Please read our student and staff community guidance on COVID-19
Skip to main content Skip to navigation

WMG News

Select tags to filter on

It’s electrifying!

Electric VehiclesWMG Centre High Value Manufacturing Catapult, with support from Advanced Propulsion Centre (APC) Electrical Energy Storage Spoke, has created a series of short educational videos to help explain the process of transport electrification.

There are a total of three episodes featuring WMG’s Electric Vehicle experts Professor David Greenwood, Research Fellow Faduma Maddar, and Dr Mel Loveridge.

In each episode, the experts explain more about the research carried out at WMG’s Energy Innovation Centre and address the key issues surrounding an electric future.

The videos will now be shared with policy makers, and schools across Coventry and Warwickshire to help support STEM learning.

The three episodes can be found in WMG’s Electric Vehicle playlist here.

Wed 15 Jul 2020, 11:41 | Tags: HVM Catapult STEM Education Transport Electrification

WMG joins the Electric Revolution challenge

DER ChallengeWMG is proud to be playing its part in the government’s Driving the Electric Revolution challenge.

Fourteen winning projects, announced by the Business Secretary in March, will share a total of £6.7 million. These projects will help boost supply chain efficiencies in industries affected by electrification, from aerospace to automotive, to energy and rail.

Transport Minister Rachel Maclean said:

“Funding and increased support for state-of-the-art electric manufacturing centres will help people, goods and services move across the nation, in a greener, safer and more reliable way than ever before.

By investing in world-leading science and engineering institutions, we are creating a modern transport system, bringing communities closer together while reducing the UK’s contribution to climate change.”

Co-ordinated by WMG Centre High Value Manufacturing Catapult, WMG at the University of Warwick, will be part of the project consortiums for High Volume E-Machine Stack Manufacture and Lightweight Aluminium Winding (LAW).

High Volume E-Machine Stack Manufacture

This project brings WMG together with Brandauer, and Jaguar Land Rover to improve the production methods, tooling design, processes and material selection used in the creation of rotor and stator components to pave the way to a high volume production of thinner laminations in the UK.

Given the rise of electric vehicles and more electrified systems it is strategically desirable for the UK to develop its own supply chain for the production and distribution of high-performance electric machines at volume. This project seeks to close the gap in UK-based supply of rotor and stator lamination stacks.

Brandauer is already established as a market leader in high precision stampings and pressings in multiple sectors but does not currently have the capability to meet the demand of the automotive sector. This will create the opportunity for Brandauer to not just enter the automotive supply chain, but to do so as best-in-class.

Lightweight Aluminium Winding (LAW)

A consortium, led by Aspire Engineering, with WMG, Voltalogic, Ashwoods Automotive, Hydro Aluminium Rolled Products will develop a winding machine for aluminium wires. The winding machine will provide the first UK supply chain solution for manufacturing aluminium coils. Coil winding is a critical component of eMachine manufacture and is not provided by any UK manufacturer. UK based companies of eMachines have to purchase winding machines from overseas suppliers or have wound coils shipped to them.

Ashwoods and Voltalogic will provide copper coil designs that will be redesigned to use aluminium wire. Hydro Aluminium Rolled Products will provide coated aluminium wire with the preferred electrical conductivity and mechanical properties. Aspire will build their work on winding machines to provide a volume manufacturing solution, and WMG will leverage their development work on volume e-Machine manufacture to guide the partners to the provision of a volume manufacturing solution.

The successful completion of the project will provide a UK supply chain for the manufacture of e-Machine coil winding. Through this, it will enhance the UK's competitiveness to deliver e-Machine manufacturing technology. It will embed the design and manufacturing expertise for coil winding into the UK supply chain.

The project will develop the reduction in weight of e-Machines by 15% without compromising performance by developing manufacturing processes for winding coils from alternative material.

It will also deliver, for the first time, to the off-highway market a single source drive system incorporating advanced IPM motor technology, radically lighter BUT equally as efficient as current IPM technology.

Find out more about WMG’s Transport Electrification and Energy research here.

Fri 03 Apr 2020, 14:27 | Tags: HVM Catapult Transport Electrification

Electric superbike designed by students to race this summer

Electric superbike designed by studentsIn a race to be clean and green the motor industry is changing, which has inspired 40 Warwick students to make an electric superbike to race this summer, 2020.

As the government has announced proposals to ban the sale of petrol, diesel and hybrid cars by 2035 the race to electrify the motor industry is on, and motorbikes aren’t to be overlooked.

The 40 students from a range of departments including: WMG, School of Engineering, Computer Science, Physics and Maths will work together to make the electric superbike possible with thanks to support from Rajputana Custom Motorcycles and Mupo Race Suspension.

School of Engineering student Aman Surana is managing the Warwick Moto team, he comments:

“The reason why I’m doing engineering is because of my interest in motorsports, be it four wheels or two. More than theory and the principles behind engineering concepts, it’s about the practical experience and finding real solutions rather than just what works on paper.

“My work experience at one of Asia’s biggest custom motorcycle shops Rajputana Custom Motorcycles helped reinforce my passion for motorcycles and is the reason Warwick Moto exists.

“It’s great to have the support from our sponsors Rajputana Custom Motorcycles and Mupo Race Suspension, and further support from WMG centre High Value Manufacturing Catapult, leading 2. Electric superbike designed by studentsacademics in the industry are helping us to make this possible.”

The students will work in sub-teams focussing on:

1. Battery and Drivetrain

2. Chassis

3. Design and Aerodynamics

4. Finance

5. Marketing

6. On-Board Auxiliary systems

Superbike rider Tom Weeden has agreed to ride the electric superbike for them, and will be involved in all the testing and trials ready for a self-organised technological demonstration event in July 2020, he comments:

“I’m over the moon to be signing to ride the Warwick Moto electric bike in 2020 and hopefully beyond. The electric class is something I’ve been interested in and keen to be involved in for some time now.

“I’m looking forward to working with the students to develop a package that we can build for the future. Hopefully one day we can go to the TT and take it to the big budget teams.

“The passion these guys have is truly inspiring and I’m looking forward to learning more about how the technology works and adapting my riding to suit the different characteristics of the electric motor.

“I’ve ridden my brothers electric trials bike for the past few years and I know just how much torque and instant linear power these bikes can produce. The bike is based on the Honda Fireblade which has a brilliant handling chassis so should be an awesome platform to build from. Fingers crossed we can bring the budget that this team deserve to put together and develop the technology of the future!”

The students will have the motor and invertor delivered and tested in the next month, and will test the battery at the same time. They hope to have the prototype module testing in March.

The bike will then race at events over summer, but the long-term objective is to compete with a podium qualifying time at the Isle of Man TT 2022.

The team are looking for more supporters to make their first electric bike, you can sponsor them or donate to them here: https://www.justgiving.com/crowdfunding/warwickmoto

Follow their journey:

Instagram: https://www.instagram.com/warwick.moto/

Facebook: https://www.facebook.com/warwickmotoracing/

LinkedIn: https://www.linkedin.com/company/warwick-moto/

ENDS

DATE

NOTES TO EDITORS

High-res images available credit to WMG, University of Warwick at:

https://warwick.ac.uk/services/communications/medialibrary/images/february2020/tom_20.jpg
Caption: The full team of students and academics with the driver, Tom Weeden

https://warwick.ac.uk/services/communications/medialibrary/images/february2020/tom_04.jpg
Caption: The students and some academics working on the Warwick Moto team with the bike

https://warwick.ac.uk/services/communications/medialibrary/images/february2020/tom_08.jpg
Caption: Tom Weeden, left with students and the bike

https://warwick.ac.uk/services/communications/medialibrary/images/february2020/tom_18.jpg
Caption: Tom Weeden, on the electric superbike

FOR FURTHER INFORMATION PLEASE CONTACT:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920531221
E-mail: alice.j.scott@warwick.ac.uk

FOR FURTHER INFORMATION PLEASE CONTACT:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920531221
E-mail: alice.j.scott@warwick.ac.uk

Mon 17 Feb 2020, 10:56 | Tags: Education Partnerships Transport Electrification

Used Nissan LEAF batteries given “second life” thanks to WMG, University of Warwick

Two engineers with a battery pack at WMGThe ability to reuse high numbers of Electric Vehicle Lithium Ion batteries for domestic and industrial use is becoming a reality for Nissan thanks to a new grading system developed by researchers at WMG, University of Warwick.

Once EV batteries have fulfilled their life-span for automotive applications, they are usually recycled by the manufacturer. However many automotive Lithium-ion (Li-ion) batteries have enough life left in them after the car is scrapped for ‘second-life’ uses both domestically and industrially.

To do this, it is necessary to “grade” the used batteries – identifying those suitable for use as spare parts, those suitable for “second life”, and those suitable for recycling of materials. This grading process is traditionally a long and expensive process.

Car company Nissan were keen to explore ways to make a much faster grading process for their used Li-ion batteries from the Nissan LEAF – allowing re-use of old battery packs or modules instead of disposing or recycling them.

They were challenged to demonstrate 1MWh of energy storage by the end of 2019.

Part-funded by BEIS (Business, Energy and Industrial Strategy) the ‘UK Energy Storage Laboratory’ project was launched, where 50 Nissan LEAF batteries were used to develop the existing grading process led by Nissan, WMG at the University of Warwick, AMETEK and Element Energy.

WMG’s battery technology experts in the Energy Innovation Centre developed a safe, robust and fast methodology for used automotive Lithium-ion batteries, at pack level. This methodology, which was initially developed in WMG, was successfully transferred to a pilot second-life facility, where the target of 1MWh of second-life energy storage was achieved.

In addition, the team at WMG developed ways of grading modules – the sub-components of battery packs in as little as 3 minutes – a process which previously took over 3 hours.

Graded second-life battery packs can provide reliable and convenient energy storage options to a range of customers: from electric roaming products – providing electricity for customers on the move, to home storage products – enabling customers with solar panels to store their energy generated. More crucially, the packs can be used for storage allowing increased intermittent renewable energy sources on the grid, without putting security of supply at risk.

Professor David Greenwood from WMG, University of Warwick comments:

“Automotive batteries deliver some great environmental benefits, but they consume a lot of resources in doing so. Opening up a second life for batteries improves both the environmental and the economic value we draw from those resources before they need recycling. I’m delighted that by working with the partners in this project, we’ve been able to make it much easier to access those second life applications.”

A battery pack in the labBusiness and Climate Change Minister, Lord Ian Duncan, said:

“It’s great to hear that the University of Warwick and Nissan are collaborating in pursuit of a greener, cleaner future. Reusing the batteries from electric cars could provide a valuable contribution to the UK’s green revolution - helping us lead more efficient and smarter lives as we end our contribution to climate change by 2050.

“We’ve part-funded this project to help give manufacturers more options than recycling – meaning a battery that helped a driver get from A to B could then be used to help store energy used to power a home.”

Ametek developed specialist equipment, and worked with WMG to embed the algorithms developed into a robust and industrialised machine that can be used by Nissan and other companies to grade second life batteries.

Andrew Williams, AMETEK Advanced Measurement Technology Business Unit Manager comments:

“The algorithm was developed with assistance from AMETEK EIS analyzers. We are currently implementing the algorithm in our new family of Solartron Analytical Battery Analyzer products, including our flagship SI-9300R model, which we expect will reduce market barriers for second life applications.”

The novel process is now being trialled for grading of battery modules at the second-life pilot facility, through these two processes, Nissan hopes to be able to re-use the vast majority of packs currently assembled in EVs in Europe.

Francisco Carranza, Managing Director from Nissan Energy comments:

“The number of electric vehicle batteries reaching end-of-service is set to increase from thousands to tens of thousands per annum by 2025. These batteries typically retain significant capacity and power delivery capability, and their re-use in so-called ‘second-life’ applications has been proposed as a mean to extend the battery value chain and minimise waste by deferring recycling.”

Project managers Element Energy commented:

“Reconditioning car batteries has to become business as usual - it makes sense environmentally and commercially. This project has proven a scalable process to deploy reconditioning and represents a significant milestone in the UK pathway to net zero emissions.”

For more information on this project, please see the UKESL Public Report at: http://www.element-energy.co.uk/wordpress/wp-content/uploads/2020/01/UKESL-Non-technical-Public-Report_2020.pdf

ENDS

21 JANUARY 2020

NOTES TO EDITORS

High-res images available credit to the University of Warwick at:

https://warwick.ac.uk/services/communications/medialibrary/images/january2020/university_of_warwick_and_nissan_011.jpg
Caption: Two engineers with a battery pack at WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/january2020/university_of_warwick_and_nissan_029.jpg
Caption: A battery pack in the lab

https://warwick.ac.uk/services/communications/medialibrary/images/january2020/university_of_warwick_and_nissan_033.jpg
Caption: From left to right: Dr John Harper Senior Development Manager – Ametek, Priya Raju Project Support Officer – WMG University of Warwick, Djovana Dantas Manzi Head Of Operations at Nissan Energy Service (Europe), Dr Maria Tsiamtsouri Research Fellow at WMG Univeristy of Warwick, and Dr Jonathan Sansom Lead Engineer WMG University of Warwick.

https://warwick.ac.uk/services/communications/medialibrary/images/january2020/university_of_warwick_and_nissan_055.jpg
Caption: From left to right: Dr Maria Tsiamtsouri Research Fellow at WMG Univeristy of Warwick, Djovana Dantas Manzi Head Of Operations at Nissan Energy Service (Europe), Dr Jonathan Sansom Lead Engineer WMG University of Warwick and Priya Raju Project Support Officer – WMG University of Warwick.

https://warwick.ac.uk/services/communications/medialibrary/images/january2020/university_of_warwick_and_nissan_058.jpg
Caption: From left to right: Dr John Harper Senior Development Manager – Ametek, Djovana Dantas Manzi Head Of Operations at Nissan Energy Service (Europe) and Dr Jonathan Sansom Lead Engineer WMG University of Warwick.

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 

Tue 21 Jan 2020, 09:25 | Tags: Partnerships Research Transport Electrification

Car batteries can be frozen for safer transportation  

Currently transporting damaged and defective car batteries is an expensive process as they need to be placed in an explosion proof box which costs thousands of pounds, however researchers from WMG at the University of Warwick in collaboration with Jaguar Land Rover engineers have been able to freeze batteries with Liquid Nitrogen.

An explosion proof box to transport a typical Tesla sized battery costs €10,000 and a furtherCar batteries can be frozen €10,000 for the UN accreditation, however, the ability to transport them in plastic containers which cost a couple of hundred pounds has been made more accessible thanks to researchers from WMG at the University of Warwick.

In the paper, Cycle life of lithium ion batteries after flash cryogenic freezing’ published in the Journal of Energy Storage, researchers highlight that cryogenic freezing does not reduce lithium ion battery’s energy capacity or affect cycle or service life, and could be transported in a safer way.

As the sales of electric vehicles increases, there is more concern for the transportation of damaged and defective lithium ion battery packs. Currently, it is an expensive process, as they are put in an explosion proof box that costs €10,000 and a further €10,000 for the UN accreditation, which EV manufacturers are picking up the bill for.

Explosion boxes are used to contain the battery in case it goes into thermal runway, an overheating condition which can lead to violent explosions and toxic gases being released. However being able to cryogenically flash freeze the batteries completely removes the risk of an explosion, and could therefore mean they can be transported safely in a plastic box.

Researchers who were part of the ELEVATE project funded by EPSRC, WMG Centre High Value Manufacturing Catapult, and Car batteries can be frozensupported by Jaguar Land Rover tested the batteries activity before they froze cells with liquid nitrogen and after, they also drove nails through the frozen cell to test the safety of them, and managed to show that their performance was not effected after freezing.

When being transported batteries will have to be kept in a lorry at -35 degrees, however the amount of packaging is significantly less than explosion proof boxes, making the process more sustainable.

Dr Thomas Grandjean from WMG, at the University of Warwick comments:

“Transporting damaged and defective batteries is an expensive and unsustainable process, however being able to freeze them with liquid nitrogen could save thousands of pounds and help electric vehicle manufacturers be more sustainable.

“We tested the batteries in the most extreme abuse conditions, such as driving nails through the cells and inducing external short circuits, proving that the freezing process is effective and safe.”

ENDS

2 DECEMBER 2019

NOTES TO EDITORS

High-res images available credit to WMG University of Warwick at:

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_3_.png
Caption: A frozen battery cell with a nail through it

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_5_.png
Caption: A frozen battery cell with a nail through it

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_7_.png
Caption: A room temperature cell with a nail through it exploding

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_6.png
Caption: A room temperature cell with a nail through it exploding

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/batts_2_.png
Dr Thomas Grandjean from WMG, University of Warwick handling the battery cell frozen by liquid nitrogen

https://warwick.ac.uk/services/communications/medialibrary/images/december2019/untitled.png
Dr Thomas Grandjean from WMG, University of Warwick handling the battery cell frozen by liquid nitrogen

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or + 44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


Used electric vehicle batteries could be used for rickshaws in Bangladesh

Used EV batteries could be used to power rickshaws in Bangladesh, as researchers from WMG, University of Warwick, seek to find out how they can be repurposed for the rickshaws and lower peoples’ carbon footprint.

Motorised rickshaws, also known as easy-bikes, have gained popularity in Bangladesh due to their cost-effectiveness with one million of them all over the country.

However, the easy-bike currently uses a lead-acid battery for power, which has a lifetime of 6-12 months and therefore increases the operating cost as well as the carbon footprint.

In order to reduce the carbon footprint, researchers at WMG are exploring the possibility of repurposing used EV Li-ion batteries thanks to a £25,000 grant from Global Challenges Research Fund (GCRF), an award from the UKRI aimed to deliver scalable solutions to issues faced by low and middle-income countries.

Currently, Li-ion batteries retire from EVs after reaching 70-80% of their state of health (SoH). At 70% SoH, the lithium-ion battery still have 3 times higher energy density than a new lead-acid battery, and potentially can have a lifetime of 3-5 years in easy-bike application.

The researchers hope to repurpose the batteries to improve the energy storage life from 6-12 months to 3-5 years, which in turn will reduce the number of batteries being recycled and improve the ecosystem.

The new application of Li-ion batteries will be better environmentally without an additional cost in transport. As easy-bike replaces manual driving, the quality of life will improve significantly and bring a socio-economic change to a large community in Bangladesh. Furthermore, this development could reduce the consumption of grid-connected electricity which could be used to develop industries and infrastructure.

In fact, there are currently one million rickshaw pullers in Bangladesh who earn $4.8 billion every year. The new development in easy-bikes will directly improve their economic status. A few million people involved in vehicle support such as mechanics and manufacturing industries will also be benefited.

This project eventually could lead to mass production of second-life Li-ion batteries in Bangladesh, in conjunction with UK automobile industries, which will create job opportunities for thousands of people.

Dr Mohammad Al-AminDr Mohammad Al-Amin from WMG, University of Warwick comments:
“To prevent climate change, all cars in the future will need to be electric. However, the batteries in EVs once they have reached their end of life, for car purposes, is something that can be explored more, as there is still energy left in them to be used.”

“If we can re-purpose them to be used for easy-bikes in Bangladesh it will help lower their carbon footprint and provide the country with a new economy. Thousands of jobs opportunities could be created both in Bangladesh and the UK.”

 ENDS

13 NOVEMBER 2019

NOTES TO EDITORS

High-res images available at: https://warwick.ac.uk/services/communications/medialibrary/images/october2019/mohammad_photograph.jpg

 

About GCRF - https://www.ukri.org/research/global-challenges-research-fund/ 

 

UK Research and Innovation works in partnership with universities, research organisations, businesses, charities, and government to create the best possible environment for research and innovation to flourish. We aim to maximise the contribution of each of our component parts, working individually and collectively. We work with our many partners to benefit everyone through knowledge, talent and ideas.

Operating across the whole of the UK with a combined budget of more than £7 billion, UK Research and Innovation brings together the seven research councils, Innovate UK and Research England.

FOR FURTHER INFORMATION PLEASE CONTACT:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

 


The future of mobility: Times are changing

The future of mobility

Times are changing

If we are to seize electrification and autonomy opportunities, it’s essential that the UK develops an environment suitable for breakthrough technologies. From domestic charging solutions to developing repeatable testing environments, the UK faces big challenges and we are addressing these through our lead centre for Vehicle Electrification and Connected and Autonomous Vehicles at WMG, University of Warwick.

Electrification shaping a low carbon future

David Greenwood – Professor, Advanced Propulsion Systems at WMG, University of Warwick

Demand for electric vehicles (EVs) is surging in the UK and registrations of plug-in cars increased by more than 160,000 between 2013 and 2018. With the electrification industry estimated to be worth over £6billion by 2025, the next decade presents a massive opportunity.

As our society continues to grow, transformation in energy and mobility is required to create sustainable environments. The electrification of transport is shaping that low carbon future. Our vision at WMG is to enable the development of cleaner, safer and smarter vehicles and help drive sustainable mobility across the UK, which aligns with the Government’s ‘Road to Zero’ strategy, aiming to make road transport emission-free by 2050. Our research focuses on establishing advanced hybrid and electrical vehicles, including commercial, rail and marine, battery technology, supply chain, manufacturing and automation.

At WMG, we’re working with the UK Battery Industrialisation Centre to deliver on the UK’s Industrial Strategy ‘Future of Mobility’ Grand Challenge to transform the UK into a world leading battery manufacturer for vehicle electrification.

Connected and Autonomous Vehicles

Siddartha Khastgir – Head of Verification and Validation, Intelligent Vehicles at WMG, University of Warwick

The global Connected and Autonomous Vehicles (CAV) industry is estimated to be worth over £50billion by 2035, with the UK CAV industry comprising over £3billion of this. The UK Government's Industrial Strategy aims to bring fully autonomous cars without a human operator on UK roads by 2021, which will make us one of the first countries to achieve this.

The CAV vision is motivated by the potential societal benefits the technology offers – increasing safety, decreasing traffic congestion and driving lower emissions. At WMG, we’re striving to deliver these through Intelligent Vehicles research exploring Verification and Validation, Communications (i.e. 5G), Experiential Engineering, Supply Chains, Cyber Security and Cooperative Autonomy.

Our involvement in research programmes like the £35m Midlands Future Mobility focuses on “smart miles”, proving concepts and getting products to market. Led by WMG, Midlands Future Mobility is an “on-road ecosystem” comprising nine partners with a shared objective – To launch the first service offering of public road testing by mid-2020.

Times are changing.


£22m battery and thermal energy facilities launch at the University of Warwick, for a cleaner greener future

Two research centres for sustainable electrical and thermal energy technologies totalling £22m are launching at WMG, University of Warwick on the 10th June 2019. The funding from government via the Energy Research Accelerator (ERA) sees UK Government, industry and higher education work together to shape the future of the UK’s energy landscape.

The Energy Research Accelerator (ERA) is a £60m project funded by Innovate UK. ERA is working with UK government, industry and the higher education sector to undertake innovative research, develop the next generation of energy leaders, and demonstrate low carbon technologies that help shape the future of the UK’s energy landscape.

ERA consists of eight internationally renowned Midlands universities – which includes the University of Warwick, who are part of the Midlands Innovation partnership, together with the British Geological Survey.

Together they will explore the challenges of energy and electrification, with some of the thought leaders and innovators who are making changes in these areas. There will also be an opportunity to tour the new research facilities.

WMG’s Energy Innovation Centre is a world-class facility for battery research from materials and electrochemistry to application integration and recycling/reuse. The £20m ERA investment has enabled new equipment and facilities, which include laboratories, a dry room for cell assembly, characterisation at cell, module and pack levels, innovative charging infrastructure and second-life evaluation facilities. It will drive the development, and scale-up of new battery chemistries from concept through to proven traction batteries.

The School of Engineering’s Sustainable Thermal Energy Technologies group develops low carbon heating and cooling technologies. The £2m ERA funding has enabled the extension of the Thermal Properties Lab into five newly-refurbished test cells to accommodate additional equipment for analysing thermal properties of materials and the Thermal Technologies Lab has benefitted from new test equipment and control/data logging facilities.

Professor Pam Thomas, Pro-Vice-Chancellor for Research at the University of Warwick, comments:

“The University of Warwick continues to produce innovative research in battery development and thermal energy, the funding means we can help research ways to tackle global challenges in areas such as energy and sustainability to help climate change for the UK’s and the world’s future.”

Professor Martin Freer, Director of the Energy Research Accelerator, commented:

“Over the coming years we are going to see a step change in the motor industry from the combustion engine to battery powered vehicles. With this investment from ERA and Innovate UK, the Midlands will continue to take the lead in the research, development and commercialisation of new battery technologies.

“Our investment in the thermal labs here at Warwick is also significant, as the new facilities will enable researchers to work together with other ERA universities to develop innovative and efficient low carbon heating and cooling technologies.”

Andy Street, Mayor of the West Midlands comments:

“This world-leading research facility will further cement the West Midlands’ position at the cutting edge of innovation in technology and sustainability.

“The region is already at the forefront of the development of electric vehicle efficiency, and now the ERA’s funding will enable us to make better use of electrification to reduce emissions and improve transport, making a real difference to the lives of people living and working in the West Midlands.”

ENDS

10 JUNE 2019

NOTES TO EDITORS

This area of research is aligned with the Sustainability theme in our Research Strategy, which reflects our wider research into tackling global challenges in areas such as energy and sustainability climate change.

The Energy Research Accelerator (ERA)

ERA is a key programme within Midlands Innovation – a consortium of research intensive universities (universities of Aston, Birmingham, Cranfield, Keele, Leicester, Loughborough, Nottingham and Warwick), and the British Geological Survey (BGS), which has the overall aim of harnessing the Midlands’ combined research excellence and industry expertise to play a critical role in tackling some of the biggest challenges facing the UK.

Via Innovate UK, the government has committed an initial capital investment of £60m, and ERA has secured private sector co-investment of £120m. ERA’s initial priorities of Geo-Energy Systems, Integrated Energy Systems and Thermal Energy will help deliver the new technologies and behaviours that will open the avenues for its future development and demonstrate the transformative effect ERA can have across the energy spectrum.

FOR FURTHER INFORMATION PLEASE CONTACT:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


WMG partners with Triumph Motorcycles in electric motorcycle project

Triumph_WMGTriumph Motorcycles has announced a new collaboration with UK industry experts, academic leaders including WMG at the University of Warwick, and Innovate UK, to develop specialist electric motorcycle technology which will provide significant input into potential future electric motorcycle offers from Triumph. This two-year project (TRIUMPH TE-1) also includes partnership work with Williams Advanced Engineering, and Integral Powertrain Ltd.

This new collaboration will combine Triumph’s globally-renowned motorcycle expertise with advanced automotive-based capabilities to generate technological innovation for future electric motorcycles.

“This new collaboration represents an exciting opportunity for Triumph and its partners to be leaders in the technology that will enable the electrification of motorcycles, which is driven by customers striving to reduce their environmental impact, combined with the desire for more economical transportation, and changing legislation,” said Nick Bloor, Triumph CEO. “Project Triumph TE-1 is one part of our electric motorcycle strategy, focused on delivering what riders want and expect from their Triumph, which is the perfect balance of handling, performance and usability.”

A unique collaboration between industry experts, academic leaders and Innovate UK

Project Triumph TE-1 now represents a ground-breaking collaboration between Triumph Motorcycles and the UK’s electrification experts, each of whom will create innovations in their own areas:

  • Triumph Motorcycles will lead the project, providing advanced motorcycle chassis design and engineering expertise, manufacturing excellence and pioneering functional safety systems, as well as defining electric drivetrain power delivery characteristics.
  • WMG, at the University of Warwick will provide electrification expertise, and the critical vision to drive innovation from R&D to commercial impact, through modelling and simulation based on future market needs.
  • Williams Advanced Engineering will provide industry-leading lightweight battery design and integration capability, using its test and development facilities to deliver an innovative battery management system combined with vehicle control unit.
  • Integral Powertrain Ltd’s e-Drive Division will lead the development of bespoke power-dense electric motors and a silicon carbide inverter, integrating both into a singular motor housing.
  • Innovate UK, the government agency that promotes science and technology programmes expected to grow the UK economy, will support the partners and administer funds. This forms part of the BEIS modern funding strategy with the aim of creating a market-leading UK electric vehicle capability.

A two-year project focused on developing technical innovation and advanced electric motorcycle capabilities

The project will be organised into four main phases, with one of its key aims being increased systems integration. By developing individual components of automotive-based electric drivetrains and optimising them into innovative combined units, the project aims to deliver sophisticated electric motorcycle systems which reduce mass, complexity and package requirements.

Triumph Motorcycles will work alongside the partner organisations to accelerate joint expertise in the packaging and safety of batteries, optimum electric motor sizing and packaging, the integration of braking systems including regenerative braking, and advanced safety systems. The innovation and capabilities developed in these areas will input into Triumph’s future electric motorcycle strategy.

The Project Triumph TE-1 partnership, with the support of Innovate UK, is focused on facilitating the creation of:

  • Electric motorcycle capability that meets the needs of customers seeking lower environmental impact transportation, delivering against the UK’s focus on reducing emissions
  • Strong, commercially viable and sustainable partnerships with UK industry manufacturers and supply chains
  • Expertise and capability within the UK workforce, creating jobs and a talent base that both ensures sustainable employment and drives the UK’s reputation and influence on the world stage.

Professor David Greenwood, Professor of Advanced Propulsion Systems at WMG, University of Warwick said: “Electric motorcycles will have a vital role to play in future transport across the globe - delivering reduced congestion and improved urban air quality as well as easing parking. They will also be great to ride, with copious, easily controlled torque delivered smoothly at all road speeds. WMG has experience of battery technology and vehicle electrification for road, rail, sea and air which it will bring to this exciting sector. Our expert team will lead the modelling and simulation work within the project, to ensure the vehicles are safe and efficient without compromise to dynamic performance.”

“The team at Williams Advanced Engineering is looking forward to applying our expertise in the electrification of transport with our partners,” said Craig Wilson, Managing Director of Williams Advanced Engineering. “Williams has powered a number of world-renowned electric vehicles already and this will be a significant further step in our work by taking that knowledge onto two wheels.”

“Integral Powertrain has always pushed the boundaries of e-drive technology working with clients to find the best solution to meet their exact requirements”, said Andrew Cross, Chief Technical Officer at Integral Powertrain Ltd. “This project will draw upon the extensive motor and EV experience gained over the past 20 years working with major OEMs and Tier 1 suppliers in the automotive and motorsport sectors. We are extremely pleased to be supporting Triumph Motorcycles with their future electrification strategy and in a project where we can apply our experience to engineer an extremely power dense, efficient and highly integrated motorcycle electric drive.”

Steve Sargent, Triumph’s Chief Product Officer said “Our future product strategy is focused on delivering the most suitable engine platforms for the changing landscape of customer needs, and we see a Triumph electric powertrain as a significant requirement alongside our signature twin and triple cylinder engines. As part of our electric motorcycle initiative, Project Triumph TE-1 represents an exciting collaboration that will provide valuable input into our future line-up. We are incredibly pleased to have the support of OLEV and Innovate UK, and to be working together with the UK’s electrification experts and academic leaders, in an endeavour that ultimately is focused on the future prosperity of British industry, and the future of motorcycling.”


New report tackles key issues for transport electrification  

WMG has provided battery expertise and knowledge for a new report examining the UK Chemical Supply Chain for Battery Manufacture.

The report was launched last night with over 40 senior figures from across the Chemical, Battery and Automotive sectors along with Government officials in attendance.

The report, produced by E4 Tech, provides an in-depth assessment of the current capability to support the growth of a UK Battery Manufacturing Industry.

Professor David GreenwoodDavid Greenwood, Professor of Advanced Propulsion Systems at WMG explained: “Automotive batteries will halve in cost, double in energy density and see tenfold increases in manufacturing volumes before the end of the next decade. To do this we need advanced materials supplied in bulk and at very high quality. High value opportunities exist in cathode powders, anode powders, electrolytes, collector foils and separators, and the supply chain to provide them is in its infancy.”

Key findings

It is no secret that the UK ambition of the UK Government is to stimulate the supply chain so that the UK can attract a ‘Giga-factory’. This report engaged with those members of the supply chain who would support new production capacity.

Currently three fifths of a vehicle battery pack’s value is chemicals and materials. The report has found that the UK could capture a £4.8bn/year share of this by 2030. This is down to the strong foundation of UK-based companies already embedded within many global battery supply chains.

Through strategic Government support and collaboration between our Automotive and Chemical sector there is a real opportunity to expand these existing capabilities growing capacity to serve UK-built batteries as well as significant growth in exports, especially as EU battery production grows.

For battery cell manufacturing to be economically viable there is a need for local suppliers of many materials. However, the expectation is that battery chemistry will evolve over the next decade, so it is fundamental that the companies involved within this supply chain are primed for innovation and manufacturing investment. An increase in capability and capacity offers further export potential.

The Government has already invested £246M through the Faraday Battery Challenge which has delivered valuable assets like there UKBIC and provided invaluable opportunities for the chemical, battery and automotive sector to work together and learn from one another. In order to realise this 4.8bn supply chain opportunity, the Government will continue to have a critical role to play in supporting the strategic investments in the UK battery and battery materials sectors, whilst also continuing to provide targeted funding for CR&D that allows the UK chemical sector to co-develop battery technologies with its customers.

The full report can be found here


Older news