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STATISTICAL TECHNIQUES B 

Probability 

1. Introduction 

There is an experiment whose outcome is random and which can be repeated. Define 

 as the sample space, which is the set of all possible outcomes of the experiment and 

the basic (or elementary) outcomes are defined as Ci, i=1,k, and these are the list of 

all possible outcomes and only one of the list can be the outcome in any particular 

experiment. 

Example: 

(i) If the experiment is rolling a dice then  1, 2,3,4,5,6  and Ci =the number on 

the face of the die; 1 2 6{1}, {2} {6}C C C    

(ii) If the experiment was rolling two die then  (1,1), (1,2), (1,6) (6,6)     and Ci 

is the number on the faces combined.  

The events, A, are a collection of one or more outcomes of the basic outcomes (Ci) 

and are a subset of .  

Example:  

(i) Let A = the event that an odd face is rolled = {1,3,5} and A   .  

(ii) Let A = Ordered pair of  which sum to 7 = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}. 
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2. Set Theory and Venn Diagrams 

A set is a selection of objects. Members of a set are referred to as elements and are 

written inside brackets, {}. Some notation: 

(1)  () means belongs (does not belong) to  

(a) The set {1, 2,3, 4} and 1A A   

(b)  The set { | 0 1} and 0 BB x x     

(c) The set {Heads,Tails} and Heads CC    

(d) The set 2{real numbers|x 1}D    and D   

(2) E A , meaning the set E is a subset of the set A, implying that all elements that 

belong to E also belong to A. 

(a) {1, 2,3, 4}A   and {1, 2}E   then E A  

(3) A E  is the set of all elements which are in A or E or both 

(a) {0,0.5,1}A  , {1, 2,3}E  {0,0.5,1,2,3}A E    

(4) A E  is the set of all elements which belong to both A and E 

(a) {0,0.5,1}A  , {1, 2,3}E  {1}A E    

(5) A  is the complementary event to A, and  ;A a a A    

(a) {1, 2,3, 4,5,6,7,8,9,10}  , {1, 2,3, 4}A  {5,6,7,8,9,10}A   

(6) The elementary events 1 2, , kC C C  are said to mutually exclusive,  meaning 

i jC C   for i j  and exhaustive, meaning 1 2 3 ... kC C C C      . If A is 

some other event then: 

1 2( ) ( ) ( )kA C A C A C A       

This is the “union-intersection” rule. 
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2.1 Rules 

(1) A B B A    

(2) A B B A    

(3) ( ) ( )A B C A B C      

(4) ( ) ( )A B C A B C      

(5) A   

(6) A A   

(7) A A  

(8) ( ) ( ) ( )A B C A B A C       

(9) ( ) ( ) ( )A B C A B A C       

(10) ( )A B A B    

(11) ( )A B A B    
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3. Probability  

The probability of an event A, P(A), is the probability that an outcome of the 

experiment is A. 

Example:  

(i) A is made up of 3 outcomes and  of 6, then P(A)=3/6=1/2. 

(ii) A is made up of 6 outcomes,  of 36, then P(A)=6/36=1/6. 

Let P be a function which assigns a real number, P(A), to A,  A  . Then P is a 

probability measure if: 

(i) P(A)0 

(ii) If i jC C  , for ij, then 1 2 3 1 2( ) ( ) ( )P C C C P C P C       

(iii) P()=1 

3.1 Useful properties of probability 

(i) Let A  be the complementary event to A, then  ;A a a A    (where () 

belongs to (does not belong to)), ( ) 1 ( )P A P A   

Proof 

0 ( ) ( ) ( )A A P A A P A P A       

but, ( ) ( ) ( ) ( ) 1 ( ) 1 ( )A A P A A P A P A P P A P A            . 

(ii)  P(0) = 0 

(iii) If A B  then ( ) ( )P A P B  

Proof 

Let 0D B A D A      Therefore, ( ) ( ) ( ) ( )P D A P B P D P A     as 

( ) 0P D   this implies ( ) ( )P B P A  

(iv) For each event iC  , 0 ( ) 1iP C   

(v)  ( ) ( ) ( ) ( )P A B P A P B P A B      

Proof 

( ) ( ) ( )P A P A B P A B     and ( ) ( ) ( )P B P A B P A B     

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
P B P A B

P A B P A P D P A P A B P A P B P A B
 

           

If A and B are mutually exclusive, such that A B   then, 

( ) ( ) ( )P A B P A P B   . 
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4. Bivariate probabilities 

Consider the two events A and B, which have elementary events 1 2, ,A A A
hC C C  and 

1 2, ,B B B
kC C C , such that: 

Each event A
iC  can occur jointly with any B

jC  and these joint outcomes can be 

thought of as the basic outcomes. 

Under this scenario we can observe the following sets of possible outcomes as shown 

in Table 1 with associated probabilities. 

 
Table 1 Probabilities table 

 
1
BC   2

BC   B
kC  Total 

1
AC  1 1( )A BP C C   1 2( )A BP C C   

1( )A B
kP C C  

1 1
1

( )( )
k

A A B
j

j

P C P C C


  

2
AC  2 1( )A BP C C  2 2( )A BP C C   

2( )A B
kP C C  

2 2
1

( )( )
k

A A B
j

j

P C P C C


  

      

A
hC  1( )A B

hP C C  2( )A B
hP C C   ( )A B

h kP C C  

1

( ) ( )
k

A A B
h h j

j

P C P C C


  

 
1

1
1

( )

( )B

h
A B

i
i

P C

P C C







2

2
1

( )

( )B

h
A B

i
i

P C

P C C








 

1

( )

( )B
k

h
A B

i k
i

P C

P C C








 

 

where ( )A B
i jP C C  are the joint probabilities of the event ( A

iC and B
jC ) and ( )A

iP C  is 

the marginal probability of event A
iC  occurring irrespective of outcome of B.  
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5. Conditional Distributions 

Consider now the probability that any one of the outcomes associated with experiment 

A occurs given that the outcome from experiment B was Bk, this is written as 

( | ), 1,A B
i kP C C i h  .  

Correspondingly we only need the penultimate column of Table 2. However, these 

probabilities (which define all of the possible outcomes of the experiment A
iC  given 

that B
kC  occurred) sum to ( )B

kP C , rather than unity, scaling each probability in the 

table by ( )B
kP C , gives  

( )
( | )

( )

A B
A B i k
i k B

k

P C C
P C C

P C


 . 

Similarly we can find 

( )
( | )

( )

A B
h jB A

j h A
h

P C C
P C C

P C


 . 

From the above we therefore have that: 

( | ) ( ) ( )A B B A B
i k k i kP C C P C P C C   

( | ) ( ) ( )B A A A B
j h h h jP C C P C P C C   

and 

( | ) ( )
( | )

( )

B A A
A B k i i

i k B
k

P C C P C
P C C

P C
  

Imagine there are two groups (Group1 and Group2) and we are interested in the 

probability of some event A, then: 

Relative Risk is calculated as: 
( | 1)

( | 2)

P A Group

P A Group
 and is the ratio of the probability of 

some event for two different groups. 

Odds Ratio is calculated as: 
( | 1) / ( | 1)

( | 2) / ( | 2)

P A Group P A Group

P A Group P A Group
 and is the ratio of  

undertaking an activity (compared to not) for Group1 compared to Group2. Note this 

would be the same if ( | 1) 1P A Group   and ( | 2) 1P A Group  . 
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6. Statistical Independence 

The events A
iC and B

jC  are said to be statistically, if 

( )
( | ) ( )

( )

A B
i jA B A

i j iB
j

P C C
P C C P C

P C


   

that is, the events are independent if probability of A
iC  occurring, conditional on B

jC  

having occurred is simply the marginal probability of A
iC  (the conditioning has no 

effect). 

Independence implies: 

( ) ( ). ( )A B A B
i j i jP C C P C P C   
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7. Bayes Theorem 

Define an event A
iC  and some mutually exclusive and exhaustive basic events 

1 2, ,B B B
kC C C . Then we know 

1 2( ) ( ) ( ) ( )A A B A B A B
i i i i kP C P C C P C C P C C       

1 1 2 2( ) ( | ) ( ) ( | ) ( ) ( | ) ( )A A B B A B B A B B
i i i i k kP C P C C P C P C C P C P C C P C  

1

( ) ( | ) ( )
k

A A B B
i i j j

j

P C P C C P C


  

and therefore we get Bayes Theorem: 

1

( | ). ( ) ( | ). ( )
( | )

( ) ( | ) ( )

A B B A B B
i j j i j jB A

j i kA
A B Bi
i j j

j

P C C P C P C C P C
P C C

P C P C C P C


 


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8. Combinations and Permutations 

There are n objects to be arranged in order: how many different ways are there of 

doing this? 

( 1)( 2) 1 !n nP n n n n     - permutations 

There are n different objects and you choose r of them, how many ways can you order 

these r objects? 

!
! ( 1)( 2) ( 1)

( )!n r

n
P n n n n n r

n r
      


  

There are n different objects and you choose r of them, how many ways can you 

choose r (without ordering) 
!

!( )! !
n r

n r

Pn
C

r n r r
 


 

Consider 5 people A, B, C, D, E entering a room and we are interested the order in 

which they enter then we can see this as: 

  1st person 

  A B C D E 

 A - 1 1 1 1 

 B 1 - 2 2 2 

 C 2 2 - 3 3 

 D 3 3 3 - 4 

 E 4 4 4 4 - 

And so if A enters 1st there are 4 ways other people can enter 2nd. Similarly if B enters 

1st there are 4 ways people can enter 2nd. So the number of ways 2 people can enter 

the room is 5
2

5!
5 4 20

(5 2)!
P   


 . If we are looking at  getting a 3rd person into 

the room and A followed by B are the 1st two, then how many ways can we do this 

and the answer  is 3 (C or D or E) and the answer would therefore be 

5
3

5!
20 3

(5 3)!
P  


 .  

If we do not care about the order in how many ways can two people enter the room 

the answer is  
5

52
2

5!
10

2 (5 2)!2!

P
C  


. If 3 people enter the room in how many 
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different ways can that happen:  
5

53
3

5!
10

6 (5 3)!3!

P
C  


 as there are 6 ways of 

rearranging any combination of three letters (e.g. ABC, ACB, BAC, BCA, CAB, 

CBA).
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Sample Questions 

Question 1 

Let  2, 4,6,8A  ,  1,3,5,9B   and  1,2,3, 4,5,6,7,8,9   

Evaluate the sets: 

(a) A , (b) B , (c) A B , (d) 
_________

A B , (e) A B , (f) A B , (g) A B  

Question 2 

If ( ) 1/ 3P A  , ( ) 1/ 2P B   and ( ) 3 / 4P A B  . 

Find (a) ( )P A B , (b) 
_________

( )P A B , (c) 
_________

( )P A B , (d) ( )P A B  (e) ( )P A B ,  

(f) ( )P A B , (g) ( )P A B  

Question 3 

A fair octagonal (eight sided) die, with faces marked 1 to 8, is thrown as an experiment, 

the result being the number on the face of the die. Define the following events: 

1 (1,2,3,4,5)E  , 2 (2, 4,6,8)E  , 3 (1,3,5,7)E  . Find the following: 

 (a) 1 2Pr( | )E E , (b) 1 3Pr( | )E E , (c) 1 2Pr( | )E E , (d) 2 1Pr( | )E E ,  

 (e) 3 1 2Pr( | )E E E . 

Question 4 

A town has three bus routes A, B and C. In the “rush hour”, route A has twice as many 

buses on its route as both B and C. Over a period of time it has been found that, along 

a certain stretch of road, where the three bus routes converge, the buses run more than 

five minutes late depending on their route with probabilities: 0.5, 0.2 and 0.1, 

respectively. If an inspector finds that a bus is more than five minutes late, find the 

probability that it is a route B bus. 
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Question 5 

A child uses a home-made metal detector to look for valuable metallic objects on a 

beach. There is fault in the machine which causes it to signal the presence of only 95% 

of metallic objects over which it passes and to signal the presence of 6% of non-metallic 

objects. Of the objects over which the machine passes, 20% are metallic. 

(a) Find the probability that a given object is metallic and the machine gives a 

signal. 

(b) Find the probability of a signal being received by the child for any given object. 

(c) Find the probability that the child has found a metallic object when they receive 

a signal. 

(d) Given that 10% of metallic objects found on the beach are valuable, find the 

proportion of objects, discovered by a signal from the detector, that are valuable. 

Question 6 

A passenger compartment on a train has six seats, three facing forwards and three facing 

backwards. Three men and two women enter the compartment and seat themselves 

randomly. 

(a) In how many ways can they be seated?  

(b) In how many ways will the women be seated opposite each other?  

(c) In how many ways can two men be seated opposite each other? 
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Sample Questions (with Answers) 

Question 1 

Let  2, 4,6,8A  ,  1,3,5,9B   and  1,2,3, 4,5,6,7,8,9   

Evaluate the sets: 

(a) A , (b) B , (c) A B , (d) 
_________

A B , (e) A B , (f) A B , (g) A B  

Answer 

(a) (1,3,5,7,9)A   

(b) (2, 4,6,7,8)B   

(c) (1, 2,3, 4,5,6,8,9)A B   

(d) 
_________

(7)A B   

(e) ( )A B    

(f) (1, 2,3, 4,5,6,7,8,9)A B A B      

(g) (7)A B  
_________

A B  
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Question 2 

If ( ) 1/ 3P A  , ( ) 1/ 2P B   and ( ) 3 / 4P A B  . 

Find (a) ( )P A B , (b) 
_________

( )P A B , (c) 
_________

( )P A B , (d) ( )P A B  (e) ( )P A B ,  

(f) ( )P A B , (g) ( )P A B  

Answer 

(a) ( ) 3 / 4 1/ 3 1/ 2 ( ) ( ) 1/12P A B P A B P A B          

(b) 
_________

( ) 1 1/12 11/12P A B     

(c) 
_________

( ) 1 3 / 4 1/ 4P A B     

(d) ( ) ( ) ( ) ( ) 1/ 3 1/12 1/ 4P A P A B P A B P A B          

(e) ( ) ( ) ( ) ( ) 1/ 2 1/12 5 /12P B P A B P A B P A B          

(f) ( ) ( ) ( ) ( ) 2 / 3 5 /12 1/ 4P A P A B P A B P A B          
_________

( )P A B   

(g) ( ) ( ) ( ) ( ) 2 / 3 1/ 2 1/ 4 11/12P A B P A P B P A B        
_________

( )P A B   
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Question 3 

A fair octagonal (eight sided) die, with faces marked 1 to 8, is thrown as an experiment, 

the result being the number on the face of the die. Define the following events: 

1 (1,2,3,4,5)E  , 2 (2, 4,6,8)E  , 3 (1,3,5,7)E  . Find the following: 

 (a) 1 2Pr( | )E E , (b) 1 3Pr( | )E E , (c) 1 2Pr( | )E E , (d) 2 1Pr( | )E E ,  

 (e) 3 1 2Pr( | )E E E . 

Answer 

(a) 1 2
1 2

2

Pr( ) Pr(2,4) 0.25
Pr( | ) 0.5

Pr( ) Pr(2,4,6,8) 0.5

E E
E E

E


     

(b) 1 3
1 3

3

Pr( ) Pr(1,3,5) 0.375
Pr( | ) 0.75

Pr( ) Pr(1,3,5,7) 0.5

E E
E E

E


     

(c) 1 2
1 2

2

Pr( ) Pr(6,8) 0.25
Pr( | ) 0.5

Pr( ) Pr(2,4,6,8) 0.5

E E
E E

E


     

(d) 1 2
2 1

1

Pr( ) Pr(2, 4) 0.25
Pr( | ) 0.4

Pr( ) Pr(1, 2,3,4,5) 0.625

E E
E E

E


     

(e) 3 1 2
3 1 2

1 2

Pr( ( )) Pr(1,3,5) 0.375 3
Pr( | )

Pr( ) Pr(1, 2,3,4,5,6,8) 0.875 7

E E E
E E E

E E

 
    


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Question 4 

A town has three buses A, B and C. In the “rush hour”, A has twice as many buses on 

its route as both B and C. Over a period of time it has been found that, along a certain 

stretch of road, where the three buses converge, the probability of a bus being at least 

5 minutes late is 0.5, 0.2 and 0.1 for each given bus, respectively. If an inspector 

(standing near this stretch of road) finds that the first bus is more than five minutes late, 

find the probability that it is route B bus. 

Answer 

Pr( ) 0.5A  , Pr( ) Pr( ) 0.25B C    

In addition, we know 

Pr( | ) 0.5L A  , Pr( | ) 0.2L B  , Pr( | ) 0.1L C   

we want to know: 

Pr( | ).Pr( ) 0.2(0.25) 0.05
Pr( | ) 0.154

Pr( ) 0.325 0.325

L B B
B L

L
     

and from the union-intersection rule: 

Pr( ) Pr( | ).Pr( ) Pr( | ).Pr( ) Pr( | ).Pr( )L L A A L B B L C C    

Pr( ) 0.5(0.5) 0.2(0.25) 0.1(0.25) 0.325L      
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Question 5 

A child uses a home-made metal detector to look for valuable metallic objects on a 

beach. There is fault in the machine which causes it to signal the presence of only 95% 

of metallic objects over which it passes and to signal the presence of 6% of non-metallic 

objects. Of the objects over which the machine passes, 20% are metallic. 

(a) Find the probability that a given object is metallic and the machine gives a 

signal. 

(b) Find the probability of a signal being received by the child for any given object. 

(c) Find the probability that the child has found a metallic object when they receive 

a signal. 

(d) Given that 10% of metallic objects found on the beach are valuable (and non-

metal objects are not valuable), find the proportion of objects, discovered by a 

signal from the detector, that are valuable. 

Answer 

Pr( | ) 0.95S M  , Pr( | ) 0.06S NM  , Pr( ) 0.2M   

(a) Pr( ) Pr( | ).Pr( ) 0.95(0.2) 0.19M S S M M    . 

(b) Pr( ) Pr( ) Pr( ) 0.19 0.06(0.8) 0.238S S M S NM        

(c) 
Pr( ) 0.19

Pr( | ) 0.798
Pr( ) 0.238

M S
M S

S


    

(d) ( | ) 0.1 ( ) 0.1(0.19) ( )P V M S P V M S P V S          

as ( ) 0P V S NM   , therefore 
Pr( ) 0.1(0.19)

Pr( | ) 0.08
( ) 0.238

V S
V S

P S


    
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Question 6 

A passenger compartment on a train has six seats, three facing forwards and three facing 

backwards. Three men and two women enter the compartment and seat themselves 

randomly. 

(a) In how many ways can they be seated?  

(b) In how many ways will the women be seated opposite each other?  

(c) In how many ways can two men be seated opposite each other? 

 

Answer 

(a) In how many ways can we arrange 5 people in 6 seats - 6 6 720P  . 

(b) If the two women sit opposite one another (next to the window) then how many 

ways can the three men occupy the remaining 4 seats - 4 4 24P  . In total the women 

can sit opposite each other in 3 ways (window, aisle or middle seats and can swap 

places) – therefore we have 6*24=144. 

(c) Clearly if there we only 2 men then the answer would be the same as (b), but 

there are three men and these can sit opposite each other as man 1 and man 2, man1 and 

man 3, or man 2 and man 3 (and can swap around). Therefore we have 432. 
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STATISTICAL TECHNIQUES B 

Univariate and Bivariate Distributions 

1. Introduction to Univariate Distributions 

For a random experiment, with a sample space, , a function X, which assigns to each 

element of C, a real number X(C)=x, is called a random variable. We must distinguish 

between the random variable, X, and the possible outcomes, x . 

Example 1: 

Consider rolling a dice then  1, 2,3, 4,5,6  , define a random variable, which 

considers only odd or even numbers and 
1  if even number

( )
0  if odd number 

X C


 


, then  

x 0 1
P(X=x) ½ ½

Example 2: 

Toss two coins  , , ,HH HT TH TT  . Let X(C)=Number of tails 

( ) 0, ( ) 1, ( ) 1, ( ) 2X HH X HT X TH X TT     then 
 
 

, , ,

0,1,2                   

HH HT TH TT 

 

and 

P(X=1)=P(HT,TH)=1/2 

x 0 1 2
P(X=x) ¼ ½ ¼

Example 3: 

( ) 1 0 1f x x   { ;0 1}x x   

0 1 

f(x) 

x 



Handout 2: Univariate and Bivariate Distributions 

2

2. Discrete Univariate Distributions 

Suppose X is a scalar random variable with a finite number of values - this is a 

discrete set of points. Let ( )Xp x  be a function such that, (i) ( ) 0Xp x  , and (ii) 

( ) 1X
x

p x  , then X is a discrete random variable with probability density (mass) 

function, ( )Xp x  and ( ) ( )
b

x a

P a X b f x


   . (for rules on summations see Appendix 

2) 

The cumulative distribution (mass) function of X is such that for each 

0

0 0( ) ( ) ( )X X
x x

F x P X x p x


   . 

(a) cdf of a discrete random variable 

(iii) lim ( ) 0
x

F x




(iv) lim ( ) 1
x

F x




(v)  Pr ( ) ( )a X b F b F a   

Pr(X=x) 
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2.1 Measures of central tendency and dispersion (spread) 

2.1.1 Median 

For a discrete random variable X, if   1/ 2p X x  , and   1/ 2p X x   then the 

median if the variable X is x. Note there might be a case where the median is not 

defined. 

2.1.2 Mode 

That value of x such that ( )p x  is maximised. 

2.1.3 Expectation (simple mean) 

X takes on a finite number of outcomes 1 2, , , nx x x x …  and each has an associated 

probability: 

X x1 x2  xn 

P(X=x) p1 p2  pn 

( ) ( )X X
x

E X p x x    (for rules on expectations see Appendix 3) 

2.1.4 Variance 

One is also interested in the spread or dispersion in the data and a common statistic to 

measure this is the variance, defined as: 

2 2( ) ( ) ( )( )X X X
x

V X E X p x x        (for rules on variances see Appendix 3) 

2 2 2 2 2 2

1

( ) 2 ( ) ( ) ( ) ( )

X

X X X X X X X X
x x x

p x x p x x p x p x x E X



            
 

2 2 2( ) ( ) ( ) ( )XV X E X E X E X     

The variance looks at how far each point is the mean of the variable (deviations from 

the mean) and then squares that measure (to ensure all values are positive) and then 

looks at the expected value of this transformed series. By construction series which 

are more dispersed around the mean have a higher variance and at the limit if a 

variable only takes 1 value it has a zero variance. 
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2.1.5 Higher moments 

In general,  

 ( ) ( ) ( )X
x

E g X p x g x

Example 

X=x 1 2 3 4 

Pr(X=x) 0.2 0.3 0.4 0.1 

( ) 0.2(1) 0.3(2) 0.4(3) 0.1(4) 2.4E X     

2 2 2 2 2( ) 0.2(1 ) 0.3(2 ) 0.4(3 ) 0.1(4 ) 6.6E X     

 
22 2( ) ( ) ( ) 6.6 2.4 0.84V X E X E X    
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3. Introduction to Discrete Bivariate Distributions 

Suppose that the sample space of X1 is 1 1 1
1 1 2{ , , }hx x x  …  and the sample space of X2

is 2 2 2
2 1 2{ , , }hx x x  … . Then we can define all possible outcomes and the joint 

probability density function using the Table 1 below (similar to Table 1 from Handout 

1 - Probability): 

Table 1: Joint Probability Table 

2
1x 2

2x  2
kx Total 

1
1x 1 2

1 1( )p x x 1 2
1 2( )p x x 1 2

1( )kp x x 1 1 2
1 1

1

( ) ( )
k

j
j

p x p x x



1
2x 1 2

2 1( )P x x 1 2
2 2( )P x x  1 2

2( )kP x x 1 1 2
2 2

1

( ) ( )
k

j
j

p x p x x



  

1
hx 1 2

1( )hP x x 1 2
2( )hP x x  1 2( )h kP x x 1 1 2

1

(( ) )
k

h h j
j

p x p x x



2
1

1 2
1

1

)

( )

(
h

i
i

p x

p x x








2
2

1 2
2

1

)

( )

(
h

i
i

p x

x xp








2

1 2

1

)

( )

(

k

h

i k
i

p x

p x x








The table defining a probability for each pair of events, 1
ix , 2

jx  for i=1,h and j=1, 

k, such that 1 2( ) 0i jxp x    and 1 2( ) 1
i j

i jp x x   then it is a valid probability 

density function. 

3.1 Marginal Distributions

For the bivariate case above, consider the event, 1
1 iX x . This event occurs when 

1
1 iX x  and X2 takes any possible value. This probability is 

1 2 2 1 2 1
1 1 2 1( , ) ( , ) ( )i k i j i

j

P X x x X x p x x p x    

and this is the MARGINAL PROBABILITY DENSITY (MASS) FUNCTION of X1. 

From these marginal distributions we can calculate the moments of the random 

variables X1 and X2, that is, 1( )E X , 2( )E X , 1( )V X , 2( )V X  and 1 2cov( , )X X  as we 

did before. For the discrete random variable X1, with marginal probability density 

function 1
1( )ip x : 
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1 1
1 1( ) ( )i i

i

E X x p x

1 2 1 2
1 1 1( ) ( ) ( ) ( )i i

i

V X x p x E X 

similarly for X2, 

2 2
2 2( ) ( )j j

j

E X x p x

2 2 2 2
2 2 2( ) ( ) ( ) ( )i j

j

V X x p x E X  . 

Between two random variables one can also have measures of association and one 

common measure of association is the covariance, defined as: 

1 2 1 1 2 2 1 2 1 2cov( , ) ( ( ))( ( )) ( ) ( ) ( )X X E X E X X E X E X X E X E X    

1 2 1 2
1 2 1 2cov( , ) ( , ) ( ) ( )i j i j

i j

X X x x p x x E X E X 

The covariance measures both series in terms of deviations from the mean and then 

measures what is the expected value of the cross-product of the two terms. This 

measure has two elements contained within it: 

(i) A measure of sign are positive (negative) deviations of X1 associated with 

positive (negative) deviations of X2.  

(ii) Size how big are these deviations and the bigger they are the bigger (in an 

absolute sense) the covariance. 

Appendix 4 contains example scatter plots of values of the variables of X1 and X2 and 

the associated covariance sign. 

Rules on expectations and variance for combinations of random variables are in 

Appendix 5.

3.2 Conditional Distributions 

The conditional probability density function for random variables, X1 and X2 with a 

joint probability density (mass) function p(x1,x2) and marginals 1
1( )ip x  and 2

2 ( )ip x , is 

written as: 

1 2

1 2

2
2

( , )
( | )

( )

i j

i j

j

p x x
p x x

p x
 . 

This is a valid pdf as 

1 2 2
21 2 1 2

2 2 2
2 2 2

( , ) ( )1
( | ) ( , ) 1

( ) ( ) ( )

i j j

i j i j
i i ij j j

p x x p x
p x x p x x

p x p x p x
     
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and 
1 2

1 2

2
2

( , )
( | ) 0

( )

i j

i j

j

p x x
p x x

p x
 

Rearranging the above expression we also have that  

1 2 2 1 2
2( | ) ( ) ( , )i j j i jp x x p x p x x . 

This idea can be extended to more than two events, in which case we have 

1 2 3

1 2 3

2 3
2,3

( , , )
( | , )

( , )

i j m

i j m

j m

p x x x
p x x x

p x x


Rearranging and using the rule that 1 2 3 1 2 3 2 3
2,3( , , ) ( | , ) ( , )i j m i j m j mp x x x p x x x p x x , we have 

1 2 3 1 2 3 2 3 1 2 3 2 3 3
2,3 3( , , ) ( | , ) ( , ) ( | , ). ( | ). ( )i j m i j m j m i j m j m mp x x x p x x x p x x p x x x p x x p x 

NOTE:  

( ) ( ( | ))E X E E X Y , i..e.: 

( ) ( | 1). ( 1) ( | 2). ( 2) 1.8(0.5) 3.0(0.5) 2.4E X E X Y P Y E X Y P Y        

( ) ( ( | )) ( ( | ))V X E V X Y V E X Y 
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4. Continuous Univariate Distributions 

Suppose X is a scalar random variable along the real line and (i) ( ) 0Xf x   and (ii) 

( ) 1X

x

f x dx  , then X is a continuous random variable with probability density 

function, ( )Xf x  and ( ) ( )
b

X

a

P a X b f x dx    . Moreover ( ) ( ) 0
a

X

a

P X a f x dx   , 

therefore ( ) ( )P a X b P a X b      (see Appendix 7 for the basics of integration). 

The cumulative distribution function of X is such that for each 

0

0 0( ) ( ) ( )X X

x x

F x P X x f x dx


    , 

The cdf of a random variable X is: 

0 0

0( ) ( ) ( )     or    ( )
x x

F x P X x f y dy f y


   

From cdf can determine all the relevant probability statements. 

(i) F is non-decreasing, that is, if y x  then ( ) ( )F y F x

(ii) cdfs are everywhere continuous from the right, that is, 
0

lim ( ) ( )
h

F x h F x


 

(b) cdf of a continuous random variable 

4.1 Measures of central tendency and dispersion 

4.1.1 Median 

For a continuous random variable X, with cdf F, the median is the point x, such that 

F(x)=1/2.  

4.1.2 Mode 

That value of x such that ( )f x  is maximised. 
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4.1.3 Expectations and variances 

For continuous random variables 

( ) ( )X X

x

E X xf x dx  

2 2 2 2( ) ( ) ( ) ( )X x

x

V X E X E X x f x dx    
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5. Introduction to Continuous Bivariate Distributions 

Let 
1 2, 1 2( , )X Xf x x  be the joint probability density function for the continuous random 

variables X1 and X2. This function is a valid probability density function, if,  

(i)
1 2, 1 2( , ) 0X Xf x x 

(ii)
1 2

1 2

, 1 2 2 1( , ) 1X X

x x

f x x x x   

5.1 Marginal Distributions

For the continuous random variables X1 and X2, with 
1 2, 1 2( , )X Xf x x  as the joint 

probability density function, the marginal probability of the marginal probability of X1

is: 

1 21 2 1 2 2 1 1( , ) ( , ) ( )X XP X X f x x dx f x




     

and this  removes the variable X2 out of the formula, leaving the marginal probability 

density function of X1, 1 1( )f x , a function of x1 alone. Similarly to above the marginal 

probability of X2 is: 

1 22 2 1 2 1 2 2( , ) ( , ) ( )X XP X X f x x dx f x




      . 

1 1

1

1 1 1 1( ) ( )X X

x

E X x f x dx  

1 1

1

2 2 2 2
1 1 1 1 1 1( ) ( ) ( ) ( )X x

x

V X E X E X x f x dx    

similarly for X2, 

and 

1 2 1 1 2 2 1 2 1 2cov( , ) ( ( ))( ( )) ( ) ( ) ( )X X E X E X X E X E X X E X E X    

1 2

1 2 1 1 2 2 1 1 2cov( , ) ( , ) ( ) ( )x

x x

X X x x f x x x x E X E X    
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Sample Questions 

Question 1 

For the following discrete distribution: 

x 1 3 5 8 9 

Pr(X=x) 0.1 0.4 0.3 0.15 0.05

Find (a)  E X , (b)  1E X  , (c)  3 1E X    , (d)  V X , (e)  1V X  ,  

(f)  3 1V X    . 

Question 2 

For the discrete random variable defined by the pdf. 

x -3 2 4 

Pr(X=x) 0.4 0.3 0.3 

Find 2( ) if 2( 1) 3( 1) 5E Y Y X X    

Question 3 

Consider the following bivariate distribution for X1 and X2. 

2x

1 2 3 4 

1 0.10 0.05 0.00 0.10 

1x 2 0.10 0.00 0.20 0.00 

3 0.05 0.10 0.25 0.05 

(a) Write out the marginal distributions for 1X  and 2X . 

(b) Calculate  1E X  and  2E X  ,  1V X  and  2V X . 

(c) Calculate  1 2,cov X X . 

(d) Write out the distribution of  1 2| 2X X   and calculate  1 2 2|E X X  . 
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Question 4 

The random variables X1 is distributed with a mean of 50 and variance of 10, while is 

independently X2 is distributed with mean of 50 and variance 5. Find the mean and 

variance of (a) 1 2X X , (b) 1 22X X , (c) 2 10.4X X  . 

Question 5 

The random variables 1 2 3, and X X X  are a random sample from a population with a 

mean of   and variance 2 . Find the mean and variance of  

(a) 1 2 3X X X  ,  

(b) 1 2 3X X X   ,  

(c)  1 2 3 / 3X X X  . 

Question 6 

The continuous random variable X has pdf f(x), where  

0                     2

( ) (3 ) 2 3

0                    3

x

f x k x x

x




   
 

Calculate (a) the constant, k, (b) the median of X. 

Question 7 
The continuous random variables X and Y have a joint pdf, f(x,y), given by:  

2(1 3 )
( , ) 0 2, 0 1

4

x y
f x y x y


    

Find  

(a) the marginal distribution of X,  

(b) the marginal distribution of Y,  

(c) the conditional distribution of Y given X=x,  

(d) the conditional distribution of X given Y=y.  
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Sample Questions (with Answers) 

Question 1 

For the following discrete distribution: 

x 1 3 5 8 9 

Pr(X=x) 0.1 0.4 0.3 0.15 0.05

Find (a)  E X , (b)  1E X  , (c)  3 1E X    , (d)  V X , (e)  1V X  ,  

(f)  3 1V X    . 

Answer 

(a) ( ) 1(0.1) 3(0.4) 5(0.3) 8(0.15) 9(0.05) 4.45E X      

(b)  
x-1 0 2 4 7 8 

Pr[(X-1=x-1] 0.1 0.4 0.3 0.15 0.05

( 1) 0(0.1) 2(0.4) 4(0.3) 7(0.15) 8(0.05) 3.45 ( ) 1E X E X        

(c)  
3(x-1) 0 6 12 21 24 

Pr[3(X-1)=3(x-1)] 0.1 0.4 0.3 0.15 0.05

[3( 1)] 0(0.1) 6(0.4) 12(0.3) 21(0.15) 24(0.05) 10.35 3 ( ) 3E X E X        

(d) 
2 2

2 2 2 2 2 2

( ) ( ) ( )

1 (0.1) 3 (0.4) 5 (0.3) 8 (0.15) 9 (0.05) 4.45 5.05

V X E X E X 

      

(e) 2 2 2 2 2 2( 1) 0 (0.1) 2 (0.4) 4 (0.3) 7 (0.15) 8 (0.05) 3.45 5.05V X        

2 2 2 2( 1) [( 1) ] [( 1)] [ 2 1] [ ( ) 1]V X E X E X E X X E X         

2 2 2 2( 1) ( ) 2 ( ) 1 ( ) 2 ( ) 1 ( ) ( ) ( )V X E X E X E X E X E X E X V X         

(f) 2 2 2 2 2 2[3( 1)] 0 (0.1) 6 (0.4) 12 (0.3) 21 (0.15) 24 (0.05) 10.35 45.45V X        

2 2 2 2[3( 1)] [{3( 1)} ] [3( 1)] [9 18 9] [3 ( ) 3]V X E X E X E X X E X         

2 2 2 2[3( 1)] 9 ( ) 18 ( ) 9 9 ( ) 18 ( ) 9 9[ ( ) ( ) ] 9 ( )V X E X E X E X E X E X E X V X         
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Question 2 

For the discrete random variable defined by the pdf. 

x -3 2 4 

Pr(X=x) 0.4 0.3 0.3 

Find 2( ) if 2( 1) 3( 1) 5E Y Y X X    

Answer 

( ) 3(0.4) 2(0.3) 4(0.3) 0.6E X     

y 15 0 22 

Pr(Y=y) 0.4 0.3 0.3 

( ) 15(0.4) 0(0.3) 22(0.3) 12.6E Y    

2 2( ) 2 ( ) 4 ( ) 2 3 ( ) 3 5 2 ( ) ( ) 6E Y E X E X E X E X E X        

2( ) 2 ( ) ( ) 6 19.2 0.6 6 12.6E Y E X E X      
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Question 3 

Consider the following bivariate distribution for X1 and X2. 

2x

1 2 3 4
1 0.10 0.05 0.00 0.10

1x 2 0.10 0.00 0.20 0.00 

3 0.05 0.10 0.25 0.05
(a) Write out the marginal distributions for 1X  and 2X . 

(b) Calculate  1E X  and  2E X  ,  1V X  and  2V X . 

(c) Calculate  1 2,cov X X . 

(d) Write out the distribution of  1 2| 2X X   and calculate  1 2 2|E X X  . 

Answer 

(a)  

1x 1 2 3 

1 1( )P X x 0.25 0.30 0.45 

2x 1 2 3 4 

2 2( )P X x 0.25 0.15 0.45 0.15 

(b) 1( ) 1(0.25) 2(0.3) 3(0.45) 2.2E X    

2( ) 1(0.25) 2(0.15) 3(0.45) 4(0.15) 2.5E X     

2 2 2 2 2 2
1 1 1( ) ( ) ( ) 1 (0.25) 2 (0.3) 3 (0.45) (2.2) 0.66V X E X E X      

2 2 2 2 2 2 2
2 2 2( ) ( ) ( ) 1 (0.25) 2 (0.15) 3 (0.45) 4 (0.15) (2.5) 1.05V X E X E X       

(c) 1 2 1 2 2 2cov( , ) ( ) ( ) ( )X X E X X E X E X 

1 2cov( , ) 1(1)(0.1) 1(2)(0.05) 1(3)(0.0) 1(4)(0.1)

2(1)(0.1) 2(2)(0.0) 2(3)(0.2) 2(4)(0.0) 3(1)(0.05) 3(2)(0.1)

3(3)(0.25) 3(4)(0.05) (2.2)(2.5) 5.6 5.5 0.1

x x    

     

     

(d)  

1 2| 2x X  1 2 3 

1 1 2( | 2)P X x X  0.05/0.15 0.00 0.1/0.15 

1 2| 2x X  1 2 3 

1 1 2( | 2)P X x X  0.3333 0.00 0.6666 

(e) 1 2( | 2) 1(0.3333) 2(0.0) 3(0.66666) 2.3333E X X     
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Question 4 

The random variables X1 is distributed with a mean of 50 and variance of 10, while is 

independently X2 is distributed with mean of 50 and variance 5. Find the mean and 

variance of (a) 1 2X X , (b) 1 22X X , (c) 2 10.4X X  . 

Answer 

(a) X1 and X2 are assumed to be independent. 

1 2 1 2( ) ( ) ( ) 50 50 100E X X E X E X     

1 2 1 2 1 2( ) ( ) ( ) 2cov( , ) 10 5 15V X X V X V X X X      

 (b) 1 2 1 2( 2 ) ( ) 2 ( ) 50 2(50) 50E X X E X E X      

1 2 1 2 1 2 1 2 1 2( 2 ) ( ) ( 2 ) 2cov( , 2 ) ( ) 4 ( ) 4cov( , )V X X V X V X X X V X V X X X        

1 2( 2 ) 10 4(5) 30V X X   

 (c) 2 1 2 2( 0.4 ) ( ) 0.4 ( ) 50 0.4(50) 30E X X E X E X     

2 1 2 1 2 1 2 1 1 2( 0.4 ) ( ) ( 0.4 ) 2cov( , 0.4 ) ( ) 0.16 ( ) 0.8cov( , )V X X V X V X X X V X V X X X        

2 1( 0.4 ) 5 0.16(10) 6.6V X X   
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Question 5 

The random variables X1, X2 and X3 are a random sample from a population with a 

mean of   and variance 2 . Find the mean and variance of  

(a) 1 2 3X X X  ,  

(b) 1 2 3X X X   ,  

(c)  1 2 3 / 3X X X  .  

Answer 

(a) Assuming independence 

1 2 3 1 2 3( ) ( ) ( ) ( ) 3E X X X E X E X E X            

1 2 3 1 2 3 1 2 1 3 2 3( ) ( ) ( ) ( ) 2cov( , ) 2cov( , ) 2cov( , )V X X X V X V X V X X X X X X X       

2 2 2 2
1 2 3( ) 3V X X X         

 (b) 1 2 3 1 2 3( ) ( ) ( ) ( )E X X X E X E X E X            

1 2 3 1 2 3 1 2 1 3 2 3( ) ( ) ( ) ( ) 2cov( , ) 2cov( , ) 2cov( , )V X X X V X V X V X X X X X X X       

2 2 2 2
1 2 3( ) 3V X X X         

 (c) 1 2 3 1 2 3[( ) / 3] 1/ 3[ ( ) ( ) ( )] 1/ 3[ ]E X X X E X E X E X            

1 2 3 1 2 3[( ) / 3] 1/ 9[ ( ) ( ) ( )]V X X X V X V X V X    

2 2 2 2
1 2 3[( ) / 3] 1/ 9[ ] / 3V X X X         
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Question 6 

The continuous random variable X has pdf pf(x), where  

0                     2

( ) (3 ) 2 3

0                    3

x

f x k x x

x




   
 

Calculate (a) the constant, k, (b) the median of X. 

Answer 

(a)  
3

2 3
2

2

(3 ) 1 [3 / 2] 1 4.5 4 1 2k x dx k x x k k         

(b)  2 2
2

2

2(3 ) 0.5 2[3 / 2] 0.5 2 3 / 2 4 0.5
d

dx dx x x d d        

2 6 8.5 0 2.29d d d    
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Question 7 

The continuous random variables X and Y have a joint pdf, f(x,y), given by:  

2(1 3 )
( , ) 0 2, 0 1

4

x y
f x y x y


    

Find  

(a) the marginal distribution of X,  

(b) the marginal distribution of Y,  

(c) the conditional distribution of Y given X=x,  

(d) the conditional distribution of X given Y=y.  

Answer 

(a)
1 2

3 1
0

0

(1 3 )
( ) [ 3 / 3] 0 2

4 4 2

x y x x
f x dy y y x


     

(b) 
2 2 2 2

2 2
0

0

(1 3 ) (1 3 ) (1 3 )
( ) [ / 2] 0 1

4 4 2

x y y y
f y dx x y

  
    

(c) 

2

2
(1 3 )

(1 3 )4( ,| ) ( ) 0 1
2

2

x y
y

f y X x f y y
x




     

(d) 

2

2

(1 3 )

4( ,| ) ( ) 0 2
(1 3 ) 2

2

x y
x

f y X x f x x
y



     


Note: X and Y are independent
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Rules of summation 

1. 1 2 3
1

( )
n

i n
i

X X X X X


     …

2. 
1

( )
n

i

c c c c c nc


      …

3. 1 2 3 1 2 3
1 1

( ) ( )
n n

i n n i
i i

cX cX cX cX cX c X X X X c X
 

           … …

4. 
1 1 2 2 3 3

1

1 2 3 1 2 3
1 1

( ) ( ) ( ) ( ) ( )

( ) ( )

n

i i n n
i

n n

n n i i
i i

X Y X Y X Y X Y X Y

X X X X Y Y Y Y X Y



 

        

          



 

…

… …

5. 

2 2 2 2 2
1 1 2 2 3 3

1

2 2 2 2 2 2
1 1 1 1 2 2 2 2

2 2

1

( ) ( ) ( ) ( ) ( )

( 2 ) ( 2 ) ( 2 )

( 2 )

n

i i n n
i

n n n n

n

i i i i
i

X Y X Y X Y X Y X Y

x Y X Y X Y X Y X Y X Y

X Y X Y





        

        

  





…

…

6.

2 2 2 2 2 2 2 2 2

1 1 1

2 2

1

( ) ( 2 ) ( 2 )

( )

n n n

i i i i i i i i i i
i i i

n

i i
i

cX cY c X c Y c X Y c X Y X Y

c X Y

  



      

 

  


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Rules on expectations variances 
Define  

1

( )
k

i i
i

E X p x


 as the expected value of the random variable X and 

2 2 2 2

1

( ) [ ( )] ( ) ( ) ( ( ))
k

i i
i

V X E X E X E X E X p x E X


      . 

1.
1 1

( ) ( ) ( )
k k

i i i i
i i

E a X p a x a p x a E X
 

       

2.
1 1

( ) ( ) ( )
k k

i i i i
i i

E aX p ax a p x aE X
 

   

3.

   

 

2 2

1 1

2

1

( ) ( ) ( ) ( ) ( )

( ) ( )

k k

i i i i
i i

k

i i
i

V a X p a x E a X p a x a E X

p x E X V X

 



        

  

 



4.

   

 

2 2

1 1

22 2

1

( ) ( ) ( )

( ) ( )

k k

i i i i
i i

k

i i
i

V aX p ax E aX p ax aE X

a p x E X a V X

 



   

  

 



Suppose ( )E X   and 2( )V X   and define 
X

Z





 , then 

  
1 1

( ) ( ) 0
X

E Z E E X E X



 

  

  
           

(using rules (2) and (1)) 


2

2 2

1 1
( ) ( ) ( ) 1

X
V Z V V X V X






  

 
      

(using rules (4) and (3)) therefore E(Z)=0 and V(Z)=1, this is a standardised variable. 

While these rules have been derived for a discrete distribution on the random variable, 

X, similar arguments would hold if X was a continuous random variable (although the 

summation sign would be replaced by an integral). 
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Figure 1a: cov(x,y)>0

� > �̅, � < ��� < �̅, � < ��

� < �̅, � > �� � > �̅, � > ��

��

�̅

Figure 1b: cov(x,y)<0

� > �̅, � < ��� < �̅, � < ��

� < �̅, � > �� � > �̅, � > ��

��

�̅
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Figure 1c: cov(x,y)=0

� > �̅, � < ��� < �̅, � < ��

� < �̅, � > �� � > �̅, � > ��

��

�̅

Figure 1d: cov(x,y)=0

� > �̅, � < ��� < �̅, � < ��

� < �̅, � > �� � > �̅, � > ��

��

�̅
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More rules on expectations variances 

Define the probability density function for the random variables X, Y as ( , )p X Y , 

such that, ( , ) 1
x y

p x y  . Define the marginal density of X as p(x) and the marginal 

probability density for Y as p(y), such that ( ) ( , )
y

p X p x y  and ( ) ( , )
x

p Y p x y . 

Then define ( ) ( )
y

E X xp y , ( ) ( )
y

E Y yp y , 2( ) ( ( )) ( )
x

V X x E X p x  , 

2( ) ( ( )) ( )
y

V Y y E Y p y   and cov( , ) ( ( ))( ( )) ( , )
x y

X Y x E X y E Y p x y   . 

Then we can show that 

1. ( ) ( ) ( , ) ( , ) ( , )
x y x y x y

E X Y x y p x y xp x y yp x y      

( )( )

( , ) ( , ) ( ) ( ) ( ) ( )
x y y x x y

p yp x

x p x y y p x y xp x yp y E X E Y         


2. cov( , ) (( ) ( ))( ( )) ( , )
x y

a X Y a x E a X y E Y p x y     

( ( ))( ( )) ( , ) cov( , )
x y

a x a E X y E Y p x y X Y      . 

3. cov( , ) ( ( ))( ( )) ( , )
x y

aX Y ax E aX y E Y p x y  

cov( , ) ( ( ))( ( )) ( , )
x y

aX Y ax aE X y E Y p x y  

cov( , ) ( ( ))( ( )) ( , ) cov( , )
x y

aX Y a x E X y E Y p x y a X Y   

4.    
2 2

( ) ( ) ( ) ( , ) ( ( )) ( ( )) ( , )
x y x y

V X Y x y E X Y p x y x E X y E Y p x y         

 
2

( ( )) ( ( )) ( , )
x y

x E X y E Y p x y  

2 2( ( )) ( , ) ( ( )) ( , ) 2 ( ( )( ( )) ( , )
x y x y x y

x E X p x y y E Y p x y x E X y E Y p x y       

2 2

( ) ( )

( ( )) ( , ) ( ( )) ( , ) 2cov( , )
x y x y

p x p y

x E X p x y y E Y p x y X Y       
 

( ) ( ) 2cov( , )V X V Y X Y  

5. ( ) ( ) ( )E X Y E X E Y  

6. ( ) ( ) ( ) 2cov( , )V X Y V X V Y X Y   

7. ( ) ( ) ( )E aX bY aE X bE Y  
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8. 2 2( ) ( ) ( ) 2 cov( , )V aX bY a V X b V Y ab X Y   

9. ( ) ( ) ( ) ( )E X Y Z E X E Y E Z    

10. ( ) ( ) ( ) ( ) 2cov( , ) 2cov( , ) 2cov( , )V X Y Z V X V Y V Z X Y X Z Y Z       

11. ( ) ( ) ( ) ( )E X Y Z E X E Y E Z    

12. ( ) ( ) ( ) ( ) 2cov( , ) 2cov( , ) 2cov( , )V X Y Z V X V Y V Z X Y X Z Y Z       

Suppose ( )iE X  , 2( )iV X   for all i and cov( , )i j i j
X X 


  for all i and j, i j . 

Now define 1 1 2( )

n

i
i n

X
X X X

X
n n

   
 
 …

   

1 2
1 2

1

( 1
( ) ( )

1 1
( ) ( )

n
n

n

X X X
E X E E X X X

n n

E X E X
n n

   

   
     

 

       

…
…

… …

1 2
1 22

1 2 1 3 1

2 3 2

1

( ) 1
( ) [ ( ) ( ) ( )

2cov( , ) 2cov( , ) 2cov( , )

2cov( , ) 2cov( , )

2cov( , )]

n
n

n

n

n n

X X X
V X V V X V X V X

n n

X X X X X X

X X X X

X X

   
     

 

   

  

 



…
…

…

…

…

…

assuming 1, , nX X…  are a random sample (with or without replacement, providing n

is sufficiently large) then ,cov( , ) 0 for jX X i j   and 

2
2 2 2

2

1
( ) [ ]V X

n n


      …  (therefore the variance of the sample mean falls 

as the number of points in the sample increases – this is the effect of smoothing see 

Appendix 6: Figures 1a-1d). 
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Figure 2: Effects of averaging of the standard deviation

n=1

n=2

n=4

n=8
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0.5

1

1.5
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Figure 2a: Dispersion with an average of n=1

n=1
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-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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Figure 2b: Dispersion with an average of n=2

n=2

-2

-1.5
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-0.5

0

0.5

1

1.5

2
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Figure 2c: Dispersion with an average of n=4

n=4
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-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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Figure 2d: Dispersion with an average of n=8

n=8
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Basic Integration 

Integration can be approximated as a summation of the function over small changes in x, that is, 

1
1

( ) ( )( )i i i
ix

f x x f x x x 


   , the approximation is best as the changes in x become infinitesimal 

(very small) – see figures overleaf – where we can see that as the changes in x, x , become smaller so 
the approximation of the areas of the rectangles become a better approximation to the area under the 
continuous line.  

Some basic rules of integration:  

1. 

1 1 1

for all 1
1 1 1

dd n n n
n

c c

x d c
x x n

n n n

  

     
  

2. 
1 ln( ) ln( ) ln( )

d
d

c
c

x x x d c    

3. 

d
dx x d c

c
c

e x e e e   

Remember integration is simply the inverse function of differentiation, so  

1 1
n n

n n nx nx
nx nx x x

x n
 

    
 
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Integration of a distribution
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Integration of a distribution
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STATISTICAL TECHNIQUES B 

Special Distributions 

1. Bernoulli distribution 

An experiment leading to only two outcomes – a ‘success’ and a ‘failure’ – called a 

Bernoulli trial x=0 (=failure) with probability, 1-p, and  1 (=success) with probability, 

p. 

x 0 1
P(X=x) 1-p p
This is a valid pdf as: 

0

( ) (1 ) 1X
x

p x p p


   

1.1 Mean 

( ) 0(1 ) 1E X p p p   

2 2 2( ) 0 (1 ) 1E X p p p   

1.2 Variance 

2 2 2( ) ( ) ( ) (1 )V X E X E X p p p p     
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2. Binomial distribution 

This consists of having n independent Bernoulli trials, where we define X=number of 

`successes’ in n trials and X=0,1,2,…n. 

We can then calculate the probability of a specific outcome such as: 

1 2 1 2( ) (1 )x n x
x x x nP S S S F F F p p 

       … …

However, as there are 
!

( )! !
n x

n
C

n x x



 in which we can get x successes in n trials, 

given that the order is unimportant, we have: 

( ) (1 )x n x
X n xp x C p p  

This is a valid probability density function as: 

0 0

( ) (1 ) ( (1 )) 1
n n

x n x n
X n x

x x

p x C p p p p

 

      

For, n=3 

0 3 2 2 3 0(0) (1) (2) (3) (1 ) 3 (1 ) 3 (1 ) (1 )X X X Xp p p p p p p p p p p p          

2.1 Mean 

1
1 1

0 0 1

( ) ( ) (1 ) (1 )
n n n

x n x x n x
X n x n x

x x x

E X xp x x C p p np C p p  
 

  

      

defining m=n-1 and y=x-1 then, 

0

1

( ) (1 )
m

y m y
m y

y

E X np C p p np



  


2.2 Variance 

2 2( ) ( ) [ ( )]V X E X E X 

2( ) [ ( 1)] ( )E X E X X E X  

[ ( 1)]E X X  

2 2
2 2

0 0 2

( 1) ( ) ( 1) (1 ) ( 1) (1 )
n n n

x n x x n x
X n x n x

x x x

x x p x x x C p p n n p C p p  
 

  

        

2 2

0

( 1) (1 ) ( 1)
m

y m y
m y

y

n n p C p p n n p



    

2 2( ) ( 1)E X n n p np  

 2 2 2( ) ( 1) 1 (1 )V X n n p np n p np np p np np p         
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2.3 Probability values (see Appendix 1: Table 7) 

( ) ( ) ( 1) ( )P a X b P a P a P b      …

1 1
1( ) (1 ) (1 ) (1 )a n a a n a b n b

n a n a n bP a X b C p p C p p C p p    
        …

(see Appendix 3 for a binomial expansion) 
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3. Poisson 

We are interested in the number of occurrences of an event during a period of time, 

where the period of time, T, is divided into n unit time intervals (and n is very large). 

The probability of an event in an interval of time is p (which is small) and we assume 

that the events are independent occurrences. 

mean rate of occurrence 

( ) 0,1, 2
!

x

X

e
p x x

x



  …

This is a valid probability density function as: 

0 0 0

( ) 1
! !

x x

X
x x x

e

e
p x e

x x



 



  

    

as, 

2 3 4

1
2! 3! 4!

x x x x
e x     …

3.1 Mean 

2 3 4

0 0

1 2 3 4
( ) ( )

! 1! 2! 3! 4!

x

X
x x

e
E X xp x x e

x


    



 

 
       

 
  …



2 3

0

1
1! 2! 3! !

y

y

e

e e
y



    
   



 
       

 
…

3.2 Variance 

2 2( ) ( ) [ ( )]V X E X E X 

2( ) [ ( 1)] ( )E X E X X E X  

2 3 4

0 0

2 3(2) 4(3)
( ( 1)) ( 1) ( ) ( 1)

! 2! 3! 4!

x

X
x x

e
E X X x x p x x x e

x


   



 

 
         

 
  …

2 3
2 21

1! 2! 3!
e    

   
      

 
…

2 2( )E X   

2 2 2 2( ) ( ) [ ( )]V X E X E X         

3.3 Probability values (see Appendix 1: Table 8) 

( ) ( ) ( 1) ( )P a X b P a P a P b      …
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1

( )
! ( 1)! !

a a b

P a X b e
a a b

   
  

      
…

NOTE: 

The Poisson distribution can be used as an approximation to the Binomial distribution 

having the same mean. If a binomial distribution has a large, n (n>50) and a small p

(p<0.1), then the probabilities of 0, 1, 2,  successes given by a Poison distribution 

with parameter np   approximates well to the true probabilities given by the 

defined binomial distribution. 
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4. Uniform 

Define the probability density function, such that all points in the interval (a,b) have 

an equal likelihood of occurring, 

1

( )

0 elsewhere

a x b
f x b a


 

 


This is a valid probability density function as: 


1 1 1

( ) 1 1
b b b

b

a
a a a

f x dx dx dx x
b a b a b a

   
    

4.1 Mean 

2 2 21 1 1
( ) ( ) / 2 / 2 / 2

( )( )

2( ) 2

b b
b

a
a a

E X xf x dx x dx x b a
b a b a b a

b a b a b a

b a

          

  
 



 

4.2 Variance 

2 2( ) ( ) ( )V X E X E X 

2 2 2 3 3 3

3 3 2 2 2 2

1 1 1
( ) ( ) / 3 / 3 / 3

( ) ( )( ) ( ) ( )

3( ) 3( ) 3

b b
b

a
a a

E X x f x dx x dx x b a
b a b a b a

b a b a b a ab b a b a ab

b a b a

          

      
  

 

 

2 2 2
2 2 ( ) ( )

( ) ( ) [ ( )]
3 4

b a ab b a
V X E X E X

  
   

2 2 2 2 2 2 24( ) 4 3( 2 ) 2 ( )
( )

12 12 12

b a ab b a ab b a ab b a
V X

       
  

4.3 Probability values 

1
( )

dd

cc

x d c
P c X d dx

b a b a b a


    

  
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5. Normal Distribution

Define the probability density function 

2
2 1/2

2

( )
( ) (2 ) exp ,

2

x
f x x





   

     
 

This is a valid probability density function as: 

2
2 1/2

2

( )
(2 ) exp 1

2

x
dx











  
 

 


although, showing this is non-trivial. 

5.1 Mean 

( )E X 

although, showing this is non-trivial. 

5.2 Variance 

2( )V X 

although, showing this is non-trivial. 

5.3 Probability values 

2
2 1/2

2

( )
( ) (2 ) exp

2

b

a

x
P a X b dx





   

    
 



and this is non-trivial. However, statistical tables are available for the standard normal 

distribution, Z, where ( ) 0E Z   and ( ) 1V Z  , such that: 

2
1/2( ) (2 ) exp

2

c
z

P Z c dz 



 
   

 


As we know that 

( )
a X b

P a X b P
  

  

   
     

 

( )
a b

P a X b P Z
 

 

  
      

 

and this can be calculated from the standard normal statistical tables as: 

( )
b a

P a X b P Z P Z
 

 

    
        

   

(see Figure 1 and Appendix 1: Table 1).  

NOTE: As the area under the pdf is unity, ( ) 1 ( )P Z c P Z c    . In addition due to 

symmetry we have that ( ) ( ) 1 ( )  where 0P Z c P Z c P Z c c        . 
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NOTE: If X1 and X2 are both normally distributed then any linear combination of 

them is also normally distributed. Suppose we take a random sample from some 

population such that 2~ ( , )iX N    then 2 2

1 1 1

~ ( , )
k k k

i i i i
i i i

a X N a a 
  
   . 

Figure 1 

Calculating the probabilty Pr[(a-m)/s>z>(b-m)/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f(
z) Pr(z>(a-m)/s)

Pr(z>(b-m)/s)

(a-m)/s (b-m)/s
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6. Chi-squared distribution 

Define the pdf as: 

2
/2 1 /21 1

( )    0
( / 2) 2

xf x x e x






  

  
  

This is a valid probability density function and is denoted as 2
 , where   are the 

degrees of freedom.  

NOTE: 2 2
1(0,1)N   and if 2

1~iW   and these are independent, then 2

1

n

i n
i

W 




6.1 Mean 

( )E X 

6.2 Variance 

2 2( ) ( ) ( ) 2V X E X E X   

6.3 Probability values (see Appendix 1: Table 3) 

These are tabulated in the statistical tables. 
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7. F-distribution 

Define the pdf as: 

/2 ( -2)/2

( )/2

[( ) / 2]
( )    0

( / 2) ( / 2) [1 ( / ) ]

m m

m n

m n m x
f x x

m n n m n x 

   
  
   

This is a valid probability density function and is denoted as an F-distribution with 

degrees of freedom m and n.  

NOTE:  An F distribution is formed as the ratio of 2 independent chi-squared 

distributions, 
2

,2

/
~

/
m

m n

n

m
F

n




. As n   so 

2
2

, 2

/
~ /

/
m

m n m

m
F m









. 

7.1 Mean (for a Fm,n) 

( )        for 2
2

n
E X n

n
 



7.2 Variance (for a Fm,n) 

2

2

2 ( 2)
( )      for 4

( 2) ( 4)

n m n
V X n

m n n

 
 

 

7.3 Probability values (see Appendix 1: Table 5) 

These are tabulated in the statistical tables. 
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8. Student t-distribution 

Define the pdf as: 

2 ( 1)/2

[( 1) / 2] 1 1
( )

( / 2) (1 / ) n

n
f x

n x nn


 


 

This is a valid probability density function and is denoted as a t-distribution with 

degrees of freedom n.  

NOTE:  A t-distribution is formed as the ratio of a N(0,1) to a chi-square distribution, 

2

(0,1)
~

/
n

n

N
t

n
. As n   so ~ (0,1)nt N . 

8.1 Mean (for a tn) 

( ) 0E X 

8.2 Variance (for a tn) 

( )      for 2
( 2)

n
V X n

n
 



8.3 Probability values (see Appendix 1: Table 2) 

These are tabulated in the statistical tables. 
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Table 7 (from Statistical tables): Binomial Distribution (cont'd) 

Pr( )X k

n=8  n=9 
p k=0 1 2 3 4 5 6 7 k=0 1 2 3 4 5 

0.01 0.923 0.997 1.000  0.914 0.997 1.000  
0.02 0.851 0.990 1.000  0.834 0.987 0.999 1.000  
0.03 0.784 0.978 0.999 1.000  0.760 0.972 0.998 1.000  
0.04 0.721 0.962 0.997 1.000  0.693 0.952 0.996 1.000  
0.05 0.663 0.943 0.994 1.000  0.630 0.929 0.992 0.999 1.000  
0.06 0.610 0.921 0.990 0.999 1.000  0.573 0.902 0.986 0.999 1.000  
0.07 0.560 0.897 0.985 0.999 1.000  0.520 0.873 0.979 0.998 1.000  
0.08 0.513 0.870 0.979 0.998 1.000  0.472 0.842 0.970 0.996 1.000  
0.09 0.470 0.842 0.971 0.997 1.000  0.428 0.809 0.960 0.994 0.999 1.000 
0.10 0.430 0.813 0.962 0.995 1.000  0.387 0.775 0.947 0.992 0.999 1.000 
0.11 0.394 0.783 0.951 0.993 0.999 1.000  0.350 0.740 0.933 0.988 0.999 1.000 
0.12 0.360 0.752 0.939 0.990 0.999 1.000  0.316 0.705 0.917 0.984 0.998 1.000 
0.13 0.328 0.721 0.926 0.987 0.999 1.000  0.286 0.670 0.899 0.979 0.997 1.000 
0.14 0.299 0.689 0.911 0.983 0.998 1.000  0.257 0.634 0.880 0.973 0.996 1.000 
0.15 0.272 0.657 0.895 0.979 0.997 1.000  0.232 0.599 0.859 0.966 0.994 0.999 
0.16 0.248 0.626 0.877 0.973 0.996 1.000  0.208 0.565 0.837 0.958 0.993 0.999 
0.17 0.225 0.594 0.859 0.967 0.995 1.000  0.187 0.532 0.814 0.949 0.990 0.999 
0.18 0.204 0.563 0.839 0.960 0.993 0.999 1.000  0.168 0.499 0.790 0.938 0.988 0.998 
0.19 0.185 0.533 0.819 0.952 0.992 0.999 1.000  0.150 0.467 0.764 0.927 0.984 0.998 
0.20 0.168 0.503 0.797 0.944 0.990 0.999 1.000  0.134 0.436 0.738 0.914 0.980 0.997 
0.21 0.152 0.474 0.775 0.934 0.987 0.998 1.000  0.120 0.407 0.711 0.901 0.976 0.996 
0.22 0.137 0.446 0.751 0.924 0.984 0.998 1.000  0.107 0.378 0.684 0.886 0.971 0.995 
0.23 0.124 0.419 0.728 0.912 0.981 0.997 1.000  0.095 0.351 0.657 0.870 0.965 0.994 
0.24 0.111 0.392 0.703 0.900 0.977 0.997 1.000  0.085 0.325 0.629 0.852 0.958 0.992 
0.25 0.100 0.367 0.679 0.886 0.973 0.996 1.000  0.075 0.300 0.601 0.834 0.951 0.990 
0.26 0.090 0.343 0.653 0.872 0.968 0.995 1.000  0.067 0.277 0.573 0.815 0.943 0.988 
0.27 0.081 0.319 0.628 0.857 0.962 0.994 0.999 1.000 0.059 0.255 0.545 0.795 0.934 0.985 
0.28 0.072 0.297 0.603 0.841 0.956 0.992 0.999 1.000 0.052 0.234 0.517 0.774 0.924 0.982 
0.29 0.065 0.276 0.577 0.824 0.949 0.991 0.999 1.000 0.046 0.214 0.490 0.752 0.913 0.979 
0.30 0.058 0.255 0.552 0.806 0.942 0.989 0.999 1.000 0.040 0.196 0.463 0.730 0.901 0.975 
0.31 0.051 0.236 0.526 0.787 0.934 0.987 0.998 1.000 0.035 0.179 0.436 0.706 0.888 0.970 
0.32 0.046 0.218 0.501 0.768 0.925 0.984 0.998 1.000 0.031 0.163 0.411 0.683 0.875 0.965 
0.33 0.041 0.201 0.476 0.748 0.915 0.981 0.998 1.000 0.027 0.148 0.385 0.658 0.860 0.960 
0.34 0.036 0.184 0.452 0.728 0.905 0.978 0.997 1.000 0.024 0.134 0.361 0.634 0.845 0.953 
0.35 0.032 0.169 0.428 0.706 0.894 0.975 0.996 1.000 0.021 0.121 0.337 0.609 0.828 0.946 
0.36 0.028 0.155 0.404 0.685 0.882 0.971 0.996 1.000 0.018 0.109 0.314 0.584 0.811 0.939 
0.37 0.025 0.141 0.381 0.663 0.869 0.966 0.995 1.000 0.016 0.098 0.292 0.558 0.793 0.930 
0.38 0.022 0.129 0.359 0.640 0.856 0.961 0.994 1.000 0.014 0.088 0.271 0.533 0.774 0.921 
0.39 0.019 0.117 0.337 0.617 0.841 0.956 0.993 0.999 0.012 0.079 0.251 0.508 0.754 0.911 
0.40 0.017 0.106 0.315 0.594 0.826 0.950 0.991 0.999 0.010 0.071 0.232 0.483 0.733 0.901 
0.41 0.015 0.096 0.295 0.571 0.810 0.944 0.990 0.999 0.009 0.063 0.213 0.458 0.712 0.889 
0.42 0.013 0.087 0.275 0.547 0.794 0.937 0.988 0.999 0.007 0.056 0.196 0.433 0.690 0.877 
0.43 0.011 0.078 0.256 0.524 0.776 0.929 0.986 0.999 0.006 0.049 0.180 0.409 0.668 0.863 
0.44 0.010 0.070 0.238 0.500 0.758 0.921 0.984 0.999 0.005 0.044 0.164 0.385 0.645 0.849 
0.45 0.008 0.063 0.220 0.477 0.740 0.912 0.982 0.998 0.005 0.039 0.150 0.361 0.621 0.834 
0.46 0.007 0.057 0.203 0.454 0.720 0.902 0.979 0.998 0.004 0.034 0.136 0.339 0.598 0.818 
0.47 0.006 0.050 0.187 0.431 0.700 0.891 0.976 0.998 0.003 0.030 0.123 0.316 0.573 0.801 
0.48 0.005 0.045 0.172 0.408 0.680 0.880 0.973 0.997 0.003 0.026 0.111 0.295 0.549 0.784 
0.49 0.005 0.040 0.158 0.385 0.658 0.868 0.969 0.997 0.002 0.023 0.100 0.274 0.525 0.765 
0.50 0.004 0.035 0.145 0.363 0.637 0.855 0.965 0.996 0.002 0.020 0.090 0.254 0.500 0.746 
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Table 8 (from Statistical Tables): Poisson Distribution 
Pr( )X k

 k=0 1 2 3 4 5 6 7 8 9 10 

0.1 0.905 0.995 1.000 1.000  
0.2 0.819 0.982 0.999 1.000  
0.3 0.741 0.963 0.996 1.000  
0.4 0.670 0.938 0.992 0.999 1.000  
0.5 0.607 0.910 0.986 0.998 1.000  
0.6 0.549 0.878 0.977 0.997 1.000  
0.7 0.497 0.844 0.966 0.994 0.999 1.000  
0.8 0.449 0.809 0.953 0.991 0.999 1.000  
0.9 0.407 0.772 0.937 0.987 0.998 1.000  
1.0 0.368 0.736 0.920 0.981 0.996 0.999 1.000  
1.1 0.333 0.699 0.900 0.974 0.995 0.999 1.000  
1.2 0.301 0.663 0.879 0.966 0.992 0.998 1.000  
1.3 0.273 0.627 0.857 0.957 0.989 0.998 1.000  
1.4 0.247 0.592 0.833 0.946 0.986 0.997 0.999 1.000  
1.5 0.223 0.558 0.809 0.934 0.981 0.996 0.999 1.000  
1.6 0.202 0.525 0.783 0.921 0.976 0.994 0.999 1.000  
1.7 0.183 0.493 0.757 0.907 0.970 0.992 0.998 1.000  
1.8 0.165 0.463 0.731 0.891 0.964 0.990 0.997 0.999 1.000  
1.9 0.150 0.434 0.704 0.875 0.956 0.987 0.997 0.999 1.000  
2.0 0.135 0.406 0.677 0.857 0.947 0.983 0.995 0.999 1.000  
2.1 0.122 0.380 0.650 0.839 0.938 0.980 0.994 0.999 1.000  
2.2 0.111 0.355 0.623 0.819 0.928 0.975 0.993 0.998 1.000  
2.3 0.100 0.331 0.596 0.799 0.916 0.970 0.991 0.997 0.999 1.000  
2.4 0.091 0.308 0.570 0.779 0.904 0.964 0.988 0.997 0.999 1.000  
2.5 0.082 0.287 0.544 0.758 0.891 0.958 0.986 0.996 0.999 1.000  
2.6 0.074 0.267 0.518 0.736 0.877 0.951 0.983 0.995 0.999 1.000  
2.7 0.067 0.249 0.494 0.714 0.863 0.943 0.979 0.993 0.998 0.999 1.000 
2.8 0.061 0.231 0.469 0.692 0.848 0.935 0.976 0.992 0.998 0.999 1.000 
2.9 0.055 0.215 0.446 0.670 0.832 0.926 0.971 0.990 0.997 0.999 1.000 
3.0 0.050 0.199 0.423 0.647 0.815 0.916 0.966 0.988 0.996 0.999 1.000 
3.1 0.045 0.185 0.401 0.625 0.798 0.906 0.961 0.986 0.995 0.999 1.000 
3.2 0.041 0.171 0.380 0.603 0.781 0.895 0.955 0.983 0.994 0.998 1.000 
3.3 0.037 0.159 0.359 0.580 0.763 0.883 0.949 0.980 0.993 0.998 0.999 
3.4 0.033 0.147 0.340 0.558 0.744 0.871 0.942 0.977 0.992 0.997 0.999 
3.5 0.030 0.136 0.321 0.537 0.725 0.858 0.935 0.973 0.990 0.997 0.999 
3.6 0.027 0.126 0.303 0.515 0.706 0.844 0.927 0.969 0.988 0.996 0.999 
3.7 0.025 0.116 0.285 0.494 0.687 0.830 0.918 0.965 0.986 0.995 0.998 
3.8 0.022 0.107 0.269 0.473 0.668 0.816 0.909 0.960 0.984 0.994 0.998 
3.9 0.020 0.099 0.253 0.453 0.648 0.801 0.899 0.955 0.981 0.993 0.998 
4.0 0.018 0.092 0.238 0.433 0.629 0.785 0.889 0.949 0.979 0.992 0.997 
4.1 0.017 0.085 0.224 0.414 0.609 0.769 0.879 0.943 0.976 0.990 0.997 
4.2 0.015 0.078 0.210 0.395 0.590 0.753 0.867 0.936 0.972 0.989 0.996 
4.3 0.014 0.072 0.197 0.377 0.570 0.737 0.856 0.929 0.968 0.987 0.995 
4.4 0.012 0.066 0.185 0.359 0.551 0.720 0.844 0.921 0.964 0.985 0.994 
4.5 0.011 0.061 0.174 0.342 0.532 0.703 0.831 0.913 0.960 0.983 0.993 
4.6 0.010 0.056 0.163 0.326 0.513 0.686 0.818 0.905 0.955 0.980 0.992 
4.7 0.009 0.052 0.152 0.310 0.495 0.668 0.805 0.896 0.950 0.978 0.991 
4.8 0.008 0.048 0.143 0.294 0.476 0.651 0.791 0.887 0.944 0.975 0.990 
4.9 0.007 0.044 0.133 0.279 0.458 0.634 0.777 0.877 0.938 0.972 0.988 
5.0 0.007 0.040 0.125 0.265 0.440 0.616 0.762 0.867 0.932 0.968 0.986 
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Table 1 (from Statistical Tables): Normal Distribution 

z

F(z)

Pr( ) ( )Z z F z 

z F(z) z F(z) z F(z) z F(z) z F(z) z F(z) z F(z) 

0.00 0.500 0.50 0.691 1.00 0.841 1.50 0.933 2.00 0.977 2.50 0.994 3.00 0.999 
0.01 0.504 0.51 0.695 1.01 0.844 1.51 0.934 2.01 0.978 2.51 0.994 3.01 0.999 
0.02 0.508 0.52 0.698 1.02 0.846 1.52 0.936 2.02 0.978 2.52 0.994 3.02 0.999 
0.03 0.512 0.53 0.702 1.03 0.848 1.53 0.937 2.03 0.979 2.53 0.994 3.03 0.999 
0.04 0.516 0.54 0.705 1.04 0.851 1.54 0.938 2.04 0.979 2.54 0.994 3.04 0.999 
0.05 0.520 0.55 0.709 1.05 0.853 1.55 0.939 2.05 0.980 2.55 0.995 3.05 0.999 
0.06 0.524 0.56 0.712 1.06 0.855 1.56 0.941 2.06 0.980 2.56 0.995 3.06 0.999 
0.07 0.528 0.57 0.716 1.07 0.858 1.57 0.942 2.07 0.981 2.57 0.995 3.07 0.999 
0.08 0.532 0.58 0.719 1.08 0.860 1.58 0.943 2.08 0.981 2.58 0.995 3.08 0.999 
0.09 0.536 0.59 0.722 1.09 0.862 1.59 0.944 2.09 0.982 2.59 0.995 3.09 0.999 
0.10 0.540 0.60 0.726 1.10 0.864 1.60 0.945 2.10 0.982 2.60 0.995 3.10 0.999 
0.11 0.544 0.61 0.729 1.11 0.867 1.61 0.946 2.11 0.983 2.61 0.995 3.11 0.999 
0.12 0.548 0.62 0.732 1.12 0.869 1.62 0.947 2.12 0.983 2.62 0.996 3.12 0.999 
0.13 0.552 0.63 0.736 1.13 0.871 1.63 0.948 2.13 0.983 2.63 0.996 3.13 0.999 
0.14 0.556 0.64 0.739 1.14 0.873 1.64 0.949 2.14 0.984 2.64 0.996 3.14 0.999 
0.15 0.560 0.65 0.742 1.15 0.875 1.65 0.951 2.15 0.984 2.65 0.996 3.15 0.999 
0.16 0.564 0.66 0.745 1.16 0.877 1.66 0.952 2.16 0.985 2.66 0.996 3.16 0.999 
0.17 0.567 0.67 0.749 1.17 0.879 1.67 0.953 2.17 0.985 2.67 0.996 3.17 0.999 
0.18 0.571 0.68 0.752 1.18 0.881 1.68 0.954 2.18 0.985 2.68 0.996 3.18 0.999 
0.19 0.575 0.69 0.755 1.19 0.883 1.69 0.954 2.19 0.986 2.69 0.996 3.19 0.999 
0.20 0.579 0.70 0.758 1.20 0.885 1.70 0.955 2.20 0.986 2.70 0.997 3.20 0.999 
0.21 0.583 0.71 0.761 1.21 0.887 1.71 0.956 2.21 0.986 2.71 0.997 3.21 0.999 
0.22 0.587 0.72 0.764 1.22 0.889 1.72 0.957 2.22 0.987 2.72 0.997 3.22 0.999 
0.23 0.591 0.73 0.767 1.23 0.891 1.73 0.958 2.23 0.987 2.73 0.997 3.23 0.999 
0.24 0.595 0.74 0.770 1.24 0.893 1.74 0.959 2.24 0.987 2.74 0.997 3.24 0.999 
0.25 0.599 0.75 0.773 1.25 0.894 1.75 0.960 2.25 0.988 2.75 0.997 3.25 0.999 
0.26 0.603 0.76 0.776 1.26 0.896 1.76 0.961 2.26 0.988 2.76 0.997 3.26 0.999 
0.27 0.606 0.77 0.779 1.27 0.898 1.77 0.962 2.27 0.988 2.77 0.997 3.27 0.999 
0.28 0.610 0.78 0.782 1.28 0.900 1.78 0.962 2.28 0.989 2.78 0.997 3.28 0.999 
0.29 0.614 0.79 0.785 1.29 0.901 1.79 0.963 2.29 0.989 2.79 0.997 3.29 0.999 
0.30 0.618 0.80 0.788 1.30 0.903 1.80 0.964 2.30 0.989 2.80 0.997 3.30 1.000 
0.31 0.622 0.81 0.791 1.31 0.905 1.81 0.965 2.31 0.990 2.81 0.998 3.31 1.000 
0.32 0.626 0.82 0.794 1.32 0.907 1.82 0.966 2.32 0.990 2.82 0.998 3.32 1.000 
0.33 0.629 0.83 0.797 1.33 0.908 1.83 0.966 2.33 0.990 2.83 0.998 3.33 1.000 
0.34 0.633 0.84 0.800 1.34 0.910 1.84 0.967 2.34 0.990 2.84 0.998 3.34 1.000 
0.35 0.637 0.85 0.802 1.35 0.911 1.85 0.968 2.35 0.991 2.85 0.998 3.35 1.000 
0.36 0.641 0.86 0.805 1.36 0.913 1.86 0.969 2.36 0.991 2.86 0.998 3.36 1.000 
0.37 0.644 0.87 0.808 1.37 0.915 1.87 0.969 2.37 0.991 2.87 0.998 3.37 1.000 
0.38 0.648 0.88 0.811 1.38 0.916 1.88 0.970 2.38 0.991 2.88 0.998 3.38 1.000 
0.39 0.652 0.89 0.813 1.39 0.918 1.89 0.971 2.39 0.992 2.89 0.998 3.39 1.000 
0.40 0.655 0.90 0.816 1.40 0.919 1.90 0.971 2.40 0.992 2.90 0.998 3.40 1.000 
0.41 0.659 0.91 0.819 1.41 0.921 1.91 0.972 2.41 0.992 2.91 0.998 3.41 1.000 
0.42 0.663 0.92 0.821 1.42 0.922 1.92 0.973 2.42 0.992 2.92 0.998 3.42 1.000 
0.43 0.666 0.93 0.824 1.43 0.924 1.93 0.973 2.43 0.992 2.93 0.998 3.43 1.000 
0.44 0.670 0.94 0.826 1.44 0.925 1.94 0.974 2.44 0.993 2.94 0.998 3.44 1.000 
0.45 0.674 0.95 0.829 1.45 0.926 1.95 0.974 2.45 0.993 2.95 0.998 3.45 1.000 
0.46 0.677 0.96 0.831 1.46 0.928 1.96 0.975 2.46 0.993 2.96 0.998 3.46 1.000 
0.47 0.681 0.97 0.834 1.47 0.929 1.97 0.976 2.47 0.993 2.97 0.999 3.47 1.000 
0.48 0.684 0.98 0.836 1.48 0.931 1.98 0.976 2.48 0.993 2.98 0.999 3.48 1.000 
0.49 0.688 0.99 0.839 1.49 0.932 1.99 0.977 2.49 0.994 2.99 0.999 3.49 1.000 
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Table 3 (from Statistical Tables): Chi-Squared Distribution 








2
,Pr( )X  


 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005 

1 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63 7.88 
2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 10.60 
3 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34 12.84 
4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14.86 
5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75 
6 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 
7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95 
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 
10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 
11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 26.76 
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 
17 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72 
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58 
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 
21 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40 
22 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80 
23 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 
25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 
26 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29 
27 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.64 
28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 
29 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 
31 14.46 15.66 17.54 19.28 21.43 41.42 44.99 48.23 52.19 55.00 
32 15.13 16.36 18.29 20.07 22.27 42.58 46.19 49.48 53.49 56.33 
33 15.82 17.07 19.05 20.87 23.11 43.75 47.40 50.73 54.78 57.65 
34 16.50 17.79 19.81 21.66 23.95 44.90 48.60 51.97 56.06 58.96 
35 17.19 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 60.27 
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 
45 24.31 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 73.17 
50 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49 
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 
70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 104.21 
80 51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 116.32 
90 59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 128.30 
100 67.33 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 140.17 
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Table 5 (from Statistical Tables): F-distribution ( 0.05  ) 



 

F

2



1 2,Pr( )X F
   

1

2 1 2 3 4 5 6 7 8 9 10 

1 161.55 199.71 215.95 224.84 230.42 234.25 237.04 239.16 240.82 242.16 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.73 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 
31 4.16 3.30 2.91 2.68 2.52 2.41 2.32 2.25 2.20 2.15 
32 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19 2.14 
33 4.14 3.28 2.89 2.66 2.50 2.39 2.30 2.23 2.18 2.13 
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 2.12 
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 

 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 
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Table 2 (from Statistical Tables): Student t-distribution 



t

,Pr( )X t   


 0.10 0.05 0.025 0.01 0.005 

1 3.078 6.314 12.706 31.821 63.657 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 
6 1.440 1.943 2.447 3.143 3.707 
7 1.415 1.895 2.365 2.998 3.499 
8 1.397 1.860 2.306 2.896 3.355 
9 1.383 1.833 2.262 2.821 3.250 
10 1.372 1.812 2.228 2.764 3.169 
11 1.363 1.796 2.201 2.718 3.106 
12 1.356 1.782 2.179 2.681 3.055 
13 1.350 1.771 2.160 2.650 3.012 
14 1.345 1.761 2.145 2.624 2.977 
15 1.341 1.753 2.131 2.602 2.947 
16 1.337 1.746 2.120 2.583 2.921 
17 1.333 1.740 2.110 2.567 2.898 
18 1.330 1.734 2.101 2.552 2.878 
19 1.328 1.729 2.093 2.539 2.861 
20 1.325 1.725 2.086 2.528 2.845 
21 1.323 1.721 2.080 2.518 2.831 
22 1.321 1.717 2.074 2.508 2.819 
23 1.319 1.714 2.069 2.500 2.807 
24 1.318 1.711 2.064 2.492 2.797 
25 1.316 1.708 2.060 2.485 2.787 
26 1.315 1.706 2.056 2.479 2.779 
28 1.313 1.701 2.048 2.467 2.763 
29 1.311 1.699 2.045 2.462 2.756 
30 1.310 1.697 2.042 2.457 2.750 
31 1.309 1.696 2.040 2.453 2.744 
32 1.309 1.694 2.037 2.449 2.738 
33 1.308 1.692 2.035 2.445 2.733 
34 1.307 1.691 2.032 2.441 2.728 
35 1.306 1.690 2.030 2.438 2.724 
40 1.303 1.684 2.021 2.423 2.704 
45 1.301 1.679 2.014 2.412 2.690 
50 1.299 1.676 2.009 2.403 2.678 
60 1.296 1.671 2.000 2.390 2.660 
70 1.294 1.667 1.994 2.381 2.648 
80 1.292 1.664 1.990 2.374 2.639 
90 1.291 1.662 1.987 2.368 2.632 
100 1.290 1.660 1.984 2.364 2.626 

 1.282 1.645 1.960 2.327 2.576 
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Sample Questions 

Question 1 

A large batch of clay pots is moulded and fired. After firing, a random sample of 10 

pots is inspected for flaws before glazing, decoration and final firing. If 20% of pots 

in the batch have flaws, calculate the probability that the random sample contains:  

(a) no pots with flaws,  

(b) exactly one pot with a flaw,  

(c) exactly two pots with flaws,  

(d) less than three pots with flaws. 

Question 2 

A manufacturer sets up a ‘double sampling’ scheme as follows. A sample of 8 items is 

taken from a large lot ready for dispatch to customers. If there are no defectives, the 

lot is accepted and if there are 3 or more defectives, the lot is rejected. If there is 

either 1 or 2 defectives in the sample, a second sample is taken from the same lot, and 

the lot is rejected only if there are 3 or more defectives in the 2 samples combined. 

12% of items are defective.  

(a) What proportion of lots will be accepted using only a single sampling scheme 

(with 3 or more defectives per sample causing a lot rejection,  

(b) What proportion of lots will be accepted using the ‘double sampling’ scheme. 

Question 3 

A large batch of items is known to have a proportion 0.03 defective. If a sample of 

200 is taken, what is the probability that the sample will contain:  

(a) no defectives,  

(b) 4 defectives or less,  

(c) more than 5 defectives. 

Question 4 

A random variable, Y is N(3,16). Find the probability that a value of Y taken at 

random will be negative. If 20 values are taken randomly, what is the probability that 

at least 3 have negative values? 



Handout 3: Appendix 2 

19

Question 5 

As a result of tests on electric light bulbs, it was found that the lifetime of a particular 

make of bulb was distributed normally, with a mean of 2040 hours and standard 

deviation of 60 hours. What proportion of bulbs can be expected to burn: 

(a) For more than 2150 hours,  

(b) for more than 1960 hours? 

Question 6 

If the random variables 1X , 2X , and 3X  are distributed as 2
1 , 2

5  and 2
10 , 

respectively, find the distribution of: 

(a) 1 2X X ,  

(b) 1 3X X . 

Question 7 

Use the chi-squared tables such that: 

(a) 2
9Pr( 19.02) p   ,  

(b) 2
40Pr( 24.43) p   ,  

(c) 2
29Pr( ) 0.005x   ,  

(d) 2
4Pr( ) 0.99x  

Question 8 

Use the F tables such that: 

(a) 5,7Pr( 7.46)F p  ,  

(b) 1,60Pr( 2.79)F p  ,  

(c) 10,1Pr( ) 0.10F x  ,  

(d) 15,20Pr( ) 0.05F x 

Question 9 

If ~ (3,0.667)X B and ~ (1)Y P , find:  

(a) Pr( 4)X Y  ,  

(b) Pr( 2)X Y 
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Sample Questions (with Answers) 

Question 1 

A large batch of clay pots is moulded and fired. After firing, a random sample of 10 

pots is inspected for flaws before glazing, decoration and final firing. If 20% of pots 

in the batch have flaws, calculate the probability that the random sample contains:  

(a) no pots with flaws,  

(b) exactly one pot with a flaw,  

(c) exactly two pots with flaws,  

(d) less than three pots with flaws. 

Answer 

~ (10,0.2)X B

(a) 0 10Pr( 0) 0.2 0.8 0.107X    ,  

(b) 1 9Pr( 1) 10(0.2 )0.8 0.268X   

(c) 2 8Pr( 2) 45(0.2 )0.8 0.302X   

(d) Pr( 2) Pr( 0) Pr( 1) Pr( 2) 0.678X X X X         (from Statistical Tables) 
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Question 2 

A manufacturer sets up a ‘double sampling’ scheme as follows. A sample of 8 items is 

taken from a large lot ready for dispatch to customers. If there are no defectives, the 

lot is accepted and if there are 3 or more defectives, the lot is rejected. If there is 

either 1 or 2 defectives in the sample, a second sample is taken from the same lot, and 

the lot is rejected only if there are 3 or more defectives in the 2 samples combined. 

12% of items are defective.  

(a) What proportion of lots will be accepted using only a single sampling scheme 

(with 3 or more defectives per sample causing a lot rejection,  

(b) What proportion of lots will be accepted using the ‘double sampling’ scheme. 

Answer 

(a) Pr( 2) Pr( 0) Pr( 1) Pr( 2)X X X X      

As ~ (8,0.12)X B , then Pr( 2) 0.939X   . 

(b) Proportion of rejections is 

1 1 2 1 2Pr( 3) Pr( 1).Pr( 2) Pr( 2).Pr( 1)X X X X X      

1 1 2 1 2Pr( 3) Pr( 1).[1 Pr( 1)] Pr( 2).[1 Pr( 0)]X X X X X        

0.061 0.392(0.248) 0.187(0.64) 0.278   .  

Therefore proportion of acceptances=0.722. 
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Question 3 

A large batch of items is known to have a proportion 0.03 defective. If a sample of 

200 is taken, what is the probability that the sample will contain: 

(a) no defectives,  

(b) 4 defectives or less,  

(c) more than 5 defectives. 

Answer 

Poisson approximation to binomial distribution. 

~ (200,0.03) ~ (200(0.03))X B X P

(a) 
0

66
Pr( 0) 0.0025

0!
X e  

(b) Pr( 4) Pr( 0) Pr( 1) Pr( 2) Pr( 3) Pr( 4)X X X X X X          

1 2 3 4
6 6 6 6 66 6 6 6

0.0025 0.0149 0.0446 0.0892 0.1339 0.285
1! 2! 3! 4!

e e e e e             

Alternatively, from Statistical Tables 6   and k=4. 

(c) 

Pr( 5) 1 Pr( 5) 1 [Pr( 4) Pr( 5)] 1 [0.285 0.161] 1 0.446 0.554X X X X              

(also from Statistical Tables). 
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Question 4 

A random variable, Y is N(3,16): 

(a)Find the probability that a value of Y taken at random will be negative.  

(b)If 20 values are taken randomly, what is the probability that at least 3 have 

negative values? 

 Answer 

(a) 
3 0 3

Pr( 0) Pr Pr( 0.75) 0.227
4 4

Y
Y z

  
       

 

(b) ~ (20,0.227) Pr( 3) 1 Pr( 2)X B X X    

1 (0.0058 0.0341 0.0951) 0.865   
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Question 5 

As a result of tests on electric light bulbs, it was found that the lifetime of a particular 

make of bulb was distributed normally, with a mean of 2040 hours and standard 

deviation of 60 hours. What proportion of bulbs can be expected to burn: 

(a) For more than 2150 hours,  

(b) for more than 1960 hours? 

Answer 

(a) 
2040 2150 2040

Pr( 2150) Pr Pr( 1.83) 0.034
60 60

X
X z

  
      

 

(b) 
2040 1960 2040

Pr( 1960) Pr Pr( 1.33) 0.908
60 60

X
X z

  
       

 
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Question 6 

Use the chi-squared tables such that:  

(a) 2
9Pr( 19.02) p   ,  

(b) 2
40Pr( 24.43) p   ,  

(c) 2
29Pr( ) 0.005x   ,  

(d) 2
4Pr( ) 0.99x  

Answer 

(a) 0.025,  

(b) 0.975,  

(c) 52.34,  

(d) 0.30. 
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Question 7 

Use the F tables such that:  

(a) 5,7Pr( 7.46)F p  ,  

(b) 1,60Pr( 2.79)F p  ,  

(c) 10,1Pr( ) 0.10F x  ,  

(d) 15,20Pr( ) 0.05F x 

Answer 

(a) 0.01, 

(b) 0.10,  

(c) 60.24,  

(d) 2.20 
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Question 8 

If ~ (3,0.667)X B and ~ (1)Y P , find:  

(a) Pr( 4)X Y  ,  

(b) Pr( 2)X Y 

Answer 

X and Y are independent 

(a) 
Pr( 4) Pr( 0).Pr( 4) Pr( 1).Pr( 3) Pr( 2).Pr( 4)

Pr( 3).Pr( 1)

X Y X Y X Y X Y

X Y

          

  

(as Pr(X=4)=0). 

Pr( 4) 0.0006 0.0136 0.0818 0.1090 0.2049X Y      

(b) 
Pr( 2) Pr( 0).Pr( 0) Pr( 0).Pr( 1) Pr( 0).Pr( 2)

Pr( 1).Pr( 0) Pr( 1).Pr( 1) Pr( 2).Pr( 0)

X Y X Y X Y X Y

X Y X Y X Y

          

        

Pr( 2) 0.0136 0.0136 0.0068 0.0817 0.0817 0.1635 0.3611X Y        
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Binomial Distribution 

Binomial expansion of (x+y)d

d
1 x y
2 x2 2xy y2

3 x3 3x2y 3xy2 y3

4 x4 4x3y 6x2y2 4xy3 y4

5 x5 5x4y 10x3y2 10x2y3 5xy4 y5

6 x6 6x5y 15x4y2 20x3y3 15x2y4 6xy5 y6

7 x7 7x6y 21x5y2 35x4y3 35x3y4 21x2y5 7xy6 y7

8 x8 8x7y 28x6y2 56x5y3 70x4y4 56x3y5 28x2y6 8xy7 y8

9 x9 9x8y 36x7y2 84x6y3 126x5y4 126x4y5 84x3y6 36x2y7 9xy8 y9

10 x10 10x9y 45x8y2 120x7y3 210x6y4 252x5y5 210x4y6 120x3y7 45x2y8 10xy9 y10

Coefficients on the binomial expansion of (x+y)d

d
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

Coefficients on the binomial expansion of (x+y)d

d
1 

1 1C 1 0C

2 
2 2C 2 1C 2 0C

3 
3 3C 3 2C 3 1C 3 0C

4 
4 4C 4 3C 4 2C 4 1C 4 0C

5 
5 5C 5 4C 5 3C 5 2C 5 1C 5 0C

6 
6 6C 6 5C 6 4C 6 3C 6 2C 6 1C 6 0C

7 
7 7C 7 6C 7 5C 7 4C 7 3C 7 2C 7 1C 7 0C

8 
8 8C 8 7C 8 6C 8 5C 8 4C 8 3C 8 2C 8 1C 8 0C

9 
9 9C 9 8C 9 7C 9 6C 9 5C 9 4C 9 3C 9 2C 9 1C 9 0C

10 
10 10C 10 9C 10 8C 10 7C 10 6C 10 5C 10 4C 10 3C 10 2C 10 1C 10 0C
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STATISTICAL TECHNIQUES B 

Statistics and Properties of Statistics 

1. Sample statistics 

1.1 Measures of central tendency 

Arithmetic (simple) mean: 1

n

i
i

x

x
n




Median: Middle value of an ordered set of observations, for an odd number of 

observations1 this is: 1 2, , , nx x x… : 0.5( 1)nx 

Mode: Value which occurs most frequently from the set of observations the largest. 

1.2 Measures of spread (dispersion) 

Variance: expresses how spread out are a set of numbers and is constructed as the 

average squared deviation around the mean: 

2

2 1

( )

1

n

i
i

x x

s
n










where n-1 are the degrees of freedom i.e. the number of observations of xi you can 

freely choose. The square root of the variance is called the standard deviation.2

Range: is the difference between the largest and smallest observations. Assuming the 

data has been sorted by size, from smallest to largest: 1nx x

Interquartile range: measures the difference between the 25th and 75th percentile 

points: 0.75( 1) 0.25( 1)n nx x   in ordered data. 

Mean absolute deviation: 1

n

i
i

x x

MAD
n








1 For an even number of observations it is 0.5 0.5 1

2
n nx x 

. 

2 Tchebychev’s rule states that for any population with mean   and standard deviation  , at least 

100(1-1/m2)% of the population lie within m standard deviations around the mean, for m>1. 
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1.3 Skewness 

Skewness gives a numerical measure of how asymmetric is a distribution: 

3

1
3

( )
n

i
i

x x

ns




A zero value implies a symmetric distribution, a positive number implies a 

distribution skewed to the right (positively skewed) and a negative number implies a 

distribution skewed to the left (negatively skewed). 

1.4 Kurtosis 

Kurtosis gives a measure of how many observations lie in the tails of the distribution: 

4

1
4

( )
n

i
i

x x

ns




a value of three implies the distribution has the same proportion of observations in the 

tails as a normal distribution. A value less than three implies the distribution is 

platykurtic – meaning the distribution is flat-topped. A value greater than three 

implies the distribution is leptokurtic – meaning the distribution is more peaked. 

1.5. Measures of linear association

In Economics we are interested in the relation between 2 or more random variables, 

for example: 

Personal consumption and disposable income 

Investment and interest rates 

Earnings and schooling 

while there are many ways in which these pairs of random variables might be related 

– a linear relationship is often a useful first approximation. 

1.5.1 Covariance 

The association might be STRONG, when a scatter plot, of Y against X, will be tightly 

clustered around a straight line, or weak with a scatter plot more widely dispersed 

about a line. A plot of the data is a necessary preliminary to data analysis, but more 

sophisticated techniques than a graphical inspection are often required. 

The sample covariance between two random variables X and Y is defined as: 
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1 1

( )( ) .

cov( , )
1 1

n n

i i i i
i i

XY

x x y y x y nx y

s X Y
n n

 

  

  
 

 

the degrees of freedom are only n-1 as we actually only need to know the mean of x or 

y. 

1.5.2 Correlation

The covariance measure is not scale free and multiplying the x variable by 100 

multiplies the covariance by 100. A scale free measure is a correlation: 

XY
XY

X Y

s
r

s s
  where, 

2 2

1

( ) / ( 1)
n

X i
i

s x x n


   , 2 2

1

( ) / ( 1)
n

Y i
i

s y y n


   , 
1

/
n

i
i

x x n


  and 
1

/
n

i
i

y y n


 . 

Where the correlation has the following properties 

1. 1 1XYr  

2. 1XYr    perfect negative association 

3. 1XYr   perfect positive linear association 

4. 0XYr   no linear association 

5. As XYr  increases  stronger association. 
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2. Estimators and estimates 

An estimator of a population parameter is a random variable and is a function of the 

data. Whereas an estimate is a particular realisation, or an actual value, based on a 

specific sample of data points. 
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3. Unbiasedness 

An estimator,  , is said to be UNBIASED if: 

ˆ( )E   , that is, if the mean of the sampling distribution of ̂  is centred on  . The 

ESTIMATORS, X , 2
Xs  and ˆ Xp  are all unbiased: 

3.1 Unbiasedness of X

 

 

1 2 1 2

1
( ) ( ) / ( ) ( ) ( )

1

n nE X E X X X n E X E X E X
n

n
   

       

    

… …

…

3.2 Unbiasedness of 2
Xs

22 2 2

2 1 1 1

( ) ( ) ( ) ( ) ( )

1 1 1

n n n

i i i
i i i

X

X X X X X n X

s
n n n

   
  

        
  

  

  

2 2

2 2 21

1

( ) ( )
1

( ) ( ) ( )
1 1

n

i n
i

X i
i

X n X

E s E E X nE X
n n

 

 



 
     

          
  




2
2 2 21

( )
1

X
X X XE s n n

n n


 

  
    

   
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4. Efficiency 

Consider two alternative estimators of  , 1̂  and 2̂ , based on the same information, 

we say that 1̂  is more efficient than 2̂ , if 1 2
ˆ ˆ( ) ( )V V  . One possible measure of 

this is relative efficiency constructed as: 1

2

ˆ( )
ˆ( )

V

V




. 

In general if we are choosing between two unbiased estimators then we choose the 

estimator with the smaller variance. 

For example, consider 3 alternative estimators for the population parameter,  , 

Estimator E(.) V(.)

1 1X X  2

1 2
2

( )

2

X X
X




 2 / 2

1 2 3
3

( )nX X X X
X

n

  


…  2 / n

4 3X  3 0 

Last estimator is biased, but with very small variance. 
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5. Maximum Likelihood Estimation 

Consider the toss of a coin with the outcomes of Heads and Tails, with probabilities p

and (1-p). You toss a coin 50 times and get 20 Heads and 30 Tails. Then we know the 

probability of this happening is 50 20 30
20Pr( 20, 30) (1 )Head Tails C p p    . Now 

think about choosing the value of p which maximizes this probability. This is plotted 

in the figure below as the orange line for all values of p. If you choose p=0.2 this 

gives a probability of 0.0006, if you choose a value of p=0.3 this gives a probability 

of 0.0370, a value of p=0.4 gives a joint probability of 0.1146 and p=0.5 gives 

probability of 0.0419 and so p=0.4 maximises the probability and would therefore be 

the maximum likelihood estimate. If alternatively you toss a coin 50 times and get 28 

Heads and 22 Tails. Then we know the probability of this happening is 

50 28 22
28Pr( 28, 22) (1 )Head Tails C p p    . If you choose p=0.3 this gives a 

probability of 0.0001, a value of  p=0.5 gives probability of 0.0788 and p=0.56 gives 

a probability of 0.1131 and p=0.6 gives a probability of 0.0959 and so p=0.56 

maximises the probability and would therefore be the maximum likelihood estimate. 
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Maximum Likelihood of P(Head) in a toss of a coin 50 times

Heads=20 Heads=22 Heads=24 Heads=26 Heads=28 Heads=30

Algebraically, consider the probability of getting k heads out of n tosses of a coin. 

This can be written as: 
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!
( | , ) (1 )

!( )!
k n kn

P k n p p p
k n k

 


So which value of p makes this outcome most likely? Consider the maximization 

problem: 

max ( | , ) max ln[ ( | , )]

!
max ln[ ( | , )] max[ln( ) ln( ) ( ) ln(1 )]

!( )!

p p

p p

P k n p P k n p

n
P k n p k p n k p

k n k



    


max ( | , ) max ln[ ( | , )]

max ln[ ( | , )] max[ ( )],  where ( ) ln( ) ( ) ln(1 )]

p p

p p

P k n p P k n p

P k n p l p l p c k p n k p



     

( ) ( )
0 ( ) (1 )

(1 )

l p k n k
n k p k p

p p p

 
      



ˆ /nnp kp k kp p k n    

and ˆplim( )np p  (see below). 
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6. Consistency 

Suppose ˆn  is an estimator of   on a sample of 1 2, , , nX X X… . Then, ˆn  is a 

consistent estimator of   if for every 0  ,   0ˆ
nP       as n  . This 

says that the probability that the absolute difference between ˆn  and   being larger 

than   goes to zero as n gets bigger. In other words, we say that   is the probability 

limit of ˆn : 

ˆplim( )n  . 
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7. Central Limit Theorem (CLT) 

Many random variables can be characterised as either the sum or the average of a 

large number of independent random variables. Let, 1 2, , nX X X… , be n independent 

random variables having identical distributions with mean,  , and variance, 2 .  

Denote their sum by 1 2 nX X X X   … . Now we know that: 

1 2 1 2( ) ( ) ( ) ( ) ( )n nE X E X X X E X E X E X n
  

        … …  

1 2 1 2

2
1 2 1 3 1

0 0 0

( ) ( ) ( ) ( ) ( )

2cov( , ) 2cov( , ) 2cov( )

n n

n n

V X V X X X V X V X V X

X X X X X X n

       

    

… …

…  

The CLT states, that whatever the distribution of Xi (provided that 2  is finite) as the 

number of terms in the sum become large, the distribution of X tends to a normal 

distribution, that is, 

2( , )
a

X N n n  . 

Therefore the normal distribution will provide a satisfactory approximation to the true 

distribution for many statistical problems as these involve either sums or averages. 

This results applies regardless of whether the underlying distribution is continuous 

and symmetric like the uniform distribution, continuous and asymmetric like the chi-

squared distribution, or even discrete such as the Binomial distribution. In fact, 

Appendix 2: Figures 1-6 show the shape of Binomial distribution when n=1, n=3, 

n=10, n=30 and n=100 – it is clear by the last graph (n=100) the distribution of the 

trial is normal. Additionally in Appendix 2: Figure 7 we show a 2
d   for d  =8, 12, 16, 

20, 30 and one can see the distribution becomes more “normal” as d increases. Finally 

Appendix 2: Figure 8 plots the sample mean ( 1 2 n
n

X X X
X

n

  


…
) from the 

distribution: 

X x 1 2 3 

( )P X x 0.7 0.2 0.1 

Appendix 1 (Question 4 and 5) shows some probability calculations associated with 

an exact Binomial/Poisson distribution and the approximate probability calculations 

from a normal distribution.
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Sample Questions 

Question 1 

The data given below is the average weight gain (lbs) between 1986 and 1995 for a 

sample of 84 males in the US (aged around 30 in 1986). Calculate (a) the sample 

mean, (b) median, (c) the sample variance  

Males 

10 0 -18 10 45 10 70 30 33 6 5 25 13 5 30 7 35 25 28 25 

30 65 34 20 13 71 10 5 37 25 22 25 40 10 105 65 19 60 29 25 

20 28 0 5 15 28 35 40 35 48 13 10 20 45 26 10 2 40 60 58 

50 5 43 20 5 46 15 35 -12 25 4 23 0 30 28 21 45 32 20 9 

10 12 10 0  

Question 2 

The amount of time spent studying on a particular module outside the usual lecture 

and class hours in an average (typical) week for the sample of 35 students, given in 

the Table below. 

Amount of time spent studying on a particular module 

Minutes No. students
<20 2

20-<40 5
40-<60 4
60-<90 6
90-<120 5
120-<180 7
180-<240 3
240-<360 2
360 1 

Total 35
Using the data given in the Table above, calculate: (a) sample mean; (b) sample 

standard deviation; (c) median; (d) the inter-quartile range. 
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Question 3 

Consider the following sample of bivariate data 
x 42 24 82 74 70 36 57 29 63 74 80 30
y 136 141 133 135 120 142 130 153 128 112 124 146

(a) Calculate the covariance between y and x. 
(b) Calculate the correlation between y and x. 

Question 4 

In each of the following cases work out the exact probability and the probability based 

on a normal approximation to the exact distribution (using the continuity correction): 

(a) For  ~ 3,0.7X B  what is the Pr( 3)X  ,  

(b) For  ~ 10,0.7X B  what is the Pr( 7)X  , 

(c) For  ~ 30,0.7X B what is the Pr( 21)X  ,

(d) For  ~ 100,0.7X B what is the Pr( 70)X  , 

(e) For  ~ 200,0.7X B what is the Pr( 140)X  . 

Question 5 

In each of the following cases work out the exact probability and the probability based 

on a normal approximation to the exact distribution (using the continuity correction): 

(a) For  ~ 1X P  what is the Pr( 2)X  , 

(b) For  4~X P  what is the Pr( 5)X  , 

(c) For  ~ 10X P  what is the Pr( 11)X  , 

(d) For  3~ 0X P  what is the Pr( 31)X  , 

(e) For  ~ 100X P  what is the Pr( 101)X  . 
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Sample Questions (with Answers) 

Question 1 

The data given below is the average weight gain (lbs) between 1986 and 1995 for a 

sample of 84 males in the US (aged around 30 in 1986). Calculate (i) the sample 

mean, (ii) median, (iii) the sample variance  

Males 

10 0 -18 10 45 10 70 30 33 6 5 25 13 5 30 7 35 25 28 25 

30 65 34 20 13 71 10 5 37 25 22 25 40 10 105 65 19 60 29 25 

20 28 0 5 15 28 35 40 35 48 13 10 20 45 26 10 2 40 60 58 

50 5 43 20 5 46 15 35 -12 25 4 23 0 30 28 21 45 32 20 9 

10 12 10 0  

Answer 

(a) 
10 0 18 10 45 10... 0 2118

25.21
84 84

Mx
     

  

(b) medianM=25 

(c) 
2 2 2 2 2 2 2 2

2 10 0 ( 18) 10 45 10 ... 0 84 25.21
421.76

83
Ms

        
 
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Question 2 

The amount of time spent studying on a particular module outside the usual lecture 

and class hours in an average (typical) week for the sample of 35 students, given in 

the Table below. 

Amount of time spent studying on a particular module 

Minutes No. students
<20 2

20-<40 5
40-<60 4
60-<90 6
90-<120 5
120-<180 7
180-<240 3
240-<360 2
360 1 

Total 35
Using the data given in the Table, calculate: (a) sample mean, (b) sample standard 

deviation, (c) median, (d) the inter-quartile range. 

Answer 

Amount of time spent studying on a particular module 

Range Mid point f F xf 2x f

<20 10 2 2 20 200
20-40 30 5 7 150 4500
40-60 50 4 11 200 10000
60-90 75 6 17 450 33750
90-120 105 5 22 525 55125
120-180 150 7 29 1050 157500
180-240 210 3 32 630 132300
240-360 300 2 34 600 180000

>360 420 1 35 420 176400
Total 35 4045 749775

(a) 
4045

115.6
35

x   ,  

(b) 
2

2 749775 35(115.6 )
8302.6 91.1

34
s s


    ,  

(c) For the median sometimes people actual calculate the median point in the interval 

as: 50

18 17
90 30 95

5
F

 
    

minutes. 

(d) 25

9 7
40 20 50

4
F

 
    

, 75

27 22
120 60 162.86

7
F

 
    
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Question 3 

Consider the following sample of bivariate data 
x 42 24 82 74 70 36 57 29 63 74 80 30
y 136 141 133 135 120 142 130 153 128 112 124 146

(a) Calculate the covariance between y and x. 
(b) Calculate the correlation between y and x. 

Answer 

(a) 

12

1 86003 12 55.08 133.33
cov( , ) 193.67

1 11

i i
i

x y nxy

x y
n




  

   




(b) 
cov( , ) 193.67

( , ) 0.779
21.66 11.48x y

x y
corr x y

s s


   


. 
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Question 4 

In each of the following cases work out the exact probability and the probability based 

on a normal approximation to the exact distribution (using the continuity correction): 

(a) For  ~ 10,0.7X B  what is the Pr( 7)X  , 

(b) For  ~ 30,0.7X B what is the Pr( 21)X  ,

(c) For  ~ 100,0.7X B what is the Pr( 70)X  , 

(d) For  ~ 200,0.7X B what is the Pr( 140)X  . 

Answer 

(a) Pr( 7) 0.65X  

~ (7,2.1)
a

X N

6.5 7
Pr( 7) Pr( 6.5) Pr( ) Pr( 0.345) 0.633

1.449
X X Z Z


        

(b) Pr( 21) 0.589X  

~ (21,6.3)
a

X N

20.5 21
Pr( 21) Pr( 20.5) Pr( ) Pr( 0.199) 0.579

2.510
X X Z Z


        

(c) Pr( 70) 0.549X  

~ (70,21)
a

X N

69.5 70
Pr( 70) Pr( 69.5) Pr( ) Pr( 0.109) 0.544

4.5826
X X Z Z


        

(d) Pr( 140) 0.534X  

~ (140, 42)
a

X N

139.5 140
Pr( 140) Pr( 139.5) Pr( ) Pr( 0.077) 0.532

6.4807
X X Z Z


        
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Question 5 

In each of the following cases work out the exact probability and the probability based 

on a normal approximation to the exact distribution (using the continuity correction): 

(a) For  4~X P  what is the Pr( 5)X  , 

(b) For  ~ 10X P  what is the Pr( 11)X  , 

(c) For  3~ 0X P  what is the Pr( 31)X  , 

(d) For  ~ 100X P  what is the Pr( 101)X  . 

Answer 

(a) Pr( 5) 0.371X  

~ (4,4)
a

X N

4.5 4
Pr( 5) Pr( 4.5) Pr( ) Pr( 0.25) 0.401

2
X X Z Z


       

(b) Pr( 11) 0.417X  

~ (10,10)
a

X N

10.5 10
Pr( 11) Pr( 10.5) Pr( ) Pr( 0.158) 0.436

3.1623
X X Z Z


       

(c) Pr( 31) 0.452X  

~ (30,30)
a

X N

30.5 30
Pr( 31) Pr( 30.5) Pr( ) Pr( 0.091) 0.464

5.477
X X Z Z


       

(d) Pr( 101) 0.473X  

~ (100,100)
a

X N

100.5 100
Pr( 101) Pr( 100.5) Pr( ) Pr( 0.050) 0.480

10
X X Z Z


       
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Appendix 2: Binomial versus Normal Approximation 

Figure 1: Distribution for a binomial with p=0.7 and n=1
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Figure 2: Distribution for a binomial with p=0.7 and n=3
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Figure 3: Distribution for a binomial with p=0.7 and n=10
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Figure 4: Distribution for a binomial with p=0.7 and n=20
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Figure 5: Distribution for a binomial with p=0.7 and n=30
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Figure 6: Distribution for a binomial with p=0.7 and n=100
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Figure 7: Plot of a series of chi-squared distributions
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STATISTICAL TECHNIQUES B 

Hypothesis Testing 

1. Introduction 

Hypothesis testing involves assessing the validity of some conjecture or 

hypothesis. Within statistics some hypothesis is made about some unknown population 

parameter,  , This is referred to as the maintained or NULL HYPOTHESIS and is 

denoted as H0. If the null hypothesis is NOT true, then some alternative is TRUE. The 

investigator then formulates as ALTERNATIVE HYPOTHESIS (H1) against which to 

test the null hypothesis. This alternative hypothesis is invariably a composite hypothesis 

(encompassing many values of  ). The null hypothesis is always assumed to be true 

until counter evidence forces us to reject this working hypothesis. 

For example, 

0 0

1 0

: simple null

: composite 2-sided alternative

H

H

 

 





0 0

1 0

: composite null

: composite 1-sided alternative

H

H

 

 





0 0

1 0

: composite null

: composite 1-sided alternative

H

H

 

 





Now any null hypothesis can be TRUE or FALSE (as the population parameter,  , is 

unknown). Based on the sample evidence we are going to draw conclusions about the 

population parameters. 
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2. Types of errors 

Needless to say one can clearly make errors when testing a particular hypothesis. In 

particular, there are two types of errors one can make: 

Type I error – Rejecting a TRUE H0 

Pr(Type  I error) significance level 

Type II error – Accept a FALSE H0

Pr(Type  II error) 

01 Pr(Correctly rejecting a FALSE )Power H    (see Appendix 1: Figure 1). 

Suppose, we believe that that a random variable X  is normally distributed with a mean 

of zero and a variance of unity, that is, ~ (0,1)X N  and we wish to test the hypothesis 

0

1

: 0

: 0

H

H









Now if a randomly selected individual had a value of x=1.2. Test the hypothesis that 

this came from a distribution with a mean of zero. 

You proceed by asking the question: What is the probability of observing a number as 

big as (as small as, for a negative number) the one observed, given 0  ? 

(1.2 0)
Pr( 1.2) Pr Pr( 1.2) 0.115

1
X Z Z

 
      

 

so there is an 11.51% chance of observing x>1.2. This probability is known as the p-

value, the probability of observing a sample mean as big (or as small) as the one actually 

observed). However, the question remains:  

At what point would you start to question H0?  

The answer depends on the significance level. If you are prepared to only reject H0 for 

a p-value of say 0.001 (0.1%), then you really have a low Pr(Type I error ) – you must 

strongly believe in H0 (naturally conservative). If you are prepared to reject H0 at say 

0.20, then you are prepared to have a high Pr(Type I error) – naturally prepared to 

overthrow prior beliefs. In statistics the significance level (the probability at which you 

are prepared to reject H0) are generally set at 0.01, 0.05, 0.10  , that is, 1%, 5% or 

10% and this should be determined before undertaking the test. If we choose to use a 

significance level of 5%, this implies that you are accepting that 1 time in 20 will 

incorrectly reject H0: 

Why do we not make Pr(Type I error)0.000?  Because there is a trade-off between 

type I and type II errors. So that by choosing a very low type I error probability – that 
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is, minimising the probability of rejecting a true null, you increase the probability of 

accepting a false null, compare Appendix 1: Figures 1 and 2. Do we regard this as 

sufficiently rare to reject H0? 

In hypothesis testing, for a given significance level, as we are only interested in 

the dichotomous decision of either rejecting, or not rejecting, H0 we do not need to 

calculate the p-value, but simply calculate test statistic (z=1.2, in the example above) 

and compare this to a critical value – where the critical value is that value associated 

with a probability of   (significance level), under the hypothesised distribution. 

Table 1: Critical values from a standard normal distribution 

a Pr(X>a)
1.280 0.100
1.645 0.050
1.960 0.025
2.320 0.010
2.575 0.005

In our example as the test statistics of1.2 is less than the critical value of 1.645 (at the 

5% significance level) we would not reject H0. 
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3. Testing the mean of a normal distribution 

Procedure 

1. Specify a null hypothesis. 

2. Specify an alternative hypothesis. 

3. Choose a significance level and corresponding critical region. 

4. Calculate the test under the null hypothesis, by calculating how far the sample 

statistic is from the hypothesised value. 

5. Compare the test statistic with the critical value and formulate a decision. 

Suppose 1 2, , , nX X X…  denote a random sample of n observations from a normal 

distribution with unknown mean,  , and known variance, 2 . Then, E( )X  , 

2( ) /V X n  and 
2

~ ,X N
n



 
 
 

. By standardising we have, ~ (0,1)
/

X
Z N

n






 . 

We are interested in testing the hypothesis that the population mean equals 0  against 

an alternative, e.g. 0  , the 5-step procedure is: 

1. 0 0:H  

2. 1 0:H   . This alternative hypothesis is a 1-sided alternative, implying we reject 

H0 only when we observe a sample mean a long way above the hypothesised value, 

0 . 

3. We choose some appropriate significance level of  , and find the corresponding 

critical value from a NORMAL distribution (as distribution of sample mean is 

normal), denoted z  - this is the value which occurs with exactly 100 %

probability. 

4. Under 0 0:H    then 2
0~ ( , / )X N n  , hence 0( )

Pr( ) Pr
/

x
X x Z

n





 
   

 
. 

In which case we calculate test statistic as 0

/

x
Z

n






 , this essentially measures 

how far the sample mean is from the hypothesised population mean, 0  and scales 

this distance by the standard error of the sample mean.  

5. Then if Z is greater than z  then we have observed an event which occurs with a 

probability of less than   and should therefore reject H0. The decision rule is Reject 
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H0 if 0

/

x
Z z

n







   Do not reject H0 if 0

/

x
Z z

n







  . (Appendix 1: Figure 3 

shows the appropriate acceptance and rejection regions) 

If the alternative hypothesis had been 1 0:H    ( 1 0:H   ), then the corresponding 

critical-value would have been z  ( /2z  and /2z ) and  the decision rule is: Reject 

H0 if 0

/

x
Z z

n







   0

/2
/

x
Z z

n






 
  

 
; Do not reject H0 if 0

/

x
Z z

n







  

0
/2

/

x
Z z

n






 
  

 
  (Appendix 1: Figures 4 and 5 show the appropriate rejection 

regions). 

3.1 Variants of this basic hypothesis test case:

(1) Suppose now that 1 2, , , nX X X…  denote a random sample of n observations from a 

distribution which is NOT NORMAL, with an unknown mean,  , but 2  known. Then 

E( )X  , 2( ) /V X n  and if n>30 then by a CLT we can say that 2~ ( , / )
a

X N n 

in which case, the 5 step procedure is as above. 

(2) Suppose now that 1 2, , , nX X X…  denote a random sample of n observations from a 

distribution which is NOT NORMAL, with an unknown mean,  , but 2 unknown

(and a sample variance of 2
Xs ). Then E( )X  , 2( ) /V X n  and if n>30 then by a 

CLT we can say that 2~ ( ,s / )
a

XX N n  in which case, the 5 step procedure is as above. 

(Appendix 2: Example 1). 

(3) As a specific example of the case above suppose now that 1 2, , , nX X X…  comes 

from a Bernoulli distribution, that is,  

x 0 1
Pr(X=x) 1- 

( )E X     and 2( ) (1 )V X      , with a unknown mean,  (= ), and an 

unknown population variance, 2 (= (1- )). Then E( )X  , ( ) (1 ) /V X n  
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and if n>30 then by a CLT and under the null hypothesis 0 0:H   , 

0 0 0~ ( , (1 ) / )
a

X N n    in which case, the 5 step procedure is as above.  

(Appendix 2: Example 2). 

(4) Suppose now that 1 2, , , nX X X…  denote a random sample of n observations from a 

distribution which is NORMAL, with unknown 2  (and sample variance of 2
Xs ). Then 

E( )X  , 2( ) /V X n  and 2~ ( , / )X N n  , implying. But we know that 

2
2

12

( 1)
~X

n

n s






. In which case 

122 2
1

2

(0,1)/ ~ ~
/( 1)

( 1) 1

n

XX n

X

X Nn t
s nn s

n n




















 

where /2
1nt


  is the critical value from a t-distribution with n-1 degrees of freedom. A t-

distribution looks similar to a normal distribution (symmetric and bell-shaped); 

however, this distribution has a higher proportion of points in its tails, see Appendix 1: 

Figure 6, which compares the distributions of a t8 with a  0,1N . 

Table 3: Normal compared with t-distributions 

a Pr(X>a) b Pr(X>b) c Pr(X>c) 

Normal 2.32 0.010 1.96 0.025 1.645 0.050 

t-dist(5) 2.32 0.034 1.96 0.054 1.645 0.080 

t-dist(10) 2.32 0.021 1.96 0.039 1.645 0.065 

t-dist(15) 2.32 0.017 1.96 0.034 1.645 0.060 

t-dist(20) 2.32 0.016 1.96 0.032 1.645 0.058 

t-dist(30) 2.32 0.014 1.96 0.030 1.645 0.055 

t-dist(50) 2.32 0.012 1.96 0.028 1.645 0.053 

t-dist(100) 2.32 0.011 1.96 0.026 1.645 0.052 

and so (0,1)t N  . Many people argue for n>30 the t-distribution can be reasonably 

well approximated by a standard normal distribution, but this is only an approximation. 

In which case the 5 step procedure for testing the null and alternative below is:  

1. 0 0:H   . 

2. 1 0:H   .  
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3. The critical values come from a t-distribution, denoted /2, 1nt   and /2, 1nt  .  

4. The test statistic is 0

/x

x
t

s n


 . 

5. The decision rule is:  Reject H0 if 0
/2, 1

/
n

x

x
t t

s n






  ; Do not reject H0 if 

0
/2, 1

/
n

x

x
t t

s n






  . (Appendix 2: Example 3). 
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4. Test for the difference in means 

4.1 Independent samples: 

Assume we have two samples of size, n1 and n2, on the random variables X1 and X2, 

with unknown means 1  and 2 , respectively.  The sample means are denoted as 1X

and 2X  and we know that: 1 2 1 2( )E X X      and 
2 2
1 2

1 2

1 2

( )V X X
n n

 
   .  

If the underlying distributions are NORMAL and the population variances are KNOWN 

then: 

2 2
1 2

1 2 1 2

1 2

~ ,X X N
n n

 
 
 

   
 

. In which case the 5-step procedure is: 

1. 0 1 2 0:H D    and so under 0H
2 2
1 2

1 2 0

1 2

~ ,X X N D
n n

  
  

 

2. 1 1 2 0:H D  

3. The critical values are /2z  and /2z . 

4. The test statistic is 1 2 0

2 2
1 2

1 2

( )x x D
Z

n n

 

 




.  

5. The decision rule is: Reject H0 if 1 2 0
/22 2

1 2

1 2

( )x x D
Z z

n n


 

 
 



; Do not reject H0 if 

1 2 0
/22 2

1 2

1 2

( )x x D
Z z

n n


 

 
 



. 
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4.1.2 Variants of the difference in means hypothesis test

(1) We have two samples of size, n1 and n2, on the random variables X1 and X2, with 

unknown means 1  and 2 , respectively.  The sample means are denoted as 1X  and 

2X  and we know that: 1 2 1 2( )E X X      and 
2 2
1 2

1 2

1 2

( )V X X
n n

 
   .  

If the underlying distribution of X1 and X2 is NOT NORMAL, the population variances 

( 2
1 and 2

2 ) are KNOWN, then providing n1 and n2>30, then we can apply a CLT  and 

2 2
1 2

1 2 1 2

1 2

~ ,
a

X X N
n n

 
 
 

   
 

, in which case, the 5 step procedure is as above.  

(2) We have two samples of size, n1 and n2, on the random variables X1 and X2, with 

unknown means 1  and 2 , respectively.  The sample means are denoted as 1X  and 

2X  and we know that: 1 2 1 2( )E X X      and 
2 2
1 2

1 2

1 2

( )V X X
n n

 
   . If the 

underlying distribution of X1 and X2 is NOT NORMAL, the population variances ( 2
1

and 2
2 ) are UNKNOWN, then providing n1 and n2>30, then we can apply a CLT  and 

2 2
1 2

1 2 1 2

1 2

~ ,
a s s

X X N
n n

 
 

   
 

, in which case, the 5 step procedure is as above. 

(Appendix 2: Example 4). 

(3) As an example of the above if X1 and X2 are both Bernoulli distributions then 

2 2
1 2

1 2 1 2

1 2

~ ,
a

X X N
n n

 
 
 

   
 

1. 0 1 2: 0H     and so under 0H 0 0 0 0
1 2

1 2

(1 ) (1 )
~ 0,
a

X X N
n n

     
  

 
, where 

0  is the true overall proportion. 

2. 1 1 2: 0H   

3. The critical values are /2z  and /2z . 

4. The test statistic is 1 2

0 0

1 2

( ) 0

1 1
( (1 )

x x
z

p p
n n

 


 
  

 

. As under H0 the population 

proportions are equal the standard error is based on 1 1 2 2
0

1 2

n x n x
p

n n





.  



Handout 5: Appendix 1 

5. The decision rule is: Reject H0 if 1 2
/2

0 0

1 2

( )

1 1
( (1 )

x x
z z

p p
n n




 

 
  

 

; Do not reject 

H0 if 1 2
/2

0 0

1 2

( )

1 1
( (1 )

x x
z z

p p
n n




 

 
  

 

 (Appendix 2: Example 5). 

(4) If the underlying distribution of X1 and X2 is NORMAL and the population variances 

are UNKNOWN, but EQUAL, i.e. 2 2
1 2  , then  

1. 0 1 2 0:H D  

2. 1 1 2 0:H D  

3. The critical values are from a t-distribution, denoted 
1 2/2,( 2)n nt    and 

1 2/2,( 2)n nt  

. 

4. The test statistic is 1 2 0

1 2

( )

1 1
x

x x D
t

s
n n

 




, where 1 2

2 2
1 22

1 2

( 1) ( 1)

( 2)

x x

x

n s n s
s

n n

  


 
. Note: 

To use this test it MUST be the case that there is no evidence that the population 

variances are different. 

5. The decision rule is: Reject H0 if 
1 2

1 2 0
/2,( 2)

1 2

( )

1 1
n n

x

x x D
t t

s
n n

  

 
 



; Do not reject 

H0 if 
1 2

1 2 0
/2,( 2)

1 2

( )

1 1
n n

x

x x D
t t

s
n n

  

 
 



. (Appendix 2: Example 6). 
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(5) We have two samples of size, n1 and n2, on the random variables X1 and X2, with 

unknown means 1  and 2 , respectively.  The sample means are denoted as 1X  and 

2X  and we know that: 1 2 1 2( )E X X      and 
2 2
1 2

1 2

1 2

( )V X X
n n

 
   .  

If the underlying distribution of X1 and X2 is NORMAL, the population variances ( 2
1

and 2
2 ) are UNKNOWN and NOT equal, then 

1. 0 1 2 0:H D  

2. 1 1 2 0:H D  

3. The critical values are from a t-distribution, denoted /2,DoFt  and /2,DoFt . 

4. The test statistic is 

1 2

1 2 0

2 2

1 2

( )

x x

x x D
t

s s

n n

 




, where 
   

1 2

1 2

2
2 2

1 2

2 2
2 2

1 2

1 2

/ /

/ /

( 1) ( 1)

x x

x x

s n s n
DoF

s n s n

n n

  


 

.  

5. The decision rule is: Reject H0 if 

1 2

1 2 0
/2,2 2

1 2

( )
DoF

x x

x x D
t t t

s s

n n



 
  



; Do not reject 

H0 if 

1 2

1 2 0
/2,2 2

1 2

( )
DoF

x x

x x D
t t t

s s

n n



 
  



. (Appendix 2: Example 7). 
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5. Test of the variance of a distribution

To formulate a hypothesis testing on a sample variance, X, MUST be normally 

distributed, 2~ ( , )iX N   . In which case, 
2

2
12

( 1)
~X

n

n s
w 





 . In which case the 5-

step procedure is:  

1. 2 2
0 0:H  

2. 2 2
1 0:H  

3. The critical value is from a 2 -distribution, denoted 2
, 1n 

4.
2

2

2
0

( 1) Xn s







5. The decision rule is: Reject H0 if 
2

2 2
, 12

0

( 1) x
n

n s
 





  ; Do not reject H0 if 

2
2 2

, 12
0

( 1) x
n

n s
 





   (Appendix 2: Example 8). 
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6. Testing equality of variances

This must be done before you can use the 4th option from section 4.1.2 (variants of the 

difference in means hypothesis test) 

1. 2 2
0 1 2:H  

2. 2 2
1 1 2:H  

3. The critical value is from the F-distribution, denoted 
1 2

/2
1, 1n nF
  . 

4. The test statistic as 1

2

2

2

x

x

s
F

s
 , when 

1 2

2 2
x xs s  (or 2

1

2

2

x

x

s
F

s
  when 

2 1

2 2
x xs s ). 

5. The decision rule is: Reject H0 if 1

1 2

2

2

/2
1, 12

x

n n

x

s
F F

s

   ; Do not reject H0 if 

1

1 2

2

2

/2
1, 12

x

n n

x

s
F F

s

    (Appendix 2: Example 6). 

In Appendix 2, we include a reference table for the different hypothesis test formulas 

for alternative distributions. 
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7. Matched pairs 

We are interested in formulating tests about 1 2  , when the two experiments (X1 and 

X2) are undertaken with the same sample and are not therefore independent. Given the 

outcomes of the two trials for the same population we form the difference in the 

outcomes of the two random variables, that is, 1 2D X X  , where 

1 2 1 2( ) ( ) dE D E X X        , 2 2 2
1 2 1 2 12( ) ( ) 2 dV D V X X           and 

12 0  .  

If the underlying distribution of 2
1 1 1~ ( , )X N    and 2

2 2 2~ ( , )X N    then 

2
1 2 1 2~ ( , )dX X N      then we know that 2

1 2 1 2~ ( , / )dX X N n    . 

Normalising this expression we have: 1 2 1 2

2

( ) ( )
~ (0,1)

/d

X X
N

n

 



  
, but 2

d  is 

unknown and we need to replace this by the sample variance, in which case 

1 2 1 2
12

( ) ( )
~

/
n

d

X X
t

s n

 


  
. 

Given sample of data for the random variable X1 and X2, define the difference as: 

1 1
1 1 21d x x  , 2 2

2 1 2d x x  , 3 3
3 1 2d x x  ,  1 2

n n
nd x x 

And we calculate the sample moments of this series: 
1

/
n

i
i

d d n


  and 

2 2

1

( ) / ( 1)
n

d i
i

s d d n


   . 

The 5 steps are then: 

1. 0 1 2 0: dH D    

2. 1 1 2 0: dH D    

3. The critical values from the t-distribution are /2, 1nt   and /2, 1nt  . 

4. The test statistic as 0

/d

d D
t

s n


 . 

5. The decision rule is : Reject H0 if 0
/2, 1

/
n

d

d D
t t

s n
 


  ; Do not reject H0 if 

0
/2, 1

/
n

d

d D
t t

s n
 


   (Appendix 2: Example 9) 
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8. Calculating the power of a test 

0 0Power Pr(Rejecting  |  false)H H  (see Appendix 1: Figure 1). This is calculated as 

three steps, for 

0 0:H  

1 0:H  

given 1  . 

(1) Define the critical value as the point at which you just reject H0, for example, /2z

? 

(2) Find the sample mean, cx , corresponding to the critical value, that is, 

0
/2 1 /2 0 1 /2 0

2 /2 0

( / ) , ( / )
/

( / )

c
c c

c

x
z x z s n x z s n

s n

x z s n

  




 




      

   

(3) Calculate 1 1 2 1Pr( | ) Pr( | )c cX x X x       

1 1 2 1Pr( ) Pr( )
/ /

c cx x
Z Z

s n s n

  
   

Appendix 1: Figure 7-9 show the effect on power as the true mean, 1 , moves 

increasingly further away from the null hypothesis, 0 . Appendix 1: Figure 10 shows 

that as 1 0  , then power approaches the significance level, . (Appendix 2: 

Example 10). 
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9. ANOVA 

This enables you to test for the equality of means among two or more groups. For two 

groups we might consider a t-test testing for a difference of means but for 3 groups 

one would have to do a difference in means between group 1 and group 2, then 

between group 1 and group 3 and then finally between group 2 and group 3 (i.e. 3 

tests). If you had 4 groups then you might have to undertake 4
2 6C   separate tests. 

To undertake this analysis we assume: 

1. Distribution of the random variables comes from a normal distribution. 

2. The variance for each group is the same  

3. Random sample 

That is we assume we have some random variable (X) and we observe it across a 

categorical variable with k outcomes, and we denote the corresponding random 

variables as 1 2, , , kX X X… . We assume ( )j jE X    and  2( )jV X  ,  and 

2~ ( , )j jX N   .  

A random sample from each sub-group is then denoted: 
1

1 1 1
1 2, , nX X X…

2

2 2 2
1 2, , nX X X…

and 1 2, ,
k

k k k
nX X X…  (in that we are allowing a different sample size for each sub-

group) and where 1 2 kn n n n   … .  

Now we know that: 
1 2 2~ ( , / )j

j j j
n j j

j

j

X X X
X N n

n
 

  


…
 and we want to test the 

hypothesis:  

1 2
0 : kH     …   against the alternative: 0 :  for j lH j l   .  

Define 
1 2

1 2

1 2

k
k

k

n X n X n X
X

n n n

  


  

…

…

2 2 2

1 1 1 1 1

( ) ( ) ( )
j jn nk k k

j j j j
i i j

j i j i j

X X X X n X X
    

      

Which is telling us that 

Total Sum of Squares=Within Sum of Squares + Between Sum of Squares. 

The 5 steps are then: 

1. 1 2
0 : kH     …

2. 1 :  for j lH j l  

3. The critical values are from an F-distribution, denoted 1,k n kF
  . 
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4. The test statistic is 
 SS/( -1)

 SS/(n- )

Between k
F

Within k
 .  

5. The decision rule is: Reject H0 if 1,

 SS/( -1)

 SS/(n- )
k n k

Between k
F F

Within k

   ; Do not 

reject otherwise. (Appendix 2: Example 11). 

The test works because under 0H  we know: 

 

2 2 2 2

1 1 1 1 1 1 1 1

( ) ( )) (
j j j jn n n nk k k k

j j j j j
i i i

j i j i j i j i

E With

E X X E X X V n

in S

X

S

 
       

 
      

 



   

 

2 2 2 2

1 1 1 1

( ) ( ) (( ) / )
k k k k

j j j
j j j j j

j j j j

E

E n X X n

e

E

S

X X

Betwe

n V X

S

n n

n

k 
   

 
     




 
   

in which case we can say something like: 

2

2

 SS/( 1) / ( 1)
( ) 1

 SS/( ) / ( )

Between k k k
E F E

Within n k n n k





  
   

  

Whereas under 1 :  for j lH j l    and therefore 

2 2 2

1 1 1 1

( ) ( ) E( )
j jn nk k

j j

j i j i

E Between SS E X X X X k c
   

 
      

 
 

where 0c   and gets bigger the greater the variation in jX  across j, in which case we 

can say something like: 

2

2

 SS/( 1) ( ) / ( 1)
( ) 1

 SS/( ) / ( )

Between k k c k
E F E

Within n k n n k





   
   

  
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Figure 1: Pr(Type I error), Pr(Type II error) and Power (a=5%)
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Figure 2: Pr(Type I error), Pr(Type II error) and Power (a=1%) 
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Figure 3: Significance level and critical region for a one-sided alternative H1:m>m0
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Figure 4: Significance level and critical region for a one-sided alternative H1 m<m0
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Figure 5: Significance level and critical regions for a two-sided alternative H1: m=m0
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Figure 6: t-distribution vs standard normal distribution
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Figure 7: Size and Power: H0:m=0 when m=1.0
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Figure 8: Size and Power: H0:m=0 when m=1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

f(
x
) signif. level

Power

H0

H1



Handout 5: Appendix 1 

Figure 9: Size and Power: H0:m=0 when m=2.5
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Figure 10: Size and Power: H0:m=0 when m=0.2
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Sample Questions 

Question 1 
A manufacturer claims that through the use of a fuel additive, automobiles should 

achieve on average an additional 3 miles per gallon of gas. A random sample of 100 

automobiles was used to evaluate this product. The sample mean increase in miles per 

gallon achieved was 2.6 miles and a sample standard deviation was 1.8 miles per gallon. 

Test the null hypothesis that the population mean is at least 3 miles per gallon. Find the 

p-value of this test.  

Question 2 
A mayor in a major city claims that in one particularly depressed neighbourhood, at 

least 20% of all males between the ages of 18 and 65 are unemployed. A random sample 

of 120 people from this population contained 20 unemployed people. Test the mayor’s 

claim.  

Question 3 
A beer manufacturer claims that a new display featuring a life-size picture of a well-

known footballer will increase product sales in supermarkets by an average of 50 cases. 

For a random sample of 20 supermarkets, the average sales increase was 44.3 cases 

with a sample standard deviation of 12.2 cases. Test at the 5% significance level the 

null hypothesis that the population mean sales increase is at least 50 cases, stating any 

assumptions you make. 

Question 4 
The MATWES procedure was designed to measure attitudes toward women as 

managers. High scores indicate negative attitudes and low scores indicate positive 

attitudes. Independent random samples were taken of 151 male MBA students and 108 

female MBA students. For the former group, the sample mean and standard deviation 

MATWES scores were 75.8 and 19.3, while the corresponding figures for the latter 

group were 71.5 and 12.2. Test the hypothesis that the two population means are equal 

against the alternative that the true mean MATWES score is higher for male than for 

female MBA students.  
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Question 5 
Of a random sample of 381 investment grade corporate bonds, 191 had sinking funds. 

Of an independent random sample of 166 speculative-grade corporate bonds, 98 had 

sinking funds. Test a 2-sided alternative against the null hypothesis that the two 

population proportions are equal. 

Question 6 
A publisher is interested in the effect on sales of university textbooks of cover design. 

The publisher is planning to bring out 20 texts in the area of business and randomly 

chooses 10 text to have expensive designs, with the remaining texts having a plain 

cover. For those with expensive cover designs average sales in the first year were 9254 

with a sample standard deviation of 2107. For books with a plain cover average first 

year sales were 8167, with a standard deviation of 1681. Assuming the population 

distributions are normal (and the population variances are equal), test the hypothesis 

that the population means are equal against the alternative that the true mean is higher 

for books with an expensive cover.  

Question 7 
A publisher is interested in the effect on sales of university textbooks of cover design. 

The publisher is planning to bring out 20 texts in the area of business and randomly 

chooses 10 text to have expensive designs, with the remaining texts having a plain 

cover. For those with expensive cover designs average sales in the first year were 

9254 with a sample standard deviation of 2107. For books with a plain cover average 

first year sales were 8167, with a standard deviation of 1081. Assuming the 

population distributions are normal (and the population variances are not equal), test 

the hypothesis that the population means are equal against the alternative that the true 

mean is higher for books with an expensive cover.  

Question 8 
A company produces electric devices operated by a thermostat control. The standard 

deviation of the temperature at which these controls actually operate should not exceed 

2F. For a random sample of 20 of these controls, the sample standard deviation of 

operating temperatures was 2.36F. Stating any assumptions you need to make, test at 

the 5% significance level the null hypothesis that the population standard deviation is 

2F against the alternative that it is bigger.  
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Question 9 
A doctor is interested in the placebo effect. A random sample of 8 individuals are 

given a series of tests and are scored out of 100 (Case 1). The same set of individuals 

are given a sugar coated pill and told that it is designed to increase mental capabilities 

(even though this is not the case) and are then retested (Case 2). It is known that the 

performance of individuals in the test follows a normal distribution. 

1 2 3 4 5 6 7 8 

Case 1 68 78 45 52 88 56 64 66 

Case 2 70 74 48 56 90 59 70 66 

At the 5% significance level, test the hypothesis of no difference in the performance 

of the individuals after being given the placebo.  

Question 10 
A manufacturer claims that through the use of a fuel additive, automobiles should 

achieve on average an additional 3 miles per gallon of gas. A random sample of 100 

automobiles was used to evaluate this product. The sample mean increase in miles per 

gallon achieved was 2.6 miles and a sample standard deviation was 1.8 miles per gallon. 

At the 5% significance level, calculate the power of the test that the population mean is 

at least 3 miles per gallon, given that the true mean increase in miles per gallon is 2.6 

Question 11 
The scores in a maths test (out of 30) there collected from a random sample of 16 

females. The scores are reported below, according to the females’ height split by the 

lower quartile, the middle two quartiles and the upper quartile: 

<25% 25-75% >75%
18 16 10
19 15 13
15 17 14
27 19 18
21 18 19

16

Use an ANOVA analysis to test at the 5% significance level whether the three groups 

of individuals have the same level of performance. 
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Sample Questions (with Answers) 

Question 1 
A manufacturer claims that through the use of a fuel additive, automobiles should 

achieve on average an additional 3 miles per gallon of gas. A random sample of 100 

automobiles was used to evaluate this product. The sample mean increase in miles per 

gallon achieved was 2.6 miles and a sample standard deviation was 1.8 miles per gallon. 

Test the null hypothesis that the population mean is at least 3 miles per gallon. Find the 

p-value of this test.  

Answer 

The distribution of the underlying series is unknown. Nevertheless the distribution of 

the sample mean will be approximately normal as n.  

2 ( )
~ ( , / ) ~ (0,1)

/

a

X

X

X
X N s n N

s n







0 : 3H  

1 : 3H  

(2.6 3.0)
2.22

1.8 / 100
z


   ( 2.22) 0.013P Z   

and so we reject the null hypothesis at the 1.3% significance level. The probability of 

observing a value as low as 2.6 miles (assuming null hypothesis is true, that is, 3  ) 

is 1.3%.  
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Question 2 
A mayor in a major city claims that in one particularly depressed neighbourhood, at 

least 20% of all males between the ages of 18 and 65 are unemployed. A random sample 

of 120 people from this population contained 20 unemployed people. Test the mayor’s 

claim.  

Answer 

The underlying series is a Bernoulli trial. The distribution cannot therefore be normal. 

Nevertheless the distribution of the sample mean will be approximately normal as 

n.  

In particular: 

~ ( , (1 ) / )
a

X N n  

0 : 0.2H   0.05 1.645z  

1 : 0.2H  

Now under H0 we have: 1 (0.2,0.2(0.8) /120)
a

X N 
(0.1666 0.2)

0.913
(0.2)(0.8)

120

z


  

and so we are unable to reject the null hypothesis at the 5% significance level. 
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Question 3 
A beer manufacturer claims that a new display featuring a life-size picture of a well-

known footballer will increase product sales in supermarkets by an average of 50 cases. 

For a random sample of 20 supermarkets, the average sales increase was 44.3 cases 

with a sample standard deviation of 12.2 cases. Test at the 5% significance level the 

null hypothesis that the population mean sales increase is at least 50 cases, stating any 

assumptions you make. 

Answer 

This question can only be answered if we are prepared to assume that the increase in 

product sales will be normally distributed.  

2 ( )
~ ( , / ) ~ (0,1)

/

X
X N n N

n


 






we also know that  

2
2

12

( 1)
~X

n

n s







the greater uncertainty associated having to use the sample variance as opposed to the 

unknown population variance, means that  

1

( )
~

/
n

X

X
t

s n






0 : 50H   19,0.05 1.729t  

1 : 50H  

(44.3 50)
2.089

12.2 / 20
t


  

A t-value of –1.729 occurs with probability of 5%. By using a significance level of 5%, 

we are saying that an event which occurs with a probability of 5%, or less, is sufficiently 

rare that we should question the assumption under which the test was undertaken. As 

we obtained a test statistic of –2.089 this occurs with a probability of less than 5% and 

we therefore reject H0.  
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Question 4 
The MATWES procedure was designed to measure attitudes toward women as 

managers. High scores indicate negative attitudes and low scores indicate positive 

attitudes. Independent random samples were taken of 151 male MBA students and 108 

female MBA students. For the former group, the sample mean and standard deviation 

MATWES scores were 75.8 and 19.3, while the corresponding figures for the latter 

group were 71.5 and 12.2. Test the hypothesis that the two population means are equal 

against the alternative that the true mean MATWES score is higher for male than for 

female MBA students.  

Answer 

The underlying series has an unknown distribution, but the distribution of the sample 

means will both be approximately normally distributed as n. In particular: 

1

2
1 1 1~ ( , / )

a

XX N s n and 
2

2
2 2 2~ ( , / )

a

XX N s n

implying: 

1 2

2 2

1 2 1 2

1 2

~ ,
a

X Xs s
X X N

n n
 
  

        

0 1 2: 0H    0.05 1.645z 

1 1 2: 0H    0.01 2.323z 

2 2

(75.8 71.5) 0.0
2.193

19.3 12.2

151 108

z
 

 



and so we are able to reject the null hypothesis at the 5% significance level, but not at 

the 1% significance level.. 
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Question 5 
Of a random sample of 381 investment grade corporate bonds, 191 had sinking funds. 

Of an independent random sample of 166 speculative-grade corporate bonds, 98 had 

sinking funds. Test a 2-sided alternative against the null hypothesis that the two 

population proportions are equal. 

Answer 

The underlying series follows a Bernoulli trial and hence the distribution cannot be 

normal, however, the distribution of the sample mean (sample proportion) will be 

approximately normally distributed as n. In particular: 

1 1 1 1 1~ ( , (1 ) / )
a

X N n   and 2 2 2 2 2~ ( , (1 ) / )
a

X N n  

implying: 

1 1 2 2
1 2 1 2

1 2

(1 ) (1 )
~ ,
a

X X N
n n

   
 
   

     
  

0 1 2: 0H    0.025 1.96z  

1 1 2: 0H   

Under H0 
0 0 0 0

1 2

1 2

(1 ) (1 )
~ 0,
a p p p p

X X N
n n

   
     

  
, 

where 1 1 2 2
0

1 2

n x n x
p

n n






(0.5013 0.5904) 0.0
1.919

0.5283(0.4717) 0.5283(0.4717)

381 166

z
 

  



and so we are just unable to reject the null hypothesis at the 5% significance level. 
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Question 6 
A publisher is interested in the effect on sales of university textbooks of cover design. 

The publisher is planning to bring out 20 texts in the area of business and randomly 

chooses 10 text to have expensive designs, with the remaining texts having a plain 

cover. For those with expensive cover designs average sales in the first year were 9254 

with a sample standard deviation of 2107. For books with a plain cover average first 

year sales were 8167, with a standard deviation of 1681. Assuming the population 

distributions are normal (and the population variances are equal), test the hypothesis 

that the population means are equal against the alternative that the true mean is higher 

for books with an expensive cover.  

Answer 

The underlying distribution is normal, i.e. 

2
1 1 1~ ( , / )X N n  and 2

2 2 2~ ( , / )X N n 

if in addition we assume the variances are equal, we have: 

2
1 2 1 2

1 2

1 1
~ ,X X N

n n
  
  

     
  

we also know that  
1 2

2
21 2

22

( 2)
~X

n n

n n s



 

 

the greater uncertainty associated having to use the sample variance as opposed to the 

unknown population variance, means that  

1 2

1 2 1 2
2

1 2

( ) ( )
~

1 1
n n

X

X X
t

s
n n

 
 

  

 
 

 

where 1 2

2 2
1 22

1 2

( 1) ( 1)

2

x x

x

n s n s
s

n n

  


 
. 

This implies 
2 2

2 (9)2107 (9)1681
1905.94

18
s s


  

0 1 2: 0H    0.05
18 1.734t 

1 1 2: 0H   

(9254 8167) 0
1.275

1 1
1905.94

10 10

t
 

 



and so we are unable to reject the null hypothesis at the 5% significance level. 

NOTE: 

To test the assumption the variances are equal (at 10% significance level): 

2 2
0 1 2:H   0.05

9,9 3.18F 

2 2
1 1 2:H  
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2

2

2107
1.571

1681
F  

An F value of 3.18 occurs with a probability of 10%. As we obtained a test statistic of 

1.571 this occurs with a probability of more than 10% and we therefore we are unable 

to reject H0. In which case our assumption is reasonable: 
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Question 7 
A publisher is interested in the effect on sales of university textbooks of cover design. 

The publisher is planning to bring out 20 texts in the area of business and randomly 

chooses 10 text to have expensive designs, with the remaining texts having a plain 

cover. For those with expensive cover designs average sales in the first year were 

9254 with a sample standard deviation of 2707. For books with a plain cover average 

first year sales were 8167, with a standard deviation of 1062. Assuming the 

population distributions are normal (and that the population variances are not equal), 

test the hypothesis that the population means are equal against the alternative that the 

true mean is higher for books with an expensive cover.  

Answer 

As the underlying distribution is normal and we have: 

2
1 1 1~ ( , / )X N n  and 2

2 2 2~ ( , / )X N n 

in addition as the population variances are NOT equal, we have: 

2 2
1 2

1 2 1 2

1 2

~ ,X X N
n n

 
 
 

   
 

but as we only have sample variances as opposed to 

the unknown population variances, means that  

1 2 1 2

2 2
1 2

1 2

( ) ( )
~ DoF

X X
t

s s

n n

   

 
 

 

 where 

2
2 2

2 22 2

2707 1062

10 10
11.7

2707 1062

10 10

9 9

DoF

    
    

     
   
   
   

1 2

1 2 1 2

2 2

1 2

( ) ( )
~ DoF

x x

X X
t

s s

n n

   

 
  

 

 where 

22 2

2 22 2

2707 1062

10 10
11.7

2707 1062
/ 9 / 9

10 10

DoF

 
 

  
    

    
     

. 

0 1 2: 0H    0.05
11 1.796t 

1 1 2: 0H   

2 2

(9254 8167) 0
1.18

2707 1062

10 10

t
 

 



and so we are unable to reject the null hypothesis at the 5% significance level. NOTE 

one should test for the equality of the population variances (see Question 6). 



Handout 5: Appendix 2 

Question 8 
A company produces electric devices operated by a thermostat control. The standard 

deviation of the temperature at which these controls actually operate should not exceed 

2F. For a random sample of 20 of these controls, the sample standard deviation of 

operating temperatures was 2.36F. Stating any assumptions you need to make, test at 

the 5% significance level the null hypothesis that the population standard deviation is 

2F against the alternative that it is bigger.  

Answer 

Assuming the underlying distribution of the temperature at which the controls operate 

is normal, then we have: 

2
2

12

( 1)
~X

n

n s







2
0 : 4H   2

19,0.05 30.14 

2
1 : 4H  

2
2 19(2.36)

26.46
4

  

A chi-squared value of 30.14 occurs with probability of 5%. As we obtained a test 

statistic of 26.46 this occurs with a probability of more than 5% and we therefore we 

are unable to reject H0. 
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Question 9 
A doctor is interested in the placebo effect. A random sample of 8 individuals are given a series of 

tests and are scored out of 100 (Case 1). The same set of individuals are given a sugar coated pill 

and told that it is designed to increase mental capabilities (even though this is not the case) and are 

then retested (Case 2). It is known that the performance of individuals in the test follows a normal 

distribution. 

1 2 3 4 5 6 7 8 

Case 1 68 78 45 52 88 56 64 66 

Case 2 70 74 48 56 90 59 70 66 

At the 5% significance level, test the hypothesis of no difference in the performance of the 

individuals after being given the placebo.  

Answer 

As the underlying distribution is normal and we have: 

2
1 1 1~ ( , )X N   and 2

2 2 2~ ( , )X N   , then we know that 2
1 2 1 2~ ( , )dX X N     . This implies: 

 2
1 2 1 2~ , /dX X N n     and  1 2 1 2

2

( ) ( )
~ 0,1

/d

X X
N

n

 



  

we also know that  

2
2

12

( 1)
~d

n

d

n s







the greater uncertainty associated having to use the sample variance as opposed to the unknown 

population variance, means that  

1 2 1 2
12

( ) ( )
~

/
n

d

X X
t

s n

 


  

From the data above 2.0d   , 2 8.857ds  .  

0 1 2: 0dH      7,0.05 1.895t  

1 1 2: 0dH     

(2.0 0)
1.90

8.857 / 8
t


  

and so we are just able to reject the null hypothesis at the 5% significance level. 
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Question 10 
A manufacturer claims that through the use of a fuel additive, automobiles should achieve on average 

an additional 3 miles per gallon of gas. A random sample of 100 automobiles was used to evaluate 

this product. The sample mean increase in miles per gallon achieved was 2.6 miles and a sample 

standard deviation was 1.8 miles per gallon. At the 5% significance level, calculate the power of the 

test that the population mean is at least 3 miles per gallon, given that the true mean increase in miles 

per gallon is 2.6 

Answer 

0 : 3H   1 : 3H   0.05 1.645z  

( 3.0)
1.645

1.8 / 100

cx
z


   1.645(0.18) 3 2.7039c cx x     

Power=Pr(Reject H0| H0 false)=Pr(Reject 3  | 2.0  ) 

2.7039 2.6
Pr( 2.7039 | 2.6) Pr( ) Pr( 0.58) 0.718

0.18
X Z Z


      



Handout 5: Appendix 2 

Question 11 
The scores in a maths test (out of 30) there collected from a random sample of 16 females. The 

scores are reported below, according to the females’ height split by the lower quartile, the middle 

two quartiles and the upper quartile: 

<25% 25-75% >75%
18 16 10
19 15 13
15 17 14
27 19 18
21 18 19

16

Use an ANOVA analysis to test at the 5% significance level whether the three groups of individuals 

have the same level of performance. 

Answer 

<25% 25-75% >75% Overall
18 16 10
19 15 13
15 17 14
27 19 18
21 18 19

16
n 5 5 6 16
x 20 17 15 17.1875

2

1

( )i
i

x x


 80 10 56 214.538 

2 2 25 (20 17.1875) 5 (17 17.1875) 6 (15 17.1875) 68.4375BSS          

80 10 56 146WSS    
68.4375 / (3 1)

3.05
146 / (16 3)

F


 


0.05
2,13 3.81F 

Do NOT reject H0. 
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Hypothesis Testing Formulas 
Hypothesis Testing: Test Statistics for Tests of Means

One Population 

Sample  Hypothesis Distrib of Xi
2   Known 

2   Not Known 

Large/Small 0 0:H   Normal  0( )

/

x
z

n








0( )

/x

x
t

s n




Large  0 0:H   Non-Normal 0( )

/

x
z

n








0( )

/x

x
z

s n




Small  0 0:H   Non-Normal ? 

? 

Two Populations 

Large/Small 0 1 2:H     Normal  1 2

2 2
1 1 2 2

( )

( / / }

x x
z

n n



 

 




--- 

Large  0 1 2:H     Non-Normal 1 2

2 2
1 1 2 2

( )

( / / )

x x
z

n n



 

 




1 2

1 2

2 2
1 2

( )

( / / )x x

x x
z

s n s n

 




Large/Small 0 1 2:H     Normal  --- 

1 2

0 1 2

( )

(1/ 1/ )

x x
t

s n n

 




where 
1 2

2 2 2
0 1 2 1 2{( 1) ( 1) } / ( 2)x xs n s n s n n     

Large/Small 0 1 2:H     Normal  --- 

1 2

1 2

2 2
1 2

( )

( / / )x x

x x
t

s n s n

 




where 

   
1 2

1 2

2
2 2

1 2

2 2
2 2

1 1 2 2

/ /

/ / ( 1) / / ( 1)

x x

x x

s n s n
DoF

s n n s n n

  
  

Small Sample  0 1 2:H     Non-Normal ? 

? 
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Tests on Proportions

One Population 
Hypothesis Distrib of Xi Test  

Large sample   0 0:H   Non-normal 

0

0 0(1 ) /

x
z

n



 






Small sample  0 0:H   Non-normal ? 

Two Populations 

Large sample  0 1 2: 0H    Non-normal 

1 2

0 0 1 2(1 )(1/ 1/ )

x x
z

p p n n




 
 where 1 1 2 2

0

1 2

x n x n
p

n n






Small sample  0 1 2: 0H    Non-normal ? 

Tests on variances

One Population 

Large/Small 
2 2

0 : oH   Normal  

2
2

12
0

( 1)
~x

n

n s
u 







Two Populations 

Large/Small 
2 2

0 1 2:H   Normal  

1 2 1 2

2 2
( 1, 1)/ ~x x n nF s s F  

ANOVA: 1,

 SS/( -1)
~

 SS/(n- )
k n k

Between k
F F

Within k

 
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7STATISTICAL TECHNIQUES B 

Confidence Intervals 

1. Introduction 

Confidence intervals give a range of likely values for the TRUE (but unknown) 

population parameter, together with a measure of the confidence (or likelihood) that the 

range contains the true value. For some unknown population parameter,  , based on 

sample data we find two values a and b, such that, 

 Pr 1 0 1a b for       

then we can say with 100(1 )%  confidence that   lies in the range a to b. That means 

in repeated samples, 100(1 )%  of the time,   would lie within intervals calculated 

this way. 

Consider a N(0,1) distribution we know that 

 Pr 1.645 1.645 0.90Z    . 

We take symmetric points around zero as this minimises the range for the interval 

(compare Appendix 1: Figures 1 and 2). 

Table 1: Range for a N(0,1) for a 90% interval 

pa a pb b range 

0.05 -1.645 0.05 1.645 3.29 

0.04 -1.74 0.06 1.56 3.30 

0.01 -2.32 0.09 1.34 3.66 

Table 2: Critical values for a N(0,1) 

CI(%) Lower limit Upper limit 

90 -1.645 1.645 

95 -1.96 1.96 

99 -2.575 2.575 

A diagrammatic illustration of this is provided by Appendix 1: Figure 3. To be more 

confident of a statement or value our degree of uncertainty or range of possible values 

has to increase.   



Handout 6: Appendix 1 

2

2. Confidence Interval for mean of a distribution 

Let 1 2, , , nX X X…  denote a random sample of n observations from a normal distribution 

with unknown mean,  , and known variance, 2 . Then, we know that 

2

~ ,X N
n



 
 
 

 and this implies (by standardising) that, ~ (0,1)
/

X
Z N

n






 . 

As, 

Pr( 1.645 1.645) 0.9Z    .  

Therefore,  

Pr( 1.645 1.645) 0.9
/

X

n






   

Pr( 1.645( / ) 1.645( / )) 0.9n X n      

Pr( 1.645( / ) 1.645( / )) 0.9X n X n         

Pr( 1.645( / ) 1.645( / )) 0.9
D D

X n X n        . 

such that we expect the interval  ,X D X D   to contain   on 90% of occasions. 

However, after taking a sample and calculating the actual sample mean, x , we can say 

that we are 90% confident that the interval  ,x D x D   contain the (unknown) 

population mean,  . 

The width of the confidence interval 2D depends three factors: 

(i) The level of confidence, that is, 90%, 95% or 99%. The interval for 99% being 

far wider than that for 90%. 

(ii) The variability in the underlying distribution,  , the greater the variability the 

wider the interval. 

(iii) The number of observation in the sample, n, as this effects the standard error of 

the sample mean, / n , as n increases the standard error of the sample mean 

falls and hence the interval narrows. (Appendix 2: Example 1) 
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2.1 Variants of this basic confidence interval case: 

(1) Suppose now that 1 2, , , nX X X…  denote a random sample of n observations from a 

distribution which is NOT NORMAL, with an unknown mean,  , but the population 

variance is KNOWN, 2 . If n is large enough (n>30) then by appealing to the central 

limit theorem (CLT) we can say that 

2~ ( , / )
a

X N n 

in which case, the 100(1 )%  confidence interval is still written as: 

/2 ( / )x z n  , where /2z  is the critical value from a N(0,1). 

(2) In the previous case, if the 2  is UNKNOWN, then if n>30 2~ ( , / )
a

X N s n  the 

confidence interval is written as: /2 ( / )xx z s n , where /2z  is the critical value from 

a N(0,1) (Appendix 2: Example 2). 

(3) A specific example of the previous case is when 1 2, , , nX X X…  denotes a random 

sample from a Bernoulli (NOT NORMAL) distribution, that is,  

X 0 1 

Pr(X) 1  

 E X   and    1V X   

with a unknown mean, ( )  , and an unknown population variance, 2 ( (1 ))    . 

Then if n>30 by a CLT ~ ( , (1 ) / )
a

X N n    in which case, the 100(1 )%

confidence interval is written as: /2 ( (1 ) / )p z p p n  , where p  is the sample 

proportion.  (Appendix 2: Example 3). 

(4) Suppose now that 1 2, , , nX X X…  denote a random sample of n observations from a 

distribution which is NORMAL, with a unknown mean,  , and an UNKNOWN 2 . 

Then: 1~
/

n

X

X
t

s n





 in which case, the 100(1 )%  confidence interval is written as: 

/2
1 ( / )n xx t s n
 , where /2

1nt

  is the critical value from a t-distribution with n-1 degrees 

of freedom. (Appendix 2: Example 4). 
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3. Confidence Interval for the difference in means 

3.1 Independent samples: 

Assume we have two independent samples of size, n1 and n2, on X1 and X2, respectively.  

The sample means are 1X  and 2X :  1 2 1 2( )E X X      and 
2 2
1 2

1 2

1 2

( )V X X
n n

 
   .  

If the underlying distribution of X1 and X2 are normal and the population variances are 

KNOWN, then:
2 2
1 2

1 2 1 2

1 2

~ ,X X N
n n

 
 
 

   
 

 and the confidence interval for 

1 2   is: 
2 2
1 2

1 2 /2

1 2

( )x x z
n n



  
   

 

3.1.2 Variants on the CI for the difference in means (independent samples)

(1) If the underlying distributions are NOT NORMAL and the population variances are 

KNOWN, providing 1 30n   and 2 30n  , then from a CLT the CI is: 

2 2
1 2

1 2 /2

1 2

( )x x z
n n



  
   

 
. 

(2) If the underlying distributions is NOT NORMAL and the population variances are 

UNKNOWN, providing 1 30n   and 2 30n  , then from a CLT the CI is 

1 2

2 2

1 2 /2

1 2

( )
x xs s

x x z
n n



 
   

  
 (Appendix 2: Example 5). 

(3) Difference in sample proportions, applying CLT we get CI: 

1 1 2 2
1 2 /2

1 2

(1 ) (1 )
( )

p p p p
p p z

n n


  
   

 
, where 1p  and 2p  are the two sample 

proportions from the two samples. (Appendix 2: Example 6) 

(4) If the underlying distribution are NORMAL, and the population variances are 

UNKNOWN (and EQUAL), the CI is: 
1 2

2 2

1 2 2, /2

1 2

( ) x x
n n

s s
x x t

n n
 

 
   

 
, where, 

1 2

2 2
1 22

1 2

( 1) ( 1)

2

x x

x

n s n s
s

n n

  


 
  (Appendix 2: Example 7). 
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(5) If the underlying distribution are NORMAL, and the population variances are 

UNKNOWN (and UNEQUAL), the CI is: 1 2

2 2

1 2 , /2

1 2

( )
x x

DoF

s s
x x t

n n


 
   

  
, where, 

   
1 2

1 2

2
2 2

1 2

2 2
2 2

1 1 2 2

/ /

/ / ( 1) / / ( 1)

x x

x x

s n s n
DoF

s n n s n n

  
  

(Appendix 2: Example 8). 

Appendix 3 is a reference table for the different confidence interval formulas. 

3.2 Matched pairs 

Again we are interested in formulating the confidence interval for 1 2  , however, in 

this case, the two experiments are with the same sample of individuals and cannot 

therefore be independent. Given the outcomes of the two trials are for the same 

individuals we form the difference in the outcomes of the two random variables: 

1 2D X X  , 

where 1 2 1 2( ) ( ) dE D E X X        , 2 2 2
1 2 1 2 12( ) ( ) 2 dV D V X X         

and 12 0  .  

If the underlying distribution of 2
1 1 1~ ( , )X N    and 2

2 2 2~ ( , )X N    then 

2
1 2 1 2~ ( , )dX X N      then we know that 2

1 2 1 2~ ( , / )dX X N n    . 

Normalising this expression we have: 1 2 1 2

2

( ) ( )
~ (0,1)

/d

X X
N

n

 



  
, but 2

d  is 

unknown and we need to replace this by the sample variance in which case 

1 2 1 2
12

( ) ( )
~

/
n

d

X X
t

s n

 


  
. 

Given sample of data for the random variable X1 and X2, define the difference as: 

1 1
1 1 21d x x  , 2 2

2 1 2d x x  , 3 3
3 1 2d x x  ,  1 2

n n
nd x x 

And we calculate the sample moments of this series: 
1

/
n

i
i

d d n


  and 

2 2

1

( ) / ( 1)
n

d i
i

s d d n


   . The 100(1 )%  confidence interval is written as 

/2
1 ( / )n dd t s n
 (Appendix 2: Example 9). 
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4. Confidence Interval for the variance of a distribution 

Similarly to producing confidence intervals for the population mean, we wish to 

produce an interval estimate of the population variance on the basis of a sample of data. 

To formulate a confidence interval the random variable, X, MUST be normally 

distributed. In which case, 
2

2
12

( 1)
~X

n

n s
w 





 .  

Now,  2 2
1,0.95 1,0.05Pr 0.90n nw     . Note that for a 2  distribution, a 

symmetric confidence interval does not necessarily minimise the range – in particular, 

a smaller range will be obtained by having only 1% in the left tail and 9% in the right 

tail for a 90% confidence interval (see Appendix 1: Figure 4). Substituting for w and 

rearranging gives: 

2
2 2

1,0.95 1,0.052

( 1)
Pr 0.90X

n n

n s
 


 

 
   

 
. Rearranging, we get: 

2 2 2 2
1,0.95 1,0.05 2

2 2 2 2 2
1,0.05 1,0.95

( 1) ( 1)1
Pr Pr 0.90

( 1) ( 1)

n n X X

X X n n

n s n s

n s n s

 


  
 

 

       
        

       

Appendix 1: Figure 5 compares the distribution of a 2
4  to that of a 2

8  (Appendix 2: 

Example 10). 
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Figure 1: 90% Confidence interval for N(0,1) (symmetric)
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Figure 2: Alternate 90% confidence interval for N(0,1)
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Figure 3: Confidence limits for a N(0,1)
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Figure 4: Confidence intervals for Chi-squared
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Figure 5: Chi-squared(4) and Chi-squared(8)
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Sample Questions 

Question 1 

A personnel manager found that historically, the scores on aptitude tests given to 

applicants are normal with a standard deviation of 32.4 points. A random sample of 9 

scores produced a mean of 187.9 points. Based on these results a statistician found a 

population mean confidence interval of 165.8-210.0 points.  

(a) Find the probability of this interval. 

(b) Find an 80% confidence interval for the population mean score. 

Question 2 

A random sample of 125 economics students were asked to rate the importance of 

particular job characteristics on a scale from 1 (not important) to 5 (extremely 

important). For the question on job security the sample mean rating was 4.18 and the 

sample standard deviation 0.80. Find a 99% confidence interval for the population 

mean. 

Question 3 

A random sample of 850 voters were asked, “If there was a referendum tomorrow on 

Britain joining the ERM, how would you vote?” 391 voters reported support for Britain 

joining the ERM. Find a 95% confidence interval for the population proportion of all 

voters supporting Britain joining the ERM. 

Question 4 

GAP is interested in the expenditure on clothes of university students in the first month 

of the academic year. For a random sample of 15 students, the mean expenditure was 

£89.56 and the sample standard deviation was £20.13. Assuming that the population 

distribution is normal, find a 95% confidence interval for population mean expenditure. 
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Question 5 

Independent samples of Vice-Chancellors (VCs) and Chief Executive Officers (CEOs) 

in large private companies were asked the importance of salary to their job satisfaction 

on a scale of 1 (not important at all) to 10 (the most important aspect). A random sample 

of 42 VCs had a mean rating of 4.01 and sample standard deviation of 1.2. For an 

independent random sample of 68 CEOs the mean rating was 5.43 and a sample 

standard deviation of 1.7. Find a 95% confidence interval for the difference in the 

population mean responses. 

Question 6 

Of a random sample of 150 Economics students 105 said that teaching as a career was 

very unappealing. For an independent sample of 120 English Literature students 72 had 

the same reaction to teaching as a career. Find a 95% confidence interval for the 

difference between the population proportions regarding teaching as an unappealing 

career. 

Question 7 

A researcher intends to estimate the effect of a drug on scores of human subjects 

performing a task of psychomotor coordination. The members of a random sample of 

9 subjects were given the drug prior to testing, their mean score was 9.78 and the sample 

standard deviation was 4.2. An independent sample of 10 subjects were given a placebo 

prior to testing, the mean score for this group was 15.10 and the sample standard 

deviation was 5.2. Assuming the population distributions are normal, find a 90% 

confidence interval for the difference in the population means. 
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Question 8 

A researcher intends to estimate the effect of a drug on scores of human subjects 

performing a task of psychomotor coordination. The members of a random sample of 

9 subjects were given the drug prior to testing, their mean score was 9.78 and the sample 

standard deviation was 3.2. An independent sample of 10 subjects were given a placebo 

prior to testing, the mean score for this group was 15.10 and the sample standard 

deviation was 7.2. Assuming the population distributions are normal, find a 90% 

confidence interval for the difference in the population means. 

Question 9 

A random sample of 15 financial analysts’ forecasts of next years’ earnings per share 

for a large corporation was taken. The sample standard deviation was £0.88. Find a 

95% confidence interval for the variance of predicted earnings per share for all analysts. 
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Sample Questions (with Answers) 

Question 1 

A personnel manager found that historically, the scores on aptitude tests given to 

applicants are normal with a standard deviation of 32.4 points. A random sample of 9 

scores produced a mean of 187.9 points. Based on these results a statistician found a 

population mean confidence interval of 165.8-210.0 points.  

(c) Find the probability of this interval. 

(d) Find an 80% confidence interval for the population mean score. 

Answer 

The underlying distribution is normal with a known population variance, therefore the 

distribution of the sample mean will be normal: 

2 2~ ( , / ) ~ ( ,32.4 / 9)X N n X N  

(a) Now,  /2 /2

32.4 32.4
187.9 187.9 165.8 210.0

3 3
z z  

   
         

   

/2 /2

32.4
22.1 22.1 2.046 / 2 0.0204

3
D z z  

 
         

 

0.0408  CI is 95.92% 

(b) To construct an 80% confidence interval we need to find a point /2z , such that: 

/2 0.10( ) / 2 0.10 1.28P Z z z     

Therefore the 80% confidence interval is: 

0.10 0.10x z x z
n n

 
   

where 187.9x  .  

The required 80% confidence interval is therefore: 

32.4 32.4
187.9 1.28 187.9 1.28

3 3


   
      

   
174.05 201.75  

and this is our 80% confidence interval for the population mean rating. 
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Question 2 

A random sample of 125 economics students were asked to rate the importance of 

particular job characteristics on a scale from 1 (not important) to 5 (extremely 

important). For the question on job security the sample mean rating was 4.18 and the 

sample standard deviation 0.80. Find a 99% confidence interval for the population 

mean. 

Answer 

The underlying series has outcomes taking one of five integer values between 1 and 5. 

The distribution cannot therefore be normal. Nevertheless the distribution of the sample 

mean will be approximately normal as n. In particular: 

2~ ( , / ) ~ ( ,0.64 /125)
a a

XX N s n X N 

To construct a 99% confidence interval we need to find a point /2z , such that: 

/2 0.005( ) / 2 0.005 2.575P Z z z     

Therefore the 99% confidence interval is: 

0.005 0.005

s s
x z x z

n n
   

where 4.18x  .  

The required 99% confidence interval is therefore: 

0.80 0.80
4.18 2.575 4.18 2.575

125 125


   
      

   
3.996 4.364  

and this is our 99% confidence interval for the population mean rating. 
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Question 3 

A random sample of 850 voters were asked, “If there was a referendum tomorrow on 

Britain joining the ERM, how would you vote?” 391 voters reported support for Britain 

joining the ERM. Find a 95% confidence interval for the population proportion of all 

voters supporting Britain joining the ERM. 

Answer 

While the underlying series follows a Bernoulli trial and hence the distribution cannot 

be normal, the distribution of the sample mean (sample proportion) will be 

approximately normally distributed as n. In particular: 

~ ( , (1 ) / ) ~ ( , (0.46)(0.54) / 850)
a a

X N p p n X N  

To construct a 95% confidence interval we need to find a point /2z , such that: 

/2 0.025( ) / 2 0.025 1.96P Z z z     

Therefore the 95% confidence interval is: 

0.025 0.025

(1 ) (1 )p p p p
p z p z

n n


 
   

where 0.46p  .  

The required 95% confidence interval is therefore: 

0.46(0.54) 0.46(0.54)
0.46 1.96 0.46 1.96

850 850


   
      

   
0.426 0.493p  
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Question 4 

GAP is interested in the expenditure on clothes of university students in the first month 

of the academic year. For a random sample of 15 students, the mean expenditure was 

£89.56 and the sample standard deviation was £20.13. Assuming that the population 

distribution is normal, find a 95% confidence interval for population mean expenditure. 

Answer 

The underlying series has a normal distribution, but the population standard deviation 

is unknown.  

2 ( )
~ ( , / ) ~ (0,1)

/

X
X N n N

n


 






we also know that  

2
2

12

( 1)
~X

n

n s







the greater uncertainty associated having to use the sample variance as opposed to the 

unknown population variance, means that  

1

( )
~

/
n

X

X
t

s n






To construct a 95% confidence interval we need to find a point 14, /2t  , such that: 

14 14, /2 14,0.025( ) / 2 0.025 2.145P t t t     

Therefore the 95% confidence interval is: 

14,0.025 14,0.025

s s
x t x t

n n
   

where 89.56x   and 20.13s  .  

The required 95% confidence interval is therefore: 

20.13 20.13
89.56 2.145 89.56 2.145

15 15


   
      

   
78.41 100.71   . 
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Question 5 

Independent samples of Vice-Chancellors (VCs) and Chief Executive Officers (CEOs) 

in large private companies were asked the importance of salary to their job satisfaction 

on a scale of 1 (not important at all) to 10 (the most important aspect). A random sample 

of 42 VCs had a mean rating of 4.01 and sample standard deviation of 1.2. For an 

independent random sample of 68 CEOs the mean rating was 5.43 and a sample 

standard deviation of 1.7. Find a 95% confidence interval for the difference in the 

population mean responses. 

Answer 

The underlying series has outcomes taking values between 1 and 10. The distribution 

cannot therefore be normal. Nevertheless the distribution of the sample mean will be 

approximately normal as n. In particular: 

1

2
1 1 1 1 1~ ( , / ) ~ ( ,1.44 / 42)

a a

xX N s n X N 

2

2
2 2 2 2 2~ ( , / ) ~ ( , 2.89 / 68)

a a

xX N s n X N 

and 

1 2

2 2

1 2 1 2 1 2 1 2

1 2

~ , ~ ( ,0.0768)
a a

x xs s
X X N X X N

n n
   
 

       
 

To construct a 95% confidence interval we need to find a point /2z , such that: 

/2 0.025( ) / 2 0.025 1.96P Z z z     

Therefore the 95% confidence interval is: 

1 2

2 2 2 2
1 2

1 2 0.025 1 2 1 2 0.025

1 2 1 2

( ) ( )
x xs s s s

x x z x x z
n n n n

         

where 1 2 1.42x x   .  

The required 95% confidence interval is therefore: 

1 21.42 1.96(0.277) 1.42 1.96(0.277)        1 21.963 0.877       . 
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Question 6 

Of a random sample of 150 Economics students 105 said that teaching as a career was 

very unappealing. For an independent sample of 120 English Literature students 72 had 

the same reaction to teaching as a career. Find a 95% confidence interval for the 

difference between the population proportions regarding teaching as an unappealing 

career. 

Answer 

The underlying series follows a Bernoulli trial and hence the distribution cannot be 

normal, however, the distribution of the sample mean (sample proportion) will be 

approximately normally distributed as n. In particular: 

1 1 1 1 1~ ( , (1 ) / )
a

X N p p n  and 2 2 2 2 2~ ( , (1 ) / )
a

X N p p n 

implying: 

1 1 2 2
1 2 1 2

1 2

(1 ) (1 )
~ ,
a p p p p

X X N
n n

 
   

     
  

To construct a 95% confidence interval we need to find a point /2z , such that: 

/2 0.025( ) / 2 0.025 1.96P Z z z     

Therefore the 95% confidence interval is: 

1 1 2 2 1 1 2 2
1 2 0.025 1 2 1 2 0.025

1 2 1 2

(1 ) (1 ) (1 ) (1 )
( ) ( )

p p p p p p p p
p p z p p z

n n n n
 

      
           

   

The required 95% confidence interval is therefore: 

1 20.1 1.96(0.0583) 0.1 1.96(0.0583)      1 20.014 0.214      . 
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Question 7 

A researcher intends to estimate the effect of a drug on scores of human subjects 

performing a task of psychomotor coordination. The members of a random sample of 

9 subjects were given the drug prior to testing, their mean score was 9.78 and the sample 

standard deviation was 4.2. An independent sample of 10 subjects were given a placebo 

prior to testing, the mean score for this group was 15.10 and the sample standard 

deviation was 5.2. Assuming the population distributions are normal, find a 90% 

confidence interval for the difference in the population means. 

Answer 

The underlying series has a normal distribution, but the population standard deviation 

is unknown, assuming they are equal: 

2
1 1 1~ ( , / )X N n  and 2

2 2 2~ ( , / )X N n 

implying: 

2
1 2 1 2

1 2

1 1
~ ,X X N

n n
  
  

     
  

we also know that 
1 2

2
21 2

22

( 2)
~X

n n

n n s



 

 

the greater uncertainty associated having to use the sample variance as opposed to the 

unknown population variance, means that  

1 2

1 2 1 2
2

1 2

( ) ( )
~

1 1
n n

X

X X
t

s
n n

 
 

  

 
 

 

 where 1 2

2 2
1 22

1 2

( 1) ( 1)

2

x x

x

n s n s
s

n n

  


 
, 2 2

1 4.2s   and 

2 2
21 5.2s  .  

To construct a 90% confidence interval we need to find a point 17, /2t  , such that: 

17 17, /2 17,0.05( ) / 2 0.05 1.74P t t t      Therefore the 90% confidence interval is:

1 2 17,0.05 1 2 1 2 17,0.05

1 2 1 2

1 1 1 1
( ) ( )x xx x t s x x t s

n n n n
         

where 1 2 5.32x x    and 4.7557s  .  

The required 95% confidence interval is therefore: 

1 2

1 1 1 1
5.32 1.74(4.7557) 5.32 1.74(4.7557)

9 10 9 10
         

1 29.121 1.519       . 
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Question 8 

A researcher intends to estimate the effect of a drug on scores of human subjects 

performing a task of psychomotor coordination. The members of a random sample of 

9 subjects were given the drug prior to testing, their mean score was 9.78 and the sample 

standard deviation was 3.2. An independent sample of 10 subjects were given a placebo 

prior to testing, the mean score for this group was 15.10 and the sample standard 

deviation was 7.2. Assuming the population distributions are normal, find a 90% 

confidence interval for the difference in the population means. 

Answer 

The underlying series has a normal distribution, but the population standard deviation 

is unknown: 

1

2
1 1 1~ ( , / )xX N n  and 

2

2
2 2 2~ ( , / )xX N n 

implying: 

1 2

2 2

1 2 1 2

1 2

~ ,
x x

X X N
n n

 
 
  

        

The greater uncertainty associated having to use the sample variance as opposed to the 

unknown population variance, means that  

1 2

1 2 1 2

2 2

1 2

( ) ( )
~ DoF

x x

X X
t

s s

n n

   

 
  

 

, where 
   

22 2

2 22 2

3.2 / 9 7.2 /10

3.2 / 9 / 8 7.2 /10 / 9
DoF

  


=12.70.  

To construct a 90% confidence interval we need to find a point 12, /2t  , such that: 

12 12, /2 12,0.05( ) / 2 0.05 1.782P t t t     

Therefore the 90% confidence interval is: 

1 2 1 2

2 2 2 2

1 2 12,0.05 1 2 1 2 12,0.05

1 2 1 2

( ) ( )
x x x xs s s s

x x t x x t
n n n n

          , where 

1 2 5.32x x   . The required 90% confidence interval is therefore:

2 2 2 2

1 2

3.2 7.2 3.2 7.2
5.32 1.782 5.32 1.782

9 10 9 10
         

1 29.800 0.839      
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Question 9 

A random sample of 15 financial analysts’ forecasts of next years’ earnings per share 

for a large corporation was taken. The sample standard deviation was £0.88. Find a 95% 

confidence interval for the variance of predicted earnings per share for all analysts. 

Answer 

Assuming the underlying distribution of predicted earnings per share is normal. Then 

the sample variance of the predicted earnings will follow a chi-squared distribution.  

2
2

12

( 1)
~X

n

n s







To construct a 95% confidence interval we need to find a the points 2
/2 and 2

1 /2  , 

such that: 

2 2 2 2 2
1 /2 1 /2 0.025 0.975( ) / 2 0.025 26.12 5.63nP               

Therefore the 95% confidence interval is: 

2 2
2

2 2
0.025 0.975

( 1) ( 1)x xn s n s


 

 
 

where 2 0.88s  .  

The required 95% confidence interval is therefore: 

2 2
214(0.88) 14(0.88)

26.12 5.63
  20.415 1.925  
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Confidence Intervals Sheet 

Confidence Intervals  for Means
Parameter Distrib. of Xi Sample  Variance Confidence Interval 
One Population 

 Normal  Large/Small Known  /2 /2x z x z
n n

 

 
   

 Normal  Large/Small Not Known 
/2 /2
1 1n n

s s
x t x t

n n

     

 Non-Normal Large  Known  /2 /2x z x z
n n

 

 
   

 Non-Normal Large  Not Known /2 /2

s s
x z x z

n n
    

 Non-Normal Small  Known/Not Known ? ? 

Two Populations 

1 2  Normal  Large/Small Known  

2 2 2 2
1 2 1 2

1 2 /2 1 2 1 2 /2

1 2 1 2

( ) ( )x x z x x z
n n n n

 

   
         

1 2  Normal  Large/Small Not Known (Equal) 
1 2 1 2

2 2 2 2
/2 /20 0 0 0

1 2 2 1 2 1 2 2

1 2 1 2

( ) ( )n n n n

s s s s
x x t x x t

n n n n
             

where, 

2 2
2 1 1 2 2
0

1 2

( 1) ( 1)

2

n s n s
s

n n

  


 

1 2  Normal  Large/Small Not Known (Unequal) 1 2 1 2

2 2 2 2

/2 /2
1 2 1 2 1 2

1 2 1 2

( ) ( )
x x x x

DoF DoF

s s s s
x x t x x t

n n n n
          
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where, 

   
1 2

1 2

2
2 2

1 2

2 2
2 2

1 1 2 2

/ /

/ / ( 1) / / ( 1)

x x

x x

s n s n
DoF

s n n s n n

  
  

1 2  Non-Normal Large  Known  

2 2 2 2
1 2 1 2

1 2 /2 1 2 1 2 /2

1 2 1 2

( ) ( )x x z x x z
n n n n

 

   
         

1 2  Non-Normal Large  Not Known 

2 2 2 2
1 2 1 2

1 2 /2 1 2 1 2 /2

1 2 1 2

( ) ( )
s s s s

x x z x x z
n n n n

          

1 2  Non-Normal Small  Known/Not Known 1 2? ?   

Confidence Intervals  for Proportions

p Non-Normal Large  Not Known /2 /2

(1 ) (1 )p p p p
p z p z

n n
 

 
   

p Non-Normal Small  Not Known ? ? 

1 2p p Non-normal Large  Not Known

1 1 2 2 1 1 2 2
1 2 /2 1 2 1 2 /2

1 2 1 2

(1 ) (1 ) (1 ) (1 )
( ) ( )

p p p p p p p p
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STATISTICAL TECHNIQUES B 

Nonparametric Tests 

1. Introduction 

In Handout 5 (Hypothesis Testing) a number of our tests were reliant on the assumption 

of normality of the underlying distribution of Xi. For example, we learnt that if the 

underlying distribution is normal: (i) and the population variance is known the 

distribution of the resultant test statistic of the sample mean would be normal; (ii) and 

the population variance is unknown the distribution of the resultant test statistic of the 

sample mean would be a t-distribution. By virtue of a Central Limit Theorem, the 

distribution of the test statistic of the sample mean will be approximately normal, in 

large samples, even if the population distribution is not normal. So for example, we 

might have: The Thomas Pink Gold Cup (held in November) and the Cheltenham Gold 

Cup (in March) are 2-mile National Hunt jumps races for horses at Cheltenham 

Racecourse. The same nine two-year old horses were timed in each race of these races 

and we are interested in testing the hypothesis 0 : 0dH    (mean time difference is 

zero) against a 2-sided alternative at the 5% significance level. The times taken were as 

follows (in minutes): 

PARAMETRIC TEST 
Thomas Pink  8.1 8.2 8.0 8.0 8.4 8.6 8.5 8.4 8.9 

Cheltenham  8.3 8.4 8.3 8.5 8.5 8.2 8.9 8.5 9.0 

Difference -0.2 -0.2 -0.3 -0.5 -0.1 +0.4 -0.4 -0.1 -0.1 

Matched pairs:  0.167, 0.255d dx s    if underlying distribution is normal then

2~ ( , / )d d dX N n   and with 2
d  unknown we have: 12

~
/

d d
n

d

X
t

s n





. In which case: 

 1 12

( 0.167 0)
Pr Pr 1.960 0.043

0.255 / 9
n nt t 

  
     

 
 and for a 2-sided test this 

probability is 0.086 and we do NOT reject H0. 

However, it often is the case that the normality assumption is not reasonable and/or 

the sample size is not large. In these cases it is desirable to base inference on tests 

which are valid over a wide range of distributions of Xi (although they do require 

certain assumptions to be valid, e.g. independent random samples). These tests are 

often referred to as nonparametric tests. 
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2. Sign Test (Wilcoxon) 

This is the simplest test to undertake and is used for testing hypotheses about the 

central location of a population distribution. This is most frequently used in analysing 

matched pairs data and is based on assigning a plus(+) if the value from the 1st sample 

is greater than that from the 2nd sample and a minus(-) if the value from the 1st sample 

is less than that from the 2nd sample and dropping those cases  where the two values 

are equal. The null hypothesis is that in the population the two values have the same 

mean.  

Based on the sample of n observations, for which there was + or - recorded, under the 

null hypothesis the number of + and - values should equal, such that Pr(+)=0.5 and the 

Pr(-)=0.5. Consider only + values and denote p as the true proportion of +’s in the 

population, then 0 : 0.5H p  and the distribution of W, the number of + values 

follows a Binomial distribution, W~B(n,0.5) . For an alternative hypothesis 

 1 : 0.5 0.5H p p  , we want Pr( )W w  Pr( )W w , for a 1-sided test and for an 

alternative hypothesis 1 : 0.5H p  , we want 2 Pr( )W w   (Appendix 2: Example 2) 

Note that for large n (>25) 
/ 0.5

/ ~ (0.5,0.25 / ) ~ (0,1)
0.25 /

a W n
W n N n N

n


  (Appendix 

2: Example 2). 

Thomas Pink  8.1 8.2 8.0 8.0 8.4 8.6 8.5 8.4 8.9 

Cheltenham  8.3 8.4 8.3 8.5 8.5 8.2 8.9 8.5 9.0 

- - - - - + - - - 

9 9
9 0 9 1Pr( 1) (0.5) (0.5) 0.020W C C     and for a 2-sided alternative hypothesis the 

p-value is 0.040 and we  reject H0. 
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3. Wilcoxon Signed Rank Test 

The problem with the Sign Test is that it only uses a very limited amount of 

information (namely the sign of the difference) and therefore ignores the strength of 

preference of one value over the other. As a result the test can lack power in small 

samples. The signed rank test, uses not only the sign of the difference, but also the 

magnitude of the difference. This test is also applied to matched pairs and is testing 

the null hypothesis 0 : 0dH   , where d  is the population mean difference in scores 

across the matched pairs and as with the Sign Test differences of 0 are ignored. The 

nonzero absolute differences are then ranked in ascending order of magnitude (where 

equal values are assigned the average rank). The ranks of positive and negative 

differences are then summed separately as 
1

n

i i
i

W R 




  and 
1

n

i i
i

W R 




 , where 

1  if difference positive

0                   otherwise
i
 
 


, 
1  if difference negative

0                   otherwise
i
 
 


 and iR  is the rank of 

the absolute value of the difference in the scores for the ith value.  

We denote the Wilcoxon signed rank test as min( , )T W W  . For a 1-sided 

alternative hypotheses  1 1: 0 : 0d dH H   , you want Pr( )T cv , but for a 2-

sided alternative hypothesis 1 : 0dH   , you want 2 Pr( )T cv   and for small 

samples these probabilities are based on critical values (cv) reported in the Table 

below (Appendix 2: Example 3). 

Under the null hypothesis that the true population difference in scores across the 

matched pairs is zero, it can be shown that: 

( 1) ( 1)(2 1)
( )  and ( )

4 24

n n n n n
E T V T

  
  .  

For n>25 then 
( 1) ( 1)(2 1)

~ ,
4 24

a n n n n n
T N

   
 
 

 and therefore 

( 1) / 4
~ (0,1)

( 1)(2 1) / 24

aT n n
N

n n n

 

 
 (Appendix 2: Example 4). 
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Table 1: Critical values of the Wilcoxon Signed Rank Test (n<30) 

1-tailed α=0.05 α=0.025 α=0.01 α=0.005
2-tailed α=0.10 α=0.05 α=0.02 α=0.01

n
6 2 0 - -
7 3 2 0 -
8 5 3 1 0 
9 8 5 3 1

10 10 8 5 3
11 13 10 7 5
12 17 13 9 7
13 21 17 12 9 
14 25 21 15 12
15 30 25 19 15
16 35 29 23 19 
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 37
21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61 
25 100 89 76 68

Thomas Pink  8.1 8.2 8.0 8.0 8.4 8.6 8.5 8.4 8.9 

Cheltenham  8.3 8.4 8.3 8.5 8.5 8.2 8.9 8.5 9.0 

Difference -0.2 -0.2 -0.3 -0.5 -0.1 +0.4 -0.4 -0.1 -0.1 

Rank (-)4.5 (-)4.5 (-)6 (-)9 (-)2 (+)7.5 (-)7.5 (-)2 (-)2 

37.5W  , 7.5W  , so 7.5T   and this is greater than the critical value, cv=5, and so 

we do not reject H0. 
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4. Mann-Whitney Test 

This test compares the central location of two populations, but in this case the samples 

come from independent random samples.  Suppose that 1n  observations are available 

from the first population and 2n  from the second. All observations ( 1 2n n n  ) are 

then ranked in ascending order of magnitude (where equal values are assigned the 

average rank) and we denote 1R  as the sum of ranks of observations from the first 

population. The Mann-Whitney test is then defined as: 

1 1
1 2 1

( 1)

2

n n
U n n R


  

For small sample the critical values are reported in Table 2.  For this statistics we 

know: 

1 2( )
2

n n
E U   and 1 2 1 2( 1)

( )
12

n n n n
V U

 


And for samples (n>25) 1 2 1 2 1 2( 1)
~ ,

2 12

a n n n n n n
U N

  
 
 

 implying 

 
1 2

1 2 1 2

2 ~ 0,1
( 1)

12

a

n n
U

N
n n n n



 
. (Appendix 2: Example 5) 

8.1 8.2 8.0 8.0 8.4 8.6 8.5 8.4 8.9 8.3 8.4 8.3 8.5 8.5 8.2 8.9 8.5 9.0

8.0 8.0 8.1 8.2 8.2 8.3 8.3 8.4 8.4 8.4 8.5 8.5 8.5 8.5 8.6 8.9 8.9 9.0

1.5 1.5 3 4.5 4.5 6.5 6.5 9 9 9 12.5 12.5 12.5 12.5 15 16.5 16.5 18

where red is Thomas Pink and Green is Cheltenham. Then 1 72.5R   and 12 98.5R  , 

in which case: 1 81 45 72.5 53.5U      and 2 81 45 98.5 27.5U     and 

1 2min( , ) 27.5U U U  , with a 5% cv=18 we do not reject 0H . 

Alternatively, we know,   40.5E U   and   128.5V U  , in which case: 

 
(53.5 40.5)

Pr Pr 1.148 0.125
128.5

z z
 

    
 

 and for a 2-sided test this probability is 

0.250, in which case we do NOT reject 0H .
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Table 2: Mann-Whitney 1% Critical Values (2-sided) 

n2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

n1

5 1 2 3 3 4 5 6 7 8 8 10 10 11 12 13 13 

6 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 

7 3 4 5 7 8 9 11 12 14 15 17 18 20 21 23 24 

8 3 5 7 9 10 12 14 15 17 19 21 23 24 26 28 30 

9 4 6 8 10 13 14 16 19 21 23 25 28 30 32 34 36 

10 5 7 9 12 14 17 19 21 25 27 29 32 35 38 40 42 

11 6 8 11 14 16 19 22 24 28 30 32 36 39 42 45 48 

12 7 9 12 15 19 17 24 28 30 34 37 41 44 47 51 55 

13 8 10 14 17 21 21 28 30 35 38 42 46 50 53 57 61 

14 8 12 15 19 23 25 30 34 38 43 47 51 56 59 63 66 

15 10 13 17 21 25 27 32 37 42 47 51 56 61 64 68 72 

16 10 14 18 23 28 29 36 41 46 51 56 61 66 70 74 78 

17 11 16 20 24 30 32 39 44 50 56 61 66 71 76 82 86 

18 12 17 21 26 32 35 42 47 53 59 64 70 76 83 88 93 

19 13 18 23 28 34 40 45 51 57 63 68 74 82 88 94 99 

20 13 19 24 30 36 42 48 55 61 66 72 78 86 93 99 107 

Table 2: Mann-Whitney 5% Critical Values (2-sided) 

n2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

n1

5 3 4 5 7 8 9 10 11 13 14 15 16 18 19 20 21 

6 4 6 7 9 10 12 14 15 17 18 20 22 23 25 26 28 

7 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 

8 7 9 11 14 16 18 21 23 25 28 30 32 35 37 40 42 

9 8 10 13 16 18 21 24 26 29 32 35 37 40 42 46 48 

10 9 12 15 18 21 24 27 30 34 37 39 43 46 49 52 55 

11 10 14 17 21 24 27 30 34 37 41 44 48 51 55 59 62 

12 11 15 19 23 26 24 34 38 41 45 49 53 57 61 65 69 

13 13 17 21 25 29 30 37 41 46 50 54 58 62 67 71 75 

14 14 18 23 28 32 34 41 45 50 55 59 64 68 74 78 84 

15 15 20 25 30 35 37 44 49 54 59 64 69 75 80 86 91 

16 16 22 27 32 37 39 48 53 58 64 69 76 81 87 93 99 

17 18 23 29 35 40 43 51 57 62 68 75 81 87 94 100 106 

18 19 25 31 37 42 46 55 61 67 74 80 87 94 99 106 113 

19 20 26 33 40 46 52 59 65 71 78 86 93 100 106 113 120 

20 21 28 35 42 48 55 62 69 75 84 91 99 106 113 120 128 
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5. Goodness-of-fit test 

Suppose that we are given a random sample of n observations, each of which can be 

classified into exactly one of K categories. Denote the observed number of cases in 

each category as 1 2 3, , , , KO O O O… . If a null hypothesis ( 0H ) specifies probabilities 

1 2 3, , , , Kp p p p… for an observation falling into each of these categories, the expected 

numbers in each category, under 0H , would be ( 1,2, , )i iE np i K  …

We then test whether the actual data is a close fit to the expect data (based on some 

assumed population distribution for probabilities) – and this is done by looking at the 

magnitude of the discrepancy between the observed and expected values. Where large 

(absolute) values ought to make one increasingly suspicious of the null hypothesis. 

The test is constructed as (see Appendix 1 for a proof of this equivalence): 

2 2
2
( 1)

1 1

( )
~

K K
i i i

K
i ii i

O E O
n

E E
 

 


  

And H0 is rejected at significance level  , if 
2

2
( 1),

1

( )K
i i

K
i i

O E

E
 




 . (Appendix 2: 

Example 6) 

In November 2015, Economists were asked about inflation expectations for December 

2016, with 10% reporting <1%, 40% reporting 1-2%, 40% reporting 2-3% and 10% 

reporting >3%. In November 2017, 80 Economists reported their inflation 

expectations for December 2018: 

Range <1% 1-2% 2-3% >3%
Frequency 12 15 33 20

Test the hypothesis the distribution has not changed. 

Range <1% 1-2% 2-3% >3%
Frequency 12 15 33 20
Expected 0.1×80=8 0.4×80=32 0.4×80=32 0.1×80=8

2 2 2 212 15 33 20
80 29.1

8 32 32 8
     , 2

3,0.05 7.81   and so we reject H0.
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6. Contingency Tables 

Suppose we have two attributes A and B. There are K categories in A and H in B so 

that there are KH cross-classifications in total. The number of sample observations 

belonging to the ith category of A and the jth category of B is denoted as ijO  and there 

are n observations in total. To test the null hypothesis of no association 

(independence) between the two attributes, we want to know how many observations 

were would expect to find in each cross-classification. Under the null hypothesis of 

independence between the two attributes A and B we know that the joint probability (

ijp ) is equal to the product of the marginal probabilities ( .i jp p ), in other words: 

Pr( , ) Pr( ).Pr( ) .ij i jp A i B j A i B j p p       .  

Now 
1

Pr( ) /
H

i ij
j

p A i O n


    and 
1

Pr( ) /
K

j ij
i

p B j O n


   . In which case under 

the null hypothesis of independence the expected number of observations is 

1 1

/
H K

ij ij ij ij
j i

E np O O n
 

   . 

We then test whether the actual data is a close fit to the expect data and this is done by 

looking at the magnitude of the discrepancy between the observed and expected 

values. Where large (absolute) values ought to make one increasingly suspicious of 

the null hypothesis. The test is constructed as: 

2 2

2
( 1)( 1)

1 1 1 1

( )
~

K H K H
ij ij ij

K H
i j i jij ij

O E O
n

E E
  

   


  

And H0 is rejected at some significance level  , if 
2

2
( 1)( 1),

1 1

( )K H
ij ij

K H
i j ij

O E

E
  

 


 . 

(Appendix 2: Example 7) 
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150 Economists were asked about inflation expectations for December 2019 in both November 

2016 and in November 2018 and the results were reported as follows: 

Nov 2016
<1% 1-2% 2-3% >3%

Nov 
2018 

<1% 6 10 8 6 30
1-2% 8 12 12 8 40
2-3% 8 12 20 10 50
>3% 8 6 10 6 30

30 40 50 30 150

Test the hypothesis that there is no association between these two series. 

Under independence  

30 30 900
( 1%, 1%) 0.040,

150 150 22500
P      

30 40 1200
( 1%,1 2%) 0.0533

150 150 22500
P      

30 50 1500
( 1%, 2 3%) 0.0667,

150 150 22500
P      

30 30 900
( 1%, 3%) 0.040,

150 150 22500
P      

40 30 120
(1 2%, 1%) 0.0533,

150 150 22500
P      

40 40 1600
(1 2%,1 2%) 0.0711

150 150 22500
P      

40 50 2000
(1 2%,2 3%) 0.0889,

150 150 22500
P      

40 30 1200
(1 2%, 3%) 0.0533,

150 150 22500
P      

50 30 1500
(2 3%, 1%) 0.0667,

150 150 22500
P      

50 40 2000
(2 3%,1 2%) 0.0889,

150 150 22500
P      

50 50 2500
(2 3%,2 3%) 0.111,

150 150 22500
P      

50 30 1500
(2 3%, 3%) 00667,

150 150 22500
P      

30 30 900
( 3%, 1%) 0.040

150 150 22500
P      

30 40 1200
( 3%,1 2%) 0.0533

150 150 22500
P      

30 50 1500
( 3%,2 3%) 0.0667,

150 150 22500
P      

30 30 90
( 3%, 3%) 0.040

150 150 22500
P      
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Expected numbers 

<1% 1-2% 2-3% >3%
<1% 0.040×150=6 0.053×150=8 0.066×150=10 0.040×150=6
1-2% 0.053×150=8 0.071×150=10.6 0.088×150=13.3 0.053×150=8
2-3% 0.067×150=10 0.088×150=13.3 0.111×150=16.6 0.067×150=10
>3% 0.040×150=6 0.053×150=8 0.066×150=10 0.040×150=6

30 40 50 30

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 26 10 8 6 8 12 12 8 8 12 20 10 8 6 10 6
150 3.567

6 8 10 6 8 10.6 13.3 8 10 13.3 16.6 10 6 8 10 6
                

2
9,0.05 16.92  , therefore we DO NOT reject H0.
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Equivalence of Contingency Tests 

2 2 2 2

1 1 1

2

1 1 1

( ) 2
2

2

K K K
i i i i i i i

i i
i i ii i i

K K K
i

i i
i i ii

O E O E O E O
E O

E E E

O
E O

E

  

  

   
    

 

  

  

  

As   
1 1

K K

i i
i i

E O n
 

  
2 2

1 1

2
K K

i i

i ii i

O O
n n n

E E 

     
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Sample Questions 

Question 1 

A random sample of twelve financial analysts was asked to predict the percentage 

increases in the prices of two common stocks over the next year. The results obtained are 

shown in the table below. Use the sign test to test the null hypothesis that for the 

population of analysts, there is no overall preference for one stock over the other: 

Analyst Stock 1 Stock 2 Analyst Stock 1 Stock 2
A 6.8 7.1 G 9.3 10.1
B 9.8 12.3 H 1.0 2.7
C 2.1 5.3 I -0.2 1.3
D 6.2 6.8 J 9.6 9.8
E 7.1 7.2 K 12.0 12.0
F 6.5 6.2 L 6.3 8.9

Question 2 

In a random sample of 130 voters, 44 favoured tax increases to raise funding for 

education, 68 opposed the tax increase, and 18 expressed no opinion. Test against a 2-

sided alternative the null hypothesis that voters in the state are evenly divided on the 

issue of a tax increase. 

Question 3 

Using the data in (1), test the null hypothesis that for the population of analysts, there is 

no difference in the mean performance of one stock over the other, using the Wilcoxon 

Signed Rank Test. 
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Question 4 

A consultant id interested in the impact of the introduction of a quality management 

program on job satisfaction of employees. A random sample of 30 employees was asked 

to assess level of satisfaction on a scale of 1 (very dissatisfied) to 10 (very satisfied) 3 

months before the introduction of the program. These same individuals were then asked 

to make this assessment again 3 months after the introduction of the program. The 30 

differences in the pairs of rating were calculated and the absolute differences ranked. The 

smaller of the rank sums, which was for those more satisfied before the introduction of 

the program was 169.  What can be concluded from these findings? 

Question 5 

A random sample of 15 male and an independent random sample of 15 female students 

were asked to write essays at the conclusion of their writing module. Essays were then 

ranked from 1 (best) to 30 (worst) by the module leader as: 

Males 26 24 15 16 8 29 12 6 18 11 13 19 10 28 7
Females 22 2 17 25 14 21 5 30 3 9 4 1 27 23 20

Question 6 

A random sample of 520 customers were asked about the importance of quality of food 

as a factor in choosing a hospital. Sample members were asked to respond as “not 

important”, “important”, or “very important”. Respective numbers selecting these 

answers were: 199, 136 and 167. Test the null hypothesis that a randomly chosen 

consumer is equally likely to select each of these answers. 

Question 7 

In a series of surveys, 55 forecasters were asked whether they thought inflation would 

increase over the next 12 months from its current level. It was also noted whether or not 

actual inflation increased. The results are reported in the table below: 

Outcome Forecast
Increase No increase

Increase 18 11
No increase 6 20

Test the null hypothesis of no association between forecast and outcome. 
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Sample Questions (with Answers) 

Question 1 

A random sample of twelve financial analysts was asked to predict the percentage 

increases in the prices of two common stocks over the next year. The results obtained are 

shown in the table below. Use the sign test to test the null hypothesis that for the 

population of analysts, there is no overall preference for one stock over the other: 

Analyst Stock 1 Stock 2 Analyst Stock 1 Stock 2
A 6.8 7.1 G 9.3 10.1
B 9.8 12.3 H 1.0 2.7
C 2.1 5.3 I -0.2 1.3
D 6.2 6.8 J 9.6 9.8
E 7.1 7.2 K 12.0 12.0
F 6.5 6.2 L 6.3 8.9

Answer 

0 : 0.5H p 

1 : 0.5H p 

n=11 with 1 + value and 10 – values, we want 

2 Pr( 1) 2 [Pr( 0) Pr( 1)] 2 [0.0005 0.0054] 0.0118W W W          

and so we reject H0 at significance levels in excess of 1.18%. 
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Question 2 

In a random sample of 130 voters, 44 favoured tax increases to raise funding for 

education, 68 opposed the tax increase, and 18 expressed no opinion. Test against a 2-

sided alternative the null hypothesis that voters in the state are evenly divided on the 

issue of a tax increase. 

Answer 

0 : 0.5H p 

1 : 0.5H p 

n=130-18=112, ˆ/ 44 /112 0.3929W n p  

0.3929 0.5
2.27

0.25 /112
z


  

p-value=2[1- (2.27)]=0.0232  and so we reject H0 at significance levels in excess of 

2.32% 
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Question 3 

Using the data in (1), test the null hypothesis that for the population of analysts, there is 

no difference in the mean performance of one stock over the other, using the Wilcoxon 

Signed Rank Test. 

Answer 

0 : 0dH  

1 : 0dH  

n=11 with 1 + value and 10 – values, we want: 

Analyst Stock 1 Stock 2 Stk1-Stk2 
i iR 

i iR 

A 6.8 7.1 -0.3 3.5
B 9.8 12.3 -2.5 9
C 2.1 5.3 -3.2 11
D 6.2 6.8 -0.6 5
E 7.1 7.2 -0.1 1
F 6.5 6.2 +0.3 3.5
G 9.3 10.1 -0.8 6
H 1.0 2.7 -1.7 8
I -0.2 1.3 -1.5 7
J 9.6 9.8 -0.2 2
K 12.0 12.0 0.0
L 6.3 8.9 -2.6 10

3.5 62.5

From this we have T=3.5, with critical value of 10 (at the 5% significance level for a 2-

sided test), we reject H0. 
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Question 4 

A consultant id interested in the impact of the introduction of a quality management 

program on job satisfaction of employees. A random sample of 30 employees was asked 

to assess level of satisfaction on a scale of 1 (very dissatisfied) to 10 (very satisfied) 3 

months before the introduction of the program. These same individuals were then asked 

to make this assessment again 3 months after the introduction of the program. The 30 

differences in the pairs of rating were calculated and the absolute differences ranked. The 

smaller of the rank sums, which was for those more satisfied before the introduction of 

the program was 169.  What can be concluded from these findings? 

Answer 

0 : 0dH  

1 : 0dH  

T=169, 
30(31) 30(31)(61)

( ) 232.5, ( ) 2363.75
4 24

E T V T   

169 232.5
1.31 p-value=1- (1.31)=0.0951

2363.5
z


      and so we reject H0 at significance 

levels in excess of 9.51%. 
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Question 5 

A random sample of 15 male and an independent random sample of 15 female students 

were asked to write essays at the conclusion of their writing module. Essays were then 

ranked from 1 (best) to 30 (worst) by the module leader as: 

Males 26 24 15 16 8 29 12 6 18 11 13 19 10 28 7
Females 22 2 17 25 14 21 5 30 3 9 4 1 27 23 20

Answer 

nm=15, Rm=242, nf=15 Rf=223.  

0 : 0dH  

1 : 0dH  

15(16)
15(15) 242 103

2
U    

15(15) 15(15)(15 15 1)
( ) 112.5, ( ) 581.25

2 12
E U V U

 
   

103 112.5
0.39 p-value=2[1- (0.39)]=0.6966

581.25
z


      and so we reject H0 at 

significance levels in excess of 69.66%. 
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Question 6 

A random sample of 520 customers were asked about the importance of quality of food 

as a factor in choosing a hospital. Sample members were asked to respond as “not 

important”, “important”, or “very important”. Respective numbers selecting these 

answers were: 199, 136 and 167. Test the null hypothesis that a randomly chosen 

consumer is equally likely to select each of these answers. 

Answer 

0 :  All outcomes equally likelyH

1 :  otherwiseH

Not imp Imp Very imp Total
Observed 199 136 167 502
Prob (under H0) 0.333 0.333 0.333 1
Expected number 167.33 167.33 167.33 502

2 2 2 2

1

199 136 167
502 502 11.86

167.33 167.33 167.33

K
i

i i

O

E

     

2
2,0.01 09.21  Reject  at 1% signficance level.H  



Handout 7: Appendix 2 

20 

Question 7 

In a series of surveys, 55 forecasters were asked whether they thought inflation would 

increase over the next 12 months from its current level. It was also noted whether or not 

actual inflation increased. The results are reported in the table below: 

Outcome Forecast
Increase No increase

Increase 18 11
No increase 6 20

Test the null hypothesis of no association between forecast and outcome. 

Answer 

0 :  No association between forecast and outcomeH

1 :  otherwiseH

Under H0 (independence) the probability of being in each category is: 

24 29
( , ) 0.230

55 55
P Increase Increase    , 

24 26
( , ) 0.206

55 55
P Increase No Increase    , 

31 29
( , ) 0.297

55 55
P No Increase Increase    , 

31 26
( , ) 0.266

55 55
P Increase No Increase   

, 

and expected number of observations in each category is: 

Outcome Forecast
Increase No increase

Increase 0.230×55 0.206×55 29
No increase 0.297×55 0.266×55 26

24 31 55

Outcome Forecast
Increase No increase

Increase 12.65 16.35 29
No increase 11.35 14.65 26

24 31 55
2 2 2 2 22 2

1 1

18 11 6 20
55 55 8.48

12.65 16.35 11.35 14.65

ij

i j ij

O

E 

      

2
1,0.01 06.63  Reject  at 1% signficance level.H  


