



# Visualising the Impact of Manufacturing Variation

#### John Maxfield

Technical Director, Icona Solutions Ltd.

and

#### **Alan Olifent**

International Automotive Research Centre Warwick Manufacturing Group



## Global Auto Industry



#### Increased

- Global competition and over-capacity
- Fragmentation and niche products
- Consciousness in customers
- Technological complexity
- Differentiation through styling/aesthetics

#### Reduced

- Margins and profitability
- Development time
- Window of opportunity for new models



### Global Auto Industry



#### Which issues do you see as most important to the auto industry now?

(Importance 4 – 5 on a 5-point scale)



Source: 2005 KPMG Global Auto Executive Survey



## Challenges



- The challenge is to improve quality while delivering an increasing range of diverse and innovative products
- Saving time in order to meet project deadlines delivers higher returns in the long term than saving money to meet budgets (McKinsey)
- To save time companies must establish the best processes and tools for the job



## Dimensional Management



- Understand and control manufacturing variation
- Eliminates risks earlier using simulation
- Save time and improve quality
- Better control of the product and processes
- Shorter maturation reduce over-runs



## **Key DM Processes**







#### **Current Target Setting Tools**



#### **Nominal Geometry**

Visualisation Software

(Alias Studio, ICEM Surf, Opticore, VisConcept)

Analysis

I know what the perfect vehicle should look like...



**Multi-functional target setting team** 

But how do I verify and show people what the actual product will actually look like?



#### **Current DVA Tools**





#### **Multi-functional DM team**

But how do I visualise the results and show people what the final product will actually look like?

## Dimensional Variation Analysis

Tolerance Analysis
Packages

(VisVSA, 3DCS, em-Tolmate)



I know the build capability and sensitivities...



#### **Current Tools**







#### What is aesthetica™?



An innovative product for quickly visualising the impact of variation on the aesthetic quality of products early in the product development process



## Company Background



- University of Leeds VITAL research project from 1996 to 2002 (<u>V</u>isualising the <u>I</u>mpact of <u>T</u>olerance <u>AL</u>location)
- Research partners included Rover, BMW, JLR and SGI
- Icona Solutions Ltd formed in Feb 2003 to develop, market and sell commercial products based on VITAL technology
- First product, aesthetica™, launched in March 2004
- Majenta Solutions signed as exclusive UK resellers Apr 2004
- Final stages of establishing international reseller network
- Customers include Nissan, MG Rover, Case New Holland and Warwick Manufacturing Group



### Typical DVA Review



#### Results from a typical Dimensional Variation Analysis (DVA) Process



| ID | Nominal | Tolerance<br>Limits | % below<br>LSL | % above<br>USL | High<br>(Sample) | Low<br>(Sample) | Range<br>(Sample) | Ср   | Cpk  | Process<br>Status |
|----|---------|---------------------|----------------|----------------|------------------|-----------------|-------------------|------|------|-------------------|
| Α  | 115     | 0.5                 | 19.77          | 19.6           | 115.99           | 114.11          | 1.88              | 0.29 | 0.29 |                   |
| В  | 151     | 0.5                 | 14.8           | 14.17          | 151.8            | 150.28          | 1.52              | 0.36 | 0.36 |                   |
| С  | 160     | 0.5                 | 0.87           | 0.9            | 160.38           | 159.63          | 0.76              | 0.77 | 0.77 |                   |
| D  | 44      | 0.5                 | 20.53          | 21.3           | 44.96            | 43.02           | 1.93              | 0.28 | 0.27 |                   |
| E  | 0.02    | 1.0                 | 3.07           | 2.6            | 0.95             | -0.81           | 1.77              | 0.64 | 0.63 |                   |
| F  | 0.02    | 1.0                 | 1.9            | 2.7            | 0.95             | -0.85           | 1.8               | 0.65 | 0.64 |                   |
| G  | -0.05   | 1.5                 | 1.1            | 0.37           | 0.89             | -1.11           | 2                 | 0.83 | 0.76 |                   |
| Н  | 3.24    | 1.5                 | 1.17           | 0.47           | 4.29             | 2.11            | 2.19              | 0.83 | 0.77 |                   |
|    | 6.64    | 1.5                 | 1.17           | 0.33           | 7.6              | 5.59            | 2.01              | 0.83 | 0.76 |                   |
| J  | 9.53    | 1.5                 | 1.17           | 0.23           | 10.42            | 8.32            | 2.09              | 0.83 | 0.76 |                   |
| K  | 19.03   | 2.0                 | 0.07           | 0              | 19.91            | 17.83           | 2.08              | 1.09 | 1.03 |                   |
| L  | -8.65   | 2.0                 | 0              | 0              | -7.88            | -9.39           | 1.52              | 1.47 | 1.47 |                   |





### Typical DVA Review



## Useful analysis, but it doesn't answer the fundamental questions:

What will the assembly look like in the red light areas?

What is happening between the measurements?

What will final product actually look like to a customer?

## cona What is unique about aesthetica™?



- aesthetica™ is unique because it applies variation directly to component geometry
- This enables you to see what the manufactured product will look like using a virtual model
- Reducing the need for physical models and other forms of one-off prototype









#### Demonstration







#### aesthetica™ in the DM Process







### Benefits – Time Compression



#### Current Process for Visualising DVA Results



#### Using aesthetica™...



#### Repeated for:

- Body side and Fenders
- · Hood top and Decklid
- Front & Rear Bumper
- Front & Rear Lamps
- Front Grille & Mouldings
- Doors and Glazing

aesthetica<sup>TM</sup> delivers significant time savings for DM processes



## Summary



- The Dimensional Management (DM) process delivers significant time and cost savings
- The DM process already benefits from engineering tools for tolerance analysis and design tools for visualisation
- aesthetica<sup>™</sup> bridges the gap between these areas enabling full visualisation of the aesthetic impact of manufacturing variation
- Enables multi-functional DM teams of designer AND engineers to quickly and efficiently share problems and negotiation solutions
- ... leading to significant time and cost savings





## Thank you



Visualizing Aesthetic Quality

Icona Solutions Limited

103 Clarendon Road, Leeds, W. Yorkshire. LS2 9DF

Tel +44 (0) 113 3846046 Fax +44 (0) 113 3846048

Email: info@iconasolutions.com www.iconasolutions.com



IARC, Warwick Manufacturing Group,
University of Warwick, Coventry CV4 7AL, UK
Tel +44 (0) 2476 575381

Email: a.olifent@warwick.ac.uk www.wmg.warwick.ac.uk