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BEVSeg2GTA: Joint Vehicle Segmentation and
GNNs for Ego Vehicle Trajectory Prediction in BEV

Sushil Sharma , Ciaran Eising and Mark Halton
Department Electronic and Computer Engineering, University of Limerick, Limerick, V94 T9PX Ireland

Abstract
Predicting the ego vehicle’s trajectory is crucial for autonomous driving,

yet real-world complexities challenge comprehensive capture within defined
traffic regulations. Our paper introduces BEVSeg2GTA, which integrates per-
ception and trajectory prediction into a unified system. By leveraging a deep
network with EfficientNet and a Graph Neural Network (GNN), we improve
accuracy in perceiving and predicting ego vehicle trajectories. Our proposed
framework, BEVSeg2GTA, has been thoroughly evaluated on the nuScenes
dataset.

Introduction

The development of autonomous driving technologies emphasizes the impor-
tance of safety, which relies on continuous coordination between perception, pre-
diction, planning, and control systems, as depicted in the Figure below

Figure 1: Self-driving systems use standard components for various tasks.

Our Proposed Methodology

Our proposed BEVSeg2GTA architecture: Our method for jointly segmenting ve-
hicles and predicting the trajectory of the ego vehicle consists of several stages.
Initially, we extract image features across different scales and integrate a camera-
aware positional embedding to address perspective distortion. Following this,
we employ map-view positional embedding and cross-attention layers to gather
contextual insights from various viewpoints and enhance the segmentation accu-
racy of the ego vehicle. The segmented results are then passed through a graph
neural network to generate embeddings representing the surrounding environ-
ment. These embeddings are further utilized as input to a probabilistic layer for
trajectory prediction, leveraging contextual information from the surrounding
scene.

Figure 2: . Our proposed BEVSeg2GTA architecture

Graph Neural Network

Within the domain of ego vehicle trajectory prediction, the integration of GNNs
represents a significant enhancement. This approach builds upon prior research
efforts that have explored similar methodologies.

Figure 3: Motion agents with feature nodes and road representations.

Results
Qualitative outcomes of BEVSeg2GTA the combined vehicle segmentation and
ego vehicle trajectory prediction. The six camera perspectives of nuScenes sur-
rounding the vehicle are shown, with the top three facing forward and the bottom
three facing backwards. Ground truth segmentation is displayed on the right.
Our trajectory prediction approach integrates improved map-view segmentation
with ego vehicle trajectory (second from the right), and it is compared to the LSS
method and the CVT method (third and fourth from the right)

Figure 4: Qualitative outcomes of BEVSeg2GTA the combined vehicle segmentation
and ego vehicle trajectory prediction

Method MinADE5 ↓ MinADE10 ↓ MinADE15 ↓ MinFDE5 ↓ MinFDE10 ↓ MinFDE15 ↓ MissRate5,2 ↓ MissRate10,2 ↓
Const. Vel and Yaw 4.61 4.61 4.61 11.21 11.21 11.21 0.91 0.91

Physics oracle 3.69 3.69 3.69 9.06 9.06 9.06 0.88 0.88
CoverNet 2.62 1.92 1.63 11.36 - - 0.76 0.64

Trajectron++ 1.88 1.51 - - - - 0.70 0.64
MTP 2.22 1.74 1.55 4.83 3.54 3.05 0.74 0.67

MultiPath 1.78 1.55 1.52 3.62 2.93 2.89 0.78 0.76
MHA-JAM 1.85 1.24 1.03 3.72 2.23 1.67 0.60 0.46

Ours 1.63 1.19 1.06 3.63 2.13 1.65 0.56 0.51

Table 1: Evaluation of competing methods on the nuScenes Dataset

Conclusion
In this study, we introduce BEVSeg2GTA, Initially, an encoder-decoder trans-
former processes images to create BEV representations. These representations
are then used in a GNN to identify spatial relationships among agents. The
K-Nearest Neighbors (KNN) algorithm generates a graph embedding, which is
integrated with a Spatio-Temporal Probabilistic Network (STPN) to predict ego
vehicle trajectory
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Deformable Convolution Based Road Scene Semantic Segmentation of Fisheye Images in 
Autonomous Driving

Semantic Segmentation: is the process of labeling each pixel in an image with a semantic
category, providing a detailed understanding of the scene's content.

Fisheye Problem: Fisheye images, common in autonomous driving scenarios, pose challenges
due to their wide field of view and geometric distortions, making it challenging to extract accurate
spatial and geometric information.

Why Deformable Convolution?: Deformable convolutions are used to address the challenges
presented by fisheye imagery by allowing neural networks to adapt and learn from geometric
distortions. This helps improve the accuracy of semantic segmentation by capturing intricate
spatial relationships more effectively.

Evaluate the effectiveness of Deformable Convolutions in segmenting fisheye images using U-Net.

Explore multi-view scene processing to assess model versatility.

Investigate how incorporating images from various scenes can improve segmentation accuracy.

Highlight the role of Deformable Convolutions in facilitating view-agnostic learning and their
intrinsic advantages for fisheye image.

Objective: Our study aims to explore the effectiveness of Deformable Convolutions in semantic
segmentation of fisheye images using U-Net architectures.

Approach: We leverage U-Net and Residual U-Net architectures, incorporating Deformable
convolutions to enhance spatial understanding in fisheye images.

Model Architecture: We modify traditional U-Net and Residual U-Net models by replacing
convolutional blocks with Deformable convolutions, as discussed in previous literature.

Dataset: Utilizing the WoodScape dataset, comprising 10,000 annotated fisheye images from four
view angles, we evaluate model performance across diverse real-world scenarios.

Experimental Setup: Implementing vanilla and Residual U-Net models with and without
Deformable convolutions, we explore variants such as V_U-Net, V_DeU-Net, R_U-Net, and R_DeU-
Net. Themodels are trained from scratch using PyTorch on NVIDIA GeForce RTX 3080 GPU.

Evaluation: Model performance is evaluated based on standard segmentation metrics including
accuracy and IoU score, with training continuing for 50 epochs using Adam optimizer and a batch size
of 1 for smoother training.

The study investigated the effectiveness of integrating Deformable convolutions for
semantic segmentation of fisheye images in the automotive domain.

Four models were explored as a baseline: Vanilla_U-Net, Residual_U-Net, Deformable_U-
Net, andDeformable_Residual_U-Net.

Findings: Through experiments, it was observed that integrating Deformable
convolutional blocks allows for more refined and efficientmodeling of fisheye images.

Future Directions: could explore incorporating these blocks into alternative backbone
architectures of Transformers or multitask networks to enhance semantic segmentation
for synthetic and real-world datasets.
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Introduction Methodology

Figure 1. Four fisheye cameras mounted around the vehicle to provide complete 360-degree coverage.
Figure 2. Baseline Vanilla DeU-Net model where Deformable Convolution block injected into the first layer of the encoder
and last layer of decoder path to better account the spatial and geometric characteristics of fisheye images during training.

Model Workflow Diagram

Results and Analysis

Figure 3. Visualizations of results on Woodscape fisheye images and corresponding ground truth masks are presented
across baseline models including Vanilla\_U-Net, Residual\_U-Net, Deformable\_U-Net, and Deformable\_Residual model.
Notably, the visualization performance with Vanilla\_DeU-Net surpasses the other models, as indicated with green boxes
compared to ground truth masks, with particular emphasis on distorted edges.

Table 1. The table presents class-specific accuracy and IoU scores for various configurations of Vanilla and Residual U-Net
models, including their deformable versions, trained with different loss functions: cross-entropy (ce), standard focal loss
(nwf), and weighted focal loss (wf). The highest IoU score for each class is highlighted in green for improved clarity.

Summary

Research Goals
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Camera-Radar Fusion in Autonomous Vehicles For Perception Tasks

INTRODUCTION:

In the field of autonomous driving, developing robust and accurate

perception systems is essential for ensuring safety and efficiency. These

systems integrate multiple sensors: cameras for high-resolution visuals,

LiDAR for depth information though less effective in adverse weather and

radar for reliable long-range detection in challenging conditions [1]. The

combination of these technologies enables comprehensive environmental

perception, vital for complex driving tasks like motion prediction, path

planning, and automated control.

However, integrating these diverse inputs involves complex challenges in

sensor selection and data fusion at various levels (early, intermediate, and

late), which are key research areas to advance autonomous vehicle

capabilities [2].

Proposed Methodology:

❖ Our approach uses radar point clouds and RGB camera images,

encoding these data sources to extract and convert features into a

Bird's Eye View (BEV) format. This involves specifically

transforming RGB features to BEV and flattening radar data into

BEV, optimizing them for fusion.

❖ The prepared BEV features from both radar and RGB data are fused at

either an intermediate or late stage, ensuring thorough integration.

This process uses a BEV encoder to align and optimize the features

for accurate data synthesis.

❖ The resulting fused BEV features are crucial for performing advanced

functions such as tracking, map segmentation, and 3D object

detection, enhancing the system’s capabilities in dynamic and

complex environments.

Conclusion:

In conclusion, our research integrates advanced sensors and fusion

techniques to enhance autonomous vehicle perception systems. By

merging camera and radar data, we enhance accuracy and adaptability

under various conditions. This leads to more reliable and efficient

autonomous driving in complex environments.

References:
[1] Wu, Zizhang, Guilian Chen, Yuanzhu Gan, Lei Wang, and Jian Pu. "Mvfusion: Multi-view 3d

object detection with semantic-aligned radar and camera fusion." In 2023 IEEE International

Conference on Robotics and Automation (ICRA), pp. 2766-2773. IEEE, 2023.
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Objective:

The primary objective of our research are:

❖ To assess the individual and combined capabilities of cameras, and radar 

in detecting and interpreting complex driving environments.

❖ To explore intermediate and late fusion techniques to optimize the 

integration of camera and radar data for enhanced accuracy in 

environmental perception.

❖ To evaluate the performance of the integrated system in diverse weather 

conditions and driving scenarios to ensure consistent functionality.



RESEARCH & PLANNING
Lane Keep Assist (LKA)

Machine Learning

DESIGN & DEVELOPMENT – RECORDING SYSTEM

• Script developed to connect to a GigE camera
• Upload a camera configuration and record frame by frame
• Images saved to a named location in a .png format
• Images named using the session date and timestamp collected from PTP 

calibrated system time

DESIGN & DEVELOPMENT – IMAGE PROCESSING PIPELINE

• Images are processed through a custom YoloV5 model trained on a 5000+ 
image dataset

• Pipeline can be executed in one click by the test engineer
• Script developed which generates augmented images and labels to enhance 

training dataset
• Results output into a log file to be used by test engineers

INTEGRATION

• Integrated with the current Ground truth (GT) and Measurement Technique  
(MT) boot kits

• Vector CANape recording system

MEASUREMENT TECHNIQUES 
AUTOMATED MEASUREMENT OF VISIBLE WARNINGS ON 

VEHICLE INSTRUMENT CLUSTER
TEAM MEMBERS:  William Dunnion, Joshua Haywood, Daniel Rodrigues, Réka Kassai, George Giles, George Maynard          PROJECT MENTOR: Dr. Gian Matteo Bianchi

An Advanced Driver-Assistance System (ADAS) feature validation improvement project

PROBLEM1

Test engineers record a video of a test vehicle’s instrument cluster to see when ADAS 
features are being activated during a test

The test video is manually processed by an analyst, who identifies when ADAS features 
are being activated

The current process is not automated and relies on hours of a data analyst’s time to 
process

The current process for acquisition of AAD cluster data is not time synced to the rest of 
the AAD test data 

METHODS3

CHALLENGES4

RESULTS5

CONCLUSION6

FUTURE WORK7

png

Connect to 
camera

Start recording 
frame by frame

Collect PTP timestamp 
from system

Save to chosen 
directory

GigE camera MT Core running 
CANape

OXTS INS for PTP

Glare (environmental factors)

Sunny weather

Region of interest (ROI) not specified

Camera on auto brightness and exposure

Sunny weather

Region of interest (ROI) specified

Brightness and exposure on set 
values

Sunny weather

Region of interest (ROI) not specified

Brightness and exposure on set values

Cluster protective plastic shield removed 
(not feasible in all vehicles)

Image 
Preprocessing

Custom YoloV5 
Object Detection 

model

Output results to 
log file

When the vehicle is projected to breach 
the lane marking, LKA initiates an 

intervention

Feature only operates within the 
specified speed range

A visual warning must be 
displayed 

Investigation of existing JLR 
solutions

YOLO Algorithm:
• Open source
• Availability of 
documentation & 

community support
• Supports python

ADAS

Improve the accuracy of the 
model

Train the model on different 
ADAS icons

Enable integration with 
multiple vehicle lines

1 2 3

Research & Planning
Research undertaken around chosen ADAS feature and existing 
JLR projects
YOLO v5 algorithm chosen for image recognition

Design & Development
Camera script for image capture developed
Image processing pipeline developed

Integration
Recording function can be implemented as a part of MT Core, 
shrinking overall software footprint and integrating with existing 
MT data collection

Testing
Algorithm has successfully detected LKA icon on images 
obtained from both vehicle and rig testing

• Trained model is currently able to detect the 
LKA icon in the ‘two red lines’ state as a Proof 
of Concept

• Labelling and training is ongoing for a model to 
identify the other 9 states

• The model can identify the LKA icon, but with 
reduced confidence, in images with high 
amounts of environmental factors (glare, 
vibration)

• The training dataset of rig images will be 
enriched with in-vehicle images with 
environmental factors present to improve 
performance 

TESTING

Rig Testing Pipeline
• Bench test rig setup for calibration
• Uses Vector CANalyzer to drive requisite signals to the display
• Uses in-house recording script to capture frames

Vehicle Testing Pipeline
• Camera mounted in vehicle
• Recording software for vehicle clusters implemented

Vehicle or ECU rig  Image capture Image processing 
pipeline

Timestamped 
detection file output

OBJECTIVES2

Research & 
Planning

To research and investigate existing image processing projects to 
explore and potentially re-use previous work proof of concepts 
conducted by JLR

Design & 
Development

To develop:

1. A recording system for image capture with GigE PTP camera
2. An image processing model for single feature detection for one 
specific car line

Integration
To integrate into JLR’s current  MT/GT data collection and processing 
systems

Testing

To analyse:

1. Icon detection error margin
2. Accuracy of time sync
3. Robustness testing for camera position

METHODS CONTINUED3

• The IEEE1588 PTP protocol will be provided using an OXTS INS system

All the above means the process of validation and defect analysis is very complex, 
monotonous and time consuming 

Experimentation with polarising filters and different camera configurations, potential cabin 
adjustments to reduce glare.



VELOCITY DRIVEN VISION: ASYNCHRONOUS SENSOR
FUSION BIRDS EYE VIEW MODELS FOR AUTONOMOUS VEHICLES

Seamie Hayes, Ciarán Eising
University of Limerick

hayes.seamie@ul.ie, ciaran.eising@ul.ie

Abstract
Fusing different sensor modalities can be a difficult task, particularly if they are asyn-
chronous. Difficulties arise due to incorrect spatial and temporal alignment. Our ap-
proach to resolving the issue of asynchrony of sensors yields promising results. For one
instance of the asynchronous case, when utilising velocity information, we narrow the
gap between camera+radar (C+R) to camera+LiDAR (C+L) from a difference of 5.1
IOU to 2.7. This is a major leap forward for the utilisation of the often-neglected radar
sensor modality, which is less favoured than LiDAR for autonomous driving purposes.

Methodology
Construction of Synchronous and Asynchronous Datasets
To push the limits of asynchrony, we modify the nuScenes dataset [1] to construct
two different datasets: asynchronours dataset, synchronous dataset. The synchronous
dataset is constructed by removing the first data point, and then one more data point
for every frame-lag. The asynchronous dataset is constructed very similarly except that
every frame is given the radar data of the previous frame (this is for frame-lag 1). Addi-
tionally, we translate this data from its old ego frame to the new ego frame. We can now
examine the performance of these datasets by utilising the Simple-BEV [2] architecture.

Figure 1: Dataset Visualisation: Original vs Asynchronous for frame-lags 1 and 2

Inferring Future Radar Point Clouds

Figure 2: Inferring future
radar point for Time 2

We can enhance the radar data using velocity in-
formation, notably the asynchronous data as it is
lagging behind. This is not possible for LiDAR,
as their sensors cannot capture velocity informa-
tion. We update the position of the current radar
points, Pcur r ent , by inferring what their future po-
sition should be, P f utur e, with the x y velocity in-
formation, Pveloci t y . To finalise the calculation,
we require the time passes which is simply the
time C AM_F RON T was captured (tcam) minus
the time our radar sensor was captured tr ad ar . We
use the following formula to predict future position:

P f utur e = Pcur r ent + Pveloci t y × [tcam − tr ad ar ]
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Results
Table 1: Comparison of ablation studies across C+R and C+L datasets: Asyn-
chronous and Synchronous, with various frame-lags (1, 2, 3), and radar inference
on future positions. Green highlights synchronous, red highlights asynchronous,
with the best performer in each asynchronous metric bolded

Datasets Metrics
Sync/Async Modality Frame-Lag Infer Position IOU Total Loss

Synchronous C+R 1 ✓ 50.9 2.4
Synchronous C+R 1 ✗ 50.3 2.5
Synchronous C+L 1 N/A 58.9 2.0

Asynchronous C+R 1 ✓ 48.4 2.6
Asynchronous C+R 1 ✗ 47.0 2.6
Asynchronous C+L 1 N/A 53.1 2.3
Synchronous C+R 2 ✓ 49.0 2.9
Synchronous C+R 2 ✗ 49.5 2.9
Synchronous C+L 2 N/A 58.2 2.4

Asynchronous C+R 2 ✓ 45.6 2.3
Asynchronous C+R 2 ✗ 43.2 3.3
Asynchronous C+L 2 N/A 48.3 2.9
Synchronous C+R 3 ✓ 49.0 2.6
Synchronous C+R 3 ✗ 49.3 2.7
Synchronous C+L 3 N/A 59.0 1.9

Asynchronous C+R 3 ✓ 43.8 2.9
Asynchronous C+R 3 ✗ 43.1 2.9
Asynchronous C+L 3 N/A 48.7 2.6

Figure 3: BEV image comparison for all experiments. C+R tick refers to inferring
future position. C+R cross refers to not inferring future position

Analysing our results, it is very apparent from both the table and our predicted BEV
images, that asynchrony introduces severe degradation, especially for C+L models
where for frame-lag 3 we experience a 10.3 drop in IOU compared to the synchronous
model. C+R receives a 5.2 drop in IOU for frame-lag 3.
Additionally, inferring future positions for C+R synchronous datasets yields incon-

sistent improvements. However, for the asynchronous datasets, we see a noteworthy
boost, namely for frame-lag 2 where there is a 2.4 increase in IOU compared to the
non-inferred dataset. This is an advantage of utilising radar for asynchronous datasets,
as LiDAR lacks the ability to capture velocity information.
For both asynchronous and synchronous datasets, C+L outperforms C+R with respect

to IOU, simply due to the sheer density of LiDAR point cloud data. However, for the
asynchronous inferring frame-lag 2 datasets, C+R greatly outperforms C+L with respect
to loss.

Conclusion
• Asynchrony severely degrades models. C+L datasets take a larger hit in performance

than C+R datasets.
• C+R Synchronous datasets cannot be consistently improved using radar velocity in-

formation. However, C+R Asynchronous datasets can be consistently improved.
• Performance of the C+R Asynchronous datasets approaches that of the C+L Asyn-

chronous datasets, namely when utilising velocity information.
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ARDÁN: Automated Reference-free Defocus characterization for 
Automotive Near-field Cameras

Measuring optical quality in camera lenses is a crucial step in
evaluating cameras, especially for safety-critical visual perception
tasks in automotive driving. While ground-truth labels and
annotations are provided in publicly available automotive datasets
for computer vision tasks, there is a lack of information on the
image quality of camera lenses used for data collection. To
compensate for this, we propose an Automated Reference-free
Defocus characterization for Automotive Near-field cameras
(ARDÁN) to evaluate Horizontal Slanted Edges for ISO12233:2023
in four publicly available automotive datasets using a Region of
Interest (ROI) selection system in natural scenes. We use the mean
of 50% of the Modulation Transfer Function (MTF50) to measure
optical quality in three Camera Radii (CaRa) segments. We use
Regional Mask to Lens Alignment (RMLA) to remove ego-vehicle
occlusion and vignetting from cameras.
See below, for further information about the four datasets used in
the experiments:

To measure the optical quality of public datasets, we propose
Camera Radii (CaRA) to segment the spatial domain of cameras.
The outer CaRa circle(orange) represents the periphery of the
camera aperture, the two inner CaRa circles (yellow) and finally, the
red outlines are the Regional Mask to Lens Alignment (RMLA). This work was supported, in part, by the Science Foundation Ireland grant 13/RC/2094 P2 and co-funded under the European 

Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero.

Daniel Jakab      Dr. Brian Deegan     Dr. Anthony Scanlan   Dr. Ciarán Eising
(University of Limerick)          (University of Galway)    (University of Limerick)  (University of Limerick)

Introduction

Camera Radii (CaRa)

Spatial Distributions

Experimental Results

Acknowledgements

Datasets No. Images

KITTI (4th Camera RGB) 1065

KITTI-360 (Left Camera) 11518

Woodscape (Front View) 1514

LMS (Rear Camera) 1251

Spatial Distributions of MTF50 measurements for KITTI, KITTI-360, 
LMS and Front View Woodscape datasets. Notice, the clusters of 
data points for each dataset are unique where no two datasets give 
the same distribution of measurements. Most notably, the pattern 
of results follows the geometry of the scenes where the outline of 
the road in each dataset can be seen from the clustered points.

KITTI (4th Camera RGB) KITTI-360 (Left Camera)

LMS Front View Woodscape

Findings: ARDÁN MTF50 results show substantial distortion effects 
on the image quality of fisheye datasets. Distortion may have an 
unforeseen impact on Computer Vision performance.



Influence of AVC and HEVC Compression on Detection of Vehicles Through Faster R-CNN
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Solid line represents using AVC -AVC compression for training and transmitted datasets; dash-dotted line represents using HEVC-HEVC; dashed
line represents HEVC – AVC; dotted line represents AVC – HEVC.

3 Compression Ratios

4 Results

5 Conclusions

► DNN-based object detection has a small variation in performance inferring from datasets
compressed with up to a QPI of 35, demonstrated by the relatively flat average precision
performance for all the trained networks.

► From QPI of 35, the trained networks all have a sharp drop in performance >25% in the
worse case (except the network trained with QPT of 51). Compression past this point is
detrimental and cannot be deployed on assisted and automated vehicles.

Solid line represents using AVC – AVC compression for training and transmitted datasets; dash-dotted line represents using HEVC – HEVC; dashed line represents 
HEVC – AVC; dotted line represents AVC – HEVC

The blue plot are the values achieved for QPT=0 (training with lossless data), the
orange are for QPT=QP I (training with the same level of compression of the
transmitted data), yellow are for the maximum achievable AP as a function of QP I,
and the purple plot (right axis) show the related QPT for each point in the yellow plot.

► In all cases, training with lossless
compressed data (i.e. the blue plot, QPT =
0) did not perform the best.

► Compared to the baseline (blue) average
precision performance improves by 2% to
15% when retraining with compressed
data.

► Compressing with a QP of 29 for training
is demonstrated to be optimal in most
cases using AVC scheme.

► Performance gap between QPI 29 and 41
when training with different compression
schemes. The DNNs could learn
particularities in artefacts generated by
compression.

Due to the considerable data amount produced by the vehicle’s perception sensors, there is the need to investigate techniques to reduce the datarate, e.g. for camera well established lossy compression techniques can be explored and evaluated.
These techniques must be analysed in combination with the consumer of the data, which will most likely be a perception algorithm based on deep neural networks (DNNs). This work shows that compression tuned DNNs have enhanced
performance with respect to traditionally trained DNNs, and the performance is higher when evaluating not only compressed data, but also uncompressed data. Overall, the DNN performance is steady when transmitting data with increasing lossy
compression rate (up to~130:1), but above this value there is a performance decrease. The results presented in this work demonstrate that compression can be used in automotive sensors, particularly leveraging the hereby proposed and
optimised compression-tuned DNNs. The full paper is available at DOI: 10.1109/TITS.2023.3308344.

Abstract

Pre-Print
(Open-Access)

IEEE Xplore
(Published)

► Generated raw data by a perception suite is tremendous (can exceed 40 Gbit/s) and themajority this
data is produced by camera (from 500Mbit/s to several Gbit/s) [1].

► Automotive ethernet networks are providing higher bandwidth (from 100 Mbps to 10 Gbps) for
camera video transmission than traditional wired networks, but will still be belowwhat is required [2].

► Automotive systems employ lossless compression through expensive network cables per camera to
ensure that the video information has not been altered.

► Lossless compression encodes the video to reduce datarate. When decoded, the video will be an
exact match of the original video.

► Lossy compression encodes the video but selectively remove information which are less noticeable
to the human visual system to reduce the datarate. The decoded video will not match the original
video, but higher compression ratios can be achieved.

► For assisted and automated vehicles, the consumer of the camera data is machine learning based
perception algorithms. This work investigates whether lossy compression can be used without
impacting perception.

References:
[1] S. Heinrich, “Flash memory in the emerging age of autonomy,” in Proc. Flash Memory Summit, 2017.
[2] L. Bello et al., “A Perspective on Ethernet in Automotive Communications – Current Status and Future Trends,” Applied Sciences, 2023.
[3] M. Siam et al. “MODNet: Motion and Appearance based Moving Object Detection Network for Autonomous Driving,” in 2018 ITSC, 2018.
[4] P. H. Chan et al. “The data conundrum: compression of automotive imaging data and deep neural network based perception,” in LIM, 2021.
[5] Y. Wang et al. “Semantic-Aware Video Compression for Automotive Cameras,” IEEE Transactions on Intelligent Vehicles, 2023.

► Compression ratio exponentially increases, for every
increase in 6 QP the compression ratio doubles.

► Different compression schemes introduces different
losses in the information. This translate to different
visible artefacts at higher compression.

Lossless                                QP 41 AVC                          QP 41 HEVC

Blurring and loss of high frequency information

► Dataset: The KITTI MoSeg collated and provides
sequential frames from the KITTI dataset [3].

► Compression: Compression schemes Advanced
Video Coding (AVC) and High Efficiency Video
Coding (HEVC) have been selected to compress
the dataset sequences using the library ffmpeg
with the libx264 and libx265 codecs respectively.

► Rate Control: Constant Quantisation Parameter
(CQP) was selected as the rate control for
compression. This ensures that the lossy nature
of the data across the dataset is computationally
consistent, as opposed to CRF which can vary
the Quantisation Parameter (QP) based on the
human perception system.

► Quantisation Parameter: Seven values of QP
for each of the 2 compression schemes are used
to compress the dataset, resulting in 14
compressed datasets, ranging from losslessly
compressed dataset (0 QP) to visually lossless
(23 QP) and the highest compression possible in
these schemes (51 QP).

Object Detection (Perception)
► Transfer learning with a DNN network was performed using each of the created compressed

dataset, creating 14 trained networks.

► Each of the trained network is used to detect vehicles in every inference dataset and evaluated the
performance using average precision.

2 Methodology

1 Motivation

► Aim: Investigate the effects of compression on a downstream perception task
(object detection) in assisted and automated vehicles i.e.Object Detection.

► Focus: Evaluating DNN based object detection algorithm using lossy compression
for both transfer learning and inference.

► Results: Compression of sensor data on vehicles up to 160:1 before the
performance degraded. Additionally, networks trained with compressed data
improved performance (up to around 15%).

► Performance: Lossy compression on the training data of the DNN has
demonstrated an improvement in detection performance when using lossless and
lossy data for transmission. With careful choice of compression, it can be used as a
pseudo hyperparameter.

► Significance: Lossy compression can significantly reduce the amount of data to
transmit from camera sensors and reduce the complexity and amount of wiring
harness and transmitting protocols to lower both cost and weight of the vehicle.

► Generalisation: The results are similar in AVC, HEVC and Motion-JPEG
compression schemes [4]. However, training with different compression schemes
affects the performance more than the compression of the inference dataset.

► Future Research: Automotive use have strict requirements such as latency and no
corruption/artefacts of the data to ensure safety. Ad hoc compression schemes will
need to be optimised to meet these requirements [5].

Loss of contrast causing vehicles to blend together

Lossless                                QP 41 AVC                          QP 41 HEVC

Distortion of features 

Lossless                                QP 41 AVC                         QP 41 HEVC

Key Contributions
► Proposal of a robust methodology to evaluate the effects of data compression on perception step.

► Demonstration that high level of lossy compression (up to ~130:1) can be applied without degrading
the performance of Deep Neural Network (DNN) based vehicle detection.

► Established that re-training DNN with lossy compressed data is beneficial to the training
performance. This is true even when different compression standard/rates are used for transmission.

► Proposal of a process to optimise the compression ratio of data used in training the perception
algorithmwhen the compression ratio of the transmitted data is known.

QP 0 AVC  

QP 51 AVC

Trained Networks (QPT):

14
AVC HEVC

7 7
Inference Datasets (QPI):

14
AVC HEVC

7 7
Total Number of Inference:

196
(T)AVC-(I)AVC     (T)HEVC-(I)HEVC     (T)AVC-(I)HEVC     (T)HEVC-(I)AVC

49 49 49 49
Homogeneous Heterogeneous

Plots of the maximum average precision achieved in each transmitted dataset
produced. The line colour represent the QPT training compression scheme and the
line style represent the QPI transmitted compression scheme.



Robust downsampling for LiDAR Point Clouds in Assisted and Automated Driving
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Solid line represents using AVC -AVC compression for training and transmitted datasets; dash-dotted line represents using HEVC-HEVC; dashed

line represents HEVC – AVC; dotted line represents AVC – HEVC.

3 Downsampling Comparison

5 Conclusions

LiDAR, used to support Assisted and Automated Driving functions produces a significant amount of data that needs to be transmitted to the vehicle processing units. This work proposes a novel processing algorithm for LiDAR pointclouds that enables a significant

reduction of the size of data to be transmitted without losing essential information and ensuring robustness against some of the potential noise factors that can degrade the point cloud. This proposed algorithm combines removal of ground points with Region of

Interest/Non-ROI Separation and downsampling (deploying and comparing uniform and non uniform techniques). Noisy and ‘ideal’ downsampled pointclouds are evaluated using machine learning based object detection, i.e. the Complex YOLO v4 deep neural network.

The experimental results show that the detection performance are stable, the average precision and average similarity are calculated and remained robust compared to the original baseline around 90% and a trend has been found from multiple combinations of

parameters. For the rain noise model adding on, the detection results are robust to approximately same average precision untill 1mm/h of rain rate, and decreasing follows the increasing of rain rates till 8mm/h.

Abstract

2 Methodology

1 Motivation

► Research gap : The combined effect on LiDAR performance with noise models and

data reduction techniques.

► Innovation of this project: Proposing a noise robust method which is able to

significantly reduce the point cloud size (e.g. 50% size reduction) and to preserve

key information

► Future Research: Experiment and contrast different noise models, adapt various

object detection network as well as downsampling methods.

Challenges with large data amount produced by perception sensors

• Traditional Networking/Real-time processing. [1]

• Compression challenges (data loss/artifacts/robustness). [2]

• Preservation of vital information. [3]

Challenges with noise factors and sensor data degradation

• Prediction and elimination of influence cased by noise factors. 

• Prediction of influence under extreme weather conditions. [5] [6] [7]

Original Point Cloud 

Rain Noise model [7] [9] 

DNN - Object Detection

Evaluation & Comparison

1. Random Downsampling

With the parameter of percentage %

2. Uniform Downsampling

With the parameter of grid-size to

determine how large grids are and

take the average value of all points in

a single grid

3. Non-uniform Downsampling

With the parameter of Maximum

points can be included in each slot

and randomly select one of them.

All 3 methods with results to around 10% points remained

The results showing the difference for the same frame of point cloud under 2mm/h and 4mm/h rain rates in Bird-eye view

Conclusions5

► The detection results are robust with 50% of reduction of the pointcloud
size.

► A trend has been identified with AP decreasing following the pointcloud
size reduction.

► Robust to approximately same average precision untill 1mm/h of rain rate,
and decreasing follows the increasing of rain rates till 8mm/h.

► The performance of detection results can be improved more by using
machine-learning base downsampling methods for the next step

[1] B. Anand, V. Barsaiyan, M. Senapati, and P. Rajalakshmi, ‘Real time LiDAR point cloud compression and transmission for intelligent transportation system’, IEEE Veh. Technol. Conf., vol. 2019-April, pp. 1–5, 2019, doi: 10.1109/VTCSpring.2019.8746417.
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[9] Goodin, C., Carruth, D., Doude, M., & Hudson, C. (2019). Predicting the Influence of Rain on LIDAR in ADAS. Electronics, 8(1), 89.

Panda Dataset selected [8]

The DNN object detection network 

was trained from a dataset with 6 

different rain rates combined from 0 

mm/h to 8 mm/h. 

Pre-processing 

Region of Interest/

Non-ROI Separation

Uniform/

Non-Uniform Downsampling

4 Results



Synthetic Bayer Dataset with Headlight Flare
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2 Motivations
► Flare is a camera artefact occurring when light arrives at the image sensor through an unintentional

path; this effect can be due to various reasons, e.g. surface scattering by sensor components, aperture
diffraction, lens coating reflection, etc. These unpredictable events make flare inevitable in camera
systems, causing image contrast reduction and undesirable imaging [1][2].

► Scenarios with flare from oncoming traffic shall be considered yet to be included into (a) virtual/physical
AAD testing process, (b) open-source driving datasets representing realistic camera data.

3 Objectives

4 Methodology

6 Conclusions

► Processing flow from collected data to flare
model parameter extraction with examples of
processed images:

► Aim: Investigate headlight flare in automotive
camera data by modelling and validating with real
automotive camera data.

► Focus: A framework to model flare and a workflow
to generate it onto synthetic images by CARLA
simulator were proposed.

► Results: 3842 frames of synthetic Bayer data sets in
pairs with and without the modelled headlight flare
are generated.

► Significance: A validated model to enable faster
AAD testing using sensor data emulation and
augmentation.

► Generalisation: The proposed model can be used
to enhance any real or synthetic data. The
generated dataset can be used for bench-marking
flare removal algorithms or other AAD functions or
features.

► Future Research: Investigation of flare model in
combination with downstream perception tasks. e.g.
vehicle detector performance can be potentially
improved by retraining with the proposed dataset:

► Proposing a method to model and validate headlight flare by
using real automotive camera data.

► Development of an empirical model of headlight flare, adaptable
to any real automotive camera.

► A workflow to integrate the realistic flare mask into simulated data.

► Workflow to integrate the modelled headlight flare into 
synthetic images generated in CARLA simulator:

► Headlight flare model validation by real sensor data:

5 Results
► Frames in pair output by the 

proposed methodology:

► They are 1920x1080 in 
single channel Bayer format. 
The CFA layout can be 
generated to mimic the 
specific CFA pattern of any 
selected camera.

► Ground truth automation in the form of 2d bounding 
boxes (shown on right) and full frame instance 
segmentation (shown on the left): 

1 Abstract Automotive cameras are widely deployed on cars, however the data generated by cameras can be affected by various noise factors. Flare, also known
as straylight, is a common noise factor especially during the night. The automotive headlight can be dazzling for human drivers and might alter camera
data
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Union (grant no. 101069576). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate,
Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them. The UK participant (WMG) in this project is
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data use for Assisted and Automated Driving (AAD) functions. To enable higher levels of driving automation, investigating and testing this noise factor can be key to achieve AAD in
challenging lighting conditions. Therefore, accurate automotive camera flare models need to be thoroughly investigated and developed. This work develops, describes, and validates an
automotive specific parameterised method for modelling flare induced by automotive headlights. By this method, the model can be validated using real camera data. Additionally, this
work introduces a method to seamlessly integrate the modelling results into images generated by a widely used simulation software, the CARLA simulator. Using the newly proposed
model, paired automotive datasets with and without the realistic headlight flare can be generated. Overall, this work can pave the way for more accurate automotive camera modelling,
which is key to speeding up the simulation and testing of assisted and automated driving functions.

In the earlier data collection, images with headlights on and off
were collected in pairs, as “ON frame” and “OFF frame”.

The ON frame was taken as ground truth frame, and to acquire the test frame,
the model output is added onto the OFF frame. In order to check the model
fidelity against the ground truth, the differential frame was calculated.



A New Approach for Bayer Adaption Techniques in Compression.
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Solid line represents using AVC -AVC compression for training and transmitted datasets; dash-dotted line represents using HEVC-HEVC; dashed

line represents HEVC – AVC; dotted line represents AVC – HEVC.

3 Back-to-back Analysis

4 Results

5 Conclusions
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► We implemented our CST techniques in combination with the H.264 compression codec

(Quantisation parameter (QP) set to QP={15, 23, 29, 35, 41}) with 300 frames from RobotCar

Dataset (8 bits, cropped to 1280x320) and compared the compression performance between CST

techniques and other techniques [6].

► For comparison, we included the Direct technique which directly compresses Bayer data with H.264

codec as a benchmark. We also included the Traditional technique which uses traditional

demosaicing on Bayer data to acquire Luma channel. We finally included the Separation technique

as a comparison with other approaches in designing Bayer adaption techniques, details refer to

[5].We evaluated image quality of compressed images via a traditional image quality assessment

(IQA) metric, namely SSIM, for pixel-level accuracy quantification, and via a Faster-RCNN based

object detector for an assessment oriented towards applications in automotive perception [7].

Existing wired communication vehicle network technology lacks the bandwidth required to support the data rates produced by the sensor suite for assisted and automated driving functions in the next generation of vehicles. Video from image sensors demands a very high

bandwidth and cameras are continually being developed giving better resolution, bit-depth (dynamic range) and frame rate. To overcome this challenge, compression is a potential solution to reduce the required bandwidth. As modern automotive cameras produce Bayer

images, it might be more effective to compress Bayer images directly instead of compression for red-green-blue (RGB) images, which has been traditionally implemented in the most widely deployed compression schemes. By using Bayer, we avoid to triple the memory

storage and preserve data fidelity by bypassing demosaicing and other non-reversible process in the Image Signal Processing (ISP) pipeline. Bayer adaption techniques indicate methods to convert Bayer data to be used in traditional compression pipelines. In this

research, we propose two novel Colour Space Transform (CST) techniques and implement them in combination with the widely used H.264 codec. Our results show that CST techniques are superior to other techniques when paired with object detection, specifically

when the bit rate is reduced between approximately 700 to 1250 kb/fr.

Abstract

► Existing wired communication vehicle network technology lacks the bandwidth required to support

the data rates produced by perception cameras in the next generation of vehicles

► We investigate Bayer compression in automotive for two reasons: firstly, compression reduces the

amount of data used to represent the original image/video to meet a specific bit rate requirement [2].

It is promising in automotive but should also address concerns around safety associated with data

loss, information distortion, artefacts, error propagation, latency, etc [1,3,4]. Secondly, as RGB

frames are mainly for human consumption, there is an interest in using Bayer frames directly in

automotive perception tasks [1]. Therefore, the possibility of adapting and using Bayes frames in

current compression pipelines is an important aspect that needs to be investigated.
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► The main purpose of our back-to-back analysis is to analyse the pixel-level effects of the proposed

transformations. In our back-to-back analysis, we used an 8-bit Bayer testing image captured in an

imaging lab. It contains a colour test chart for colour error analysis. The testing image is processed by

the 2 CST techniques, one at a time. Then, we demosaiced both our Raw (original) testing image and

CST processed images for comparison. By observing the colour checker, some colour blocks show

limited colour shifting but in general error is limited.

► With our 8-bit testing image, both CST techniques show that they have deviations to Raw of

approximately 0.98 in Mean Saturation and 0.7432 in Delta-E00, which are limited errors in the colour

information.

► The principle of Bayer adaption techniques is essentially trying to break the chessboard pattern

possessed by Bayer data. Based on the principles of Bayer adaption techniques, we hereby

propose and apply CST techniques to use Bayer data and convert them into YCbCr format. We also

design K frames and 3-bit ratios mechanisms to accompany CST techniques for Bayer image

reconstruction.

2 Colour Space Transform Techniques

1 Motivation

► Aim: Develop novel Bayer adaption techniques to transmit the oversized images produced by

automotive camera in next-generation automotive

► Focus: Evaluate performances of proposed CST techniques for automotive applications.

► Limitation: CST techniques have limited colour errors, Within acceptable range, CST techniques are

able to represent most of the colour information with less required storage, even without compression.

► Results: In general, although CST techniques have performance below other conversion techniques

in terms of IQA and specifically SSIM, they can achieve higher performance when combined with

perception.

► Significance: The improvement of using CST techniques compressed images in object detection is

specifically related to object detection performance at specific bit rates, which can pave the way for

their use in automotive.

► Future Research: Our techniques enrich research in Bayer adaption techniques and in a broader

view, in designing novel Bayer compression.

► Direct Bayer to YCbCr Transforms:

► We use direct Bayer to YCbCr transform to eliminate the intermediate RGB colour step which would

triple the data size. Also, in the CST, only Luma data is preserved in YCbCr colour space.

► Average: In every 2x2 Bayer pattern, we have two true green pixels, one true red pixel and one true

blue pixel. We duplicate true blue and red values assuming they are the same in all four pixels. And

while we keep green values of two true green pixels, we assume other two pixels both have green

values that is the average of two true green pixels. In this way, we have an estimated RGB data in

every pixel and acquire Luma data of the image.

► De-interlacing: De-interlacing method is identical to the Average method in assuming red and blue

values are the same in every 2x2 Bayer pattern but only calculates Luma data in the true green

pixels. Later, it will fill the void pixels in Luma colour space by taking portions from their neighbours.

The newly proposed direct Bayer to YCbCr Transforms: From top to bottom, Average technique, and De-interlacing technique.

► Reconstructing Bayer Data:

► K Frames: Since only Luma channel is calculated in the proposed CST techniques, it brings an

imminent problem which is there is no way to reconstruct the Bayer pattern from the Luma channel.

In `traditional' YCbCr conversion, these components can be determined by Cb and Cr channels.

Here, we develop a lightweight solution, based on using K frames.

► We determine K frames as compressed Red and Blue frames: 𝐾 = 0.257 × 𝑅 + 0.098 × 𝐵

► Hence, Luma channel can be determined by: 𝑌 = 0.504 × 𝐺 +𝐾 + 16

► 3-bit Ratios: Here, we use 3-bit ratios to approximate red and blue data. Namely, in every 2x2

Bayer pattern, we determine the ratio of red pixel value out of the sum value of both red and blue

and encode this ratio according to the 3-bit coding scheme. Given the K frames, the ratio information

helps approximate the actual red and blue values.

Schematic representation of how Bayer Data are reconstructed using K frames and 3-bit ratios.

3-bit ratios

Code 000 001 010 011 100 101 110 111

Symbol 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3-bit Ratios: Codes and Symbols

Resultant Images for Back-to-back Analysis: From left to right are images processed by, Raw (Original), Average, and De-interlacing techniques.

Evaluation Results of H.264 Experiment: From left to right, in SSIM, and mAP for Object Detection.

► With direct Bayer to YCbCr methods in place, our proposed Average and De-interlacing techniques

have improved compression performance than the baseline Traditional technique. However, when

comparing our CST techniques with Direct technique and Separation technique, it is clear that they

perform slightly better in terms of SSIM. In object detection evaluation, although Direct and

Separation techniques still have better performance at lower bit rates, when bit rates are between

approximately 700 to 1250 kb/fr, CST demonstrates better performance, with higher detection

accuracy than other techniques.

An example of a processing Bayer pipeline VS. a RGB pipeline.
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Outliers:

Near outliers: 0 < r < 7.44 m

Defined as points whose range is within the walls of the laboratory experiments in [20].

Far outliers: r > 7.64 m 

Defined as points whose range is greater than the wall in the laboratory experiments in [20].

Very Far Outliers: r > 73 m

Defined as the vehicle stopping distance from 60mph according to the UK highway code.

Reflectivity (0 to 255):

Values 0 to 150 

Reflectivity within the range of 0 to 100% in the Lambertian reflection model.

Values 151 to 255

Reflectivity of target objects with retroflection properties.

1 Background
► As LiDAR-equipped vehicles are being increasingly used on the road, the likelihood

of their LiDAR beams interacting in close proximity also increases (Fig.1), which
raises concerns about potential LiDAR-LiDAR interference and the implications it
might have on road safety.

2 Objectives

3 Methodology

4 Results

5 Conclusions

► LiDAR positions:

► Offender and victim LiDARs were oriented 
towards each other with their sensors aligned.

► The two LiDARs were placed at the following 
distances: 1 m, 2 m, 3 m, 5 m, 7 m, 15 m

► LiDAR inclination angles were used at 1 m - 3 m:

► Victim LiDAR angles: 0°, -8°, +8°

► Offender LiDAR angles: 0°, -8°

► Offender LiDAR was turned OFF (for baseline 
dataset) and ON (for interference dataset).

► Aim: Investigating LiDAR mutual interference in an outdoor setting.

► Focus: Specific LiDAR positions (distances and angles) were considered, using a
narrow FoV MEMS LiDAR as the victim and different LiDARs as the offender.

► Results:

► When the offender LiDAR was turned ON, possible interference effects were observed as
changes (mostly increases) in the percentage of far and very far outliers in the victim LiDAR’s
point cloud. Possible interference effects were also registered as points with higher reflectivity
values (including in the retroreflective range, as per the value definitions of the victim LiDAR).

► These changes were most prominent at a 1 m distance for LiDAR B, and at 2 m and 3 m for
LiDAR C. The size (and sign) of these changes were somewhat affected by inclination angles.

► Significance: One of the few studies on LiDAR interference in an outdoor setting.

► Practical Applicability: Based on the current results, there is insufficient support
for changing LiDAR inclination angles as an effective interference mitigation
strategy. More sophisticated mitigation techniques are likely needed.

► Generalisation: Given the magnitude of changes in the metrics, it appears that
mechanical spinning LiDARs are stronger offenders than solid-state LiDARs, but
more research is required using other LiDARs with different scanning patterns.

► Future Research: Accounting for environmental noise factors (in outside
experiments) and wall scattering (in laboratory experiments). Incorporating
calibrated LiDAR targets to isolate a smaller area of the point cloud for the analysis.

► Previous study on LiDAR mutual interference [4] was potentially affected by LiDAR
beam multipath due to the wall confines of the experimental chamber. Hence, the
objective of this study was to replicate those experiments in an outdoor environment.

► Another objective was to conduct a preliminary investigation into the possibility of
interference mitigation by changing LiDAR (victim/offender) inclination angles.

► The last objective was to understand the limitations of the current methodology to
inform future experiments.

► Metrics for the point cloud analysis of the victim A (MEMS LiDAR):
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Fig.2: Image of the experimental chamber where 
measurements were taken in previous study [4].

Fig.3: Schematic top-view diagram of LiDAR positions 
within the walls of the experimental chamber used in [4].

► Results for the offender C (solid-state LiDAR):

► Data collection:

► Each point cloud was recorded for 80 
seconds (at a frame rate of 10 fps).

► All measurements were taken twice, 
with LiDAR angles repositioned before 
each measurement.

► In total, 240 point clouds (62 GB) were 
recorded.

► Notes were taken for special events that 
may have impacted measurements 
(e.g., rain droplets on the sensor, sun 
hitting the sensor, the lawn being 
mowed, birds in the background etc.)

Outliers:

Near outliers: range < 7.44 m (for consistency with previous study [4])

Far outliers: range > 7.64 m (for consistency with previous study [4])

Very Far Outliers: range > 73 m (typical stopping distance from 60mph, the UK Highway Code)

Reflectivity (0 to 255):

Values 0 to 150 (0% to 100% in the Lambertian reflection model)

Values 151 to 255 (reflectivity of target objects with retroflection properties)

Fig.4: The position of the offender/victim LiDAR at a 1 m distance and 0° angles. Fig.5: Visualisation of the victim LiDAR’s point cloud.

► Results for the offender B (mechanical spinning LiDAR):

0°

+8°

-8°

VICTIM (A)OFFENDER (B, C)

0°

-8°

Abstract
The increasing deployment of LiDAR-equipped vehicles along with their expected interactions in close proximity raise concerns about potential LiDAR-LiDAR interference. However,
research into the mutual interference of state-of-the-art automotive LiDARs is still scarce. Earlier WMG/NPL experiments focused on measuring LiDAR mutual interference in an enclosed
laboratory setting. In this study, the aim was to replicate those laboratory experiments in an outdoor environment – to reduce potential LiDAR beam multipath – as well as to conduct a
preliminary analysis of potential interference mitigation by changing LiDAR (victim/offender) inclination angles. The results suggest that possible interference effects can be detected in the
victim’s point cloud as changes (mostly increases) in the percentage of outliers and the values of reflectivity, when the offender LiDAR is turned on. There is currently insufficient evidence to
support changing LiDAR inclination angles as an effective interference mitigation strategy. Further research is also needed to disentangle interference effects from other noise factors.

► Two distinct types of LiDAR mutual interference
have been identified in the literature as:
(I) direct interference – when one LiDAR’s beams
are directly received by another LiDAR’s sensor; and
(II) indirect interference – when LiDAR beams are
first reflected off other objects [1]. Receiving foreign
laser pulses can give rise to issues such as ghost
targets and diminished signal-to-noise ratio [2].

Fig.1: An illustration of possible close encounters of 
LiDAR-equipped vehicles at a road junction. LiDAR 
devices may have different FoV and different ranges.

► Earlier WMG/NPL experiments [4] investigated LiDAR mutual interference in an
enclosed laboratory setting (Fig.2) at various distances (Fig.3). Possible interference
effects were detected as an increased percentage of outliers in the victim LiDAR’s
point cloud, most prominently at (closer) distances of 1 m and 2 m.
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At a 1 m distance, there were notable 

increases in the percentage of far and 

very far outliers with offender turned ON.

At a 1 m distance, there were notable 

increases in mean reflectivity, st.dev. of 

reflectivity, and retroreflective returns.

At 2 m and 3 m distances, there were some 

increases in the percentage of far and very 

far outliers with offender turned ON.

At 2 m and 3 m distances, there were 

some increases in mean reflectivity, st.dev. 

of reflectivity, and retroreflective returns.
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The victim inclination angles 

of +8° and -8° resulted in 

smaller changes in reflectivity.
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The victim inclination angles 

of 8° and -8° impacted the 

differences in reflectivity.

Fig.6: Percentage point differences in outliers at various 
distances with offender ON (both LiDARs at 0°). 

Fig.7: Percentage point differences in reflectivity at 
various distances with offender ON (both LiDARs at 0°). 

Fig.8: Differences in reflectivity at 1 m 
distance and victim inclination angles.

Fig.9: Percentage point differences in outliers at various 
distances with offender ON (both LiDARs at 0°). 

Fig.10: Percentage point differences in reflectivity at 
various distances with offender ON (both LiDARs at 0°). 

Fig.11: Differences in reflectivity at 2 m 
distance and victim inclination angles.

► Multiple approaches to attempt interference mitigation
have been proposed using pre-processing, post-
processing and hardware-based techniques [3].



Correlating Image Quality Metrics and DNN-Based Detection for Automotive Camera Data
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Assisted and automated driving (AAD) systems rely on perception sensors like cameras. This study finds that traditional image quality assessment (IQA) metrics (e.g. SSIM, and a retrained BRISQUE), strongly correlate with deep neural network

(DNN) object detection performance against image degradation due to compression. Metrics such as IW-SSIM and DSS showed very high positive correlations over 0.9, while retrained BRISQUE achieved almost perfect correlations over 0.97

against perception performance degradation under increasing levels of compression noise. These insights enable better prediction of perception degradation, crucial for enhancing AAD system development. The full paper is available at

DOI:10.36227/techrxiv.24566371.v1

Abstract

1 Background

AAD systems rely on camera images for perception tasks like object detection. But degradations like adverse weather or

compression can degrade image quality, thus affecting system performance. Traditional methods (IQA Metrics) evaluate image

quality in terms of realism and satisfaction for human consumers but fail to address automotive and AAD functions' needs,

therefore there is a need to:

► Evaluate and quantify image quality (and more generally perception sensor data quality) for perception.

► Understand and quantify the level of degradation within images that can be tolerated by perception algorithms with

minimal/acceptable variation of the perception performance.

Our study focuses on evaluating image quality degradation caused by compression and its impact on DNN-based object detector

performance.

► We prioritise compression because it is vital for efficient data transmission in automotive systems. As camera data

transmission increases, cost-effective compression becomes necessary to handle limited bandwidth. Linking image quality

degradation caused by compression to perception performance can help determine compression levels needed to maintain

acceptable perception performance within bandwidth limits, using camera data alone.

5 Conclusions

► Aim: Create a relationship between traditional image quality analysis and machine learning-based perception for driving 

automation.

► Focus: Performance degradation of a DNN-based object detector using compressed camera data in assisted and 

automated driving functions.

► Results: Strong correlation between traditional IQA metrics and object detector performance, notably IW-SSIM and 

retrained BRISQUE showing extremely high positive correlations.

► Significance: The paper highlights importance of visual salience features and ineffectiveness of chrominance components 

in assessing object detector performance.

► Practical Applicability: Most metrics exhibit high correlations and computational efficiency, enhancing their practicality for 

evaluating/estimating object detector performance solely by assessing inputted data.

► Generalisation: Correlations made can be inferred to different types of DNN-based object detectors – not just Faster R-

CNN.

► Future Research: Extend findings to explore use of IQA metrics for assessing a wider range of object detector models, 

other computer vision tasks or on other forms of noisy data to enhance understanding of broader utility in automotive 

applications. 

2 Objectives & Contributions

► Explore 17 widely used image quality assessment (IQA) metrics and their relationship with DNN-based algorithms

as data degradation increases – demonstrating high correlations between IQA Metrics and DNN performance.

► Investigate why certain metrics show lower correlations with DNN performance based on their features.

► Show that some IQA metrics can be retrained to achieve high correlation scores with deep neural network (DNN)

performance – thereby predicting DNN performance from only the input data.

► Create an IQA metrics coding library with IQA metrics used in this work. Find the library at:

https://github.com/WMG-IV-Sensors/IQ_Metrics
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3 Methodology

Dataset Compression:

► Used KITTI MoSeg Dataset – compressing images using AVC (H.264) and HEVC (H.265) compression.

► Compressed training dataset at 7 QP levels (excluding 26, 32, 38 QP Levels) – resulting in 7 training datasets

► Compressed testing dataset at 10 QP levels – resulting in 10 testing datasets

► Created 14 compressed training datasets and 20 compressed testing datasets.

► This resulted in 140 train and test combinations (70 for AVC, 70 for HEVC).

Faster R-CNN Training, Testing and Evaluation:

► Selected Faster R-CNN model for Object Detection.

► Used stochastic gradient descent with batch size 1, learning rate 1e-3, and 10 epochs for training.

► Trained 14 detectors: 7 on AVC, 7 on HEVC.

► Evaluated detectors on corresponding testing datasets.

► Measured performance using average precision (AP) across 140 scores: 70 for AVC and 70 for HEVC. This resulted in 14

sets of AP scores (7 AVC, 7 HEVC), each set contained 10 AP scores corresponding to the 10 testing datasets

compressed at 10 QP levels.

IQA Metrics Evaluation:

► Applied 17 IQA metrics to 20 compressed testing datasets (10 AVC, 10 HEVC).

► Calculated sets of mean, median, max, and min values for each IQA metric. For each IQA metric and averaging operation

(mean, median, max, min) per compression method (AVC, HEVC), this resulted in each set containing 10 IQA scores

corresponding to the 10 testing datasets compressed at 10 QP levels.

Correlation Analysis:

► Compared each set of IQA scores with each set of AP scores from the same testing dataset using Pearson’s and

Spearman’s correlation coefficients

► Analysed correlation scores between IQA metrics and AP scores

4 Results

► Tables I and II contain the Pearson correlation scores which represent the linear correlation between the mean

scores of each IQA metric and the evaluated DNN average precision (AP) for every object detector trained at 7 QP

levels. Table I shows the mean of all correlation scores across all 7 QP levels. For both tables, green cells indicate

a positive correlation, while red cells indicate a negative correlation, darker shades in colour represent stronger

correlation. As seen in Tables I and II, most IQA metrics have very high correlations with DNN performance

Table I: Correlation Scores Between Average Precision And Mean IQA Metric Scores (Red Background = 

Negative Correlation, Green Background = Positive Correlation) 

Table II: Correlation Scores Between Average Precision And Mean IQA Metric Scores (Original BRISQUE Vs 

Re-trained BRISQUE) (Red Background = Negative Correlation, Green Background = Positive Correlation)

Table III: Time Taken To Compute A Quality Score For Each IQA Metric Per Input – For FR-IQA Metrics The Input Is 

A Single Pair Of Images And For NR-IQA Metrics The Input Is A Single Image (Image Size = (1242 by 375) Pixels)

Figure 1(a): Average Retrained BRISQUE scores 

vs QP (Blue – Mean Score vs QP, Red = Median 

Score vs QP, Solid-Line = AVC, Dashed-Line = 

HEVC). 

Figure 1(b): Faster-RCNN Average Precision vs QP 

(Purple = AP vs QP (HEVC Trained Detectors), 

Green = AP vs QP (AVC Trained Detectors), Solid-

Line = Detectors Trained @ 0 QP, Dashed-Line = 

Detectors Trained @ 29 QP.

► Table III shows the time taken to compute each IQA metric from the images in the KITTI MoSeg Dataset in milliseconds.

This provides some context as to which IQA metrics can be used to estimate ideal compression levels (in terms of QP

level) in real-time.

► Figures 1(a) and 1(b) show the decrease in average scores of one IQA metric (BRISQUE (Re-trained)) and the AP

scores of two trained object detectors when applied to/tested on compressed images with increasing QP levels

(increasing compression). As seen, the IQA metric trend matches the performance decrease of the detectors as

compression levels (QP) increases – reinforcing the high correlation scores seen in Tables I and II above.
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Benchmarking the Robustness of Panoptic Segmentation in Automated Driving
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1 Motivation
► The panoptic segmentation aims to predict the semantic meaning for 

object instances and backgrounds represented with different colours.

► Panoptic segmentation is a promising perception technique to identify 

and categorise objects, impending hazards, and driveable space at the 

pixel level. 

► There are lots of noises in the real world, which proposes the highest 

impact on the scene understanding task. and which segmentation 

model is most robust in facing noise factors?

► Can we predict the perception degradation simply using the image 

quality index, and which index to use?

2 Methodology

4 Results

3 Noise Models

► The average panoptic segmentation 

results using 8 backbones. 

► Oneformer has the best PQ.

► EfficientPS is the fastest model.

► Deep-learning-based methods for the unfavourable light model.

Abstract
Precise situational awareness is required for the safe decision-making of assisted and automated driving (AAD) functions. Panoptic segmentation is a promising perception

technique to identify and categorise objects, impending hazards, and driveable space at a pixel level. While segmentation quality is generally associated with the quality of the

camera data, a comprehensive understanding and modelling of this relationship are paramount for AAD system designers. Motivated by such a need, this work proposes a unifying

pipeline to assess the robustness of panoptic segmentation models for AAD, correlating it with traditional image quality. The first step of the proposed pipeline involves generating

degraded camera data that reflects real-world noise factors. To this end, 19 noise factors have been identified and implemented with 3 severity levels. Of these factors, this work

proposes novel models for unfavourable light and snow. After applying the degradation models, three state-of-the-art CNN- and vision transformers (ViT)-based panoptic

segmentation networks are used to analyse their robustness. The variations of the segmentation performance are then correlated to 8 selected image quality metrics. This

research reveals This research reveals some interesting findings (see conclusion).

► The panoptic quality are correlated to 8 selected image quality metrics.
► Step 1- Synthetic degraded driving dataset generation, with 19 noise 

factors under 3 different severity levels.

► Step 2 - Panoptic segmentation models implementation. Using both the 

CNN and VIT architectures.

► Step 3 – Evaluation of the relationship between the perception models 

performance (PQ) using 8 backbones and 8 image quality index. 

Fig. 1 The unifying pipeline to assess the robustness of panoptic 

segmentation.

► The new definition of unfavourable light conditions.

▪ Fig. 3 More vivid adverse 

environmental images 

under different severity 

levels, compared with other 

robustness research.

5 Conclusions
► Aim: Benchmarking the Robustness of Panoptic Segmentation in 

Automated Driving under camera data degradation

► Focus: 19 noise factors, especially the adverse environmental conditions

► Results: (1) certain specific noise factors produce the highest impact on 

panoptic segmentation, i.e. droplets on lens and Gaussian; (2) The ViT-

based panoptic segmentation backbones show better robustness to the 

considered noise factors (3) Some image quality metrics (i.e. LPIPS and 

CW-SSIM) correlate strongly with panoptic segmentation performance 

► Significance: The first robustness research in panoptic segmentation, 

benefiting the community when facing data degradation. 

► Practical Applicability: (1) when considering the corner cases, pay more 

attention to the higher impact degradation conditions to improve the 

safety, robust and resilient of the AAD functions (2) when designing a 

more robust panoptic model, consider the use of transformer-based 

backbones (3) consider the image quality index to indicate the perception 

degradation

► Feature Research: (1) indicate the superiority of the proposed new 

synthetic model using real-world datasets (2) to design a more robust 

panoptic segmentation model in AAD

Acknowledgements: Funded by the European Union (grant no. 101069576). This research is partially sponsored by the Centre for Doctoral Training to Advance the Deployment of Future Mobility Technologies (CDT FMT) at the University of Warwick, High

Value Manufacturing CATAPULT, Innovate UK (contract no. 10045139) and the Swiss State Secretariat for Education, Research and Innovation (contract no. 22.00123).

(b) The unifying pipeline 

(a) The 19 identified noise factors.

(c) 3 chosen panoptic segmentation models.  

► The proposed snow model with the veiling effect is closer to the 

observation of the real-world.

EC-Zero-DCE CycleGAN Compound model

► The panoptic segmentation results on D-Cityscapes+.

► Under extreme weather conditions, we find: (1) the sky cannot be 

accurately segmented. (2) pedestrians and bus cannot be identified 

under extreme snow, raindrops on the camera lens, even using the 

most SOTA panoptic segmentation model, posing safety risks.

D-Cityscapes+ Segmentation results



Darwick: A Paired Dataset in Low-Light Driving Scenarios for Advanced Perceptual 

Enhancement and Benchmarking Assessment 
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Quantitative

1 Background

► Existing strategies for camera-based low-light driving perception

enhancement is divided into two categories: direct image manipulation

and high-level enhancement.

► The former encompasses methodologies aimed at ameliorating image

quality on a pixel-level basis. On the other end, indirect high-level

enhancement eschews direct alterations to the image, encompassing

domain adaptation and direct learning on low-light images.

2 Contributions

3 Related Works Comparison

5 Experiment

► Comparison between Darwick  and other low-light datasets

► Quantitative results of SOTA low-light image enhancement baselines and 

following perception tasks based on Darwick.

Abstract
To effectively address the perception challenges present in low-light vehicular environments, we introduce the Darwick dataset, a high-quality resource specifically designed to

bolster the visual perception capabilities of assisted and automated driving functions under low-light conditions. Darwick dataset stands out as the first of its kind, focusing on

pixel-level paired low-light imaging tailored to diverse driving scenarios. Furthermore, we provide a benchmark analysis of various low-light enhancement techniques,

demonstrating the practical applicability and superiority of our dataset in enhancing the performance of vision based systems in low-light conditions.

► Uniquely Designed for Low-Light Driving: The Darwick dataset is

the first paired dataset tailored for low-light imaging across varied

driving scenarios.

► Benchmark of Low-Light Enhancement Methods: Our studies

benchmark the effectiveness of low-light enhancement techniques

through image quality assessment and downstream perception tasks.

► Sample images from the Darwick dataset along with their corresponding

enhancements and segmentation results.

Visual results obtained from testing same image enhancement 

baselines after training on the Darwick and VE-LOL dataset.

Visual results by testing RetinexFormer on DarkZurich

dataset after training on the VE-LOL and Darwick dataset.

Benchmarking IQA, perception accuracy metric on Darwick Test Set

Darwick-P dataset samples and gradient illumination level

Hardware devices utilized during the data collection process

Section Biref Description Pair? Purpose

Darwick-P

2500 normal-light 

and 2500 low-

light. Yes

Training, 

Quantitative 

Evaluation

Darwick-UP

300 unpaired low-

light captured 

using an in-

vehicle camera.

No Testing

Darwick-V

20 low-light 

videos, each one 

of 3-5 minutes in 

60 fps.

No

Testing,

Real Driving 

Processing 

Evaluation

4 Dataset Overview

6 Conclusion
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► Higher Data and Annotation Quality: Compared to similar datasets,

Darwick has the best image resolution, lighting gradient reference, and

perceptual artificial label quality.

► Better Learning Resource: The beneficial effects of using Darwick

have been shown in terms of IQA of restored frames, and also in terms

of downstream perception tacks (i.e. detection and segmentation). The

learning methods using Darwick outperform using SOTA datasets.

► Future Work: Future updates to the dataset will incorporate weather

variability and motion blur. Motion blur will also be added to simulate

dynamic effects.
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