Skip to main content Skip to navigation

WMG News

Select tags to filter on

Composites award wins for WMG research

Two WMG research projects, Project AMICABLE and Project TUCANA, were recognised at the Composites Industry Awards this week.

Project AMICABLE, a 12-month Innovate UK funded project, which set out to produce a lightweight, permanently antimicrobial grab pole for use in publicImage of grab rails on tube train transport, won the Innovation in Composite Materials award.

Researchers from WMG’s Lightweight Materials and Manufacturing team worked with, product designers Transport Design International (TDI), anti-microbial additive developers BioCote and Promethean Particles and the Health and Safety Executive (HSE), and manufacturers Composites Braiding Ltd (CBL), to produce lightweight composite grab-poles with an embedded anti-microbial property.

The anti-microbial grab poles can be used in a wide range of public transport applications, such as bus, tram, rail and underground, helping to reduce transmission of infections.

A second project involving experts from WMG, called Project Tucana and led by Jaguar Land Rover, was recognised in the Innovation in Composite Design category.

The APC funded project is an enabler for future generations of Battery Electric Vehicles (BEV), demonstrated through the redesign of the rear structure of a Jaguar I-Pace, the acclaimed Jaguar Land Rover (JLR) BEV, bringing together a consortium of world-leading academic and industry partners. Researchers and engineers from WMG’s Automotive Composites Research Centre helped to develop the manufacturing technology to design stiffer and lighter vehicle structures using light weight carbon fibre materials.

Read more about the Composites Industry Awards here: Composites Industry Awards | Composites UK


Coventry’s Affordable Very Light Rail Track Unveiled

§ As part of Coventry Very Light Rail (VLR), Coventry City Council’s flagship transport project, a novel track form has been designed and manufactured by researchers from WMG, University of Warwick, together with their design partners Ingerop/Rendel.

§ The track sits just 30cm into the road surfacing, whereas traditional tram tracks typically involve digging a metre down and moving utilities such as water, gas and electricity.

§ As a result of its shallow depth and ability to be embedded in an existing highway the cost is significantly lower.

§ The urban VLR track may cost as little as £10m per km to install, compared to traditional trams which cost upwards of £25m per km, sometimes as much as £100m per km in city centre locations, making urban rail a possibility for smaller towns and cities in the future.

 

Coventry Very Light Rail (VLR) took a major step forward on 24 September as Coventry City Council and WMG, University of Warwick showcased a breakthrough new track design which aims to drive down the costs associated with the installation of urban light rail.

Bringing together stakeholders from Coventry and across the West Midlands, engineers from WMG, University of Warwick provided further details on the Coventry VLR track form, which has been designed in partnership with Ingerop and its UK subsidiary Rendel.

At the University of Warwick’s ‘The Slate’ conference centre researchers from WMG, University of Warwick spoke about the engineering challenges that had been overcome in the design of the track form.

Councillor Jim O’Boyle, cabinet member for jobs, regeneration and climate change at Coventry City Council, spoke about the potential for Coventry Very Light Rail to transform public transport in Coventry and in smaller and medium sized towns and cities, enabling the next generation of clean, green transport.

WMG, University of Warwick and Ingerop have successfully created, designed and built the novel track form, designed to sit just 30 cm inside the road surface, making it easy to install and remove, significantly reducing the impact on utilities and potentially saving millions of pounds lost to excavation and moving gas, electrical and telecommunication systems. The new track is expected to cost as little as £10m per km compared to current tram tracks, which can cost upwards of £25m per km, and up to £100m per km in city centre locations.

The track form has been developed in parallel to a zero-emission, battery-powered lightweight shuttle vehicle developed in partnership with TDI, which willPictured left to right: Stuart Croft (Vice Chancellor, University of Warwick) Margot James (Executive Chair, WMG), and Councillor Jim O’Boyle (Cabinet Member for Jobs, Regeneration and Climate Change, Coventry City Council), stand on the new Coventry VLR track form. become autonomous, working like the London Underground system, where there is no timetable and passengers can hop on and off.

The vehicle is lightweight, and there will be no overhead power supply which is both costly and can have a negative impact to the city-scape.

Councillor Jim O’Boyle, cabinet member for jobs, regeneration and climate change, said:
”It’s incredible to see this one-of-a-kind, Coventry-led project move even closer to completion. Coventry Very Light Rail has the potential to provide Coventry, and towns and cities across the UK, with an affordable, high-quality transport mode using clean, green energy and it further cements our ambition to lead the green industrial revolution. Originated, designed and developed right here in Coventry it also has the potential to support new jobs in the future.

“This new track form, the first of its kind, is a critical part of the project and we would not be here today without the help of our incredible partners, some of the best engineering talent anywhere in the world, based right here in Coventry. I want to congratulate WMG and Ingerop on their success so far and I look forward to seeing the first tracks laid on our city’s streets.”

Dr Darren Hughes, Associate Professor at WMG, University of Warwick comments:
“The main driver of the Coventry VLR project was to make light rail as affordable and environmentally friendly as possible, and the track is the major part of this.

“Working with Ingerop we have successfully achieved this goal, making a unique track form using advanced materials and manufacturing processes which is not only affordable but also allows rapid installation, minimising disruption to local properties and businesses. The progress made is an excellent example of a city council, a university and an industry partner working together to solve a public transportation challenge.”

Margot James, Executive Chair at WMG, said:

“It is very exciting to see the latest development in the Coventry VLR project. The track technology is a world first, and reaching this milestone is a testament to the strength of the consortium and the hard work of all our partners. I am thrilled at the pivotal role WMG and the University of Warwick have played in this ground-breaking piece of work.”

Philippe-André Hanna, Director for Transportation at Ingerop added:

“We work all around the world on light rail schemes, in France, Spain, Africa and in the Americas and these have been very successful in bringing affordable public transport to urban areas. Light rail provides comfort, safety and frequent services, and has the potential to take people out of their cars, and reduce air pollution. We had been working over many years on how to optimise the depth of the trackform from the usual typical depth of 56cm one in order to reduce costs and to avoid having to divert any utilities.

“When we met WMG, University of Warwick and Coventry City Council, we were immediately struck by the potential to bring about a revolution in the light rail market and found the project extremely exciting. Together with WMG, and our UK subsidiary Rendel, a company active for more 175 years in the UK, we created a fully integrated team and found a true spirit of a collaboration within the whole group. This allowed us to create a great product, which is extremely innovative, and thanks to that we have succeeded to reach a new standard of a 30cm depth of trackform construction. Reducing the depth of excavation, and avoiding the diversion and impact on all utilities, we expect a much lower cost of construction than the usual light rail systems.

“We are looking forward to installing the first slabs in the road in Coventry and thereafter providing Coventry with a new innovative, cost effective, comfortable and regular public transportation system.”

Coventry VLR is being led by Coventry City Council and supported by a number of partners, including the Black Country Local Enterprise Partnership, Coventry and Warwickshire Local Enterprise Partnership, Dudley Metropolitan Borough Council and the European Regional Development Fund.

-ENDS-

27 SEPTEMBER 2021

NOTES TO EDITORS:

High-res images available here:

IMAGE 1 LANDSCAPE

https://warwick.ac.uk/services/communications/medialibrary/images/september_2021/image_1__l_to_r_margot_james_prof_stuart_croft_and_cllr_jim_oboyle_with_model_of_vlr_track.jpg

CAPTION:

Pictured left to right: Margot James (Executive Chair, WMG), Stuart Croft (Vice Chancellor, University of Warwick and Councillor Jim O’Boyle (Cabinet Member for Jobs, Regeneration and Climate Change, Coventry City Council), stand on the new Coventry VLR track form.

IMAGE 2 PORTRAIT

https://warwick.ac.uk/services/communications/medialibrary/images/september_2021/image_2__l_to_r__prof_stuart_croft_margot_james_and_cllr_jim_oboyle_with_model_of_vlr_track.jpg

CAPTION:

Pictured left to right: Stuart Croft (Vice Chancellor, University of Warwick) Margot James (Executive Chair, WMG), and Councillor Jim O’Boyle (Cabinet Member for Jobs, Regeneration and Climate Change, Coventry City Council), stand on the new Coventry VLR track form.

Credit: Coventry City Council

For further information on the track please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

For further information on the Coventry VLR project please contact:

Liam Hughes
Assistant Communications Officer
(Very Light Rail and Our Future Moves)
Coventry City Council
Tel: +44 24 7538 1192
Email: liam.hughes@coventry.gov.uk

 

Mon 27 Sep 2021, 14:10 | Tags: Materials and Manufacturing Partnerships Research

Pioneering industry collaboration accelerates hydrogen refuelling innovation for HGVs

WMG is working with Midlands-based SME Hy-Met Limited and Logan Energy to deliver the Hydrogen Prototype Equipment for Refuelling (HyPER) project.

Together, the consortium will develop a next-generation hydrogen flowmeter for refuelling Heavy Goods Vehicles (HGVs). These will be used for hydrogenImage of HGVs refuelling systems, and will be lightweight, smaller, more cost effective and more accurate than existing instruments.

This follows recent funding from the UK Government’s Department of Transport zero emission road freight trials through Innovate UK. The project value totals around £170,000.

The new meter will also be easier to manufacture and maintain than current options on the market.

The project aims to reduce the cost of hydrogen refuelling and enable the wider adoption of hydrogen by transport fleets and other users.

Nishal Ramadas, co-founder and CEO of Hy-Met, said: “Since launching Hy-Met in January, we’ve been motoring ahead with our plans to help with the transition to net zero. With our innovative measurement platform, Hy-Met is combining our deep hardware and software expertise to tackle some of the complex measurement challenges facing the hydrogen sector.

“When building the consortium, we knew we needed partners with detailed knowledge of the requirements for hydrogen refuelling and advanced manufacturing and prototyping capabilities.

“Our choice of project partners was clear and we are very happy Logan Energy and WMG have joined us in tackling this refuelling challenge.”

Bill Ireland, Chief Executive at Logan Energy, said: “Using hydrogen to power lorries is one of the key steps towards helping Scotland and the UK tackle the climate emergency.

“Making the switch from burning diesel to using hydrogen will cut the amount of carbon dioxide and other harmful gases being pumped into the atmosphere.

“There are a number of advancements we need to take before hydrogen becomes commonplace on our roads and one of the crucial elements is making it cheap and easy to refuel.

“For nearly three decades Logan Energy has been at the forefront of developing new and innovative hydrogen technologies both here in the UK and abroad. This collaborative partnership with Hy-Met and WMG is another step towards helping the UK grow its capabilities within the hydrogen industry and the drive to net-zero.”

Dmitry Isakov, Assistant Professor at WMG, said: “Securing this funding from the Department of Transport through Innovate UK will help us to accelerate our work. Working alongside Logan Energy and Hy-Met will allow us all to combine our knowledge and expertise to develop an industry-leading hydrogen flowmeter.”


Crash-resistant glazing installed on the new Coventry Very Light Rail Vehicle

· Crash-resistant glazing features on the new Coventry Very Light Rail vehicle, and could be used to improve passenger safety in other means of public transport

· The glazing is made of a highly resilient polymer and has been designed by engineers from WMG - University of Warwick, Far-UK and TDi Ltd.

· The glazing, which is highly resistant to failure, has advanced coating to increase product lifetime.

A new form of window glazing featuring a lightweight polymer with an advanced scratch-resistant coating has been installed on the CoventryImage of Coventry VLR Very Light Rail vehicle, and could be used in other means of public transport. The new windows are highly resistant to breakage which provides passengers with a step-change in safety.

The glazing has been designed by a collaboration of WMG - University of Warwick, Far-UK (Lead) and TDi Ltd and was funded via the UK Innovation agency, Innovate UK (SBRI Rail Demonstrations: First of a Kind 2020).

The official report into the 2016 Sandilands (Croydon) tram crash made a number of recommendations for tram vehicle improvements. It called for development of windows and doors with improved strength. To address this need, researchers have been on a mission to make public transport safer in new innovative ways, one of which features crash-resistant glazing.

The new glazing is now revealed on the newly developed Coventry Very Light Rail vehicle, thanks to the Innovate UK funded project “Resilient glazing for safer passenger vehicle operation” (Resi-Glaze), which is an exciting collaboration between industry and academia.

The new glazing has been fully tested to ensure that it can survive exposure to severe projectile impact, all weather conditions, and has no negative impact on the environment compared to glass.

The technical team was then able to install it on the new Coventry Very Light Rail vehicle, meaning that the vehicle now holds two public transport firsts, as it has anti-microbial grab poles and crash-resistant glazing.

Dr Darren Hughes, from WMG at the University of Warwick comments:

“The new Coventry Light Rail vehicle has a number of major innovations including being lightweight, battery-powered and having reduced environmentalImage of Coventry VLR footprint. The vehicle has shown that major steps forward can be made using a UK-centric manufacturing approach. The Sandilands accident report identifies clearly the need for safer glazing in trams and we decided this would be the perfect opportunity to design and make the glazing and see it installed. Although we have demonstrated the technology in trams, we believe it points a path for safer future glazing solutions in the wider rail sector.”

Dr Sophie Cozien-Cazuc from Far-UK Ltd adds:
“Far-UK has been thrilled to be given the opportunity to develop and manufacture resilient lightweight polymeric panels for the Coventry Very Light Rail vehicle. After the Croydon accident in November 2016, there was the need for more robust glazing options. This Resi-Glaze project allows innovations from other transport sectors to be brought to the rail industry. Polycarbonate glazing has moved on from the 1980s. Far is looking forward to providing this new glazing in the transport sector in general.”

Paul Salkeld from TDi Ltd adds:
“Transport Design International have been involved in many innovative projects over the years and this project has sound relevance as we look to promote safer and cleaner ways of providing public transport. We are looking forward to seeing this moving forward now in many applications.”

Councillor Jim O’Boyle cabinet member for jobs, regeneration and climate change said:
“I am delighted that this glazing innovation is being tested as part of our vehicle development. It will also have much wider application too, which is very exciting.

“We are right at the front of the green industrial revolution and our plans for Very Light Rail have already achieved a number of world first developments. The Coventry Very Light Rail project has the potential to revolutionise the way people travel, importantly at an affordable cost, and it will take another step forward later this year when both our new vehicle and our innovative track system is tested in real-world conditions.”

ENDS

14 JULY 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/dsc_3057_002.jpeg

Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/230321vlr_citycentre_006.jpg
Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/230321vlr_citycentre_063.jpg
Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


Additive layer manufacturing supply chains to be protected from cyber-attacks in light of COVID-19

· Additive manufacturing was upped during the COVID-19 pandemic to make ventilators, however when production was up so were the number of cyber-attacks

· In order to continue production without disruption new technologies are needed, which researchers from WMG, University of Warwick aim to deliver thanks to a grant from EPSRC

· Working with partners the new technologies developed will secure the supply chain in case of another global threat

The COVID-19 pandemic highlighted just how vulnerable UK manufacturing supply chains are, as there was an increase in the volume of cyber-Image - Covid19 and cyber attacksenabled attacks on cyber-physical systems. There is therefore an urgent need to develop technologies and methods to support disruption-resilient manufacturing.

This has been made possible, thanks to over £1 million of funding from the EPSRC, which will enable Dr Greg Gibbons, Prof Carsten Maple and Dr Greg Epiphaniou from WMG, and other colleagues from Henley Business School and Surrey Business School, to research into disruption-resilient-manufacturing.

Their project, entitled, ‘Responsive Additive Manufacturing to Overcome Natural and Attack-based disruption (RAMONA)’, will address the need and opportunity for the UK to become global leaders in responsive manufacturing, taking advantage of the opportunities presented by UK strengths in Additive Manufacturing.

The importance and limitations of responsive manufacturing systems – those that are able to respond to minimise the impact of a disruption – in the UK have been brought to the fore by COVID-19. Traditional supply chain weaknesses have been exposed, creating a ‘watershed’ moment for additive manufacturing, which could be used to complement existing manufacturing supply chains and embed resilience within them.

This was evidenced by the Ventilator Challenge UK, where additive manufacturing was a key technology in supporting the production of thousands of ventilators for the NHS within 12 weeks.

Additive Manufacturing has particular strengths in supporting distributed manufacturing, on-demand production, and rapid development and approval of component design. However, this type of responsive manufacturing capability is uncommon and requires further development before it can be embedded as an industry wide capability.

This will be achieved by addressing the following challenges:

- How to develop effective techniques to detect disruption

- How to effectively and accurately analyse the disruption; and

- How to respond to disruption through reconfigured manufacture.

Image of Greg GibbonsDr Greg Gibbons, Reader in Additive Manufacturing in WMG at Warwick, comments:

“This award is an exciting opportunity to engage in this timely and highly impactful research. It will enable us to develop the technologies required by UK manufacturing to ensure robust and reliable supply chains that can respond rapidly and optimally to disruptive threats, making a real difference to the security of supply when faced with global threats such as we have seen during the COVID Pandemic.

“It is fantastic to be able to collaborate with scholars, as well as leading organisations across a range of industries including automotive, defence, security and healthcare in developing solutions to the key challenges facing manufacturing today.”

Dr Gibbons will be working alongside colleagues from WMG, Henley Business School, University of Reading, and Surrey Business School at the University of Surrey. They will also be working with multiple project partners from industry, including Royal Berkshire NHS Foundation Trust and Thales Ltd.

The research will begin later in the year (September 2021) and is due to finish in early 2024. It received a total grant of £1,024,124. Find out more details of the grant.

ENDS

7 JULY 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march2014/dr_greg_gibbons.jpg
Caption: Dr Greg Gibbons, from WMG, University of Warwick
Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


WMG research recognised at key industry awards

Image of Green MaterialsWMG Professor Ton Peijs’s paper entitled: “Turning low-cost recycled paper into high-value binder-free all-cellulose panel products” has been awarded the prestigious Green Materials Journal Prize by IEC Publishing, part of the Institute of Civil Engineers.

The IEC Awards recognise research of exceptional quality and benefit to the civil engineering, construction and materials science community.

Professor Peijs will be officially presented with the award at a ceremony in London in October.

Ton Peijs is a Professor of Polymer Engineering and Director of the National Polymer Processing Centre at WMG. His research focuses mainly on materials and processing innovations in polymers and composites. Ton has made notable contributions to areas such as hybrids, multifunctional materials, damage tolerance and durability, natural fibres and bio-based materials, polymer fibres and nanocomposites. He has also pioneered the development of sustainable composites, including the development of fully recyclable all-polymer composites.

Read Professor Peijs’s paper in full here: Turning low-cost recycled paper into high-value binder-free all-cellulose panel products | Green Materials (icevirtuallibrary.com)

Read more about WMG’s plastics research here: Plastics (warwick.ac.uk)


Coventry Very Light Rail tours its future home

The Coventry VLR on tour in the city centre Credit: Mark Radford PhotographyCoventry City Council’s prototype Very Light Rail vehicle, which has the potential to transform how people move about the city, is set to be moved ready for real on track testing.

Over the last two years researchers from WMG, University of Warwick together with TDi Ltd, have been designing and building the new Coventry Very Light Rail vehicle for Coventry City Council, which will see an electric powered, zero-emissions, lightweight, rail-based public transport system arrive in Coventry.

The vehicle is being moved from NP Aerospace in the city for some static software testing before moving to a dedicated track at BCIMO in Dudley.

The prototype vehicle has done a tour of Coventry so it could see its future operational home. After leaving the vehicle production site in Coventry it stopped outside the Co-op building and the Transport Museum so that the public could get a better view.Caption: The Coventry VLR outside the Transport Museum Arches  Credit: Mark Radford Photography

Councillor Jim O’Boyle cabinet member for jobs and regeneration and Coventry and Warwickshire LEP board director said, “I am really pleased to see the first prototype vehicle out of the factory and on to our city’s streets. Even on a low loader it looks impressive – modern, sleek and of course the fact its battery powered means it’s good for the environment and air quality too.

“Very Light Rail has reached this really important point thanks to all of the researchers, innovators, engineers and manufacturing skills we have right here in the city. And I believe that we can create jobs and opportunities for local people as we lead the Green Industrial Revolution.

“Coventry was the beating heart of the carbon revolution and now with projects like this, UKBIC, our electric bus fleet and our plans for a Gigafactory we will lead the zero-carbon revolution too.Caption: Councillor Jim O’Boyle with the Coventry VLR  Credit: Mark Radford Photography

“On track testing will take some time – but it should prove the concept – and at that stage I expect there to be lots of interest in VLR from other areas of the UK and abroad. This is a very exciting moment.”

Dr Darren Hughes, from WMG, University of Warwick comments:
“It is very exciting for us to see the development of the Coventry Light Rail vehicle move onto the next phase of testing in Dudley, and to see the vehicle in the City which it will one day call home.

“The vehicle has been constructed within Coventry with a reliance on a regional supply chain where possible, showing the strength in depth of local manufacturing. It is a unique vehicle with state-of-the-art technologies including an advanced battery power-train and resilient glazing making it even safer for public use.”

Helen Martin, director of regeneration & enterprise at Dudley Council said: “The Very Light Rail Test Track and National Innovation Centre (NIC) is a key project for our borough. It will offer an innovative and exciting opportunity to provide lower cost local rail connectivity, encouraging shift from private vehicles towards public transport and creating economic benefits in terms of skills and supply chain opportunities.Caption: Inside the Coventry VLR vehicle  Credit: Coventry City Council/William Hunt

“With the test track now completed, we’re looking forward to testing getting underway later this year.”

Darren Smith Head of TDI adds: “The TDI team are extremely pleased with the projects’ progress to date and the local benefits it has enabled. The work our supply chain, including our colleagues at NP Aerospace have engaged in, has produced an outstanding first off demonstrator for this hugely important and innovative project. The future economic benefits, both nationally and locally, this project will bring cannot be underestimated and TDI are very proud to be entrusted to deliver it for our client, WMG.”

James Kempston, CEO, NP Aerospace, comments: “Collaboration on the VLR project with WMG and TDI has been a great success, resulting in an exceptional prototype, which is ready to begin testing. The project has expanded our capability in the prototype vehicle industry and has enabled us to support a significant environmental transport initiative for the people of Coventry. It’s a very positive story for UK manufacturing with the challenges of the pandemic and Brexit and it’s particularly impressive what the team have delivered in just 8 months. We look forward to any future collaborations this may bring to the business.”

The BCIMO centre in Dudley is home to the test track developed as part of the wider research programme, on which they will now test the vehicle on to ensure that it performs as planned. Important trials will include the rapid battery charging system which will allow vehicle power to be replenished in minutes.

The project has been made possible thanks to funding from the Government’s Local Growth Fund through the Coventry and Warwickshire Local Enterprise Partnership (CWLEP) and the West Midlands Combined Authority Devolution Deal.


Solid-state batteries could be made more cleanly by scaling-up flash sintering

· Flash sintering is a ceramic processing technique which uses electric current to intensively heat the ceramic sample internally rather than using only external furnace heating. The process can lower ceramic processing temperatures and durations significantly, enabling ceramics to be co-processed with metals or other materials, and reducing energy use.

· However, the process can result in low quality ceramics due to weaknesses caused by inhomogeneities in the microstructure.

· The origins of these inhomogeneities caused by thermal gradients in the material during flash sintering have been studied by researchers based at WMG, University of Warwick and academic and industrial collaborators, and routes to mitigate the effects of these gradients are outlined.

· Adopting these modified flash sintering routes will enable the wider use of flash sintering in ceramic processing, enabling lower energy production of many useful ceramic products including solid-state batteries.

Densifying ceramics using flash sintering reduces energy use and may be used to improve the viability of manufacturing complex ceramic structures such as those required for solid state batteries by lowering the temperatures and shortening the duration of the heat treatment.

Working in collaboration with academic and industrial partners, researchers from WMG, University of Warwick have published a review of the state of the artPicture: Causes and Effects of thermal and microstructural gradients in flash sintered ceramics of flash sintering focusing on the formation of inhomogeneous regions within the ceramics which currently limit the scale-up potential of flash sintering. The review finds that thermal gradients are responsible for microstructural inhomogeneities and suggests of routes to eliminate or reduce these effects.

The reduction of energy use in the ceramic manufacturing industry is a key step in meeting global emissions reduction targets, as conventional processes require long firing treatments at very high temperatures. Several low-energy processes have been developed over the past decade, with flash sintering emerging as a particularly promising route for densification of materials for use in applications including solid state batteries, thermal barrier coatings, and ceramic joints.

In the paper, ‘Promoting microstructural homogeneity during flash sintering of ceramics through thermal management’ published as part of a special issue of the MRS Bulletin, Gareth Jones and Dr Claire Dancer from WMG, University of Warwick worked with collaborators from the University of Trento, Wuhan University of Technology, Normandie Université, and Lucideon Ltd to review the origins of microstructural variations in different regions of ceramic materials undergoing flash sintering.

Picture: Microstructural development changes with different sintering approaches. Flash sintering produces fine microstructures with very high density with lower energy use than conventional approaches.Differences in microstructural development originate from thermal gradients within the material during processing, and these can be reduced by careful thermal management during the flash sintering process. These include:

· Altering the method for applying electrodes

· Improving thermal homogeneity through insulation

· Tailoring the frequency of the AC current

· Developing contactless methods for applying the electric current - which are currently limited to consolidation of thermal barrier coatings.Picture: Simulation of heat distribution during flash sintering.

The findings of this review provide a roadmap for further research on thermal management in flash sintering, which will accelerate the development of the process for industrial implementation.

Dr Claire Dancer, leader of the Ceramics Group within the Materials and Sustainability Directorate at WMG, University of Warwick comments:

“Lowering ceramic processing temperatures by using techniques such as flash sintering is an essential step for manufacturing complex multi-material structures such as those needed for solid-state batteries, and for lowering overall energy use in the ceramic industry.

“However, the process must produce robust homogenous ceramic materials to be of widespread use. Our paper explains why flash sintering can result in inhomogeneous properties in ceramics and suggests a number of routes to mitigate these effects.”

ENDS

9 MARCH 2021

NOTES TO EDITORS

The work has been funded by an EPSRC New Investigator Award, a PhD studentship from ERDF and Lucideon, the Royal Society, and the High Value Manufacturing Catapult.

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/figure1.png
Caption: Causes and Effects of thermal and microstructural gradients in flash sintered ceramics.
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/figure2.png
Caption: Microstructural development changes with different sintering approaches. Flash sintering produces fine microstructures with very high density with lower energy use than conventional approaches.
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/figure3_png.png
Caption: Simulation of heat distribution during flash sintering.
Credit: WMG, University of Warwick

Paper available to view at: https://link.springer.com/article/10.1557/s43577-020-00010-2

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Tue 09 Mar 2021, 11:55 | Tags: Nanocomposites Materials and Manufacturing Research

Anti-microbial poles for public transport to be made in light of Covid-19 pandemic

Anti-microbial poles for public transport to be made in light of Covid-19 pandemicSince the beginning of the Covid-19 pandemic many people have been, or may feel, hesitant about taking public transport, due to the perceived risk of picking up germs from areas such as the grab-poles on trains, buses and trams, which are the principal point of contact.

However, a team including researchers from WMG at the University of Warwick, product designers Transport Design International (TDI), anti-microbial additive developers BioCote and Promethean Particles and the Health and Safety Executive (HSE), led by Derby based manufacturers Composites Braiding Ltd (CBL), will produce lightweight composite grab-poles with an embedded anti-microbial property in their project AMICABLE, thanks to a £480,000 award from the Innovate UK Smart Grant scheme.

The anti-microbial grab poles will be for use in a wide range of public transport applications, such as bus, tram, rail and underground. This should lead to a step-change in hygiene in public transportation and a reduction in transmission of infections of various origins.

Although researchers are currently focusing on public transport applications, there could be the potential for the materials to be used on cruise ships, medical furniture or wherever there are public-facing surfaces.

The teams, from WMG, CBL and TDI have previously worked together on making the materials for the Coventry Very-Light Rail system, and using their expertise from previous projects and concepts already developed for anti-microbial efficacy in sectors such as food packaging and healthcare, they hope to make the new grab-poles within the next 12 months. At the project completion there is an opportunity to demonstrate, for the first time, the new grab-poles directly within new prototype vehicles such as Revolution VLR and the Coventry Light Rail system.

The poles themselves will be retro-fittable, so not only can they be fitted into new vehicles, they can replace current steel poles in existing ones such as buses and the Underground. The project aims to make a range of poles at costs competitive to the current steel ones, however, due to their light-weight material they will be around a third of the weight and will also help with meeting decarbonisation goals by aiding fuel efficiency and manufacturing via lower carbon methods.

Dr Darren Hughes, from WMG, University of Warwick comments:
“As we work in developing future public transport solutions such as the Coventry Very-Light Rail system, the Covid-19 pandemic opened our eyes to the importance of also making transport as clean an environment as possible for passengers. It is clear that a key point of contact for passengers is the grab-poles and other similar structures. Therefore, incorporating anti-microbial grab poles into vehicles could encourage more people to opt for public transport which is generally an environmentally efficient mode of transport.”

James Taylor, from TDI comments:
“TDI specialises in the design of very light weight vehicles and products so the introduction on this new anti-microbial technology in thermoplastic composites for compliant new vehicle interior products is an extremely exciting opportunity”

Steve Barbour, of Derby-based specialists in thermoplastic braiding CBL adds:
“Using in-mould coating impregnation and fibre commingling techniques, anti-microbial particles will be incorporated into the composite rails during the moulding process. Importantly, as the anti-microbial material will be applied during manufacture, it becomes a permanent part of the structure and therefore is expected to be less susceptible to wear. However, when it does reach the end of its life the thermoplastic matrix material will be inherently recyclable, making the grab-poles environmentally friendly.”

ENDS

13 JANUARY 2021

NOTES TO EDITORS

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Wed 13 Jan 2021, 15:01 | Tags: Materials and Manufacturing Partnerships Research

Professor of Data Science awarded a Turing AI Acceleration Fellowship

Giovanni Montana, Professor of Data Science at WMG, has been awarded a Turing AI Acceleration Fellowship.

Professor Giovanni Montana’s project, Multi-Agent Deep Reinforcement Learning for Sequential Decision Making in Real-World Applications, aims to make advances in Deep Reinforcement Learning (DRL), an area of machine learning which teaches artificial decision makers such as robots and software agents how to interact with the world in order to achieve a desired goal. By allowing autonomous systems to learn a wide range of skills without human intervention, DRL will allow them to be effective in various applications, such as industrial assembly lines and warehouse management systems, driverless cars and in decision making for the most appropriate form of medical treatment for patients.

 Giovanni comments “I am thrilled to have been awarded such a prestigious fellowship that will support an exciting research programme in AI over the next 5 years. The project will aim at developing systems of artificial decision-makers that interact with the real world and autonomously develop collaborative strategies. For instance, in advanced manufacturing, we’ll develop self-coordinating robots in assembly lines that can carry out many different tasks and adapt to changing environments. In digital healthcare, we’ll leverage large volumes of historical NHS data to create an artificial team of specialised clinical experts that can reason under uncertainty and make joint decisions about patient care.”

Science Minister, Amanda Solloway said: “The UK is the birthplace of artificial intelligence and we have a duty to arm the next generation of Alan Turings with the tools that will keep the UK at the forefront of this remarkable technological innovation. The inspirational fellows we are backing today will use AI to tackle some of our greatest challenges head on, transforming how people live, work and communicate, cementing the UK’s status as a world leader in AI and data.”

Digital Minister, Caroline Dineange, said: "The UK is a nation of innovators and this government investment will help our talented academics use cutting-edge technology to improve people's daily lives - from delivering better disease diagnosis to managing our energy needs." 

EPSRC Executive Chair Professor Dame Lynn Gladden said: “The Turing AI Acceleration Fellowships will support some of our leading researchers to progress their careers and develop ground-breaking AI technologies with societal impact. By enhancing collaboration between academia and industry and accelerating these transformative technologies these Fellowships will help to maintain and build on the UK’s position as a world leader in AI.”


Older news