Automotive Fuel Cell Technology

Overview

- Fuel cell vehicles (FCVs) are more efficient than their petrol or diesel counterparts with as much as 60% of the energy stored in the hydrogen going to the wheels compared with 20% of ICEs.
- The carbon emissions of a FCV depend on how the hydrogen used to fuel them is generated and the only tailpipe emission from a FCV is water.
- Research indicates that the total CO$_2$ emissions for an FCEV can be 75% less than the equivalent diesel vehicle in 20301, on a path to zero carbon by 2050.
- Currently, the main barriers preventing commercialisation of the fuel cell for automotive use are system cost (relative to combustion engines) and a lack of refuelling infrastructure.
- Some automotive original equipment manufacturers (OEMs) such as Hyundai and Toyota are investing in fuel cell technology, with vehicles expected to be on UK roads as early as 2015.

Box 1. PEM Fuel Cell Operating Principle and System Architectures

A fuel cell electrochemically combines hydrogen and oxygen to form electricity with the only emission being water. The oxygen can be taken from the air, however a high pressure tank is required to feed the hydrogen. The re are two internationally recognised pressure standards for hydrogen for automotive applications—350 bar and 700 bar. This requires strong, lightweight tanks which are challenging to package inside the vehicle. The operating temperature of PEM fuel cells is around 70°C. Although heat is generated in the process it is not particularly useful due to its relatively low temperature, as such it is simply expelled into the environment with coolant air. The PEM is called such as the membrane allows only hydrogen protons across, while electrons pass along an external circuit. The hydrogen protons, electrons and oxygen recombine on the other side of the membrane to form water.

In order to operate the fuel cell at its most efficient, it is often used in conjunction with a battery. The battery forms a reservoir that the fuel cell tops up, this is managed with a complex control system. The battery can also be used to store energy from regenerative braking. Alternative systems include mating the stack to a bank of capacitors which, due to their rapid charge and discharge rates, provide a good source of energy during acceleration or when moving off. It is anticipated that some FCVs will utilise all three technologies to produce a highly efficient and responsive vehicle.

Background

Fuel cell technology for automotive applications is an attractive prospect for automotive manufacturers and consumers alike as it provides a low carbon solution to mobility without the limited range associated with battery electric vehicles. However cost issues and a lack of infrastructure currently prevent commercialisation. This POSTnote describes the technology in more detail, identifies the cost barriers and how they can be overcome and then examines the current strategy for developing the UK hydrogen infrastructure.

There are a number of fuel cell technologies that exist which have varying energy densities, efficiencies and can utilise a variety of fuels. Automotive applications lean towards proton exchange membrane (PEM) fuel cells due to their low temperature operation and high efficiency. Box 1 explains the operating principle of PEM fuel cells and some of the system architectures that can be employed in a vehicle. Investment in FCVs is being motivated by the carbon savings they can achieve as well as their ability to make use of electricity generated from low-carbon sources.

Although battery technology for vehicle application is more mature and has seen some commercial success, there are inherent issues preventing such technology being utilised as the prime mover for a vehicle. This is primarily down to the low energy density, thus the limited range. It is in this arena that fuel cell technology is able to gain ground. In addition, they are more familiar to the consumer due to some of the parallels that can be drawn with internal combustion engines, such as a similar refuelling process.

The UK is bound to cut greenhouse gas emissions by 80% relative to 1990 baseline by 20502. In 2007, the government commissioned the King Review of low-carbon cars. It was concluded in the report that low-carbon vehicles would be necessary to achieve this target. However, widespread usage of FCVs is not expected until 2030. In order to reduce the time to commercialisation system cost needs to be
Although electricity produced from renewable sources provides a zero-carbon energy source, the irregularity of supply causes active shut-down requests to prevent the overloading of the national grid. This is due to a lack of energy storage systems. Hydrogen presents a useful solution which can store the electricity that the national grid is unable to use. This hydrogen could be stored in tanks and pumped into hydrogen refuelling stations (HRS). Box 2 describes some of the hydrogen production technologies available.

Currently, a state of the art HRS operates at the Honda manufacturing plant in Swindon which was commissioned in August 2011, supported by BOC. This station can refuel at both 350 and 700 bar pressures and is capable of refilling up to 4 cars per hour. Across the UK there are currently less than 20 operational HRSs, most of which are used for research and demonstration purposes by Universities. However, there are plans underway to expand the UK hydrogen refuelling infrastructure.

The UK H₂ Mobility project brought together a number of key stakeholders in 2012 to understand the challenges of developing the hydrogen refuelling infrastructure and identify the key needs. The analysis and network modelling undertaken within the project indicated that 65 stations across the UK could provide sufficient initial coverage, with full national coverage by 2030 consisting of 1,150 stations.

It is anticipated that the HRS network will not be profitable initially but will be able to cover operating costs by the early 2020s. The total financing required up to the break-even point is £418m, of which £62m is required before 2020.

Using the project fact base, the analysis showed that a mix of hydrogen production methods (51% water electrolysis, 47% steam reforming, 2% existing capabilities. see Box 2) could deliver hydrogen to the driver at a cost competitive with diesel, yet 60% lower CO₂ emissions in 2020 and 75% lower in 2030.

Box 2. Hydrogen production technologies

- **Steam Reforming** — a commonly used hydrogen production method where a hydrocarbon gas, such as methane, is mixed with steam at high temperature and pressure. It is possible to produce the hydrocarbon gas using biomass products by heating to high temperatures in the absence of oxygen, this is known as gasification. Some portable applications of fuel cells reform hydrogen on board, evidently this requires high temperature operation. As such, solid oxide fuel cell technology is best suited to such an on-board system.

- **Partial Oxidation** — heavier hydrocarbons such as oil and coal are reacted with oxygen and steam. This commercially available process isfavoured in regions of the world with ample coal resources.

- **Electrolysis** — electric current is used to split water into hydrogen and oxygen. This process has the potential to use excess electricity rejected by the national grid and then convert and store it in the form of hydrogen. It is also possible to use this process for domestic purposes. ITM Power have developed electrolyzers that use an inverse fuel cell principle i.e. apply current to a fuel cell to produce hydrogen.

- **Biological methods** — there are several types of algae and bacteria that produce hydrogen, although this method has commercial potential it is still at an R&D stage.

Endnotes

1. UK H₂ Mobility—Synopsis of Phase 1 Results, February 2013
2. POSTnote Number 365—Electric Vehicles, October 2010
3. Manufacturing Fuel Cell Manhattan Project
4. POSTnote Number 186—Prospects for a Hydrogen Economy, October 2002