Skip to main content Skip to navigation

WMG News

Select tags to filter on

UK’s first live micromobility event takes place at WMG, University of Warwick

From left to right: Professor Robin Clark, Dean of WMG at the University of Warwick, John Fox – Programme Director for Micromobility at WMG, Cllr Jim O’Boyle - cabinet member for jobs, regeneration and climate change at Coventry City Council, Margot James- Executive Chair of WMG at the University of Warwick, Mayor of the West Midlands Andy StreetMicromobility refers to small lightweight efficient vehicles, which can be used to make short distance journeys.

Types of micromobility vehicles we could see in our communities include bikes, hover boards, e-bikes and e-scooters. They can be used to save time, avoid congestion, remove parking conundrums and most importantly they use much less energy than a car, therefore contributing towards the Government’s zero-carbon goals.

The future of micromobility is incredibly topical, and to bring together all aspects of it WMG, at the University of Warwick, hosted the UK’s first live micromobility event, bringing together manufacturers in the micromobility sector, regional transport authorities; city councils and local authorities; Government agencies; research organisations and more.

The event not only saw the demonstration of many new exciting and existing micromobility vehicles from e-scooters to e-cargo bikes, but also outlined the opportunities for the UK to lead this sector in battery development and recycling, human factors and behavioural change, materials development and more.

It was also an opportunity to address the challenges the sector faces particularly around lack of infrastructure, policy and regulation.

Programme Director John Fox, from WMG, University of Warwick comments:
“Despite progress on electrification, transport emissions are actually increasing; Micromobility is essential if we are to achieve net zero emissions from this sector. With around 70% of journeys in the UK under 5 miles, Micromobility vehicles can have a huge impact on our emissions. They use typically 5% of the energy of an Electric vehicle to make trips, and their manufacture is also significantly less carbon-intensive.

“There are many other benefits Micromobility offers too, including air quality improvements, greater footfall in highstreets, and taking up much less space than a car to move the same number of people which releases more space in urban areas for other things.

“The conference touched on many of the key issues, including how to make Micromobility safe, accessible, integrated and attractive to new users, and highlighted the need for coordination between government, local authorities and industry. WMG announced our ‘UK Micromobility roadmap” to support this coordination, being developed with Cenex and being progressed through consultation and workshops sessions over the next six months, so watch this space!”

Margot James – Executive Chair of WMG, and Cllr Jim O’Boyle from Coventry City Council have a go in a Hail bikeMargot James, Executive Chair of WMG, University of Warwick adds:
“As a leader in the electrification of transport, WMG, University of Warwick, is at the forefront in the development of high-quality, safe Micromobility vehicles. We are conducting trials with vehicle and infrastructure manufacturers on the Warwick campus, and supporting testing and development of new vehicles and systems in our labs. We’re also working closely with our local and regional authorities to make travel to and from our campus more sustainable, which includes supporting commutes by Micromobility with improved infrastructure and facilities on arrival.”

Andy Street, the Mayor of the West Midlands, said:
“As the home of the green industrial revolution, micromobility has a key role to play in the West Midlands as we look to tackle air pollution to help us reach our #WM2041 climate goal. Earlier this year we launched West Midlands Cycle Hire across eight towns and city centre - with more than 100,000 journeys taken on the bikes in just a few months – and we are also trialling e-scooters across the region, with more than 550,000 trips taken in Birmingham alone over the past year.

“But despite this successful start of both schemes we are of course always open to more innovation and improvement. That’s why it has been brilliant to have the micromobility industry here in the West Midlands, and it has been eye-opening to see what the industry has to offer.”

Councillor Jim O’Boyle, cabinet member for jobs, regeneration and climate change said:
“The innovation shown at the event is a result of the incredible engineering and manufacturing talent that can only be found in Coventry. Our city is leading the green industrial revolution and is at the heart of developing new forms of transport, from the micromobility solutions we have seen at the event to the innovative Coventry Very Light Rail, set to transform how many of us travel.

“It’s great to be with our partners at WMG to raise awareness of the ground-breaking work our city is contributing to the future of clean, green transport.”

ENDS

8 SEPTEMBER 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-12.jpg
Caption: A WMCA bike stand
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-247.jpg
Caption: People trialling some micromobility vehicles at the event
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-53.jpg
Caption: From left to right: Professor Robin Clark, Dean of WMG at the University of Warwick, John Fox – Programme Director for Micromobility at WMG, Cllr Jim O’Boyle - cabinet member for jobs, regeneration and climate change at Coventry City Council, Margot James- Executive Chair of WMG at the University of Warwick, Mayor of the West Midlands Andy Street
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-65.jpg
Caption: Margot James- Executive Chair of WMG at the University of Warwick with Mayor of the West Midlands Andy Street
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-62.jpg
Caption: From left to right: Cllr Jim O’Boyle - cabinet member for jobs, regeneration and climate change at Coventry City Council, Margot James- Executive Chair of WMG at the University of Warwick and Andy Street - Mayor of the West Midlands
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-69.jpg
Caption: Mayor Andy Street with some of the micromobility vehicles showcased
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-43.jpg
Caption: Margot James – Executive Chair of WMG, and Cllr Jim O’Boyle from Coventry City Council have a go in a Hail bike
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-50.jpg
Caption: Margot James – Executive Chair of WMG at the University of Warwick on a Hail bike
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-222.jpg
Caption: People at a West Midlands Transport Hub with a West Midlands Cycle Hire bike and a VOI e-scooter
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/070921wuweb-72.jpg
Caption: A West Midlands Cycle Hire bike
Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


UK-based consortium established to develop prototype solid-state batteries

MOU signed between Johnson Matthey, Faraday Institution, Britishvolt, Oxford University, UK Battery Industrialisation Centre, Emerson & Renwick and University of Warwick

HARWELL, UK (19 August 2021) A consortium of seven UK-based organisations has signed a memorandum of understanding to combine ambitions toA battery pouch made at WMG develop world-leading prototype solid-state battery technology, targeting automotive applications.

Solid-state batteries offer significant potential advantages over conventional lithium-ion batteries and could be transformational in meeting the UK’s net zero commitments through the electrification of transport. The successful outcome of the collaboration would be to harness and industrialise UK academic capability to produce cells using highly scalable manufacturing techniques that leapfrog the cost-effectiveness and performance achieved elsewhere.

The consortium comprises the following world-leading organisations in battery research, development and manufacturing:

· Faraday Institution – the UK’s independent institute for electrochemical energy storage research, which has led the consortium’s formation and will lead its development.

· Britishvolt – the UK-based Gigaplant developer, with a site in NE England.

· E+R (Emerson & Renwick) – a world leading designer of manufacturing equipment.

· Johnson Matthey – a global leader in sustainable technologies and the UK’s leading battery materials business.

· Oxford University – that leads the Faraday Institution’s solid-state battery project (SOLBAT) and provides the necessary scientific understanding to the consortium.

· UK Battery Industrialisation Centre – the pioneering battery manufacturing development facility to enable UK battery manufacturing scale-up and facilitate upskilling in the battery sector.

· WMG, University of Warwick – leaders in battery R&D and initial scale-up capability, as well as academic and apprenticeship skills development.

The preliminary design for a prototyping facility has been developed. Sources of funding are currently being sought.

Minister for Investment Lord Grimstone said: “Collaboration between industry, government and our world-leading academic institutions is putting the UK atA battery production line at WMG the forefront of global efforts to develop innovative automotive technologies, such as solid-state batteries.

“It is the work of our internationally-renowned research and development base, like those brought together by this consortium, that will give us the tools needed to forge a strong and sustainable future for the automotive sector and increase our contribution to combatting climate change.”

“I am delighted to be able to announce the formation of this unique consortium for the advancement of solid-state battery prototyping that includes leading UK-based organisations at many stages in the value chain,” said Professor Pam Thomas, CEO of Faraday Institution. “Our leadership in this venture signals a move towards a role that the Faraday Institution will increasingly play as a trusted convener of significant partnerships between UK industry and academia as a route to commercialise breakthrough science emerging from our research programmes to maximise UK economic value.”

Solid-state batteries (SSBs) offer significant potential advantages over existing lithium-ion battery technologies, including the ability to hold more charge for a given volume (leading to increased electric vehicle (EV) range) and reduced costs of safety-management. Early deployment of SSBs is likely to be in consumer electronics, niche automotive applications and unmanned aerospace, before being used in broader EV markets. The Faraday Institution forecasts that, in 2030, SSBs are likely to take a 7% share of the global consumer electronics battery market and a 4% share of the EV battery market[1]. Global SSB revenues from sales to EV manufacturers are expected to reach $8 billion by 2030[2] and then grow rapidly to 2040 and 2050 when the market is expected to become extensive.

A battery production line at WMG, University of Warwick However, there are fundamental scientific challenges that need to be addressed before high power SSBs with commercially relevant performance can be realised. The Faraday Institution’s SOLBAT project has made considerable progress in addressing these challenges over the last three years.

The construction of the one-of-a-kind facility being developed by the collaboration will enable SSB technology to emerge from UK university laboratories. It will allow larger cells to be produced using scalable manufacturing techniques that will be improved iteratively through deep investigation of the causes of problems that emerge during manufacture and testing of prototype batteries. This will leverage the collective knowledge of Faraday Institution SSB researchers and the industrial partners.

Christian Gunther, CEO, Battery Materials at Johnson Matthey comments, “The realisation of a prototype solid-state battery cell will be a great achievement for the UK battery industry, and this consortium will be a critical enabler for delivering this milestone. Delivering enhanced range and safety over traditional lithium-ion battery technologies will be a key driver for battery electric vehicle adoption, supporting the transition to a net zero future.”

Dr Allan Paterson, Chief Technology Officer, Britishvolt comments, “Solid-state is the holy grail of battery solutions. Solid-state batteries have the potential to increase energy density significantly over battery technology available today and could dramatically, and positively, change the world of electric vehicles. Britishvolt will be at the forefront of commercialising this step change over the coming years. This collaboration, which includes major global industrial leaders such as Johnson Matthey and academic leadership from University of Oxford, underscores another key objective in our technology roadmap – home grown intellectual property.”

Professor Peter Bruce, Principal Investigator of SOLBAT, comments: “It’s fantastic to see the culmination of combined UK academic strength in solid-state battery research come to fruition. I’m proud that the work of the Faraday Institution SOLBAT project, led by Oxford University, will make a significant contribution to the UK’s green energy revolution.”

Ian Whiting, Commercial Director at UKBIC added: “Our newly opened national battery manufacturing scale up facility is already contracted to scale new cells and battery packs by companies basing their manufacturing centres in the UK. It’s a really exciting time for this fast-growing industry. We’re scaling technologies that will be the core products of the UK’s emergent Gigafactories. But we need to think even further ahead and solid-state battery technology is going to be a big part of that. This collaboration is what is needed to give the UK the edge it needs in creating a centre of excellence for solid-state batteries and we’re excited to be part of it. The bringing together of academic and industrial know how in this space is key to unlocking Britain’s electrified potential.”

David Greenwood, Professor of Advanced Propulsion Systems, and CEO of WMG High Value Manufacturing Catapult comments: “Early forms of solid-state battery are already around us, but we have yet to see solutions which are both mass-manufacturable and meet the performance and cost targets for future transport applications. There remains huge opportunity for innovation in this space, and this initiative will provide the route for the UK to fast-track candidate technologies to industrialisation.”

Andrew C Jack, Sales Director, E&R Group comments, “E&R Group are delighted to be contributing our world renowned engineering expertise working in partnership Faraday and the wider consortium on this exciting development for next generation battery production for the UK.

For more information on the Faraday Institution, visit www.faraday.ac.uk and follow @FaradayInst on twitter.


[2] IDTechEx, June 2021


WMG battery vision powers into life with formal launch of UK Battery Industrialisation Centre

Margot James, Executive Chair and Dave Greenwood, Professor of Advanced Propulsion Systems from WMG, at the University of Warwick, were delighted today (15 July 2021), to be invited to the official opening of the UK Battery industrialisation Centre by The Rt Hon Boris Johnson MP, Prime Minister - bringing to reality a vision first set out by WMG in 2016.

The £130 million UK Battery Industrialisation Centre (UKBIC) is a pioneering 18,500 square metre state-of-the-art national facility, which has been developed to support UK industry with development of battery technologies for future electrification.

UKBIC can be used by any organisation working on batteries for electric vehicles, rail, aerospace, industrial and domestic equipment and static energy storage, who can benefit from finding out whether their advanced technologies can be scaled up successfully before committing to the huge investment required for mass production. The facility employs more than 80 battery technicians, engineers, and support staff, with plans for that number to grow to support future project partnerships with industry and research organisations.

UKBIC presents an opportunity for UK technology developers to prove out their innovations and processes by acting as the bridge between new battery chemistries developed in the research laboratories and mass scale production for the automotive market in Gigafactories. The facility is owned 66% by Coventry City Council and 33% by the University of Warwick in order to maintain its independence of any one vehicle or battery company.

David Greenwood, Professor of Advanced Propulsion Systems at WMG, University of Warwick comments:

“We are delighted to see UKBIC come to fruition. This national infrastructure exists nowhere else in Europe, and gives the UK a major advantage for development of new battery technologies. It is something that WMG identified back in 2016, and we were elated to win the bid in 2017, from a competition run by the Advanced Propulsion Centre (APC), to establish what is now UKBIC. We scoped the facility, built the team, and started the project based out of our Energy Innovation Centre. As intended, UKBIC became independent of WMG in 2018, and moved to site in 2020 as the building was completed.

WMG continues to work closely with UKBIC, with our focus on helping companies and universities prove out their battery chemistries and cell designs, ready for industrialisation which can take place at UKBIC. Together, we have built an ecosystem which allows battery companies to investigate new technologies, prove them out, and then industrialise for high volume manufacture.”

The UK Government has committed to net zero carbon emissions by 2050, and the Ten Point Plan for a Green Industrial Revolution makes the commitment that all new vehicles are to have a traction battery by 2030 (electric or plug-in hybrid) and be fully electric by 2035. WMG and UKBIC will support the development of battery technologies needed to deliver against that vision.

The Rt Hon Boris Johnson MP, Prime Minister, said: “UKBIC is a beacon of innovation and ingenuity- shining the way for a brighter, greener future for the battery sector in the UK. It was an honour to open this world-class facility which will help to deliver green growth and jobs as industrial demand accelerates in the UK battery sector. With the technology and government backed expertise on offer right here in Coventry, I have no doubt that UKBIC will become world leaders in the industry.”

Margot James, Executive Chair at WMG, University of Warwick adds:

“Battery production is critical to the future of the UK automotive sector, the electrification agenda, and achieving a sustainable future for industry. The West Midlands has long been the centre of the UK automotive industry, with an advanced supply chain, a mature automotive skills eco-system, and cutting-edge research. The UK Battery Industrialisation Centre is at the heart of the UK battery manufacturing landscape.”

“It’s no coincidence that UKBIC is immediately adjacent to the proposed site for the West Midlands Gigafactory. We foresee a strong interaction between those two, whereby the Gigafactory caters for the millions of batteries that go into cars right now, and UKBIC is the future-facing mechanism that helps the Gigafactory generate its next product and helps companies de-risk new battery manufacturing processes by facilitating manufacturing trials without the high risk of committing to a mass production run.”

UKBIC is a key part of the Faraday Battery Challenge (FBC), a Government programme to fast track the development of cost-effective, high-performance, durable, safe, low-weight and recyclable batteries.

Professor Greenwood continued;

“Although UKBIC has been set-up in such a way that it can support businesses across a plethora of industries and sectors, this initiative is led by current automotive demand as this is the biggest market and it is moving the fastest. However, at WMG over the last 12 months we have been increasing our work with aerospace, marine, rail, motorcycle and micro-mobility sectors, so we can see electrification applications growing across all of transport and mobility.

WMG’s role in the battery manufacturing journey is to progress the basic science of the material chemistry to proof of concept. This is the point where you can build small volumes of cells per day and demonstrate that they provide the lifespan and performance that you expect. Based on this, WMG’s work is very closely aligned with manufacturing processes, but not at full manufacturing rate.

“This then needs to go from a working product, to a product that will run down a manufacturing line at 20 cells per second, and this mass scale production is where we need to get. UKBIC is the solution to fulfilling this last segment of the process; the manufacturing scale-up.

UKBIC can develop three things; product, manufacturing technology and skills, with each one bringing different stakeholders. For car manufacturers, it provides the ability to build prototype volumes of cells, modules and packs to be able to build early fleets of vehicles before you go to full-scale production.

As the industry recovers from the Covid-19 pandemic, we need to create jobs and opportunities in new sectors rather than the old ones. We will be utilising UKBIC to up-skill, re-skill and train individuals in specialist battery manufacturing areas, which will be required to support the UK Government’s Build Back Better plan for growth. As an industry we will need 20,000 skilled staff for Gigafactories, and a further 50,000 in their supply chains. These jobs are likely to be focussed around the Midlands and the North East”

This is a positive step for the battery ecosystem, providing a pipeline of opportunities for various levels of engineers and technicians as well as young people looking to establish a career in battery technology or the automotive sector through apprenticeships. WMG, have seen this area of the market emerging for some time, and as a result have created a national skills framework, including apprenticeships, degree apprenticeships, short courses and formal qualifications. This aims to deliver the needs of a decarbonised automotive sector through electrification, building skills for the future and keeping the brightest talent in the region.

Thu 15 Jul 2021, 14:42 | Tags: Transport Electrification

Crash-resistant glazing installed on the new Coventry Very Light Rail Vehicle

· Crash-resistant glazing features on the new Coventry Very Light Rail vehicle, and could be used to improve passenger safety in other means of public transport

· The glazing is made of a highly resilient polymer and has been designed by engineers from WMG - University of Warwick, Far-UK and TDi Ltd.

· The glazing, which is highly resistant to failure, has advanced coating to increase product lifetime.

A new form of window glazing featuring a lightweight polymer with an advanced scratch-resistant coating has been installed on the CoventryImage of Coventry VLR Very Light Rail vehicle, and could be used in other means of public transport. The new windows are highly resistant to breakage which provides passengers with a step-change in safety.

The glazing has been designed by a collaboration of WMG - University of Warwick, Far-UK (Lead) and TDi Ltd and was funded via the UK Innovation agency, Innovate UK (SBRI Rail Demonstrations: First of a Kind 2020).

The official report into the 2016 Sandilands (Croydon) tram crash made a number of recommendations for tram vehicle improvements. It called for development of windows and doors with improved strength. To address this need, researchers have been on a mission to make public transport safer in new innovative ways, one of which features crash-resistant glazing.

The new glazing is now revealed on the newly developed Coventry Very Light Rail vehicle, thanks to the Innovate UK funded project “Resilient glazing for safer passenger vehicle operation” (Resi-Glaze), which is an exciting collaboration between industry and academia.

The new glazing has been fully tested to ensure that it can survive exposure to severe projectile impact, all weather conditions, and has no negative impact on the environment compared to glass.

The technical team was then able to install it on the new Coventry Very Light Rail vehicle, meaning that the vehicle now holds two public transport firsts, as it has anti-microbial grab poles and crash-resistant glazing.

Dr Darren Hughes, from WMG at the University of Warwick comments:

“The new Coventry Light Rail vehicle has a number of major innovations including being lightweight, battery-powered and having reduced environmentalImage of Coventry VLR footprint. The vehicle has shown that major steps forward can be made using a UK-centric manufacturing approach. The Sandilands accident report identifies clearly the need for safer glazing in trams and we decided this would be the perfect opportunity to design and make the glazing and see it installed. Although we have demonstrated the technology in trams, we believe it points a path for safer future glazing solutions in the wider rail sector.”

Dr Sophie Cozien-Cazuc from Far-UK Ltd adds:
“Far-UK has been thrilled to be given the opportunity to develop and manufacture resilient lightweight polymeric panels for the Coventry Very Light Rail vehicle. After the Croydon accident in November 2016, there was the need for more robust glazing options. This Resi-Glaze project allows innovations from other transport sectors to be brought to the rail industry. Polycarbonate glazing has moved on from the 1980s. Far is looking forward to providing this new glazing in the transport sector in general.”

Paul Salkeld from TDi Ltd adds:
“Transport Design International have been involved in many innovative projects over the years and this project has sound relevance as we look to promote safer and cleaner ways of providing public transport. We are looking forward to seeing this moving forward now in many applications.”

Councillor Jim O’Boyle cabinet member for jobs, regeneration and climate change said:
“I am delighted that this glazing innovation is being tested as part of our vehicle development. It will also have much wider application too, which is very exciting.

“We are right at the front of the green industrial revolution and our plans for Very Light Rail have already achieved a number of world first developments. The Coventry Very Light Rail project has the potential to revolutionise the way people travel, importantly at an affordable cost, and it will take another step forward later this year when both our new vehicle and our innovative track system is tested in real-world conditions.”

ENDS

14 JULY 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/dsc_3057_002.jpeg

Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/230321vlr_citycentre_006.jpg
Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/march_2021/230321vlr_citycentre_063.jpg
Caption: The glazing of the Coventry VLR as seen in situ

Credit: WMG, University of Warwick

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


Increasing shared E-scooter service life from 3 months to 3 years

  • Rental e-scooters are a rising trend in cities across the world, although they do not produce CO2 when used, their typical service life is 2-5 months, after which they are scrapped
  • Scrapping of scooters has a huge environmental impact, which will only get worse over time
  • To decrease the number of scooters being scrapped researchers from WMG, University of Warwick, want to increase their lifespan from three months to three years, making them more eco-friendly

The current lifespan of a rental e-scooter is on average three months, after which they are scrapped, which isn’t environmentally friendly despite the scooters not producing any CO2 when in use. Researchers from WMG, University of Warwick, aim to increase their lifespan from three months to three years, making them more eco-friendly.

Shared, or rental e-scooters are quickly becoming a popular mode of transport across the world, being trialled in numerous cities across the UK. Their usage has accelerated rapidly since 2020 in response to COVID-19, as people seek alternative options from public transport.

With the rise in number of e-scooters deployed, there has been an increased focus of their environmental impact. Although e-scooters do not produce any CO2 at the point of use, which can help to promote cleaner air in the places they are deployed, the typical service life is only 2-5 months, after which point they are scrapped. This has a huge environmental impact, which is only going to get worse over time.

Thanks to funding from WMG centre High Value Manufacturing Catapult, over the next two years researchers from WMG, University of Warwick will seek to increase e-scooter service life from three months to three years, through innovative human factors engineering processes in collaboration with leading e-scooter companies.

The researchers are taking a deployment view of rental e-scooters, considering not only the e-scooter vehicle, but every aspect of the service design. This includes analysis of the environment e-scooters operate in and how both riders and non-riders engage with the service.

Dr Roger Woodman, from WMG, University of Warwick explains:
“Thanks to funding from WMG centre High Value Manufacturing Catapult, we are able to take a human factors approach to look at how e-scooters are constructed and operated, to find areas for improvement in both the service and vehicle design, to increase their usable lifespan and make them more eco-friendly.”

“This massive increase of the average service life has the potential to greatly reduce environmental impact and make e-scooters a truly sustainable form of transport.”

The project has also bought more opportunities for students, as there is a PhD opportunity within the team focussing on micromobility transport modelling.

ENDS

19 MAY 2021

NOTES TO EDITORS

High-res images available at:

https://warwick.ac.uk/services/communications/medialibrary/images/april_2021/launch_pic_1_-_uow_-_voi_edited.jpg
Caption: An e-scooter on campus
Credit: University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/april_2021/wmg_midlands_future_mobility_2021_21.jpg
Caption: An e-scooter on campus with an autonomous pod
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/april_2021/wmg_midlands_future_mobility_2021_23.jpg
Caption: An e-scooter on campus with an autonomous pod
Credit: WMG, University of Warwick

https://warwick.ac.uk/services/communications/medialibrary/images/april_2021/wmg_midlands_future_mobility_2021_16.jpg
Caption: An e-scooter on campus with an autonomous pod
Credit: WMG, University of Warwick

For more information on Micromobility research at WMG visit: https://warwick.ac.uk/fac/sci/wmg/research/cav/humanfactors/projects/micromobility

To find out more about the PhD visit: https://warwick.ac.uk/fac/sci/wmg/research/cav/humanfactors/projects/phd-in-micromobility-transport-modelling

For further information contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk


University of Warwick and WMG already on route with today’s CBI demand for “Greener Miles”

Picture of Coventry Very Light Rail carriageThe University of Warwick is not just backing today’s CBI report ‘Greener Miles: Delivering on a net-zero vision for commuting’ – which calls on businesses to shoulder greater responsibility for ensuring their workers adopting greener travel habits – it has already taken action. The University of Warwick is already on route with a two year extensive programme to cut personal car use on campus and therefore reduce emissions. WMG, at the University of Warwick, is also deep into a suite of intense research programmes that will help industry, the public sector and consumers across the UK and beyond find sustainable transport solutions which will cut emissions.

The new report published today (Friday 30th April 2021) by the CBI and KPMG and entitled Greener Miles: Delivering on a net-zero vision for commuting – has proposed a series of recommendations designed to cut travel emissions ahead of the Government’s upcoming Transport Decarbonisation Plan.  Key among those recommendations is a call for businesses to shoulder greater responsibility for ensuring their workers adopt greener travel habits.  

In fact, Transport for West Midlands (TfWM), part of the West Midlands Combined Authority (WMCA), has already teamed up with the University of Warwick on a two-year programme to do just that:

E-scooters, buses on demand, Enterprise Car Club vehicles and the Betterpoints sustainable travel app are just some of the innovative transport projects that form part of this two-year ‘Choose Your Way Warwick’ trial encouraging participants to adopt more sustainable transport choices and receive rewards for greener travel.

The trial will look at how the use of new transport solutions like e-scooters, or a car club can affect travel behaviour and replace traditional car use in and around the University campus area.

The projects include:

  • Voi Technology, the UK’s leading e-scooter operator, has brought e-scooters to the University of Warwick campus as part of a pilot research project to help inform Government e-scooter legislation in the UK and research into micro-mobility.
  • Membership of Enterprise Car Club with access to two low emission Hyundai Ioniq cars, for use by staff, students and the local community (subsidised for staff). The vehicles can be booked for anything from half an hour to a full day. As well as the two car club vehicles, members can also use any of the car club’s 1,400 vehicles around the UK and access the wide range of vehicles from Enterprise’s daily rental fleet.
  • The West Midlands on Demand responsive bus service operates in a similar way to a taxi The convenience of the DRT will make it easier for the local community, staff and students to use public transport where a traditional bus service may not be appropriate.

The University has also made a travel policy commitment sets out that travel by train is to be the default mode of transport for journeys under 6 hours and a departmental ‘green levy’ will be charged for any air travel.

The University of Warwick’s Provost Professor Chris Ennew said of this and all the University’s sustainability initiatives:

“Warwick has always been a forward-facing university and today is no different. We know the way ahead has to lead to a better, more sustainable, relationship between people and the planet. As one of the region’s largest employers, we know Warwick has a critical role to play. We have a responsibility as a community and organisation to moderate our individual actions, our research and teaching, and how we run and develop our University. We aim to reach net zero carbon from our direct emissions and the energy we buy by 2030 and to achieve net Zero carbon emissions from emissions arising from procured goods and services by 2050.”

WMG, at the University of Warwick, are also already working with companies and organisations on a range of research programmes to support the sort of sustainable transport that will help deliver the “net-zero vision for commuting” sought in today’s CBI report and the governments Ten Point plan.

Professor David Greenwood, Professor of Advanced Propulsion Systems in WMG said:

“As the UK transitions to net zero carbon by 2050, we must ask whether and how we will commute to work in the future. A personally owned car will not be the only possible answer, and alongside our work on electrifying cars, WMG has strong interests in light rail solutions as well as increasingly autonomous vehicles. Two-wheelers and micromobility will also have a more important role to play, and our research here includes consideration of future regulation and road infrastructure as well as vehicle development and trials. All of these rely on batteries and electrification which also form a significant part of our research portfolio. “

Here are just three of WMG’s sustainable transport research projects:

· Coventry Very Light Rail tours its future home

· Novel e-assisted cargo trike launched (warwick.ac.uk)

· Pod research opens up a swarm of market opportunities for Aurrigo (warwick.ac.uk)

Note for Editors

CBI release: https://www.cbi.org.uk/articles/greener-miles-how-government-and-business-can-work-together-to-reduce-emissions-from-the-commute/

For further information please contact:

Peter Dunn, Director of Press and Media Relations
Chief Communications Officer’s Group, University of Warwick
Mobile/Cell: 07767 655860 UK +44 (0)7767 655860 International
Email p.j.dunn@warwick.ac.uk

30th April 2021


Coventry Very Light Rail tours its future home

The Coventry VLR on tour in the city centre Credit: Mark Radford PhotographyCoventry City Council’s prototype Very Light Rail vehicle, which has the potential to transform how people move about the city, is set to be moved ready for real on track testing.

Over the last two years researchers from WMG, University of Warwick together with TDi Ltd, have been designing and building the new Coventry Very Light Rail vehicle for Coventry City Council, which will see an electric powered, zero-emissions, lightweight, rail-based public transport system arrive in Coventry.

The vehicle is being moved from NP Aerospace in the city for some static software testing before moving to a dedicated track at BCIMO in Dudley.

The prototype vehicle has done a tour of Coventry so it could see its future operational home. After leaving the vehicle production site in Coventry it stopped outside the Co-op building and the Transport Museum so that the public could get a better view.Caption: The Coventry VLR outside the Transport Museum Arches  Credit: Mark Radford Photography

Councillor Jim O’Boyle cabinet member for jobs and regeneration and Coventry and Warwickshire LEP board director said, “I am really pleased to see the first prototype vehicle out of the factory and on to our city’s streets. Even on a low loader it looks impressive – modern, sleek and of course the fact its battery powered means it’s good for the environment and air quality too.

“Very Light Rail has reached this really important point thanks to all of the researchers, innovators, engineers and manufacturing skills we have right here in the city. And I believe that we can create jobs and opportunities for local people as we lead the Green Industrial Revolution.

“Coventry was the beating heart of the carbon revolution and now with projects like this, UKBIC, our electric bus fleet and our plans for a Gigafactory we will lead the zero-carbon revolution too.Caption: Councillor Jim O’Boyle with the Coventry VLR  Credit: Mark Radford Photography

“On track testing will take some time – but it should prove the concept – and at that stage I expect there to be lots of interest in VLR from other areas of the UK and abroad. This is a very exciting moment.”

Dr Darren Hughes, from WMG, University of Warwick comments:
“It is very exciting for us to see the development of the Coventry Light Rail vehicle move onto the next phase of testing in Dudley, and to see the vehicle in the City which it will one day call home.

“The vehicle has been constructed within Coventry with a reliance on a regional supply chain where possible, showing the strength in depth of local manufacturing. It is a unique vehicle with state-of-the-art technologies including an advanced battery power-train and resilient glazing making it even safer for public use.”

Helen Martin, director of regeneration & enterprise at Dudley Council said: “The Very Light Rail Test Track and National Innovation Centre (NIC) is a key project for our borough. It will offer an innovative and exciting opportunity to provide lower cost local rail connectivity, encouraging shift from private vehicles towards public transport and creating economic benefits in terms of skills and supply chain opportunities.Caption: Inside the Coventry VLR vehicle  Credit: Coventry City Council/William Hunt

“With the test track now completed, we’re looking forward to testing getting underway later this year.”

Darren Smith Head of TDI adds: “The TDI team are extremely pleased with the projects’ progress to date and the local benefits it has enabled. The work our supply chain, including our colleagues at NP Aerospace have engaged in, has produced an outstanding first off demonstrator for this hugely important and innovative project. The future economic benefits, both nationally and locally, this project will bring cannot be underestimated and TDI are very proud to be entrusted to deliver it for our client, WMG.”

James Kempston, CEO, NP Aerospace, comments: “Collaboration on the VLR project with WMG and TDI has been a great success, resulting in an exceptional prototype, which is ready to begin testing. The project has expanded our capability in the prototype vehicle industry and has enabled us to support a significant environmental transport initiative for the people of Coventry. It’s a very positive story for UK manufacturing with the challenges of the pandemic and Brexit and it’s particularly impressive what the team have delivered in just 8 months. We look forward to any future collaborations this may bring to the business.”

The BCIMO centre in Dudley is home to the test track developed as part of the wider research programme, on which they will now test the vehicle on to ensure that it performs as planned. Important trials will include the rapid battery charging system which will allow vehicle power to be replenished in minutes.

The project has been made possible thanks to funding from the Government’s Local Growth Fund through the Coventry and Warwickshire Local Enterprise Partnership (CWLEP) and the West Midlands Combined Authority Devolution Deal.


University of Warwick’s WMG and Engineering wins £5 million and key coordinating role in Government’s Driving the Electric Revolution programme

WMG and the School of Engineering at the University of Warwick have been awarded just over £5 million funding and a key coordinating role in thePicture - driving the electric revolution Government’s Driving the Electric Revolution Industrialisation Centre programme.

Driving the Electric Revolution is a UKRI (UK Research and Innovation) funded Industrial Strategy Challenge Fund (ISCF) technology programme to help achieve the UK’s net zero ambitions working across cars, aircraft, rail, marine, renewables, industrial digital technology, industrial power electronics, and machines & drives. It is investing £28.5 million into cutting edge equipment across the country.

WMG and the School of Engineering at the University of Warwick have been awarded the following equipment funding:

• Almost £4 million from UKRI and the High Value Manufacturing Catapult for a new Winding Centre of Excellence led by Dr David Simkin in WMG at the University of Warwick. The facility will help UK supply chain companies to manufacture discrete hairpin machines.

• An award in order of £1.3 million from UKRI and High Value Manufacturing Catapult for the University of Warwick’s School of Engineering for a facility led by Professor Phil Mawby and focusing on power electronics reliability and failure analysis.

WMG at the University of Warwick has also been selected to provide leadership to the Midland’s region Driving the Electric Revolution Centre, which is one of four across the UK. These centres will coordinate and build on the UK’s national capability to deliver long-term sustainable growth on the road to net zero. Together they will help businesses scale up the use of electric-powered vehicles and machines across a range of industries and transport systems to grow the UK supply chain.

Margot James, Executive Chair at WMG, University of Warwick said: “We are delighted that Warwick is leading such an important project in the UK’s effort to build a net zero future. The green agenda will contribute significantly to our economic recovery and growth, with zero carbon transport crucial to protecting our planet. It’s encouraging to see an opportunity for UK businesses to work together, through the Centres, to deliver on the sustainable transport challenge.

Professor Will Drury, Driving the Electric Revolution Challenge Director said: “This investment represents a vital step forward in making the UK a world leader in Power Electronics, Machines and Drives (PEMD). With access to the Centres and network open to all, we aim to give all UK businesses and researchers the ability to develop and scale new PEMD technologies and manufacturing processes. Only by investing now in developing PEMD will the UK achieve its net zero ambitions.”

Dr. Andreas Docter, Director Electric Powertrain, Jaguar Land Rover said: “This is a great opportunity to support the most advanced projects in the development and testing of Power Electronics, Machines & Drive (PEMD) systems. Jaguar Land Rover has a specific interest in projects which improve manufacturing processes, accelerate the PEMD manufacturing innovation to production and an important one is flexible eDrive prototyping. These all contribute to the company’s mission of achieving Destination Zero.”

David Bock MIET, @FutureBEV Technical Lead BMW AG said: “@FutureBEV is pleased to be working with University of Warwick as a strong partner in the development of next generation powertrain development and core component development within the APC15 @FutureBEV programme. University of Warwick’s place in the Government’s Driving the Electric Revolution programme will provide value in the @FutureBEV reinforcing the knowledge transfer to real products that will influence the concept to product delivery within the program and in steering the next generations of engineers into the industry. The UK supply chain needs this capability, and this provides a strong path to delivering best in class power electronics to market as well as the needed skill base for future delivery into the value chain.

ENDS

23 MARCH 2021

For further information please contact:

Alice Scott
Media Relations Manager – Science
University of Warwick
Tel: +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

UKRI

To arrange an interview Professor Will Drury please contact: press@ukri.org.

Notes for Editors:

Any business or researcher interested in using a Driving the Electric Revolution Industrialisation Centre should visit www.der-ic.org.uk.

Funding

The funding comes from Driving the Electric Revolution. Part of the Industrial Strategy Challenge Fund (ISCF) delivered by UK Research and Innovation (UKRI). Driving the Electric Revolution started in August 2019 as part of the ISCF programme. The programme is funded by £80 million from the government’s ISCF Future of Mobility grand challenge and aims to secure £154m private investment. It aims to make the UK a global leader in the manufacture of core technologies which support electrification: Power Electronics, Machines and Drives (PEMD). It seeks to accelerate the journey into the growth of PEMD supply chain in the UK.

The ISCF

ISCF aims to bring together the UK’s world leading research with business to meet the major industrial and societal challenges of our time. The fund was created to provide funding and support to UK businesses and researchers, part of the government’s £4.7 billion increase in research and development over the next 4 years. It was designed to ensure that research and innovation takes centre stage in the Government’s modern Industrial Strategy. It is run by UK Research and Innovation.

UKRI

UKRI is the largest public funder of research and innovation in the UK, with a budget of over £8bn. It is composed of seven disciplinary research councils, Innovate UK and Research England.

We operate across the whole country and work with our many partners in higher education, research organisations businesses, government, and charities.

Our vision is for an outstanding research and innovation system in the UK that gives everyone the opportunity to contribute and to benefit, enriching lives locally, nationally and internationally.

Our mission is to convene, catalyse and invest in close collaboration with others to build a thriving, inclusive research and innovation system that connects discovery to prosperity and public good.

UKRI continues to support the research and innovation community to navigate the transitions associated with the exit of the UK from the EU. To keep up to date please visit our dedicated pages. https://www.ukri.org/research/international/ukri-eu-exit/


WMG in landmark partnership to develop UK electric motorcycle capability

Researchers at WMG are part of a unique four-way partnership with Triumph Motorcycles, Williams Advanced Engineering and Integral Powertrain Ltd e-Drive Division, focusing on developing specialist electric motorcycle technology and innovative integrated solutions.

Picture Phase 2 of Project TE-1Phase 2 of Project TE-1, a landmark four phase collaboration in British design and engineering, is now complete with the exciting reveal of the innovative advanced electric powertrain and battery, and the very first styling sketches for the final prototype.

Including innovation in battery and powertrain design, initial test performance results that far exceed the current benchmarks and industry targets and development in efficiency and range technology, Project TE-1 is well on track to fully deliver on the partnership’s objectives to enhance the credibility and profile of British industry and design, and provide substantial input into future electric motorcycle strategy from Triumph.

 

Nick Bloor, Triumph CEO said: “The completion of Phase 2, and the promising results achieved to date, provide an exciting glimpse of the potential electric future and showcase the talent and innovation of this unique British collaboration. Without doubt the outcome of this project will play a significant part in our future efforts to meet our customer’s ambition and desire to reduce their environmental impact and for more sustainable transportation.

“This important project will provide one of the foundations for our future electric motorcycle strategy, which is ultimately focussed on delivering what riders want from their Triumph; the perfect balance of performance, handling and real world usability, with genuine Triumph character.”

Truong Quang Dinh, WMG’s Assistant Professor of Energy Management and Control Systems explained: “Our creation of initial computer-based simulation models at the start of Phase 1 has been instrumental in ensuring that the component selection was appropriate to achieve the performance targets defined by the partners for the TE-1 Prototype. We have continued with this work across Phase 2 of the project, refining the models to a much more complex level to allow us and the partners to imitate further components on the bike such as braking, throttle, lighting and other systems and mimic real-world riding to provide development opportunities before components were fully designed. Additionally we have created a physical rig wired with all of the control units, in order to implement a design validation test programme to ensure the function of each section was within the allowable range.”

Truong Quang Dinh explains more here: Project TE-1 - WMG cut on Vimeo

WMG has also been providing guidance to Triumph relating to future legislation, charging infrastructure and recycling strategies.Picture of WMG's Phil Whiffin with the final prototype

Project TE-1, a two year project, is supported and co-funded by the UK Government’s Department for Business, Energy & Industrial Strategy (BEIS) and the Office for Zero Emission Vehicles (OZEV), via Innovate UK.

Read more about the Project here: Project Triumph TE-1 | For the Ride (triumphmotorcycles.co.uk)

Read more about WMG’s energy research here: Energy (warwick.ac.uk)

 


WMG commends the advances to UK innovation, skills and industrial growth made by the Industrial Strategy Challenge Fund and supports NAO recommendations to further improve impact

Professor David Greenwood with Electric Vehicles outside NAIC. - Industrial Strategy Challenge Fund has brought government, business and researchers together at scale and at pace, supporting over 1,600 innovation projects, including Coventry’s UK Battery Industrialisation Centre

- NAO right to support streamlining start-up and approvals processes of up to 72 weeks, which can deter bids, especially among smaller businesses

- Longer term visibility of funding will be needed to give investment confidence to businesses and academia

- Mechanisms to engage private sector finance should be considered – especially as innovations become ready for market

- As industry faces challenges of the pandemic, flexibility in financing bids, especially to support smaller businesses, should be considered

- Regional and Skills strategies should be a key part of innovation funding approach

- The Catapult network provides an established and successful platform for innovation, and its geographic locations also suggest it could play a big role in regional levelling-up

- Skills must be developed alongside innovation to give the UK the ability to exploit our ISFC investments. WMG, at the University of Warwick, have been pioneers in developing skills programmes alongside innovation and industrialisation

WMG at the University of Warwick has welcomed today’s National Audit Office report on the Industrial Strategy Challenge Fund, supporting their positive assessment of the fund, and backed their calls for a more streamlined approach to innovation funding, alongside a greater emphasis on the importance of innovation for regional development and skills growth.

Professor Dave Greenwood, Director of Industrial Engagement at WMG, University of Warwick and Chief Executive of the WMG High Value Manufacturing Catapult said:

“The Industrial Strategy Challenge Fund (ISCF) has been a powerful tool to support innovation that meets the most pressing national challenges.

“The ISCF has bought government, business and researchers together at scale, and at pace, to help our transport industry decarbonise through the Faraday Battery Challenge, and is delivering vital vaccine capacity through the Vaccine Manufacturing and Innovation Centre. It has supported over 1,600 projects, including the new UK Battery Industrialisation Centre in Coventry, with over forty per cent of support in the first two waves going to small and Micro companies.

“These projects are making a difference to UK innovation, skills and industrial growth, and these successes should be celebrated.

“As the report says, however, there are always opportunities to improve how the Fund operates.

“First, we need to make the funding process faster and more agile – especially given rapid changes in the external Business and social environment, from Brexit to the Pandemic. Lengthy Approvals processes of up to 72 weeks for selecting challenges and awarding projects can deter bids, especially among smaller businesses.

“Alongside this, with much of industry dealing with financial pressures from the pandemic, government should consider relaxing some of the funding constraints on the programmes – especially where they fall significantly short of what state aid would allow, such as in the co-investment requirement from Industry, which was increased in Wave 3 of the Fund.

“Together, these steps would help position the UK for clean growth post-COVID and deliver on opportunities created for the UK supply chain by the UK/EU trade agreement.

“Looking forward, it’s essential that there is a long-term funding package in place to support the Industrial Strategy Challenges. As the report notes “The Fund was part of a one-year settlement in the spending review in November 2020.” Short term spending decisions will ultimately be detrimental to large scale industrial and academic investments – a 5 year rolling funding horizon is needed for full confidence from Industry partners. To help deliver this, we should consider the role of private finance in these programmes, and what mechanisms might de-risk industry investments to support clean growth.

“It’s also crucial that the ISCF supports regional development as part of the Government’s ‘levelling up’ agenda. Currently, almost half of funding has gone to projects in London and the South East, and while we in the West Midlands have secured significant investment, the ISCF should reflect the regional profile of Industrial R&D more closely. It is notable that government funding relative to private sector investment is much lower in the Midlands than in the South East for instance.

The Catapult network, with centres of excellence across the country, strong links to regional industries, and good networking between them, is an exemplar of how levelling up should be delivered. This established and successful platform could provide an efficient and effective means to boost R&D in under-represented regions in accordance with the recommendations of this report.

“We also need to link innovation spending to the education and skills agenda. The UK needs not just the best technologies but also the people to develop, manufacture and support them. These cannot be developed in isolation. Here, WMGs approach of delivering innovation and skills programmes together and in partnership with industry is an established model, allowing degree apprenticeships, re-training, lifelong learning to support industry innovation programmes. As the Government considers responses to the skills white paper, it should consider how future industry skills needs will be shaped by the innovations being delivered by the challenge fund, from transport electrification to digital skills.


Older news