Skip to main content Skip to navigation

Biosensors Research Expertise


Microfluidics is a powerful technique to manipulate fluids at the microscale. It can be used to develop innovative devices and methods through 1) the understanding and control of the flow properties at the microscale, 2) the possibility to generate and perturb microenvironments as well as 3) the integration of micro sensors and actuators. In our lab, we use these properties to study complex biological processes and to make advanced biosensing platforms [4, 12, 14-17].

Integrated micro/nano-sensors and actuators:

Faithful to our philosophy, we do not limit ourselves to one type of sensor or actuator (a single technology will not resolve all issues). For example, we integrate existing sensors (electrochemical, temperature, optical, mechanical etc.) in microfluidic devices to make advanced biosensing platforms [8-12, 14-16]. When the sensors available do not meet our needs, we collaborate with experts in the field to develop new sensors and devices. However, we also have a strong expertise in the design and development of MEMS sensors and in particular MEMS resonators [6, 9-11, 16].

Microfabrication processes:

In order to ensure that our solutions have a broad impact, we use and develop a range of fabrication processes. In the case the devices are to be used by a large amount of people, we make sure that our solutions are compatible with medium to large-scale manufacturing. When developing new devices and methods for researchers, we aim to lower the technological barrier to enable higher flexibility and independence. We also work on new fabrication processes that open up new opportunities. Over the years, we have developed or contributed to the development of the following processes:

• The SOLID process enables the encapsulation of liquid under a polymer membrane and opens up new possibilities for smart devices, including sensors, actuators and energy harvesting devices [1-5, 7, 15].
• A low-cost table-top photolithography system suited for the fabrication of microfluidic devices and compatible with biological or chemical laboratories [14].
• A process to fabricate ultra-stable high-mobility conjugated polymer field-effect transistors [13].
• Micro-injection moulding for miniaturised devices (work in progress).

Selected publications:

[17] J. Charmet, P. Arosio, T.P.J. Knowles, Microfluidics for Protein Biophysics, Journal of Molecular Biology, Journal of Molecular Biology, 430, 565, 2018.
[16] T. Kartanas V. Ostanin P. K. Challa, R. Daly$, J. Charmet$, & T. P. J. Knowles$. High quality-factor label-free single analyte detection with MEMS cantilevers integrated into microfluidic systems. Analytical Chemistry. 89, 11929, 2017.
[15] J. Charmet, A. Homsy, M. Wood, J. Covington, L. Isa, M. Textor, T.P.J. Knowles and H. Keppner, Local micro and nano patterning of microfluidic devices using the solid on liquid deposition process. 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017 (2017).
[14] K. Challa, T. Kartanas, J. Charmet$, T. P. J. Knowles$. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning. Biomicrofluidics 11, 0141131-0141138, 2017.
[13] M. Nikolka, I. Nasrallah, B. Rose, M. K. Ravva, K. Broch, A. Sadhanala, D. Harkin, J. Charmet, M. Hurhangee, A. Brown, S. Illig, P. Too, J. Jongman, I. McCulloch, J.-L. Bredas, H. Sirringhaus, High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362, 2017.
[12] J. Charmet, C. Bortolini, D. Copic, I.C. Morales, Y. Zhang, P.K. Challa, T. Jávorfi, R. Hussain, G. Siligardi, T.P.J. Knowles Microfluidic devices fabricated using soft lithography for the study of protein structures using synchrotron radiation circular dichroism. 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016 (2016).
[11] J. Charmet*, T. C. T. Michaels*, R. Daly, A. Prasad, P. Thiruvenkatanathan, R. S. Langley, T. P. J. K. Knowles, A. A. Seshia, Quantifying measurement fluctuations from stochastic surface processes on sensors with heterogeneous sensitivity. Phys. Rev. Appl. 5, 064016, 2016.
[10] A. Prasad, J. Charmet, A. A. Seshia, Simultaneous interrogation of high-Q modes in a piezoelectric-on-SOI micromechanical resonator, Sens. Actuators A Phys. 238. 207–214, 2016.
[9] J. Charmet, R. Daly, P. Thiruvenkatanathan, A. A. Seshia, The effect of mass loading on spurious modes in micro-resonators, Appl. Phys. Lett., 107, 2015.
[8] J. Charmet, R. Barton, M. Oyen, Tuneable bio-inspired lens, Bioinspir. Biomim. 10, 046004, 2015.
[7] A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebettez, O. Banakh, H. Keppner, Solid on liquid deposition, a review of technological solutions, Microelectron. Eng. 141, 2015.
[6] J. Charmet, R. Daly, P. Thiruvenkatanathan, J. Woodhouse, A. A. Seshia, Observations of modal interaction in lateral bulk acoustic resonators, Appl. Phys. Lett. 105, 013502, 2014.
[5] S. Uhl, E. Laux, T. Journot, L. Jeandupeux, J. Charmet, H. Keppner, Development of Flexible Micro-Thermo-electrochemical Generators Based on Ionic Liquids. J. Electron. Mater. 43 (10), 3758-3764, 2014.
[4] J. Charmet, J. Bitterli, O. Sereda, M. Liley, P. Renaud, H. Keppner, Optimizing Parylene C Adhesion for MEMS Processes: Potassium Hydroxide Wet Etching, JMEMS, 22 (4), 855–864, 2013.
[3] N. Perkas, G. Amirian, O. Girshevitz, J. Charmet, E. Laux, G. Guibert, H. Keppner, and A. Gedanken. Modification of parylene film-coated glass with TiO2 nanoparticles and its photocatalytic properties. Surf. Coat. Tech, 205, 3190–319, 2011.
[2] J. Chamet, O. Banakh, E. Laux, B. Graf, F. Dias, A. Dunand, G. Gorodyska, M. Textor, W. Noell, N. F. de Rooij, A. Neels, M. Dadras, A. Dommann, H. Knapp, Ch. Borter, M. Benkhaira and H. Keppner. Solid on liquid deposition. Thin Solid Films. 518:5061–5065, 2010.
[1] G. Applerot, R. Abu-Mukh, A. Irzh, J. Charmet, H. Keppner, E. Laux, G. Guibert and A. Gedanken, Decorating Parylene-Coated Glass with ZnO Nanoparticles for Antibacterial Applications: A Comparative Study of Sonochemical, Microwave, and Microwave-Plasma Coating Routes, ACS Appl. Mater. Interfaces, 2 (4), 1052–1059, 2010.