An Introduction to Design for Six Sigma concepts

Dr Jane Marshall
Product Excellence using 6 Sigma Module

Objectives of the session

• History of Six Sigma
• Describe the Six Sigma Philosophy
• Introduce DFSS
• Key points in DFSS
• DFSS background
• DFSS process
• Differences between DFSS and Six Sigma
Introduction to Six Sigma

• Six Sigma is:
 – A business process
 – Proactive approach to designing and monitoring key activities
 – Philosophy
 – Methodology
 – A process that is customer focussed and profit driven

• It works by:
 – Being adopted by the whole company;
 – Creating an internal infrastructure within the company;
 – Using metrics to measure processes and changes to processes
 – Using scientific methods, changing the working culture and introducing business process management
Six Sigma Background

• Motorola employee investigating variation in various processes
• Acted on results using tools to reduce variation
• Improved the effectiveness and efficiency of the processes
• Engaged CEO
• GE is the company that made SIX Sigma a management philosophy

What is six sigma performance?

Sigma (σ) is a statistical metric that corresponds to dpm (defectives per million)

2σ 308,537 dpm
3σ 66,807 dpm
4σ 6,210 dpm
5σ 233 dpm
6σ 3.4 dpm
DMAIC

Define
- Define business objectives
- Set Up project team, establish the charter and develop project plan
- Review customer requirements
- Map process

Measure
- Data collection plan
- Confirm starting and targets
- Validate measurement system

Analyse
- Data analysis
- Root cause analysis
- Process analysis

Improve
- Solution generation, selection and implementation

Control
- Launch new improvements
- Monitor controls and track defect reduction
- Design and implement audit plan

Product life cycle

1. **Concept and definition**
2. **Design and development**
3. **Manufacturing**
4. **Installation**
5. **Operation and maintenance**
6. **Disposal**

Continuous assessment
Introduction to DFSS

- Systematic methodology for designing or redesigning products or services according to customer requirements and expectations.
- Optimises design process to achieve six sigma performance
- Get it ‘right first time’

What is Design For Six Sigma?

- Companies who had seen the success of Six Sigma for problem solving using DMAIC wanted to apply data driven tools and techniques to the design of new products, processes & services
- Typically, after 2 years of DMAIC, Design For Six Sigma programmes were launched
- Applied in both Manufacturing and Service industries in technical and non-technical environments
- Used to define and/or supplement the ‘design’ process
When to Use DFSS

- Creating a new product, process, or service
- Incremental improvement cannot close the gap between the current process capability and customer requirements
- Should spend time understanding the faults of existing systems before you embark on a redesign methodology

Generic ‘Design’ Process

Requirements Flow down

Define Project → Identify Requirements → Select Concept → Develop Design → Implement Design

CTQ Flow up
The DFSS Opportunity

```
<table>
<thead>
<tr>
<th>Product Stage</th>
<th>Research</th>
<th>Design</th>
<th>Development</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Cost to Impact Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

"Classic" Six Sigma focuses here

DFSS focuses here

"Design in" quality when costs are lowest

Effect of design phases on life cycle

```
<table>
<thead>
<tr>
<th>Cost vs impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential is positive Impact &gt; cost</td>
</tr>
<tr>
<td>Potential is negative Impact &lt; cost</td>
</tr>
</tbody>
</table>
```

"Design in" quality when costs are lowest
The Vision of DFSS

Reactive Design Quality DFSS Predictive Design Quality

From
• Evolving design requirements
• Extensive design rework
• Product performance assessed by “build and test”
• Performance and producibility problems fixed after product in use
• Quality “tested in”

To
• Disciplined CTQ flow-down through requirements management
• Controlled design parameters
• Confidence in product performance
• Designed for robust performance and manufacture
• Quality “designed in”

DFSS Methodology

• DMADV
 – Define, Measure, Analyse, Design and Verify

• PIDOV
 – Plan, Identify, Design, Optimise and Validate.
DFSS Process

Plan → Identify → Design → Optimise → Verify

Define → Measure → Analyse → Design → Verify

Develop project plans → VOC – CTQ → Prioritise CTQ → Generate, evaluate, select and review concepts → Detailed design and optimise performance → Demonstrate satisfies requirements

Process for DFSS - DMADV

Define
Initiate, scope and plan the project

Measure
Understand customer requirements and generate specification

Analyse
Develop design concepts and high level design

Design
Develop detailed design and verification plan

Verify
Demonstrate compliance and launch product
Tollgates and phases

- Stopping point within the flow of phases
 – A thorough assessment of deliverables
 – A thorough review of the project management plans for the next phase

- Checklists
 – Summary statements of tools and best practices required to fulfil gate deliverable

- Scorecards
 – Summary statements from specific application of tools and best practice

DMADV

Define
DMADV - Define

Elements of a Charter

- Problem Statement
- Opportunity Statement
- Importance
- Expectations/Deliverables
- Scope
- Schedule
- Team Resources
Develop Project Plans

- Project schedule and milestones
- Organizational change plan
- Risk management plan
- Review schedule

Risk Management Plan

- Design projects face a number of risks
- The team’s job is to anticipate where the key risks of failure are and to develop a plan to address those risks
- In Define, the team should:
 – Identify known and potential risks for the project
 – Indicate when and how the risks will be addressed
Project Reviews

- Regular reviews are key for successful projects and should be included in the project schedule
- There are several levels of review:
 - Milestone or tollgate reviews; weekly reviews; daily reviews
- In addition, design projects have three unique reviews:
 - Concept review; High-level design review; Detailed design review

Key Outputs of DEFINE Phase

- Project team
- Project business case
- Project objective
- Project plan (GANNT chart)
- Document control systems
- Risk reduction plan
DMADV

Measure

DMADV - Measure

• **Goals:**
 – Collect Voice of the Customer data
 – Translate VOC into design requirements (CTQs)
 – Identify the most important CTQs
 – Develop the measurement system for each CTQ
 – Develop a design scorecard
 – Revise project objective if necessary

• **Output:**
 – Prioritized CTQs
Measure: Tools

- Data collection plan
- Customer segmentation
- Customer research
- Voice of Customer table
- Kano model
- Affinity diagram
- Benchmarking
- QFD (Quality Function Deployment)

Measure: Key Activities

1. Understand Voice of the Customer
2. Translate VOC Needs Into Requirements (CTQs)
3. Prioritize CTQs
4. Reassess Risk
What is the Voice of the Customer?

- The term Voice of the Customer (VOC) is used to describe customers’ needs and their perceptions of your product or service.
- It includes all forms of interaction between customers and your organization.

Use of Kano analysis

Critical to Quality Characteristics

- A quality characteristic that specifies how the customer need will be met by the product/service to be designed.
- A quantitative measure for the performance of the quality characteristic.
- A target value that represents the desired level of performance that the characteristic should meet.
- Specification limits that define the performance limits that will be tolerated by customers.
- Several CTQs will exist for each need.
- Use QFD to transfer VOC data into CTQs.
Develop and Validate a measurement system

- Review data requirements
- Review how to capture data
- Review applicable analysis methods
 - e.g. compare voice of the process with voice of the customer – SPC and capability analysis
- Decision criteria to determine acceptance
- Establish validity of the measurement system

Develop a design scorecard

Used to help the team to:

- Establish nominal values and specification limits for each CTQ
- Predict output of the voice of the process with respect to stability (SPC)
- Highlight problems and risks of CTQs
- Track CTQs throughout the entire life of the product
Generic design scorecard

<table>
<thead>
<tr>
<th>Scorecard Part A (Voice of the customer)</th>
<th>Scorecard Part B (Predicted Voice of the process)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTQ</td>
<td>Target</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reassess Scope and Risk

- How difficult do we predict it will be to meet all the target values of the most important CTQs?
- Is it necessary to adopt a phased approach to meet the target?
- What are the risks associated with not meeting the CTQs now?
- What are the risks associated with dropping some of the less important CTQs from consideration?
Measure: Tollgate Review

• This tollgate review focuses on
 – Customer segmentation strategy
 – Top 10-15 customer needs
 – Top 8-10 CTQs and targets
 – Summarized benchmark information
 – Platform management matrix
 – CTQ achievement matrix

• The review can lead to the following steps:
 – Proceed to Analyse
 – Redo parts Measure
 – Stop the project

DMADV

Analyse
DMADV - Analyse: Key questions

- Important processes/functions that must be designed to meet the design requirements?
- Key inputs and outputs of each process?
- Processes for which innovative new designs are required to maintain a competitive advantage?
- Different solutions available for designing each process?
- What criteria do we use to evaluate these design alternatives?
- Collect information on these criteria for evaluation?

DMADV - Analyse

Identify Key Functions → Prioritize Functions → Generate Concepts → Evaluate and Analyze → Concept Review
Generate Concepts

- Concepts are generated using two approaches:
 - Creative idea-generation techniques that focus on analogy, connections, extrapolations and creative visualization to develop new ideas
 - Benchmarking techniques that study similar designs in competing and non-competing businesses

Design Review

- Process for objectively evaluating the quality of a design at various stages of the design process
- Opportunity for voices external to the design team to provide feedback on the design, as the product and service is being developed
- Helps to ensure that the design will satisfy customers, and that the design process will function effectively to produce a high quality product or service
When to conduct a design review

- Concept Review: Conducted after two to three key concepts have been identified and their feasibility has been determined.
- High Level Design Review: Conducted after a selected concept has been designed to some level of detail and tested, and before detailed design begins.
- Pre-pilot Design Review: Conducted when the detailed design is complete and the product/service is ready to be piloted.

Design for X

- Design for manufacture
- Design for assembly
- Design for reliability
- Design for testability
- Design for service
- Design for quality
- Design for reusability
- Design for environment
Analyse: Tollgate Review

• This tollgate review focuses on:
 – List of key functions
 – List of top concepts
 – Pugh Matrix
 – Concept review outputs
 – Risk analysis update

• This review can lead to the following steps:
 – Proceed to High Level Design
 – Redo work on concepts, concept review and tollgate review
 – Stop the project
DMADV - Design

High Level Design → Detailed Design

From Concept to Design

- Less Detail /Many Alternatives
- More Detail/Few Alternatives
- Most Detail/Single Alternative

Redesign
Design: Goals and Outputs

• Goals:
 – Develop high level and detailed design
 – Test design components
 – Prepare for pilot and full scale deployment

• Outputs:
 – Tested high level design
 – Tested detailed design
 – Plans for process control
 – Completed design reviews

Design: Tools

• QFD
• Simulation
• Rapid prototyping
• Weibull analysis
• SPC and process capability
• Detailed design scorecards
• FMEA
• Reliability testing and qualification testing
• Design reviews
Tollgate review

The pre-pilot detailed design tollgate review focuses on:

• Developed design
• Completed FMEA/simulation analysis
• Design solutions for vulnerable elements
• Organizational Change Plan updates
• Process management system variables
• Process management system details

DMADV

Verify
DMADV - Verify

Steps in the Verify phase

- Build a prototype
- Pilot test the prototype
- Conduct design reviews using design scorecards
- Decide if the process is meeting business objectives
- Close DMADV project
- Transfer lessons learned from the project
Verify: Goals and Outputs

• Goals:
 – ‘Stress-testing’ and de-bugging of prototype
 – Implementation and team closure

• Outputs:
 – Working prototype with documentation
 – Plans for full implementation
 – Process owners using control plans to measure, monitor and maintain process capability
 – Project closure and documentation completed
 – Ownership transition from sponsor to operations management, and from design team to process management team(s)
 – Lessons learned

Completion Checklist

• Completed project documentation that summarizes results and learnings
• Recommendations (supported by updated information, if possible) for the next generation of this design
• Plans for (or results from) communicating your achievements to the rest of the organization
• Plans for celebrating your success
Advantages of DFSS

- Provide structure to development process
- Anticipate problems and avoid them
- Reduce life cycle cost
- Improve product quality, reliability and durability
- Cultural change
- Minimise design changes
- Improve communication between functions

Difference between SS and DFSS

<table>
<thead>
<tr>
<th>DMAIC</th>
<th>DFSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>reactionary</td>
<td>proactive</td>
</tr>
<tr>
<td>detecting and resolving problems</td>
<td>preventing problems</td>
</tr>
<tr>
<td>Existing products or services</td>
<td>Design of new products, services or processes;</td>
</tr>
<tr>
<td>Financial benefits quantified</td>
<td>Financial benefits long-term</td>
</tr>
<tr>
<td>quickly</td>
<td></td>
</tr>
<tr>
<td>Mainly manufacturing processes</td>
<td>Marketing R&D and design</td>
</tr>
<tr>
<td></td>
<td>DFSS team cross-functional</td>
</tr>
</tbody>
</table>
DFSS Summary

• Rigorous approach to design
• Primarily used for new product design
• Structured approach
• DMADV and PIDOV
• Tailored for each company
• In conjunction with product introduction
• Pushes key issues up front – design for reliability and design for manufacture