
Diploma Lecture

The idea of this short catch up lecture is to recap some of the things
Economics students will have covered in year 1 of their degree which are im-
portant for the EC202 course, but as diploma students, you might not have
met yet. There are two main topics here that I cover: Section 1 on consumer
theory, with subsections on budget constraint, preferences and utility max-
imisation. Section 2 is on Game Theory with subsections dominance, Nash
Equilibrium and Cournot.

1 Consumer Theory

The framework here is that we have a consumer with a set of goods they can
purchase and we aim to analyse what decisions they will take. In Section
1.1, the budget constraint defines which bundles of goods are affordable. In
Section 1.2 we talk about preferences and in Section 1.3 we combine the
previous two Sections to ask what actions a rational consumer would take.
In all 3 sections, we pay particular focus to the 2 goods case. In reality there
are often many goods, but many of the principles for more general analysis
can also be seen in the 2 good case.
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1.1 Budget constraint

Our framework is that we have J goods1 which a consumer may want to
consume and we denote a particular proposed bundle by x = (x1, x2, . . . , xJ)
where for each j ∈ J , we let xj denotes how many units of good j the con-
sumer receives or buys. Typically, we also assume a price vector p =(p1, p2, . . . , pJ)
where for each j ∈ J , we let pj denote the price per unit of good j. We de-
note the amount of money the consumer has to spend, often called income
or wealth by m. With this framework, we can define the budget constraint
and some associated terms:

Definition 1.1. The budget constraint is

p1x1 + p2x2 + · · ·+ pjxj ≤ m

The logic for this is simple: pjxj is the amount of money spent on good
j and summing across the j goods, we get the left hand side of the equation
which is the amount of money the consumer spends. We require this to be
less than or equal to the amount of money available, m, for the bundle to be
affordable. Also note that there is no requirement that xj be integer valued.
That is we allow fractions of units of goods to be purchased. The primary
reason for this is to make the maths easier.

Definition 1.2. The budget set is

{
x ∈ RJ

≥0 | p1x1 + p2x2 + · · ·+ pjxj ≤ m
}

In words, the budget set is the set of bundles that are affordable.

Definition 1.3. The budget line is

{
x ∈ RJ

≥0 | p1x1 + p2x2 + · · ·+ pjxj = m
}

1In a slight abuse of notation but conforming to tradition, we let J be both the set of
goods J = {1, 2, · · · , J} and also the set of goods.
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In words, the budget set is the set of bundles that are just affordable
(with no money to spare).

Exercise 1.1. Let J = 2. Draw a diagram of the budget set with x1 on the
horizontal axis and x2 on the vertical. Use this to:

1. Verify that the budget line is a boundary of the budget set. What are
the other boundaries?

2. Find the corners of the budget set and verify that the slope of the
budget line is −p1

p2
.

Throughout EC202, we will be making the simplifying assumptions made
above that the price per unit of a good is constant regardless of how many
units are purchased and that non-integer amounts of goods can be purchased.
Although when one goes to a shop, they might often see this not being the
case. We can still depict budget sets in these cases although it is more messy:

Exercise 1.2. You go to a shop selling apples and bananas at prices pa = 20
and pb = 10. You have an income of m = 100.

a) Allowing for the purchase of non-integer amounts, draw the budget
set.

b) Stipulating only integer amounts of goods can be purchased, draw the
budget set.

c) Still stipulating only integer amounts of goods can be purchased, sup-
pose there is a buy one get one free offer on apples. Draw the budget set.

d) Can this budget set be approximated well by a straight line? How
about as m increases?

1.2 Preferences

Key to understanding how consumers will act is to model their preferences
- ie which bundles do they prefer to others? Given some set X of possible2

2normally we let X = RJ
≥0 for some integer J and often set J = 2.
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bundles of goods, we want to use a preference relation � to describe which
we prefer to which others.

Definition 1.4. The preference relation � defines weak preference over
bundles. For any two bundles of goods in X, x̂ = (x̂1, . . . x̂J) and x̄ =
(x̄1, . . . , x̄J), x̂ � x̄ translates as x̂ is weakly preferred to x̄.

We can then derive the strict preference relation and indifference relation
from the weak preference relation:

Definition 1.5. Given � we define:
The strict preference relation: x̂ � x̄⇐⇒ x̂ � x̄ and not x̂ � x̄.
The indifference relation: x̂ ∼ x̄⇐⇒ x̂ � x̄ and x̂ � x̄.

Two fundamental axioms on preferences are completeness and transitiv-
ity:

Definition 1.6. Completeness: For any two bundles of goods in X, x̂ =
(x̂1, . . . x̂J) and x̄ = (x̄1, . . . , x̄J), at least one of x̂ � x̄ or x̄ � x̂ must hold.
(If both hold then x̄ ∼ x̂)

This says that for any two bundles in our consumption set, we can com-
pare them and say which is better. In reality, this is not always easy for
consumers to do. But for us economists, wanting to build a model we can
analyse, this axiom is a must.

Definition 1.7. Transitivity: If we prefer bundle 1 to bundle 2 and bundle
2 to bundle 3, then we should also prefer bundle 1 to bundle 3. If x(1) � x(2)

and x(2) � x(3) then x(1) � x(3).

If we have completeness and transitivity then we are able to order/rank
the alternative bundles in X from best to worst. Note the necessity of both
assumptions: without transitivity we could get cycles appear and so no clear
best bundle, while without completeness, we might not be able to place
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some alternatives in our order/ranking. Typically in Economics, we call a
consumer rational if they satisfy Completeness and Transitivity.

We usually make a further simplifying assumption: that preferences can
be represented by a utility function:

Definition 1.8. The preference relation � can be represented by a utility
function u : X → R if for every pair of bundles x̄, x̂ ∈ X, x̂ � x̄⇐⇒ u (x̂) ≥
u (x̄).

This is not a completely inoccuous assumption: while every utility func-
tion yields rational preferences3, the converse is not true. There are rational
preferences which cannot be represented by any preference relation - as you
will see in Lecture 1. The assumption though is often made for analytical
convenience and there is a wide range of interesting preferences which are
representable. Another two assumptions that are often made are: i) a mono-
tonicity requirement meaning that for all goods, more is better and ii) a
convexity requirement meaning that averages are better than extremes, but
you will see this in more detail in Lecture 1.

Now we look at some common preferences and how we would represent
them by a utility function (for simplicity we keep J = 2):

Exercise 1.3. For each of the following descriptions of preferences, find a
utility function which represents them and draw indifference curves:

a) We only like good 1 and don’t care at all about how much good 2 we
get. The more good 1 we have the better.

b) We only like good 2 and don’t care at all about how much good 1 we
get. The more good 2 we have the better.

c) Perfect substitutes (equal ratio): we like both goods equally and can
trade a unit of one for a unit of another and be equally well off.

d) Perfect substitutes (unequal ratio): we like both goods but good 1 more
than good 2. For every unit of good 1 we sacrifice, we need two additional

3This is trivial as ≥ defines a complete and transitive ordering of R
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units of good 2 to be equally well off.
e) Perfect complements (equal ratio): one good is only useful to us in the

presence of the other. We want to consume the two goods in equal quantities.
Any surplus of either good makes us no better off. (Eg left and right shoes)

f) Perfect complements (unequal ratio): For every unit of good 1 we have,
we need two units of good 2 to go with it. Any surplus of either good makes
us no better off. (Eg coffee and sugar).

g) One commodity is a “bad”: Commodity 1 makes us better off but
commodity makes us worse off. For every additional unit of commodity 2 we
get, we need an additional unit of commodity 1 to be equally well off.

Remark 1.1. Whenever preferences are representable by a utility function,
there are infinitely many utility functions which represent these preferences
(any increasing transformation).

There is one class of utility functions of particular interest:

Definition 1.9. Cobb-Douglas preferences are u : X → R defined by
u (x1, x2) = xα1x

β
2 . This is often written more simply as u (x1, x2) = xγ1x

1−γ
2 ,

which we can obtain by taking a monotonic transformation (taking to the
power of 1

α+β ). Or by taking the natural logarithm, u (x1, x2) = α ln x1 +
β ln x2 where again often α + β = 1. Note that u (x1, x2) = xα1x

β
2 is defined

overX = R2
≥0 while u (x1, x2) = α ln x1+β ln x2 is defined only overX = R2

>0.
To deal with this, some authors might take preferences

u (x1, x2) =

α ln x1 + β ln x2 x1x2 > 0

−∞ x1x2 = 0

Exercise 1.4. Consider Cobb-Douglas preferences with α = β = 1
2 and plot

some indifference curves.

For differentiable utility functions like Cobb-Douglas we have the follow-
ing:
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Definition 1.10. The Marginal Utility of good i (MUi) measures how much
extra utility the consumer gets per unit increase of good i.

The Marginal Rate of Substitution (MRS) is the slope of the indifference
curve. This measures how how many units of good 2 would be needed per
unit decrease in good 1 to keep the consumer equally well off.

This can be calculated by

MRS1,2 = −MU1

MU2
where MUi = ∂ui

∂xi

Exercise 1.5. Find the MRS at the bundle (x1, x2) = (2, 3) for the following
utility functions:

a) u (x1, x2) = 2x1 + x2.
b) u (x1, x2) = x2.
c) u (x1, x2) = x

1
2
1 x

1
2
2 .

1.3 Utility maximisation

Our consumer would like to find his most preferred bundle over the set of
bundles that are affordable to him. From the above two sections, we know
how to draw budget sets and indifference curves. So the aim here is to find
the highest indifference curve that the conumer can reach subject to staying
within his budget set.

Definition 1.11. The optimal bundle(s) is (are) the most preferred bundle
within the consumer’s budget set. When preferences are representable by a
utility function u : X → R, this means maximising utility subject to budget
constraint. This is known as the utility maximisation problem (UMP).

Our method will be to draw both the budget set and indifference curves
and try to read off our diagram which bundle will be on the highest indif-
ference curve while remaining within budget. Sometimes our diagram will
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show us the answer immediately; sometimes it will inform us of what math-
ematics we need to do to find the optimal bundle. We have lots of examples
to practice with:

Exercise 1.6. Let budget be given byp1 = 20 and p2 = 10, m = 100.
For each of the following preferences, draw indifference curves and find the
optimal bundle(s).

a) u (x1, x2) = x1.
b) u (x1, x2) = x2.
c) u (x1, x2) = x1 + x2.
d) u (x1, x2) = 2x1 + x2.
e) u (x1, x2) = min {x1, x2}.
f) u (x1, x2) = min {2x1, x2}.
g) u (x1, x2) = x1 − x2.

For other utility functions like Cobb-Douglas, we might need slightly more
complicated mathematics. Recall that the slope of the budget line is −p1

p2
and

that the slope of the indifference curve can be found by calculating MRS.

Exercise 1.7. Let budget be given byp1 = 20 and p2 = 10, m = 100 and
our consumer have the utility function u (x1, x2) = x

1
2
1 x

1
2
2 .

a) Sketch budget set and indifference curves. Use your diagram to argue
that the optimal bundle is where the slope of the indifference curve equals
the slope of the budget line.

b) Find the optimal bundle.
c) How much income does the consumer spend on each good?
d) How would your answer change if the utility function changed to

u (x1, x2) = x
1
3
1 x

2
3
2 ?

2 Game Theory

This knowledge will be useful in the latter parts of term 1 and in term 2.
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In consumer theory we had an agent taking decisions, trying to maximise
their utility without any outside interference. Game Theory, on the other
hand, allows us to model situations where there are multiple decision makers
and each person’s utility is influenced both by their own actions and by the
actions of others. As a simple example, in football, imagine a striker taking
a penalty against a goalkeeper. The striker can kick the ball left or right and
the goalkeeper can dive left or right. Now, how likely the striker is to score
doesn’t just depend on his own action, it also depends on the goalkeeper’s
action too.

Matrix representation

For 2 player games where each player has a small finite number of actions
available, we can illustrate them in a matrix or table form, where we let
player 1’s actions be the rows and player 2’s actions be the columns. Then
each box of the table has 2 numbers: the left is player 1’s utility and the
right is player 2’s utility:

Example 2.1. Player 1 is the striker and can aim left or right. If he aims
left his shot will be on target 100% of the time, while if he aims right his
shot will only be target 80% of the time. Meanwhile the goalkeeper, player
2, can dive to either the striker’s left or right. If the goalkeeper dives the
same way as the striker hit the ball then he saves it half the time, but if he
dives the wrong way he never saves it. The striker’s utility is the percentage
probability that the penalty results in a goal; while the goalkeeper’s utility
is the percentage probability that it doesn’t. We can represent this game by
the table below:

Player 2
Left Right

Player 1
Left 50,50 100,0
Right 20,80 40,60
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In writing the game in this form, we typically assume that the two players
move simultaneously, without knowing what the other one is doing. We can
use game theory tools to analyse games where one player moves first but that
is beyond the scope of this short lecture.

Utilities

The other thing to note is that utilities/payoffs represent all information
about a player’s preferences. So each player only cares about their own
payoff and wants to maximise it. They are not interested in the payoff of
their opponent. Perhaps in some situations people are altruistic and like to
see the other player happy, or are jealous if an opponent gets a higher utility
than themselves. If this is the case then these factors will have already been
incorporated into the payoffs that you see written into the table. Also, we
assume utilities are in “Bernouilli payoffs” meaning that any considerations of
risk have already been accounted for in the utility function and when mixed
strategies happen players only care about their expected payoff. This will
make more sense when Christian Soegaard teaches you about risk aversion
in term 2.

Our aim in game theory is, with this setup to analyse what rational,
utility maximising players will do.

2.1 Dominance

Our first attempt at asnswering how rational players will play is dominance.
The idea of dominance is to see if one strategy is unambiguously better than
another, regardless of what other players do. Often what your best action
is will depend upon what your opponent does, but in games where there is
clearly a best action, it seems logical to think players will prefer to take that
action. This seems a good starting point to predicting how games should be
solved.
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Definition 2.1. Strategy x strictly dominates strategy y if (for any oppo-
nent strategy) strategy x always gives a strictly higher payoff than strategy
y.

In notation: for player i, for each strategy profile s−i that other players
could do, ui (x, s−i) > ui (y, s−i).

Note that we assume our player who chooses between x and y only cares
about the effect on their own utility, not that on anybody else’s. There is
another weaker but still quite compelling form of dominance:

Definition 2.2. Strategy x weakly dominates strategy y if (for any oppo-
nent strategy) strategy x always gives a weakly higher payoff than strategy
y and sometimes gives a strictly higher payoff.

In notation: for player i, for each strategy profile s−i that other players
could do, we have ui (x, s−i) ≥ ui (y, s−i) and there exists some s′−i for which
ui
(
x, s′−i

)
> ui

(
y, s′−i

)
.

Remark 2.1. If x strictly dominates y then x weakly dominates y. However
the converse is not true.

Example 2.2. Consider the following game:
Player 2

Left Middle Right

Player 1
Top 2,2 3,3 3,2

Bottom 1,4 2,-1 2,0
For player 1, Top strictly dominates Bottom. For player 2 Left weakly

dominates Right. However there is no dominance between Left and Middle
or Middle and Right.

Exercise 2.1. Consider the game below where we only look at player 1’s
payoff.

11



Player 2
Left Right

Player 1
Top a, b,

Bottom c, d,
Complete the following sentences:
Top strictly dominates Bottom if and only if ...
Top weakly dominates Bottom if and only if ...

Next we move on to the idea of a dominant strategy. This is one that
dominates all other strategies.

Definition 2.3. Strategy x is a strictly dominant strategy for a player if
it strictly dominates all other strategies that player has.

Strategy x is a weakly dominant strategy for a player if it weakly
dominates all other strategies that player has.

Example 2.3. Consider the following game:
Player 2

Left Middle Right

Player 1
Top 2,2 3,3 3,3

Bottom 1,4 2,5 2,0
For player 1 Top is strictly dominant as it strictly dominates the only

other pure strategy for player 1.
For player 2 Middle is weakly dominant as it weakly dominates Left and

Right (in fact it strictly dominates Left).

Allowing for mixing

The above analysis only considered what we call pure strategies. That is
when a player does one action all the time. But we could also ask what
if players mix between two or more actions. Recalling our comment that
players only care about maximising their expected utility, we can apply the
same defintions and allow for mixed strategies:
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Example 2.4. Consider the game below where we only care about the pay-
offs of player 2:

Player 2
Left Middle Right

Player 1
Top ,a ,b ,c

Bottom ,d ,e ,f
The mixed strategy pL+(1− p)M strictly dominates R iff pa+(1− p) b >

c and pd+ (1− p) e > f .
The mixed strategy pL+(1− p)M weakly dominates R iff pa+(1− p) b ≥

c and pd+(1− p) e ≥ f , with at least one of the two inequalities being strict.

IESDS

IESDS stands for “iterative elimination of strictly dominated strategies”. The
idea here is that when a strategy is strictly dominated, that player will never
play it. Furthermore, if both players are rational, then the opponent knows
it will never be played. Given this, we can remove it from our analysis. And
once we remove one strictly dominated strategy, it might allow us to remove
more as the next example shows

Exercise 2.2. Consider the game below and argue that
Player 2

X Y Z

Player 1
A 5,1 3,0 1,5
B 1,2 2,3 0,0
C 2,6 2,6 0,6

Apply IESDS to eliminate C, then X, then B, then Y, to leave (A,Z). At
each stage write down the strictly dominating strategy you used.

When a game is solvable by IESDS, then the IESDS outcome seems a
very good prediction for how the game should be played. However in many
games IESDS fails to give us a unique outcome. Also you may be tempted
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to consider iteratively eliminating weakly dominated strategies, but this is
generally considered not a good idea.4

2.2 Nash Equilibrium

Nash Equilibrium is the main solution concept in Game Theory upon which
other more advanced solution concepts are built. The idea of Nash Equilib-
rium is to give an outcome which is stable in the sense that no player has an
incentive to unilaterally deviate from it. Before defining Nash Equilibrium,
we need to put some other things in place first:

A natural question for players to ask is:

Given how the other player(s) are playing, what is the best strat-
egy for me?

This is the idea of best response:

Definition 2.4. The best response correspondence of a player gives,
for each possible strategy profile of other players, the set of strategies that
maximise that player’s utility.

Example 2.5. Consider the game below
Player 2

Left Right

Player 1
Top 2,5 1,3

Bottom 4,1 4,2
Best responses for player 1: B against L. B against R.
Best reponses for player 2: L against T. R against B.
These are the best responses against the pure strategies. We could also

find the best response to mixed strategies. For example the best response of
player 1 against 1

2L+ 1
2R would be B.

4The reasons are: i) there are examples where you can eliminate weakly dominated
strategies in one order to get one outcome and in a different order to get another outcome;
ii) we might eliminate some Nash Equilibria.
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Before defining Nash Equilibrium, we should explain what is meant by a
strategy profile. A strategy profile is a description of what everyone is doing.
So for each player, it prescribes a strategy. Often we use the notation σi for
the strategy of player i. So in Example 2.5, an example of a strategy profile
would be (σ1, σ2) = (T, L). Or allowing for mixed strategies, a strategy
profile would be something of the form

(σ1, σ2) = (pT + (1− p)B, qL+ (1− q)R) where p, q ∈ [0, 1]

Definition 2.5. A Nash Equilibrium is a strategy profile such that no
player has an incentive to change their strategy.

This means that each player is playing a best response to the strategy of
the other player(s). In a 2 player game like in Example 2.5, this means that
σ1 is a best response to σ2 and σ2 is a best response to σ1.

Example 2.6. Recall the game in example 2.5:
Player 2

Left Right

Player 1
Top 2,5 1,3

Bottom 4,1 4,2
(σ1, σ2) = (B,R) is a Nash Equilibrium. Player 1 has no incentive to

deviate (1 < 4) and player 2 has no incentive to deviate (1 < 2).
(σ1, σ2) = (T, L) is not a Nash Equilibrium. At this strategy profile player

2 best responds to player 1 (3 < 5), but player 1 is not best responding to
player 2 (4 > 2).

Exercise 2.3. Consider the general 2 player game below:
Player 2

Left Right

Player 1
Top a,b c,d

Bottom e,f g,h
Complete the following sentences:
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(σ1, σ2) = (T, L) is a Nash Equilibrium iff ...
(σ1, σ2) = (T, L) is not a Nash Equilibrium iff ...
We can complete similar phrases for other strategy profiles too.

Finding pure strategy NE

When we have a 2 player game in matrix form, an easy way to find all the
pure strategy Nash Equilibria is the underlining method.

Definition 2.6. The underlining method (for 2 player games) is as fol-
lows:

Go through each column, comparing the player 1 payoffs. For each col-
umn, underline the highest number (or numbers if there is a tie). This is the
pure strategy best responses of player 1.

Go through each row, comparing the player 2 payoffs. For each row,
underline the highest number (or numbers if there is a tie). This is the pure
strategy best responses of player 2.

Then the pure strategy Nash Equilibria occur where both numbers are
underlined.

Exercise 2.4. Consider the game below
Player 2

W X Y Z

Player 1

A 4,3 7,2 6,2 5,1
B 3,4 6,6 5,9 2,4
C 2,5 5,8 8,9 11,9
D 1,5 3,0 6,1 7,7

Apply the underlining method to justify that there are 3 pure strategy
Nash Equilibria: (A,W ), (C, Y ) and (C,Z).

16



Finding mixed strategy NE

I give an example to show how to do this in a simple 2 player, 2 action game.
This gives the idea which can then be extended to more complex games.

Exercise 2.5. Consider the game below and let player 1 mix between his
actions with probability p and player 2 mix with probability q as shown
below:

Player 2
Left (q) Right (1− q)

Player 1
Top (p) 2,3 0,1

Bottom (1− p) 1,0 3,2
Complete the following algebra for player 1:

u1 (T ) ≥ u1 (B)⇐⇒

⇐⇒

⇐⇒

From this we can write the best response of player 1:

BR1 (q) =



...................................................... q <

...................................................... q =

...................................................... q >

Complete the following algebra for player 2:

u2 (L) ≥ u2 (R)⇐⇒

⇐⇒

⇐⇒
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From this we can write the best response of player 1:

BR2 (p) =



..................................................... p <

..................................................... p =

..................................................... p >

From this we can deduce there are 3 NE in total:
i)
ii)
iii)

2.3 Cournot

In all of the games above, players have finitely many actions. Although this
need not be the case. We can define and analyse games where the action
space is infinite. A much studied example of this is the Cournot duopoly
game:

Cournot setup

We have 2 firms in the market, producing an identical good to each other.
Firm 1 has a marginal cost of c1 per unit and firm 2 a marginal cost of c2

per unit. There is a linear market demand meaning that we get price of
P = a− bQ, for some constants a, b ∈ R when Q units are produced. We let
the firms outputs be given by q1 and q2 so that Q = q1 + q2. Now each firm
chooses their quantity trying to maximise the profit that they make. (Utility
equals profit). I will solve this model for the simplest case: where a = b = 1
and c1 = c2 = 0
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Monopoly analysis

Before solving this game, I first analyse what would happen if we only had
one firm instead of two, or equivalently that one firm is forced to produce
q2 = 0. In the notation I use, we only have firm 1. Now this is a standard
decision theory problem akin to what we studied in Section 1 as there is only
one decision make and so no game theoretic aspect.

The firm wants to maximise profit and so solves:

max
q1≥0

π1 = (P − c1) q1 = (1− q1) q1

To solve this, we could use symmetry or differentiate and we find solution
q = 1

2 , P = 1
2 , π = 1

4 .

Cournot dupoly analysis

Now we solve our model as intended with 2 firms. Note that this is a more
complex situation as now for each firm, their best action will depend on what
the other does. But the ideas are the same as we have seen above. For a
given level of q2, the objective of firm 1 is:

max
q1≥0

π1 = (P − c1) q1 = (1− q1 − q2) q1

We solve by finding the first order condition:

dπ1

dq1
= 0⇐⇒ 1− 2q1 − q2 = 0

From this we can write down the best response of firm 1 as a function of q2

as:

BR1 : q1 =


1−q2

2 q2 ≤ 1

0 q2 > 1
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Using a symmetric for firm 2, we can write down the best response of firm 2
as a function of q1 as:

BR2 : q2 =


1−q1

2 q1 ≤ 1

0 q1 > 1

The Nash Equilibrium occurs when each firm is best responding to the other.
By inspection we see this cannot happen when either q1 or q2 = 0. Substi-
tuting BR2 into BR1 we get:

q1 = 1
2 −

1
2

(1− q1

2

)
⇐⇒ q1 = 1

3

Substituting this back into BR2 and our expressions for Price and profit we
get:

q1 = q2 = 1
3 . P = 1

3 . π1 = π2 = 1
9

Exercise 2.6. (For extra practice) Solve the model for different values of
a, b, c > 0. Solve the general model, for arbitrary a, b, c > 0.
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