Weld Model

(a) Nugget size

(b) Sheet separation

(Welding current=10.5 KA, Electrode force = 2.5 KN, Welding time = 15 cycles)

Nugget size and Sheet separation

Validation of local weld model

	Target	Actual	Simulation
Nugget dia. (mm)	>4.9	6.0	6.1
Nugget penetration (mm)	-	1.1	1.3
HAZ dia. (mm)	-	7.2	7.6
Sheet separation 5mm from centre (mm)	<0.15	0.1	0.12
Electrode penetration (mm)	<0.15	0.006	0.16

Distortion Prediction – Effect of Weld Sequence

(a) Inline joining sequence

Steel Top-hat / Flat plate assembly

(b) Spiral joining sequence

Physical Validation

CMM measurement of assembly

Welding Top Hat assembly

Comparison of Test and Simulation

DC01 + Zintec Top-hat / Top-hat assembly – in-line welding sequence

Comparison of Test and Simulation

Conclusions

- Successful prediction of direction of deformation
- Underestimate of magnitude of distortion
 - Component & Fixture accuracy?
 - Mesh size?
- Projection of welds on to global model and model size could be extremely large
- Extensive material data is required

Future Work

- Case study with actual part
- Validate model for RSW of aluminium
- Use Pam Stamp Simulations as the starting point to incorporate distortion and residual stress information into SYSWELD

Acknowledgements

EuroPAM – 5th October 2005

Predicting distortion in vehicle body assemblies

Iain Masters & Xinmin Fan Warwick manufacturing Group International Automotive Research Centre The University of Warwick Coventry CV4 7AL UNITED KINGDOM +44 (0)24 7657 5380/5408

Advantage West Midlands

This project has been assisted by the region's development agency www.advantagewm.co.uk