Skip to main content Skip to navigation

WMG News

Car batteries can be frozen for safer transportation  

Currently transporting damaged and defective car batteries is an expensive process as they need to be placed in an explosion proof box which costs thousands of pounds, however researchers from WMG at the University of Warwick in collaboration with Jaguar Land Rover engineers have been able to freeze batteries with Liquid Nitrogen.

An explosion proof box to transport a typical Tesla sized battery costs €10,000 and a furtherCar batteries can be frozen €10,000 for the UN accreditation, however, the ability to transport them in plastic containers which cost a couple of hundred pounds has been made more accessible thanks to researchers from WMG at the University of Warwick.

In the paper, Cycle life of lithium ion batteries after flash cryogenic freezing’ published in the Journal of Energy Storage, researchers highlight that cryogenic freezing does not reduce lithium ion battery’s energy capacity or affect cycle or service life, and could be transported in a safer way.

As the sales of electric vehicles increases, there is more concern for the transportation of damaged and defective lithium ion battery packs. Currently, it is an expensive process, as they are put in an explosion proof box that costs €10,000 and a further €10,000 for the UN accreditation, which EV manufacturers are picking up the bill for.

Explosion boxes are used to contain the battery in case it goes into thermal runway, an overheating condition which can lead to violent explosions and toxic gases being released. However being able to cryogenically flash freeze the batteries completely removes the risk of an explosion, and could therefore mean they can be transported safely in a plastic box.

Researchers who were part of the ELEVATE project funded by ESPRC, WMG Centre High Value Manufacturing Catapult, and Car batteries can be frozensupported by Jaguar Land Rover tested the batteries activity before they froze cells with liquid nitrogen and after, they also drove nails through the frozen cell to test the safety of them, and managed to show that their performance was not effected after freezing.

When being transported batteries will have to be kept in a lorry at -35 degrees, however the amount of packaging is significantly less than explosion proof boxes, making the process more sustainable.

Dr Thomas Grandjean from WMG, at the University of Warwick comments:

“Transporting damaged and defective batteries is an expensive and unsustainable process, however being able to freeze them with liquid nitrogen could save thousands of pounds and help electric vehicle manufacturers be more sustainable.

“We tested the batteries in the most extreme abuse conditions, such as driving nails through the cells and inducing external short circuits, proving that the freezing process is effective and safe.”

ENDS

2 DECEMBER 2019

NOTES TO EDITORS

High-res images available credit to WMG University of Warwick at:

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_3_.png
Caption: A frozen battery cell with a nail through it

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_5_.png
Caption: A frozen battery cell with a nail through it

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_7_.png
Caption: A room temperature cell with a nail through it exploding

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_6.png
Caption: A room temperature cell with a nail through it exploding

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_2_.png
Dr Thomas Grandjean from WMG, University of Warwick handling the battery cell frozen by liquid nitrogen

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/untitled.png
Dr Thomas Grandjean from WMG, University of Warwick handling the battery cell frozen by liquid nitrogen

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or + 44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


Department for Transport to give keynote address at WMG’s Very Light Rail Conference

On the 28th November 2019, Steve Berry OBE, Head of Highways Maintenance, Innovation, Resilience, Light Rail and Cableways at the UK Department of Transport will give the keynote address at the Very Light Rail Conference being held at The Slate on the University of Warwick’s campus. He will speak about the potential for Very Light Rail to transform local public transport.

Steve Berry will be joined by industry speakers and academics involved in developing very light rail, including local companies TDI and RDM. They will talk about three projects that are underway across the West Midlands, and discuss why the West Midlands is leading the way in VLR.Coventry VLR

As the UK population continues to grow along with traffic congestion and vehicle emissions, new transport options are needed to create modal shift and encourage people to leave their cars at home.

At present buses and trams (light rail) provide alternatives to private cars, but bus patronage has been falling steadily for many years in contrast to tram ridership which has taken passengers out of their cars. However, tram routes are expensive to construct and can only be afforded by large city conurbations such as Birmingham. That said, Very Light Rail (VLR) may be a solution that medium sized cities could afford.

Very Light Rail is a lower cost, zero emission option for sustainable transport. The technology can be applied to branch lines as well as urban rail (trams). The Coventry VLR scheme aims to reduce the cost through the delivery of lightweight, battery electric vehicles combined with a novel track form, the first system of its kind in the world.

Coventry VLR3D visualisations of the Coventry VLR vehicle were unveiled earlier this year. The lightweight vehicle is fabricated from a combination of steel, aluminium and composite components and will be capable of carrying 50 passengers.

Unlike traditional trams, the Coventry VLR system will not have overhead cables – the vehicle will be powered by an on-board battery which will be rapidly charged at the end of the route. The vehicles will run on a novel prefabricated track form which be easy to install into the road and remove, negating the need to utility companies to relocate their equipment (which is a significant cost in light rail tram solutions).

Currently the system is being designed to meet Coventry City’s needs, but it is expected other medium sized cities across the UK, such as Leicester and Derby, may follow in due course.

Dr Nick Mallinson from WMG, University of Warwick comments:
“At WMG we’ve been working on very light rail technology with a number of industry partners for 5 years. Progress achieved to date recently convinced the Department for Transport that the time is right for a conference to showcase the work and make local authorities, transport planners and industry aware of the potential for very light rail solutions”

To see the full agenda and register your interest in the event please fill out the form at: https://warwick.ac.uk/fac/sci/wmg/mediacentre/wmgevents/vlr/

ENDS

22 NOVEMBER 2019

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march2019/tdi123_coventry_vlr_exterior_4a_2019-03-12.jpg Credit: TDI

Please credit the following images and videos to: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/9.jpeg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/3.jpeg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/6.jpeg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/7.jpeg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/8.jpeg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/11.jpeg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/1.jpeg

https://youtu.be/Ur0Y0JGLIXA

https://youtu.be/JQR-x2d25VU

FOR FURTHER INFORMATION PLEASE CONTACT:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Fri 22 Nov 2019, 11:41 | Tags: Materials and Manufacturing Research

Bionic hand made in 10 hours thanks to WMG, University of Warwick

A bionic hand can be made to measure in 10 hours and can grip using a moveable thumb. Designers and engineers from WMG, University of Warwick and UK industry, have been able to entirely 3D Print the device with embedded electrical circuitry to seamlessly connect sensors and actuators.

Bionic armThe IMPACT project, led by Iterate Design and Innovation Ltd, in collaboration with WMG, University of Warwick, C Enterprise (UK) Ltd and Printed Electronics Ltd, was made possible thanks to a grant of nearly £900,000 from Innovate UK, with the aim of developing a 3D printing technology with the ability to print plastic products with integrated electrical circuitry, a capability which they have demonstrated in a bionic hand.

The IMPACT hand has taken inspiration from a similar developed by Ambionic’s Ben Ryan, whose son had his forearm amputated after birth, and who decided to make him a new one.

The IMPACT team have taken this design further by embedding the electrical circuitry linking the motion controlling muscle sensors with the motors and battery into the structure of the bionic hand, thus providing a durable and aesthetic solution.

Engineers at WMG, University of Warwick have tested the durability of the printed electrical circuitry to understand how well they will endure the bending and flexing that they might experience in use.

They also developed a website so that people can interact with the manufacturers to order a 3D Printed hand, allowing them to insert the measurements of their arm, and select what colour they want their hand to be, providing them with a tailored and personalised product.

10 hours later the hand will be printed with the sensors inbuilt ready for use.

Within the project, Iterate Design and Innovation Ltd developed the design of the hand, including the integration of the electrical circuitry and sensors. Printed Silver ink trackElectronics Ltd developed the technology for printing the electrical circuitry within the 3D Printing process and C Enterprise (UK) Ltd developed the multi-axis, multi-material 3D printer that enables the hand to be realised in 3D.

Dr Greg Gibbons of WMG University of Warwick comments:

“WMG are delighted to be a partner in the IMPACT project, helping to deliver this innovative and revolutionary technology, which is undoubtedly helping put UK PLC at the forefront of 3D Printing research and development globally.”

Gethin Roberts, Project Lead and MD of Iterate Design + Innovation comments:

“The IMPACT project has resulted in the creation of an exciting new technology that has the ability to print electro-mechanical parts and assemblies, which weren’t previously possible. Through laying down conductive ink tracks within polymer structures means that parts produced are fully functional straight off the machine bed; offering huge productivity benefits.”

ENDS

14 NOVEMBER 2019

NOTES TO EDITORS

High-res images available credit to Iterate UK/Ambionics

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/arm_pic.jpg

https://warwick.ac.uk/services/communications/medialibrary/images/november2019/silver_ink_track.jpg

About WMG
WMG is a world leading research and education group transforming organisations and driving innovation through a unique combination of collaborative research and development, and pioneering education programmes.

As an international role model for successful partnerships between academia and the private and public sectors, WMG develops advancements nationally and globally, in applied science, technology and engineering, to deliver real impact to economic growth, society and the environment.

WMG‘s education programmes focus on lifelong learning of the brightest talent, from the WMG Academies for Young Engineers, degree apprenticeships, undergraduate and postgraduate, through to professional programmes.

An academic department of the University of Warwick, and a centre for the HVM Catapult, WMG was founded by Professor Lord Kumar Bhattacharyya in 1980 to help reinvigorate UK manufacturing and improve competitiveness through innovation and skills development.

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

Thu 14 Nov 2019, 09:53 | Tags: Materials and Manufacturing Research

Ceramic industry should bring carbon reducing cold sintering process out of labs and into manufacturing says new research

A new techno-economic analysis, by a team led by a researcher from WMG at the University of Warwick, shows that the energy intensive ceramic industry would gain both financial and environmental benefits if it moved to free the cold sintering process from languishing in labs to actual use in manufacturing everything from high tech to domestic ceramics.

The new research has just been published in the Journal of the European Ceramic Society in a paper entitled “Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector”.

The cold sintering process (CSP) combines heat, pressure and the use of water to significantly reduce energy use as it lowers the temperatures required to produce ceramics to around 300 degrees centigrade. This is far less than other process such as: Conventional sintering, Laser sintering, Fast-firing sintering, Liquid-phase sintering, and Flash sintering which require far more energy and need to reach temperatures ranging from 1400 to 3000 degrees centigrade depending on the process and materials under consideration.

However the small scale of laboratory-based CSP (typically creating 5 grams of ceramic at a time under lab conditions) has meant that manufacturers have chosen to continue to rely on other significantly higher temperature methods that can either already produce larger amounts or can rapidly manufacture a series of small scale high tech ceramics. The University of Warwick led team believed that manufacturers had not developed anything like a full understanding of the potential financial and environmental benefits of using CSP in manufacturing – particularly as the start-up costs of CSP are much lower than other processes.

The researchers looked at scenarios for the processing of 3 separate functional oxides used to produce ceramics: ZnO, PZT and BaTiO3. They compared cold sintering (CSP) with a range of other sintering techniques and looked at its return on investment. They found that in all three cases, even after 15 years of use, the low set up costs of CSP made it the most economically attractive sintering option, with lower capital costs and best return on investment as well as considerable energy and emission savings.

The researchers do recognise that the transition from laboratory to industry of CSP will require hugely different facilities and instrumentation as well as relevant property/performance validation to realise its full potential but the potential benefits of doing so are significant .

Lead researcher on the paper Dr Taofeeq Ibn-Mohammed from WMG at the University of Warwick said:

“The rising cost of energy and concerns about the environmental impact of manufacturing processes have necessitated the need for more efficient and sustainable manufacturing. The ceramic industry is an energy intensive industrial sector and consequently the potential to improve energy efficiency is huge”

“Our research is the first comprehensive techno-economic analysis of a number of sintering techniques, comparing them with the recently developed cold sintering process (CSP). We find that there are clear financial and environmental benefits if the ceramics industry was to take the cold sintering process out of labs and into commercial manufacturing”.

Note for Editors: The full research team on the paper were: Dr Taofeeq Ibn-Mohammed from WMG at The University of Warwick; C.A. Randall and S. Berbano both from the Materials Research Institute, The Pennsylvania State University; , K.B. Mustapha from the University of Nottingham; , J. Guo from Xi’an Jiaotong University and Pennsylvania State University; J. Walker from Norwegian University of Science and Technology; S.C.L. Koh, D. Wang, D.C. Sinclair, and I.M. Reaney, all from The University of Sheffield.

Thu 24 Oct 2019, 09:49 | Tags: Materials Materials and Manufacturing Research

Top industry award for WMG research

Top industry award for WMg researchWMG’s BRAINSTORM research project, with Far-UK, Composite Braiding and Transport Design International (TDI), was presented with the Technical Innovation of the Year award at the prestigious Global Light Rail Awards.

The Awards, dubbed as the industry’s Oscars, recognise outstanding achievements in the global light and urban rail sector.

Working with Far-UK, Composite Braiding and TDI, WMG researchers created a new design of an incredibly lightweight Very Light Rail (VLR) vehicle frame weaved from carbon fibre composites into a series of tubes to create a prototype demonstrator frame - the first of its kind.

Dr Darren Hughes, Associate Professor in Materials and Manufacturing explained: “Our BRAINSTORM VLR research Darren Hughespartnership has achieved significant weight-saving, allowing VLR services to accommodate more passengers while reducing the energy required to propel the vehicle and the stress placed on the rails and road surface.

“The technology also ensures that the vehicle is tough for a long life in service, easily repairable when accidents happen and strong enough to protect the passengers on board.”

The judges praised BRAINSTORM for its innovation, vision and ambition to create not only new manufacturing processes but potentially a whole new industry.

One judge said: “This is what the industry has been waiting for decades. Aviation and automotive do this already, so it’s great to see a UK consortium bringing us up to that level. I can’t wait to see the first full vehicle next year.”

Find out more about the Global Light Rail Awards here.

Thu 10 Oct 2019, 12:36 | Tags: Materials and Manufacturing Athena Swan Research

Where does all the plastic go? - Ton Peijs

Ton Peijs, Pofessor of Polymer Technology and Director of the National Polymer Processing Centre at WMG.Although plastic is often thought of as a single use material, it actually lasts a very long time and can be used over and over again. In the UK around 45% of plastic is recycled and 30% is incinerated to generate electricity. The remaining 25% goes to landfill - wasting the value of the material, and causing the environmental impact we are all currently talking about. Although the UK has made enormous strides in reducing this amount over the past 20 years, we are a long way behind other countries that don’t send any waste to landfill, like Germany, Norway or the Netherlands.

Levels of recycling

A 45% recycling rate sounds good, but its effectiveness is all about how much of the value of the product is re-used.

The most effective recycling is where the product is used in the same form for the same use.

Next comes the plastic being re-used – effectively as virgin material – to produce products of the same value. The problem is that plastic materials are often down-cycled into less valuable products because waste streams often contain many different types of plastic and mixtures of plastics mostly have inferior properties to pure plastics. For recycling to become more efficient, waste collection and separation systems must be improved. Products could also be designed for their whole lifecycle - including recycling.

If the plastics cannot be re-used, the plastic can be broken down into its chemical building blocks and re-used at that level.

Why incineration isn’t so bad

There are positive aspects to recovering energy from plastics through incineration, especially in the case of mixed or contaminated plastics that are difficult to recycle. Plastics are made from petrochemicals which are produced by the oil refining process. Plastics contain the same amount of energy as the oil they are made from and after a useful life they can be safely incinerated and converted into energy or electricity.

We need a systems approach

There is a complex problem to solve with plastics and a simple blanket ban may not be the answer if we want to create a more sustainable society. The solution could lie in a steep increase in recycling rates and the creation of a ‘circular economy’ where plastic materials are more effectively recycled at higher value uses.

Waste prevention, for example through use of less materials, is the preferred waste management option. It is followed by waste reduction through, for example reuse followed by recycling, recovery including incineration with energy recovery or compositing and as a last option, safe disposal.

Mon 16 Sep 2019, 09:32 | Tags: Materials and Manufacturing Research Ton Peijs Plastics

WMG helps Senior Teaching Fellow break cycling world record

Piotr Klin - Senior Teaching Fellow, WMG

In a bid to fulfil a two-year ambition, Senior Teaching Fellow Piotr Klin teamed up with WMG to prepare the race package for his UCI World Masters Hour record attempt on July 21st.

Scooping the cycling accolade at his native Polish velodrome of Arena Pruszkow, Piotr’s distance of 49.649km beat the previous record for the 30-34 age group of 48.234km set by Britain’s Ryan Davies.

The World Masters Hour concept requires racers to ride around a velodrome and cover the furthest distance within 60 minutes. Having narrowly missed out on breaking the Polish hour record in August last year, Piotr collaborated with WMG at the University of Warwick to make technical advancements to his bike, utilising the state-of-the-art facilities at WMG.

Piotr reviewed the 3D printed parts within his bike to minimise the drag on the track, and commenting on his successes, the Coventry resident originally from Lublin in Poland said:

“This is a great achievement for me, and it feels extra special to do this in my home country. The extra time that I have spent training in the velodrome has paid off. WMG manufactured parts were custom made to best fit my body, using 3D scanning and printing techniques to deliver a custom cockpit fit, providing comfort during the longest hour in cycling.

“By leveraging the world-leading expertise and facilities through my collaboration with WMG, I’ve been able to bring the best race package I’ve had to-date and deliver this world record performance.

“I’m excited for new challenges following this milestone and look forward to collaborating with WMG further to post even faster times.”

By breaking the world record, Piotr added a further feather to his cap, which already includes a well decorated repertoire of accolades, including merits for being a three-time Polish Masters National Time Trial champion and his crown of Amateur Sportsman of the Year from the 2018 Coventry and Warwickshire Sports Awards.

Building on his successes, Piotr now hopes to go one better than his second place in 2017 at the UCI Gran Fondo World Championships Time Trial in Poznan in August.


Minister shown how WMG literally weaved design of Very Light Rail – Braided structure lightweight

Andrew Stephenson MP with Darren HughesWMG, at the University of Warwick, has worked with partners, to create a new design of incredibly lightweight Very Light Rail (VLR) vehicle frame which is weaved, or braided, from carbon fibre composites into a series of tubes to create a first prototype demonstrator frame. Parliamentary Under Secretary of State and Minister for Business and Industry Andrew Stephenson became one of the very first people to see the new design, outside of the research partnership, on a visit to WMG on 16th May.

BRAINSTORM framework designWorking with the lightweight structural composite components company Far, and Transport Design International Ltd in Stratford upon Avon the demonstrator can be easily assembled by adhesive and simple welding.

Dr Darren Hughes Associate Professor in Materials and Manufacturing at WMG at the University of Warwick said:

“Our BRAINSTORM VLR research partnership has achieved significant weight-saving, allowing VLR services to accommodate more passengers while reducing the energy required to propel the vehicle and the weight stress it will place on its rails and road surface.”

“The technology also ensures that the vehicle is tough for a long life in service, easily repairable when accidents happen and strong enough to protect the passengers on board.”

The innovative highly efficient very light weight approach consists of an underlying tubular spaceframe chassis which provides the body shell. In the first demonstrator frame the partners have produced they were able to keep the beams the same outside diameter but their wall thickness is tailored to give the optimum performance depending on where it will be used. This keeps the tooling costs low and allows for all the joining to be standardised through a combination of welding and adhesive bonding.

If any significant damage is caused to any individual beam through an accidental impact each damaged beam can simply be entirely replaced with a new one. Best of all the thermoplastic material is inherently recyclable.

Darren Hughes with Lyndon Sanders The whole moulding cycle has been shown to be capable of being reduced to less than five minutes, demonstrating the potential of this affordable process for high-volume applications. The braiding process is highly automated and with rates of over a mile a day of braided tubing.

This braiding method also allows for a wide range of materials to be used. Almost any fibres (carbon, glass and aramid) can be combined with a huge range of thermoplastics, from low cost Polypropylene to high end Polyether ether ketone (PEEK) to create a material that suits the given application

Lyndon Sanders Director and General Manager of Nottingham based lightweight structural composite components company Far said:

“The BRAINSTORM Project feels like a real step forward to the team at Far Composites. Being able to tap into the industry experience of TDI to hone the principle of a new type of body structure for mass transit applications was great. Add to that the collaborative working with Composites Braiding and WMG to turn that thinking into a physical demonstrator to show what it would be like in practice was really powerful. Now it’s more than a good idea, now it’s an eye opener for industry players who can see it, touch it and even pick it up.”

ENDS

20 MAY 2019

Note for Editors:

High-res images available, please credit The University of Warwick:

The design of the frame with some other sections attached

https://warwick.ac.uk/services/communications/medialibrary/images/april2019/frame-cb1-2.jpg

Dr Darren Hughes (right) showing Lyndon Sanders Director and General Manager of Far (left of picture) the braiding pattern on the frame

https://warwick.ac.uk/services/communications/medialibrary/images/april2019/train_2_jpeg.jpg

Dr Darren Hughes Associate Professor in Materials and Manufacturing at WMG at the University of Warwick (left) showing Parliamentary Under Secretary of State and Minister for Business and Industry Andrew Stephenson (right of picture) all the design stages of the VLR vehicle

https://warwick.ac.uk/services/communications/medialibrary/images/may2019/brainstorm_pic.jpg

The frame with less attached

https://warwick.ac.uk/services/communications/medialibrary/images/april2019/frame-cb5-1.jpg

Another view

https://warwick.ac.uk/services/communications/medialibrary/images/april2019/frame-cb2-1.jpg

A further view

https://warwick.ac.uk/services/communications/medialibrary/images/april2019/frame-cb9-1.jpg

The Full list of partners on the project are: WMG at the University of Warwick, the UK's Governments innovation agency Innovate UK, Far composites, Composite Braiding ,and Transport Design International Ltd in Stratford upon Avon

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 


High-resolution scanning helps secure guilty verdict against child’s mother

Researchers from WMG at The University of Warwick, have used a high resolution X-ray (micro-CT) scanner, a novel 3D imaging technology more commonly employed in industry and materials research, to scan 9 week old Teri-Rae’s rib cage.

The scans images with one thousand times of the detail of a hospital scanner, meaning they were able to detect 2 more microscopic injuries which could otherwise have been missed by conventional medical CT scanners.Prof. Mark Williams' scanning machine. Credit: University of Warwick

The evidence produced helped reveal a total of ten injuries of varying ages. 3D renderings of these injuries were shown during trial to provide visual context and support the bone specialist’s expert testimony.

This secured a guilty verdict for the charge of manslaughter for Teri-Rae’s mother Abigail Palmer, who has been sentenced today - 4th April 2019.

The work was conducted as part of an ongoing research partnership between Warwick University and West Midlands Police which uses such scanning technologies to support homicide investigations.

Professor Mark Williams of WMG at the University of Warwick comments:

“State-of-the-art 3D scanning technology allowed us to identify multiple fractures to Teri-Rae’s ribs that had occurred over an extended period of time.

“The ability to produce highly detailed 3D images of these shocking injuries that could be presented at court helped establish the truth and show what had happened. It’s an honour for us to provide critical evidence to this case, and to be able to help the police investigate such an unfortunate tragedy.”

West Midlands Police Sergeant Mick Byron from the Child Abuse Investigation Team, comments:

“We were able to show that Teri-Rae suffered 10 rib fractures over a four to 12 hour period between 3am and 11am on 2 January.

“Palmer had been at a pub for six hours on New Year’s Day but claimed to have drank mainly squash, not alcohol, as that would have breached a condition of the Child Protection Plan she was bound by.

“We don’t believe her… and neither did the jury. We suspect she came home drunk, was awoken by her baby in the night and inflicted these terrible images in response to Teri-Rae’s crying.

“Palmer admitted the baby was never out of her sight and never mishandled by anyone else; she offered no plausible accidental explanation for her daughter’s injuries. There was no indication Teri-Rae suffered a bone fragility condition and she was not independently mobile enough to have injured herself.

“Significant force is required to cause rib fractures in a baby… the presence of rib fractures in a baby of this age is indicative of abusive, deliberately inflicted, injury. This was a truly heart-breaking case to investigate, that a little baby’s life was taken by the one person who should have been protecting her.”

Thu 04 Apr 2019, 14:43 | Tags: Metrology Materials and Manufacturing Research

New technique to make transparent polythene films as strong as aluminium that could be used in impact resistant glazing, windscreens, and displays

Research led by Professor Ton Peijs of WMG at the University of Warwick and Professor Cees Bastiaansen at Queen Mary University of London, has devised a processing technique that can create transparent polythene film that can be stronger as aluminium but at a fraction of the weight, and which could be used use in glazing, windscreens, visors and displays in ways that add strength and resilience while reducing weight.A smashed screen 'could be a thing of the past' - Prof. Ton Peijs says. Credit: University of Warwick

In a new research paper entitled “Glass-like transparent high strength polyethylene films by tuning drawing temperature.” Published online today - 1st April 2019 - in the Journal Polymer, the authors show that after carefully selecting the type polythene and by tuning the temperature during the creation of oriented polythene films a balance can be created that produces a highly useful and lightweight transparent material with a significant strength and resilience approaching, and in some ways, exceeding that of metals.

Previously anyone looking to replace heavy and often brittle glasses with a transparent plastic have looked at conventional transparent plastics like polycarbonate (PC) and poly(methylmethacrylate) (PMMA) both of which possess relatively unsatisfactory mechanical performance compared to an engineering material like aluminium.

Current methods of creating high strength plastic films such as hot-drawing of high-density polyethylene (HDPE) can lead to materials that can compete or even out-perform traditional engineering materials like metals.

“The microstructure of polymers before drawing very much resembles that of a bowl of cooked spaghetti or noodles, while after stretching or drawing the molecules become aligned in a way similar to that of uncooked spaghetti, meaning that they can carry more load” explains Yunyin Lin, a PhD student in Professors Peijs and Bastiaansen’s team.

However, drawn polythene materials normally have an opaque appearance due to defects and voids introduced by the drawing process, limiting applications where both mechanical properties and optical transparency are required.

Some success has recently been achieved by using highly specific additives in hot-drawn HDPE materials that can then produce 90% transparency while giving high strength. However, the research team led by Professors Peijs and Bastiaansen have now developed a new post-manufacturing technique for HDPE that endows strength and resilience while preserving transparency without using additives.

The researchers took HDPE polythene sheets and drew out these sheets at a range of temperatures below the melting temperature of HDPE. By tuning the drawing temperature they could achieve a transparency of 90% in the visible range. However, the best balance between strength and transparency was achieved at drawing temperatures between 90 and 110 degrees centigrade.

Professor Ton Peijs of WMG at the University of Warwick said:Professor Ton Peijs of WMG, University of Warwick. Credit: University of Warwick

“We expect greater polymer chain mobility at these high drawing temperatures to be responsible for creating fewer defects in the drawn films, resulting in less light scattering by defects and therefore a higher clarity”

The highly transparent films possess a maximum resilience or Young’s Modulus of 27 GPa and a maximum tensile strength of 800 MPa along the drawing direction, both of which are more than 10 times higher than those of PC and PMMA plastics. For comparison, aluminium has a Young’s Modulus of 69 GPa and aerospace grade aluminium alloy can have tensile strengths up to around 500 MPa. However, polythene has a density of less than 1000 kg/m3 while aluminium has a density of around 2700 kg/m3, meaning that on weight basis these high strength transparent polymer films can outperform such metals.

Professor Ton Peijs in WMG at the University of Warwick concludes that:

“Our results showed that a wide processing window ranging from 90 °C to 110 °C can be used to tailor the required balance between optical and mechanical performance. It is anticipated that these lightweight, low-cost, highly transparent, high strength and high stiffness HDPE films can be used in laminates and laminated composites, replacing or strengthening traditional inorganic or polymeric glass for applications in automotive glazing, buildings, windshields, visors, displays etc.”

Mon 01 Apr 2019, 17:21 | Tags: Materials and Manufacturing Research Plastics

Older news