Skip to main content Skip to navigation

WMG News

Select tags to filter on

Pioneering industry collaboration accelerates hydrogen refuelling innovation for HGVs

WMG is working with Midlands-based SME Hy-Met Limited and Logan Energy to deliver the Hydrogen Prototype Equipment for Refuelling (HyPER) project.

Together, the consortium will develop a next-generation hydrogen flowmeter for refuelling Heavy Goods Vehicles (HGVs). These will be used for hydrogenImage of HGVs refuelling systems, and will be lightweight, smaller, more cost effective and more accurate than existing instruments.

This follows recent funding from the UK Government’s Department of Transport zero emission road freight trials through Innovate UK. The project value totals around £170,000.

The new meter will also be easier to manufacture and maintain than current options on the market.

The project aims to reduce the cost of hydrogen refuelling and enable the wider adoption of hydrogen by transport fleets and other users.

Nishal Ramadas, co-founder and CEO of Hy-Met, said: “Since launching Hy-Met in January, we’ve been motoring ahead with our plans to help with the transition to net zero. With our innovative measurement platform, Hy-Met is combining our deep hardware and software expertise to tackle some of the complex measurement challenges facing the hydrogen sector.

“When building the consortium, we knew we needed partners with detailed knowledge of the requirements for hydrogen refuelling and advanced manufacturing and prototyping capabilities.

“Our choice of project partners was clear and we are very happy Logan Energy and WMG have joined us in tackling this refuelling challenge.”

Bill Ireland, Chief Executive at Logan Energy, said: “Using hydrogen to power lorries is one of the key steps towards helping Scotland and the UK tackle the climate emergency.

“Making the switch from burning diesel to using hydrogen will cut the amount of carbon dioxide and other harmful gases being pumped into the atmosphere.

“There are a number of advancements we need to take before hydrogen becomes commonplace on our roads and one of the crucial elements is making it cheap and easy to refuel.

“For nearly three decades Logan Energy has been at the forefront of developing new and innovative hydrogen technologies both here in the UK and abroad. This collaborative partnership with Hy-Met and WMG is another step towards helping the UK grow its capabilities within the hydrogen industry and the drive to net-zero.”

Dmitry Isakov, Assistant Professor at WMG, said: “Securing this funding from the Department of Transport through Innovate UK will help us to accelerate our work. Working alongside Logan Energy and Hy-Met will allow us all to combine our knowledge and expertise to develop an industry-leading hydrogen flowmeter.”


Crash-resistant glazing installed on the new Coventry Very Light Rail Vehicle

· Crash-resistant glazing features on the new Coventry Very Light Rail vehicle, and could be used to improve passenger safety in other means of public transport

· The glazing is made of a highly resilient polymer and has been designed by engineers from WMG - University of Warwick, Far-UK and TDi Ltd.

· The glazing, which is highly resistant to failure, has advanced coating to increase product lifetime.

A new form of window glazing featuring a lightweight polymer with an advanced scratch-resistant coating has been installed on the CoventryImage of Coventry VLR Very Light Rail vehicle, and could be used in other means of public transport. The new windows are highly resistant to breakage which provides passengers with a step-change in safety.

The glazing has been designed by a collaboration of WMG - University of Warwick, Far-UK (Lead) and TDi Ltd and was funded via the UK Innovation agency, Innovate UK (SBRI Rail Demonstrations: First of a Kind 2020).

The official report into the 2016 Sandilands (Croydon) tram crash made a number of recommendations for tram vehicle improvements. It called for development of windows and doors with improved strength. To address this need, researchers have been on a mission to make public transport safer in new innovative ways, one of which features crash-resistant glazing.

The new glazing is now revealed on the newly developed Coventry Very Light Rail vehicle, thanks to the Innovate UK funded project “Resilient glazing for safer passenger vehicle operation” (Resi-Glaze), which is an exciting collaboration between industry and academia.

The new glazing has been fully tested to ensure that it can survive exposure to severe projectile impact, all weather conditions, and has no negative impact on the environment compared to glass.

The technical team was then able to install it on the new Coventry Very Light Rail vehicle, meaning that the vehicle now holds two public transport firsts, as it has anti-microbial grab poles and crash-resistant glazing.

Dr Darren Hughes, from WMG at the University of Warwick comments:

“The new Coventry Light Rail vehicle has a number of major innovations including being lightweight, battery-powered and having reduced environmentalImage of Coventry VLR footprint. The vehicle has shown that major steps forward can be made using a UK-centric manufacturing approach. The Sandilands accident report identifies clearly the need for safer glazing in trams and we decided this would be the perfect opportunity to design and make the glazing and see it installed. Although we have demonstrated the technology in trams, we believe it points a path for safer future glazing solutions in the wider rail sector.”

Dr Sophie Cozien-Cazuc from Far-UK Ltd adds:
“Far-UK has been thrilled to be given the opportunity to develop and manufacture resilient lightweight polymeric panels for the Coventry Very Light Rail vehicle. After the Croydon accident in November 2016, there was the need for more robust glazing options. This Resi-Glaze project allows innovations from other transport sectors to be brought to the rail industry. Polycarbonate glazing has moved on from the 1980s. Far is looking forward to providing this new glazing in the transport sector in general.”

Paul Salkeld from TDi Ltd adds:
“Transport Design International have been involved in many innovative projects over the years and this project has sound relevance as we look to promote safer and cleaner ways of providing public transport. We are looking forward to seeing this moving forward now in many applications.”

Councillor Jim O’Boyle cabinet member for jobs, regeneration and climate change said:
“I am delighted that this glazing innovation is being tested as part of our vehicle development. It will also have much wider application too, which is very exciting.

“We are right at the front of the green industrial revolution and our plans for Very Light Rail have already achieved a number of world first developments. The Coventry Very Light Rail project has the potential to revolutionise the way people travel, importantly at an affordable cost, and it will take another step forward later this year when both our new vehicle and our innovative track system is tested in real-world conditions.”

ENDS

14 JULY 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/dsc_3057_002.jpeg

Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/230321vlr_citycentre_006.jpg
Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/230321vlr_citycentre_063.jpg
Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


Additive layer manufacturing supply chains to be protected from cyber-attacks in light of COVID-19

· Additive manufacturing was upped during the COVID-19 pandemic to make ventilators, however when production was up so were the number of cyber-attacks

· In order to continue production without disruption new technologies are needed, which researchers from WMG, University of Warwick aim to deliver thanks to a grant from EPSRC

· Working with partners the new technologies developed will secure the supply chain in case of another global threat

The COVID-19 pandemic highlighted just how vulnerable UK manufacturing supply chains are, as there was an increase in the volume of cyber-Image - Covid19 and cyber attacksenabled attacks on cyber-physical systems. There is therefore an urgent need to develop technologies and methods to support disruption-resilient manufacturing.

This has been made possible, thanks to over £1 million of funding from the EPSRC, which will enable Dr Greg Gibbons, Prof Carsten Maple and Dr Greg Epiphaniou from WMG, and other colleagues from Henley Business School and Surrey Business School, to research into disruption-resilient-manufacturing.

Their project, entitled, ‘Responsive Additive Manufacturing to Overcome Natural and Attack-based disruption (RAMONA)’, will address the need and opportunity for the UK to become global leaders in responsive manufacturing, taking advantage of the opportunities presented by UK strengths in Additive Manufacturing.

The importance and limitations of responsive manufacturing systems – those that are able to respond to minimise the impact of a disruption – in the UK have been brought to the fore by COVID-19. Traditional supply chain weaknesses have been exposed, creating a ‘watershed’ moment for additive manufacturing, which could be used to complement existing manufacturing supply chains and embed resilience within them.

This was evidenced by the Ventilator Challenge UK, where additive manufacturing was a key technology in supporting the production of thousands of ventilators for the NHS within 12 weeks.

Additive Manufacturing has particular strengths in supporting distributed manufacturing, on-demand production, and rapid development and approval of component design. However, this type of responsive manufacturing capability is uncommon and requires further development before it can be embedded as an industry wide capability.

This will be achieved by addressing the following challenges:

- How to develop effective techniques to detect disruption

- How to effectively and accurately analyse the disruption; and

- How to respond to disruption through reconfigured manufacture.

Image of Greg GibbonsDr Greg Gibbons, Reader in Additive Manufacturing in WMG at Warwick, comments:

“This award is an exciting opportunity to engage in this timely and highly impactful research. It will enable us to develop the technologies required by UK manufacturing to ensure robust and reliable supply chains that can respond rapidly and optimally to disruptive threats, making a real difference to the security of supply when faced with global threats such as we have seen during the COVID Pandemic.

“It is fantastic to be able to collaborate with scholars, as well as leading organisations across a range of industries including automotive, defence, security and healthcare in developing solutions to the key challenges facing manufacturing today.”

Dr Gibbons will be working alongside colleagues from WMG, Henley Business School, University of Reading, and Surrey Business School at the University of Surrey. They will also be working with multiple project partners from industry, including Royal Berkshire NHS Foundation Trust and Thales Ltd.

The research will begin later in the year (September 2021) and is due to finish in early 2024. It received a total grant of £1,024,124. Find out more details of the grant.

ENDS

7 JULY 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march2014/dr_greg_gibbons.jpg
Caption: Dr Greg Gibbons, from WMG, University of Warwick
Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


WMG research recognised at key industry awards

Image of Green MaterialsWMG Professor Ton Peijs’s paper entitled: “Turning low-cost recycled paper into high-value binder-free all-cellulose panel products” has been awarded the prestigious Green Materials Journal Prize by IEC Publishing, part of the Institute of Civil Engineers.

The IEC Awards recognise research of exceptional quality and benefit to the civil engineering, construction and materials science community.

Professor Peijs will be officially presented with the award at a ceremony in London in October.

Ton Peijs is a Professor of Polymer Engineering and Director of the National Polymer Processing Centre at WMG. His research focuses mainly on materials and processing innovations in polymers and composites. Ton has made notable contributions to areas such as hybrids, multifunctional materials, damage tolerance and durability, natural fibres and bio-based materials, polymer fibres and nanocomposites. He has also pioneered the development of sustainable composites, including the development of fully recyclable all-polymer composites.

Read Professor Peijs’s paper in full here: Turning low-cost recycled paper into high-value binder-free all-cellulose panel products | Green Materials (icevirtuallibrary.com)

Read more about WMG’s plastics research here: Plastics (warwick.ac.uk)


Coventry Very Light Rail tours its future home

The Coventry VLR on tour in the city centre Credit: Mark Radford PhotographyCoventry City Council’s prototype Very Light Rail vehicle, which has the potential to transform how people move about the city, is set to be moved ready for real on track testing.

Over the last two years researchers from WMG, University of Warwick together with TDi Ltd, have been designing and building the new Coventry Very Light Rail vehicle for Coventry City Council, which will see an electric powered, zero-emissions, lightweight, rail-based public transport system arrive in Coventry.

The vehicle is being moved from NP Aerospace in the city for some static software testing before moving to a dedicated track at BCIMO in Dudley.

The prototype vehicle has done a tour of Coventry so it could see its future operational home. After leaving the vehicle production site in Coventry it stopped outside the Co-op building and the Transport Museum so that the public could get a better view.Caption: The Coventry VLR outside the Transport Museum Arches  Credit: Mark Radford Photography

Councillor Jim O’Boyle cabinet member for jobs and regeneration and Coventry and Warwickshire LEP board director said, “I am really pleased to see the first prototype vehicle out of the factory and on to our city’s streets. Even on a low loader it looks impressive – modern, sleek and of course the fact its battery powered means it’s good for the environment and air quality too.

“Very Light Rail has reached this really important point thanks to all of the researchers, innovators, engineers and manufacturing skills we have right here in the city. And I believe that we can create jobs and opportunities for local people as we lead the Green Industrial Revolution.

“Coventry was the beating heart of the carbon revolution and now with projects like this, UKBIC, our electric bus fleet and our plans for a Gigafactory we will lead the zero-carbon revolution too.Caption: Councillor Jim O’Boyle with the Coventry VLR  Credit: Mark Radford Photography

“On track testing will take some time – but it should prove the concept – and at that stage I expect there to be lots of interest in VLR from other areas of the UK and abroad. This is a very exciting moment.”

Dr Darren Hughes, from WMG, University of Warwick comments:
“It is very exciting for us to see the development of the Coventry Light Rail vehicle move onto the next phase of testing in Dudley, and to see the vehicle in the City which it will one day call home.

“The vehicle has been constructed within Coventry with a reliance on a regional supply chain where possible, showing the strength in depth of local manufacturing. It is a unique vehicle with state-of-the-art technologies including an advanced battery power-train and resilient glazing making it even safer for public use.”

Helen Martin, director of regeneration & enterprise at Dudley Council said: “The Very Light Rail Test Track and National Innovation Centre (NIC) is a key project for our borough. It will offer an innovative and exciting opportunity to provide lower cost local rail connectivity, encouraging shift from private vehicles towards public transport and creating economic benefits in terms of skills and supply chain opportunities.Caption: Inside the Coventry VLR vehicle  Credit: Coventry City Council/William Hunt

“With the test track now completed, we’re looking forward to testing getting underway later this year.”

Darren Smith Head of TDI adds: “The TDI team are extremely pleased with the projects’ progress to date and the local benefits it has enabled. The work our supply chain, including our colleagues at NP Aerospace have engaged in, has produced an outstanding first off demonstrator for this hugely important and innovative project. The future economic benefits, both nationally and locally, this project will bring cannot be underestimated and TDI are very proud to be entrusted to deliver it for our client, WMG.”

James Kempston, CEO, NP Aerospace, comments: “Collaboration on the VLR project with WMG and TDI has been a great success, resulting in an exceptional prototype, which is ready to begin testing. The project has expanded our capability in the prototype vehicle industry and has enabled us to support a significant environmental transport initiative for the people of Coventry. It’s a very positive story for UK manufacturing with the challenges of the pandemic and Brexit and it’s particularly impressive what the team have delivered in just 8 months. We look forward to any future collaborations this may bring to the business.”

The BCIMO centre in Dudley is home to the test track developed as part of the wider research programme, on which they will now test the vehicle on to ensure that it performs as planned. Important trials will include the rapid battery charging system which will allow vehicle power to be replenished in minutes.

The project has been made possible thanks to funding from the Government’s Local Growth Fund through the Coventry and Warwickshire Local Enterprise Partnership (CWLEP) and the West Midlands Combined Authority Devolution Deal.


Solid-state batteries could be made more cleanly by scaling-up flash sintering

· Flash sintering is a ceramic processing technique which uses electric current to intensively heat the ceramic sample internally rather than using only external furnace heating. The process can lower ceramic processing temperatures and durations significantly, enabling ceramics to be co-processed with metals or other materials, and reducing energy use.

· However, the process can result in low quality ceramics due to weaknesses caused by inhomogeneities in the microstructure.

· The origins of these inhomogeneities caused by thermal gradients in the material during flash sintering have been studied by researchers based at WMG, University of Warwick and academic and industrial collaborators, and routes to mitigate the effects of these gradients are outlined.

· Adopting these modified flash sintering routes will enable the wider use of flash sintering in ceramic processing, enabling lower energy production of many useful ceramic products including solid-state batteries.

Densifying ceramics using flash sintering reduces energy use and may be used to improve the viability of manufacturing complex ceramic structures such as those required for solid state batteries by lowering the temperatures and shortening the duration of the heat treatment.

Working in collaboration with academic and industrial partners, researchers from WMG, University of Warwick have published a review of the state of the artPicture: Causes and Effects of thermal and microstructural gradients in flash sintered ceramics of flash sintering focusing on the formation of inhomogeneous regions within the ceramics which currently limit the scale-up potential of flash sintering. The review finds that thermal gradients are responsible for microstructural inhomogeneities and suggests of routes to eliminate or reduce these effects.

The reduction of energy use in the ceramic manufacturing industry is a key step in meeting global emissions reduction targets, as conventional processes require long firing treatments at very high temperatures. Several low-energy processes have been developed over the past decade, with flash sintering emerging as a particularly promising route for densification of materials for use in applications including solid state batteries, thermal barrier coatings, and ceramic joints.

In the paper, ‘Promoting microstructural homogeneity during flash sintering of ceramics through thermal management’ published as part of a special issue of the MRS Bulletin, Gareth Jones and Dr Claire Dancer from WMG, University of Warwick worked with collaborators from the University of Trento, Wuhan University of Technology, Normandie Université, and Lucideon Ltd to review the origins of microstructural variations in different regions of ceramic materials undergoing flash sintering.

Picture: Microstructural development changes with different sintering approaches. Flash sintering produces fine microstructures with very high density with lower energy use than conventional approaches.Differences in microstructural development originate from thermal gradients within the material during processing, and these can be reduced by careful thermal management during the flash sintering process. These include:

· Altering the method for applying electrodes

· Improving thermal homogeneity through insulation

· Tailoring the frequency of the AC current

· Developing contactless methods for applying the electric current - which are currently limited to consolidation of thermal barrier coatings.Picture: Simulation of heat distribution during flash sintering.

The findings of this review provide a roadmap for further research on thermal management in flash sintering, which will accelerate the development of the process for industrial implementation.

Dr Claire Dancer, leader of the Ceramics Group within the Materials and Sustainability Directorate at WMG, University of Warwick comments:

“Lowering ceramic processing temperatures by using techniques such as flash sintering is an essential step for manufacturing complex multi-material structures such as those needed for solid-state batteries, and for lowering overall energy use in the ceramic industry.

“However, the process must produce robust homogenous ceramic materials to be of widespread use. Our paper explains why flash sintering can result in inhomogeneous properties in ceramics and suggests a number of routes to mitigate these effects.”

ENDS

9 MARCH 2021

NOTES TO EDITORS

The work has been funded by an EPSRC New Investigator Award, a PhD studentship from ERDF and Lucideon, the Royal Society, and the High Value Manufacturing Catapult.

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/figure1.png
Caption: Causes and Effects of thermal and microstructural gradients in flash sintered ceramics.
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/figure2.png
Caption: Microstructural development changes with different sintering approaches. Flash sintering produces fine microstructures with very high density with lower energy use than conventional approaches.
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/figure3_png.png
Caption: Simulation of heat distribution during flash sintering.
Credit: WMG, University of Warwick

Paper available to view at: https://link.springer.com/article/10.1557/s43577-020-00010-2

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Tue 09 Mar 2021, 11:55 | Tags: Nanocomposites Materials and Manufacturing Research

Anti-microbial poles for public transport to be made in light of Covid-19 pandemic

Anti-microbial poles for public transport to be made in light of Covid-19 pandemicSince the beginning of the Covid-19 pandemic many people have been, or may feel, hesitant about taking public transport, due to the perceived risk of picking up germs from areas such as the grab-poles on trains, buses and trams, which are the principal point of contact.

However, a team including researchers from WMG at the University of Warwick, product designers Transport Design International (TDI), anti-microbial additive developers BioCote and Promethean Particles and the Health and Safety Executive (HSE), led by Derby based manufacturers Composites Braiding Ltd (CBL), will produce lightweight composite grab-poles with an embedded anti-microbial property in their project AMICABLE, thanks to a £480,000 award from the Innovate UK Smart Grant scheme.

The anti-microbial grab poles will be for use in a wide range of public transport applications, such as bus, tram, rail and underground. This should lead to a step-change in hygiene in public transportation and a reduction in transmission of infections of various origins.

Although researchers are currently focusing on public transport applications, there could be the potential for the materials to be used on cruise ships, medical furniture or wherever there are public-facing surfaces.

The teams, from WMG, CBL and TDI have previously worked together on making the materials for the Coventry Very-Light Rail system, and using their expertise from previous projects and concepts already developed for anti-microbial efficacy in sectors such as food packaging and healthcare, they hope to make the new grab-poles within the next 12 months. At the project completion there is an opportunity to demonstrate, for the first time, the new grab-poles directly within new prototype vehicles such as Revolution VLR and the Coventry Light Rail system.

The poles themselves will be retro-fittable, so not only can they be fitted into new vehicles, they can replace current steel poles in existing ones such as buses and the Underground. The project aims to make a range of poles at costs competitive to the current steel ones, however, due to their light-weight material they will be around a third of the weight and will also help with meeting decarbonisation goals by aiding fuel efficiency and manufacturing via lower carbon methods.

Dr Darren Hughes, from WMG, University of Warwick comments:
“As we work in developing future public transport solutions such as the Coventry Very-Light Rail system, the Covid-19 pandemic opened our eyes to the importance of also making transport as clean an environment as possible for passengers. It is clear that a key point of contact for passengers is the grab-poles and other similar structures. Therefore, incorporating anti-microbial grab poles into vehicles could encourage more people to opt for public transport which is generally an environmentally efficient mode of transport.”

James Taylor, from TDI comments:
“TDI specialises in the design of very light weight vehicles and products so the introduction on this new anti-microbial technology in thermoplastic composites for compliant new vehicle interior products is an extremely exciting opportunity”

Steve Barbour, of Derby-based specialists in thermoplastic braiding CBL adds:
“Using in-mould coating impregnation and fibre commingling techniques, anti-microbial particles will be incorporated into the composite rails during the moulding process. Importantly, as the anti-microbial material will be applied during manufacture, it becomes a permanent part of the structure and therefore is expected to be less susceptible to wear. However, when it does reach the end of its life the thermoplastic matrix material will be inherently recyclable, making the grab-poles environmentally friendly.”

ENDS

13 JANUARY 2021

NOTES TO EDITORS

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Wed 13 Jan 2021, 15:01 | Tags: Materials and Manufacturing Partnerships Research

Professor of Data Science awarded a Turing AI Acceleration Fellowship

Giovanni Montana, Professor of Data Science at WMG, has been awarded a Turing AI Acceleration Fellowship.

Professor Giovanni Montana’s project, Multi-Agent Deep Reinforcement Learning for Sequential Decision Making in Real-World Applications, aims to make advances in Deep Reinforcement Learning (DRL), an area of machine learning which teaches artificial decision makers such as robots and software agents how to interact with the world in order to achieve a desired goal. By allowing autonomous systems to learn a wide range of skills without human intervention, DRL will allow them to be effective in various applications, such as industrial assembly lines and warehouse management systems, driverless cars and in decision making for the most appropriate form of medical treatment for patients.

 Giovanni comments “I am thrilled to have been awarded such a prestigious fellowship that will support an exciting research programme in AI over the next 5 years. The project will aim at developing systems of artificial decision-makers that interact with the real world and autonomously develop collaborative strategies. For instance, in advanced manufacturing, we’ll develop self-coordinating robots in assembly lines that can carry out many different tasks and adapt to changing environments. In digital healthcare, we’ll leverage large volumes of historical NHS data to create an artificial team of specialised clinical experts that can reason under uncertainty and make joint decisions about patient care.”

Science Minister, Amanda Solloway said: “The UK is the birthplace of artificial intelligence and we have a duty to arm the next generation of Alan Turings with the tools that will keep the UK at the forefront of this remarkable technological innovation. The inspirational fellows we are backing today will use AI to tackle some of our greatest challenges head on, transforming how people live, work and communicate, cementing the UK’s status as a world leader in AI and data.”

Digital Minister, Caroline Dineange, said: "The UK is a nation of innovators and this government investment will help our talented academics use cutting-edge technology to improve people's daily lives - from delivering better disease diagnosis to managing our energy needs." 

EPSRC Executive Chair Professor Dame Lynn Gladden said: “The Turing AI Acceleration Fellowships will support some of our leading researchers to progress their careers and develop ground-breaking AI technologies with societal impact. By enhancing collaboration between academia and industry and accelerating these transformative technologies these Fellowships will help to maintain and build on the UK’s position as a world leader in AI.”


Early construction of prototype innovative light rail vehicle for the City of Coventry

The Coventry Very Light Rail (VLR) is an innovative light rail system which will be battery powered, lightweight and rail-based.

In March 2019 a 3D simulation of the vehicle was released, and even with Covid-19 lockdowns, the vehicle build is progressing on schedule at NP Aerospace in Coventry.

The front/side view of the vehicle so farOn the 25th November Coventry City Councillor Jim O'Boyle, Coventry Cabinet Member for Jobs and Regeneration, took the opportunity to see how the construction of the prototype, developed by engineers at WMG, University of Warwick for the City of Coventry is progressing.

WMG, University of Warwick have been working with TDI (Transport Design International) to deliver the novel very light rail vehicle, which as demonstrated in the photos is swiftly reaching completion with the driver’s desk and other sub systems now in place. The vehicle is expected to be finished in February 2021 ready for testing at the new rail innovation centre in Dudley.

Dr James Meredith, from WMG at the University of Warwick comments:
“WMG are delighted that the vehicle build is running on plan in spite of Covid-19. The project is an excellent showcase for UK engineering and manufacturing with over 70 % UK content. We look forward to testing the vehicle in 2021 alongside the innovative low cost trackform we are developing in parallel.”

Exterior side view of the vehicle so farCllr Jim O’Boyle, Coventry Cabinet Member for Jobs and Regeneration, said:

“It is very exciting to see the VLR prototype take shape and for the project to take another big step towards becoming a reality.

“VLR will make a massive difference to our city, revolutionising travel and helping the environment. It will help keep our city at the forefront of the new transport industry and help us to attract new firms and jobs to take the city forward. It also helps cement our position at the centre of the green revolution with work such as UK Battery Innovation Centre.

“There has been some amazing work by all the project partners in some very difficult times and I can’t wait to see the next stages and watch it come out of the design rooms and on to our city’s streets.”

Darren Smith, Head of TDI comments:From left to right: Cllr Jim O’Boyle, Nicola Small – Coventry City Council, James Kempston – NPA, Dr James Meredith – WMG, Darren Smith – TDI Credit: Mark Radford Photography
“TDI are extremely pleased with the progress to date on the project and are looking forward to delivering the vehicle to our client in early 2021, so that it can begin its testing phase at the new VLRIC in Dudley. The teams involved in the delivery process across our full supply chain have worked tremendously hard, under difficult circumstances this year and I would like to thank them all for their efforts.”

James Kempston, CEO NP Aerospace, comments:

“It’s great to see the progress that has been made on the Very Light Rail project at our facility in Coventry at a time when all businesses are feeling the pressure of the pandemic. The platform will offer significant benefits for local people and the wider economy and we are honoured to have been selected to be part of the project. The team have worked very hard to ensure a high level of build quality and we are looking forward to the final release of the vehicle early next year. It is also very encouraging to be part of a development which will have a significant environmental impact.”

 ENDS

 For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

Thu 26 Nov 2020, 11:02 | Tags: Materials and Manufacturing Partnerships

Woven Light Rail Design wins Gold at JEC World 2020 Innovation Awards

The BRAINSTORM project, which saw partners from Far-UK, Composite Braiding, TDI and WMG at the University of Warwick create a woven braided BRAINSTORMcarbon fibre composite frame for a Very-Light Rail (VLR), has won gold at the JEC World 2020 Innovation awards in the Category “Railway Vehicles and Infrastructure.”

The JEC World 2020 Innovation awards is the world’s leading international composites show, the awards ceremony took place virtually, and saw researchers working on the BRAINSTORM project take home gold in the category “Railway Vehicles and Infrastructure.”

The Innovate UK funded project started in 2018, and engineers from Far-UK, TDI, Composite Braiding and WMG, at the University of Warwick set out to make a lightweight VLR vehicle frame, which is braided from carbon fibre composites into a series of tubes. They created their first prototype demonstrator frame in May 2019, which drew attention from the then Parliamentary Under Secretary of State and Minister for Business and Industry, Andrew Stephenson.

The frame is unique as it can be easily assembled by adhesive and simple welding, and can be repaired if damaged, and recycled or reused in other structures at its end of life.

Dr Darren Hughes Associate Professor in Materials and Manufacturing at WMG at the University of Warwick explains:

“It is an honour to have won at the JEC World 2020 Innovation awards, we have worked incredibly hard to create an innovative frame offering significant weight-saving that can allow VLR light rail services to operate in a more sustainable way. Reduced mass leads to a lower requirement for power for propulsion and also lowers the stress placed on the track system. This can also open up significant cost savings in light rail systems.”

“The technology also ensures that the vehicle is tough for a long life in service, easily repairable and strong enough to protect the passengers on board.”

Dr Kevin Lindsey of Nottingham based lightweight structural composite components company Far-UK Ltd said:

“To have our achievements acknowledged and awarded is validation of our ongoing research into lightweight structures. The design process that we used allowed the development of the ultralight yet safe structure. We are now ready to take structures such as these into higher volume in our new manufacturing facility.”

Steve Barbour of Derby based specialists in thermoplastic braiding company Composite Braiding Ltd said:

“It is great that the technology we have been developing has helped lead to such a fantastic outcome. Braiding at rates of over a mile a day, we have a highly automated process that is capable of producing high volume, lower cost structural components that are inherently recyclable. It’s fantastic that the potential has been recognised.”

Paul Salkeld of TDI (Transport Design International) based at Stratford-Upon-Avon adds:

“The braiding method can be used with a wide range of materials including carbon, glass, basalt and aramid. We hope this can revolutionise the design of future transport, and are actively involved particularly in the rail sector to produce more economical and environmentally beneficial vehicles.”

Fri 15 May 2020, 09:47 | Tags: Materials and Manufacturing Partnerships Research

Older news