
Research Methods (MSc Programme), 2018

Introduction to MATLAB 3

Numerical techniques in MATLAB: differen-
tial equations and non-linear dynamics

Piotr Z. Jelonek

May 23, 2018

1 Differential Equations

1.1 Ordinary linear equation: An example

Let us start with the following simple example:

dx

dt
= ax+ b. (1)

In order to solve eq. (1) on a computer we will need to transit from continuous time to discrete
time. This is because computers can not faithfully represent real numbers. Start by rewriting
the initial formula as:

dx = (ax+ b) dt.

Next assume that the time is a discrete index with: n ascending values, initial value equal to zero,
and terminal value equal to T :

0 = t1 < t2 < < tn−1 < tn = T.

Discrete time counterparts of continuous time differential operators dx, dt are difference operators:

∆x(tk+1) = x(tk+1)− x(tk), ∆tk+1 = tk+1 − tk.

If we replace differentials with differences at time tk+1 and assume that x’s on the right hand side
are delayed in time:

∆x(tk+1) = (ax(tk) + b) ∆tk+1 ≡ x(tk+1)− x(tk) = (ax(tk) + b)(tk+1 − tk) ≡

≡ x(tk+1) = x(tk) + (ax(tk) + b)(tk+1 − tk).

This calculation motivates the following iterative formula:

x(tk) =

{
x(0) for k = 1

x(tk−1) + (ax(tk−1) + b)(tk − tk−1) for k ∈ {2, ..., T}.
(2)

In the equation above the increment of time is called a time step, it is often convenient to assume
it is constant and thus set tk+1 − tk := d. The process of switching from the differential equation
in continuous time to difference equation in discrete time (which can be effectively solved by substi-
tution) is called the discretization. If the right hand side of eq. (1) is continuous, then the iterative
formula (2) may provide a good approximation of the solution to the original differential equation,
if only the time steps are small enough.

In order to check whether this approximation is accurate, we will need to compare it with
the exact analytical solution. To solve eq. (1) first rewrite it, and next take antiderivatives of both
sides:

1

ax+ b
dx = dt ≡

∫
1

ax+ b
dx =

∫
1 dt ≡

∫
d

dx

(
1

a
ln (ax+ b)

)
dx =

∫
d

dt
t dt ≡

≡ 1

a
ln (ax+ b) + c = t ≡ ln (ax+ b) = a(t− c) ≡ ax+ b = e a(t−c) ≡

≡ x(t) =
1

a

(
e a(t−c) − b

)
.

1

This is a general solution (x as a function of t). Since antiderivative is unambiguous up to a constant
term, constant c can by anything. We may want to check if this solutions is correct, indeed:

d

dt

1

a

(
e a(t−c) − b

)
= e a(t−c) = a · 1

a

(
e a(t−c) − b+ b

)
= a · 1

a

(
e a(t−c) − b

)
+ b = ax(t) + b.

It is often convenient to express c in terms of x at t = 0 (initial value of x):

x(0) =
1

a

(
e a(0−c) − b

)
≡ ax(0) + b = e−ac ≡ ln (ax(0) + b) = −ac ≡

≡ c = −1

a
ln (ax(0) + b).

If we plug the formula for c back into the general solution, we obtain:

x(t) =
1

a

(
e a(t+

1
a
ln (ax(0)+b)) − b

)
=

1

a

(
(ax(0) + b)e at − b

)
=

(
x(0) +

b

a

)
e at − b

a
. (3)

Now the solution depends on: parameters a and b and the initial value x(0).
We will solve our initial problem on a computer for the time step d = 0.01, this example is

provided as ‘ode1.m’ script:

clear; clc;

% equation parameters

a=1/pi

b=(exp(1))/2

x0=1.234

% trajectory parameters

T=3; % <- terminal time

d=0.01; % <- grain of time (quantum)

% number of periods

n=1+T/d;

% vector of time

t=linspace(0,T,n)’; % <- same as: t=d*(cumsum(ones(n,1))-1);

% solution

x=zeros(n,1); % <- here we will save the output

x(1)=x0; % <- the initial value

for i=2:n

x(i)=x(i-1)+(a*x(i-1)+b)*d;

end

plot(t,x)

axis([0 T 0 12])

2

Now we will repeat this exercise with the following modification. First we will solve the eq. (1)
for d = 0.25 (for n = 12 + 1 point in time), then for d = 0.001 (3000 + 1 points), next we will
compute analytical (exact) solutions for 3001 points in time. Finally, we will plot all the solutions
on one graph. This example is provided as ‘ode2.m’ script:

clear; clc;

% parameters

a=1/pi

b=(exp(1))/2

x0=1.234

%%%%%%%%%%%%%%%%%%%% Time step d = 0.25 %%%%%%%%%%%%%%%%%%%

d=0.25; % <- grain of time (quantum)

% trajectory parameters

T=3; % <- terminal time

% number of periods

n=1+T/d;

% vector of time

t=linspace(0,T,n)’; % <- same as: t=d*(cumsum(ones(n,1))-1);

% solution

x=zeros(n,1); % <- here we will save the output

x(1)=x0; % <- the initial value

for i=2:n

x(i)=x(i-1)+(a*x(i-1)+b)*d;

end

%%%%%%%%%%%%%%%%%%% Time step d = 0.001 %%%%%%%%%%%%%%%%%%%

d=0.001; % <- grain of time (quantum)

% number of periods

n=1+T/d;

% vector of time

s=linspace(0,T,n)’; % <- same as: t=d*(cumsum(ones(n,1))-1);

% solution

y=zeros(n,1); % <- here we will save the output

y(1)=x0; % <- the initial value

for i=2:n

y(i)=y(i-1)+(a*y(i-1)+b)*d;

end

3

%%%%%%%%%%%%%%%%%%% Analytic solution %%%%%%%%%%%%%%%%%%%

z=(x0+(b/a))*exp(a*s)-(b/a);

%%%%%%%%%%%%%%%%%%%%% All one one plot %%%%%%%%%%%%%%%%%%%

plot(s,z,’b--’,s,y,’k-’,t,x,’r+’)

legend(’Solution’,’Approx. (d=0.001)’,’Approx. (d=0.25)’,’Location’,’NorthWest’)

axis([0 T 0 12])

The output chart is provided below:

Figure 1: Analytical solution is represented by a dashed blue line, numerical approximation (with d = 0.001) –
by a solid black line, another numerical approximation (d = 0.25) – by red ‘+’ symbols.

When I produced this graph, I have first plotted the blue dashed line (representing analytical
solution), next the black solid line (approximation, d = 0.001), and finally the red ‘+’ symbols
(approximation, d = 0.25).

Question: what happened to the blue dashed line?

Note: we have not used at any point the fact that equation (1) is linear, or that its trajectories
are smooth (differentiable an arbitrary number of times). Hence a similar approach could be used
to approximate solutions to non-linear, non-ordinary differential equations which, in general, re-
main unknown.

Why is it useful: This example illustrates how easy it may be to solve differential equations
on a computer. The most difficult thing we did here was to write a for loop, in multivariate case
it might also be convenient to store the approximated solutions in a matrix (instead of multiple
vectors). This approach typically works fine, but for larger systems it is tedious – so the examples

4

that follow will be solved differently. A situation when we would need to take this pedestrian
approach: input variables are bounded (e.g. the population ratios, contained in [0, 1] interval), and
in result trajectories of solutions are non-differentiable (kinked).

1.2 Equations with delays: logistic equation

We could also solve equations with dependence delayed in time. A logistic equation is a model
of population dynamics, useful in environmental economics. It depicts the growth of a population
when the maximal population size is limited by environmental capacity C.

dp

dt
= r · p(t)

(
1− p(t)

C

)
, with r, C > 0. (4)

Motivation: In equation (4) for a very small population size the term (1− p(t)/C) ≈ 1 and
population growth is (approximately) exponential. When the population size approaches the value
of C, then (1− p(t)/C) ≈ 0 and the growth is halted. This is because the environment has no more
resources to accommodate a larger population.

Logistic equation has a known analytic solution, which takes the form:

p(t) =
C

1 +
(

C
p(0) − 1

)
e−rt

.

Since we do not derive this formula, let us at least check if it is correct:

d

dt
p(t) = (−1)

C[
1 +

(
C

p(0) − 1
)
e−rt

]2 (−r)
(

C

p(0)
− 1

)
e−rt =

= r · C[
1 +

(
C

p(0) − 1
)
e−rt

]2 [1 +

(
C

p(0)
− 1

)
e−rt − 1

C
C

]
= r · p(t)

(
1− p(t)

C

)
.

We have shown by substitution that the formula above is some solution to the equation (4), but
we have not shown it is a general solutions.

Now we will approximate the solutions to the logistic equation using a build-in MATLAB
ordinary differential equations solver. What solvers are doing is exactly what we did in the previous
subsection, but automatically (so you do not need to write a loop) and in general better. Solvers may
use different discretization schemes and varying time lengths more suitable for a given problem,
they also allow to control a magnitude of the approximation errors. We will be using the ode45()
solver, which is appropriate for the systems of non-stiff ordinary differential equations. An equation
is non-stiff if it can be solved with a non-stiff approximation method1. To learn how to use this
solver type:

help ode45

in the MATLAB command window. The basic syntax of ode45() solver is as follows:

[t,x]=ode45(@system_dx,tspan,x0);

1If it sounds like a ‘butterly butter’ it is because it is a ‘butterly butter’.

5

Input vector tspan is required to have the initial time as it s first, and the terminal time as its
second entry. Input vector x0 represents the initial point of a trajectory, it contains the starting
values of all the variables. Both vectors can be either row vectors, or column vectors (whichever you
find more convenient). The monkey ‘@’ symbol tells MATLAB that whatever follows is a name
of a function. Hence ‘system dx’ is a name of a function. This function is required to have
tspan and a vector x, representing the current point of the output trajectory, as its first and second
(exactly in that order) input variables. Function system dx() is required to output a column
vector of derivatives of our system of equations, evaluated in point x. Output vector t represents
time. Since these points were selected by a solver, the values of t do not need to be equally spaced.
Output matrix x contains the values of all the points of the trajectory, evaluated for the times
provided by t. The first column of x is your first variable, the second column is your second
variable etc.

The following code solves the logistic equation and compares this approximation to the analytic
solution. It is is provided as ‘logistic.m’ script:

clear; clc;

% system parameters

C=500; % <- environmental capacity

r=0.1; % <- growth rate

% trajectory parameters

x0=1; % <- initial population size

T=100; % <- terminal time

tspan=[0 T]; % <- time span

% time scale

s=0:0.1:T; % <- same as: s=linspace(0,T,1+T/0.1);

rowss=length(s);

% analytic solution to logistic differential equaiton

x=zeros(rowss,1);

for k=1:rowss

x(k)=C/(1+(C/x0-1)*exp(-r*s(k)));

end

% numerical solution using ode45 solver, ’logistic_dx’ is a function

% which outputs a vector of derivatives

[t,y]=ode45(@logistic_dx,tspan,x0);

% compare the solutions: theoretic and numeric

plot(s,x,t,y,’or’)

xlabel(’TIME (IN YEARS)’)

ylabel(’POPULATION SIZE’)

6

The logistic dx() function is defined as:

function dx=logistic_dx(tspan,x)

r=0.1; % <- defining parameters here is not a good practice

C=500;

dx=r*x*(1-x/C);

end

The chart produced by the script is presented below:

Figure 2: Analytical solution to logistic equation is denoted with a blue solid line, numerical approximation is
marked by red circles.

For the sake of simplicity of the syntax I have defined parameters of this system inside the function
that outputs the derivative. That is not a good practice, in the next example we will do it in a much
neater way. We will also control the quality of the generated approximation.

A more realistic extension of this mode is logistic equation with a delay:

dp

dt
= r · p(t− s)

(
1− p(t)

C

)
, with r, C, s > 0. (5)

Motivation: Only adult members of a population can produce offsprings. Hence population
growth rate should only depend on a number of adult members (who were born at least s units
of time ago). Since some of them might have died before reaching the adulthood, r should be
corrected for an attrition rate. As children also need to eat, environmental capacity is being
exhausted by the current population size.

Equation (5) is a simple example of a Delayed Differential Equation (DDE). These type
of equations requires different solving methods than the Ordinary Differential Equations and are
not covered in basic differential equations courses.

7

To solve this example we will use the dde23() solver, dedicated to solving the delayed differential
equations. To learn how to use this solver type:

help dde23

in the MATLAB command window. The basic syntax of this solver is as follows:

sol=dde23(@system_dx,lags,hist,tspan);

but now what we are going to use is its more advanced version:

sol=dde23(@(t,x,z) system_dx(t,x,z,params),lags,hist,tspan,options);

Input vector lags indicates the required lags of all the variables. Variable hist codes the history
of our variable(s) prior the initial time. It may be equal either to a scalar value, or to a vector
of values, or be given by a function. Input vector tspan is required to have the initial time as its first,
and the terminal time as its second entry. The options variable denotes a MATLAB structure,
that is – a type of data that consists of a number of variables of different types, bundled together
for the sake of convenience. Different fields (elements) of this variable might be conveniently set
by the odeset() function (explained later). The ‘system dx’ above is again a name of a function,
which is signalized by the monkey (‘@’) sign. This function has four parameters: current time t,
vector of current values of all variables in the system x, matrix of lagged values z (lags of each
variable are provided in a separate column), and a vector of parameters params. Out of these four
parameters the first three are the required by the solver, we tell this to MATLAB explicitly using
the ‘@(t,x,z)’ syntax. The output sol structure characterizes the solution. Its two most important
fields are the vector of times and the matrix of approximated solutions, which may be conveniently
acessed through the following assignments:

t=sol.x; x=sol.y;

The code displayed below solves the delayed logistic equation, it is provided as ‘dlogistic.m’ script:

clear; clc;

% system parameters

C=500; % <- environmental capacity

r=0.1; % <- growth rate

lags = 16; % <- delay in time (could be a vector)

% trajectory parameters

T=100; % <- terminal time

tspan=[0 T]; % <- time span

hist=1; % <- population size up to initial time

% solver parameters

small=0.000001; % <- definition of a small number

% approximation

options = odeset(’RelTol’,small,’AbsTol’,small);

8

% sol=dde23(@dlogistic_dx,lags,hist,tspan);

sol=dde23(@(t,x,z) dlogistic_dx(t,x,z,r,C),lags,hist,tspan,options);

% acessing elements of the output structure

t=sol.x’;

x=sol.y’;

plot(t,x,’ro’)

xlabel(’TIME (IN YEARS)’)

ylabel(’POPULATION SIZE’)

n=size(t,1)

The dlogistic dx() function is defined as:

function dx=dlogistic_dx(t,x,z,r,C)

dx=r*z(:,1).*(1-x(:,1)/C);

end

The odeset() function modifies the options structure and simultaneously makes it accessible
in the Workspace window. It is often used to modify the required accuracy of the solutions. That
is, we may require approximation errors of variable xi at each time t to be small enough to fulfil

ε(i) ≤ max (RelTol · xi,AbsTol).

Parameter ‘RelTol’ represents the relative error tolerance. In example, RelTol=0.01 means
that we never make a (relative) error larger than 1%. Parameter ‘AbsTol’ represents the absolute
error tolerance. Hence AbsTol = 0.001 means that we never make an (absolute) error larger than
0.001. Both tolerance parameters may be set either globally, for all the variables, or we may use
a different tolerance for each variable. We may also use the odeset() function with the ode45()
solver, in such an instance we would call it like in the line(s) below (options becomes the last
parameter of the ode45() function):

% approximation

options = odeset(’RelTol’,small,’AbsTol’,small);

% numerical solution using ode45 solver

[t,y]=ode45(@logistic_dx,tspan,x0,options);

The chart produced by the script is presented on the next page.

9

Figure 3: Numerical approximation of the solution is marked by red circles.

Why is it useful: in economics we often use simultaneous differential equations. However, most
of policies require transmission time, while some other variables (like: expectation) are forward
looking – the time lag/forward structure matters. Investigating how time structure might affect
policy transmission in classical models might be an interesting path to pursue in a dissertation.

Fun fact: in an (otherwise interesting) maths project available here you may breed straight after
you were born, but you do not need to eat until you are 18.

1.3 Deterministic chaos: Lorenz attractor

From Lorenz system entry on Wikipedia: a non-linear, deterministic, three-dimensional system
of differential equations, developed in 1963 by Edward Lorenz as a mathematical model of atmo-
spheric convection. Also useful in modelling: laser, electric circuits, chemical reactions and forward
osmosis. Its most notable interesting feature is a set of chaotic solutions, known as the Lorenz
attractor, obtained for certain: parameter values and initial conditions.

The three Lorenz equations are presented below.

d

dt
x(t) = −σ (x(t)− y(t)) ,

d

dt
y(t) = x(t) (ρ− z(t))− y(t),

d

dt
z(t) = x(t)y(t)− βz(t).

Question: Can you guess how solutions of this systems will look on a graph?

10

http://msemac.redwoods.edu/~darnold/math55/deproj/sp12/wright/paper.pdf
https://en.wikipedia.org/wiki/Lorenz_system

Numerical approximations of the solutions to the Lorenz system are generate by ‘lorenz.m’ script,
provided below.

clear; clc;

% system parameters

sigma=10;

rho=28;

beta=8/3;

% trajectory parameters

x0=[1 10 5]; % <- starting point

tspan=[0 40]; % <- time span (from t=0 up to t=40)

% solver parameters

small=0.000001; % <- definition of a small number

% approximation

options = odeset(’RelTol’,small,’AbsTol’,small);

[t,x] = ode45(@(tspan,x) lorenz_dx(tspan, x, sigma, rho, beta), tspan, x0, options);

plot3(x(:,1),x(:,2),x(:,3));

xlabel(’X’);

ylabel(’Y’);

zlabel(’Z’);

title(’Lorenz attractor’);

n=size(t,1) % <- number of points in time (optimized by solver)

The lorenz dx() function is defined as:

function dx = dx_lorenz(tspan, x, sigma, rho, beta)

% tspan is a parameter in general required by the solver,

% here it remains unused

dx = zeros(3,1);

dx(1) = -sigma*(x(1)-x(2));

dx(2) = x(1)*(rho - x(3)) - x(2);

dx(3) = x(1)*x(2) - beta*x(3);

end

Why is it useful: Lorenz attractor is a simple example of a system which displays a property,
known as deterministic chaos. The chaotic jumps between the two adjoint discs (the shape of this
chart is sometimes called a butterfly) are also susceptible to the Butterfly effect, which describes
high sensitivity of solutions to the systems of Partial Differential Equations to their initial
conditions (this is why forecasting weather is hard). Could we face (somehow) similar problems
in the systems of differential equations, describing an economy?

The chart produced by the script is presented on the next page.

11

Figure 4: Lorenz attractor.

1.4 Instability in economic systems: Minsky model(s)

The Goodwin model (for the reference see p. 224 in Keen (2013a), or Steven Keen’s lecture) is able
to replicate GDP fluctuations and employment cycles.

Values of parameters:

α = 0.02, β = 0.01, c = 4.8, d = 5, γ = 0.01, ν = 3,

system of equations (driving the entire dynamics):

d

dt
L(t) =

(
1

ν

(
1− w(t)

a(t)

)
− γ − α

)
· L(t),

d

dt
w(t) =

(
d · L(t)

N(t)
− c
)
· w(t),

d

dt
a(t) = α · a(t),

d

dt
N(t) = β ·N(t),

initial values:
L(0) = 300, w(0) = 0.95, a(0) = 1, N(0) = 300,

definitions and identities:

Y (t) = a(t) · L(t), K(t) =
1

ν
Y (t), Π(t) = Y (t)− w(t) · L(t), I(t) = Π(t).

12

https://www.youtube.com/watch?v=3t9WPLv3mwM

The code approximating the solutions to Godwin model is provided as ‘minsky I.m’ script:

clear; clc;

% system parameters

alpha=0.02; % <- per annum

beta=0.01; % <- per annum

c=4.8;

d=5;

gamma=0.01; % <- per annum

nu=3;

% initial values

L0=300; % <- initial labour force

w0=0.95; % <- initial wages

a0=1; % <- initial technology

N0=300; % <- initial population

% trajectory parameters

x0=[L0 w0 a0 N0];

T=100; % <- terminal time

tspan=[0 T]; % <- time span (from t=0 up to t=T)

% solver parameters

small=0.00001; % <- definition of a small number

% approximation

options = odeset(’RelTol’,small,’AbsTol’,small);

[t,x] = ode45(@(tspan,x) minsky_I_dx(tspan,x,alpha,beta,c,d,gamma,nu), tspan, x0);

% mapping solutions of ode to economy

L=x(:,1);

w=x(:,2);

a=x(:,3);

N=x(:,4);

Y=a.*L;

K=Y/nu;

P=Y-w.*L;

I=P;

employment_rate=100*L./N; % <- in % points

wage_share=100*(w.*L)./Y; % <- in % points

13

% here choose your favourite chart

chart=1;

if chart==1

% output (cyclical)

plot(t,Y)

xlabel(’TIME (IN YEARS)’)

ylabel(’OUTPUT’);

grid on;

elseif chart==2

% employment cycles

plot(employment_rate,wage_share)

xlabel(’EMPLOYMENT RATE’)

ylabel(’WAGES TO OUTPUT’)

axis([90 105 60 120])

grid on;

end

The minsky I dx() function is defined as:

function dx = minsky_I_dx(tspan,x,alpha,beta,c,d,gamma,nu)

dx=zeros(4,1);

dx(1)=((1/nu)*(1-x(2)/x(3))- gamma - alpha)*x(1);

dx(2)=(d*(x(1)/x(4))-c)*x(2);

dx(3)=alpha*x(3);

dx(4)=beta*x(4);

end

The charts produced by the script are presented below:

(a) Output fluctuates. (b) Employment is cyclic.

Figure 5: The results following from the approximated solutions to the Godwin model.

14

Minsky II model (for the reference see pp. 225-226 in Keen (2013a), or Steven Keen’s lecture) has
two regimes: stable, where the economy converges to an equilibrium, and unstable, where the crisis
occurs.

Non-linear functions:

GenExp(v;x, y, s,m) := (y −m) · e s·(v−x)/(y−m) +m,

Wf (v) := GenExp(v;xw, yw, sw,mw),

If (v) := GenExp(v;xi, yi, si,mi),

values of parameters:

α = 0.02, β = 0.01, γ = 0.01, ν = 3, r = 0.05,

xp = 0.05, yp = 0.05, sp = 1.75, mp = 0,

xl = 0.95, yl = 0, sl = 0.5, ml = −0.01,

definitions and identities:

L(t) = Y (t)/N(t), Π(t) = Y (t)− w(t) · L(t)− r ·D(t), λ(t) =
Y (t)

a(t) ·N(t)

system of equations (driving the entire dynamics):

d

dt
Y (t) =

[
1

ν
If

(
Π(t)

ν · Y (t)

)
− γ
]
· Y (t),

d

dt
w(t) = Pf (λ(t)) · w(t),

d

dt
D(t) = If

(
Π(t)

ν · Y (t)

)
· Y (t)−Π(t),

d

dt
a(t) = α · a(t),

d

dt
N(t) = β ·N(t),

initial values of variables:

Y (0) = 300, w(0) = 0.95, D(0) = 0, a(0) = 1, N(0) = 300,

Note: Steven Keen says that there are some stock-flow problems with this model, and that Min-
sky III model that follows is better. The provided parameter values correspond to the stable
regime.

Note to myself: tell them about rabbits, hats and why this equilibrium is an interesting property.

15

https://www.youtube.com/watch?v=3t9WPLv3mwM

The code approximating the solutions to Minsky II model is provided as the ‘minsky II.m’
script:

clear; clc;

% system parameters

alpha=0.02; % <- per annum

beta=0.01; % <- per annum

gamma=0.01; % <- per annum

nu=3;

r=0.05; % <- interest rate, exogeneous

% parameters of a non-linear function, capturing the dependence

% of investment on ratio of profit to capital

x_p=0.05;

y_p=0.05;

s_p=1.75;

m_p=0;

% parameters of a non-linear function, capturing the dependence

% of wage growth rate on employment (aka Phillips curve)

x_l=0.95;

y_l=0;

s_l=0.5;

m_l=-0.01;

% all parameters in one vector

params=[alpha beta gamma nu r x_p y_p s_p m_p x_l y_l s_l m_l];

% initial values

Y0=300; % <- initial output

w0=0.95; % <- initial wages

D0=0; % <- initial debt

a0=1; % <- initial technology

N0=300; % <- initial population

% trajectory parameters

x0=[Y0 w0 D0 a0 N0];

T=120; % <- terminal time

tspan=[0 T]; % <- time span (from t=0 up to t=T)

% solver parameters

small=0.000001; % <- definition of a small number

% approximation

options = odeset(’RelTol’,small,’AbsTol’,small);

[t,x] = ode45(@(tspan,x) minsky_II_dx(tspan,x,params), tspan, x0,options);

16

% mapping solutions of ode to economy

Y=x(:,1);

w=x(:,2);

D=x(:,3);

a=x(:,4);

N=x(:,5);

K=Y/nu;

L=Y./a;

P=Y-w.*L-r*D;

I=P;

% here choose your favourite chart

chart=1;

if chart==1

% PHillips curve

l=linspace(0.9,1.01,1101);

H=(y_l-m_l)*exp(s_l*(l-x_l)/(y_l-m_l))+m_l;

plot(100*l,100*H);

xlabel(’EMPLOYMENT RATE (IN %)’)

ylabel(’ANNUAL CHANGE IN REAL WAGE (IN %)’);

axis([90 101 -10 20]); grid on;

elseif chart==2

% Investment function

p=linspace(-0.05,0.11,1601);

I=(y_p-m_p)*exp(s_p*(p-x_p)/(y_p-m_p))+m_p;

plot(100*nu*p,100*I); % <- x has to be multiplied by nu

xlabel(’PROFIT (IN %)’)

ylabel(’INVESTMENT (AS % OF OUTPUT)’)

axis tight; grid on;

elseif chart==3

% Output

plot(t,Y);

xlabel(’YEARS’); ylabel(’REAL OUTPUT’)

axis tight; grid on;

elseif chart==4

wage_share=(w.*L)./Y;

employment_rate=L./N;

debt_ratio=D./Y;

x1=wage_share; x2=employment_rate; x3=debt_ratio;

c = 1:length(t); % <- number of colors

h = surface([x1(:), x1(:)], [x2(:), x2(:)], [x3(:), x3(:)], ...

[c(:), c(:)], ’EdgeColor’,’flat’, ’FaceColor’,’none’); colormap(jet(numel(t)))

xlabel(’WAGE SHARE OF OUTPUT’)

ylabel(’EMPLOYMENT RATE’); zlabel(’DEBT RATIO’); grid on

end

17

The minsky II dx() function is defined as:

function dx = minsky_II_dx(tspan,x,params)

% reading paramaters

alpha=params(1); beta=params(2); gamma=params(3); nu=params(4); r=params(5);

x_p=params(6); y_p=params(7); s_p=params(8); m_p=params(9);

x_l=params(10); y_l=params(11); s_l=params(12); m_l=params(13);

% auxilaries

L=x(1)/x(4); % <- labour

P=x(1)-x(2)*L - r*x(3); % <- profit

p=P/(nu*x(1)); % <- profit to capital

I=(y_p-m_p)*exp(s_p*(p-x_p)/(y_p-m_p))+m_p; % <- investment as a function of profit

l=x(1)/(x(4)*x(5)); % <- employment rate

H=(y_l-m_l)*exp(s_l*(l-x_l)/(y_l-m_l))+m_l; % <- growth rate of wages as a fctn. of employment rate

% derivative

dx=zeros(5,1);

dx(1)=x(1)*(I/nu - gamma);

dx(2)=H*x(2);

dx(3)=I*x(1)-P;

dx(4)=alpha*x(4);

dx(5)=beta*x(5);

end

The charts produced by the script are presented below:

(a) Now output smoothes. (b) Convergence to equilibrium.

Figure 6: The results following from the approximated solutions to the Minsky II model.

18

(a) Reaction of real wages to employment. (b) Reaction of investment to profit.

Figure 7: The results following from the approximated solutions to the Minsky II model.

Minsky III model (straight from Steven Keen), this model replicates a deceptive economic
moderation, followed by a vehement structural crisis, generated by the accumulation of private
debt (consistent with the Minsky financial instability hypothesis).

Non-linear functions:

GenExp(v;x, y, s,m) := (y −m) · e s·(v−x)/(y−m) +m,

Wf (v) := GenExp(v;xw, yw, sw,mw),

If (v) := GenExp(v;xi, yi, si,mi),

values of parameters:

α = 0.025, β = 0.015, δ = 0.07, ν = 3, rb = 0.04, s = 0.3, τp = 1, τi = 0.5,

xw = 0.6, yw = 0.0, sw = 1, mw = −0.04,

xi = 0.03, yi = 0.03, si = 2.25, mi = 0,

definitions and identities:

r(t) := rb + max (i(t), 0),

π(t) := 1− ω(t)− r(t) · d(t),

f(t) := − 1

τp

(
1− 1

1− s
ω(t)

)
,

g(t) :=
1

ν
If

(
π(t)

ν

)
− δ,

Y (t) := Y (0) ·
(

1 +

∫ t

0
g(s) ds

)
,

19

system of equations (driving the entire dynamics):

d

dt
λ(t) =

[
1

ν
If

(
π(t)

s

)
− (α+ β)

]
· λ(t),

d

dt
ω(t) = [Wf (λ(t))− (α+ f(t))] · ω(t),

d

dt
d(t) =

[
If

(
π(t)

s

)
− π(t)

]
−
[

1

ν
If

(
π(t)

s

)
− δ + f(t)

]
· d(t),

d

dt
i(t) = − 1

τi
(i(t)− f(t)) .

initial values of variables:

λ(0) = 0.65, ω(0) = 0.82, d(0) = 0.5, i(0) = 0.1,

The code which approximates the dynamics of this model is provided as ‘minsky III.m’ script,
vector of derivatives for this system is calculated by the ‘minsky III dx.m’ function.

Why is it useful: this model does produce an interesting dynamics (so this is a good ODE ex-
ercise). It also comes from one of a very few economists who predicted the last major crisis (see:
Keen (2013b)) and who expects further problems in China (check the hyperlink to his lecture).

Further extensions: endogenous money + banking system (relies on multiagent system, can not
be conveniently simulated in MATLAB).

The graphs, produced by the script, are available on the next two pages.

20

(a) Employment fluctuates and collapses. (b) Wages fluctuate and decline.

Figure 8: The results following from the approximated solutions to the Minsky III model.

(a) Private debt explodes. (b) Long-run deflation.

Figure 9: The results following from the approximated solutions to the Minsky III model.

(a) Profit collapses. (b) Interest rates freeze.

Figure 10: The results following from the approximated solutions to the Minsky III model.

21

(a) Long-run negative growth. (b) GDP bends over.

Figure 11: The results following from the approximated solutions to the Minsky III model.

(a) This thing goes cinammon swirl. (b) From moderation to vehement crisis.

Figure 12: The results following from the approximated solutions to the Minsky III model.

(a) Investment as a function of profit. (b) Phillips curve.

Figure 13: The results following from the approximated solutions to the Minsky III model.

22

The code approximating the solutions to Minsky II model is provided as the ‘minsky III.m’
script:

clear; clc;

%%%%%%%%%%%%%%% INITIAL VALUES

lambda0=0.65;

omega0=0.82;

d0=0.5;

i0=0.1;

%%%%%%%%%%%%%%% SYSTEM PARAMETERS

alpha=0.025; % <- per annum

beta=0.015; % <- per annum

delta=0.07; % <- per annum

nu=3;

r_b=0.04; % <- base interest rate, exogeneous

s=0.3;

tau_p=1;

tau_i=0.5;

% parameters of a non-linear function, capturing the dependence

% of

x_i=0.03;

y_i=0.03;

s_i=2.25;

m_i=0;

% parameters of a non-linear function, capturing the dependence

% of

x_w=0.6;

y_w=0;

s_w=1;

m_w=-0.04;

% all parameters in one vector

params=[alpha beta delta nu r_b s tau_p tau_i x_i y_i s_i m_i x_w y_w s_w m_w];

%%%%%%%%%%%%%%% TRAJECTORY PARAMETERS

x0=[lambda0 omega0 d0 i0];

T=80; % <- terminal time

tspan=[0 T]; % <- time span (from t=0 up to t=T)

% solver parameters

small=0.000001; % <- definition of a small number

% approximation

options = odeset(’RelTol’,small,’AbsTol’,small);

23

[t,x] = ode45(@(tspan,x) minsky_III_dx(tspan,x,params), tspan, x0,options);

% mapping solutions of ode to economy

lambda=x(:,1);

omega=x(:,2);

d=x(:,3);

i=x(:,4);

f=-(1/tau_p)*(1-omega/(1-s));

r=r_b+i.*(i>0); % <- this syntax is useful

p=1-omega-r.*d;

I=(y_i-m_i)*exp(s_i*((p/nu)-x_i)/(y_i-m_i))+m_i;

g=(I/nu-delta);

% there is a prize for explaining why the line below works!

Y=100*(1+[0; cumsum(0.5*(t(2:end)-t(1:end-1)).*(g(2:end)+g(1:end-1)))]);

n=size(t,1) % <- number of points in time (optimized by solver)

%%%%%%%%%%%%%%% CHARTS %%%%%%%%%%%%%%%%%

chart=1; % <- here choose your chart

if chart==1

plot(t,100*lambda)

xlabel(’TIME (IN YEARS)’); ylabel(’EMPLOYMENT (IN %)’)

axis([0 T 0 80]); grid on

elseif chart==2

plot(t,100*omega)

xlabel(’TIME (IN YEARS)’); ylabel(’WAGES TO GDP (IN %)’)

axis([0 T 65 85]); grid on;

elseif chart==3

plot(t,100*d)

xlabel(’TIME (IN YEARS)’); ylabel(’PRIVATE DEBT TO GDP (IN %)’); grid on

elseif chart==4

plot(t,100*i)

xlabel(’TIME (IN YEARS)’); ylabel(’YEARLY INFLATION (IN %)’); grid on

elseif chart==5

plot(t,100*p)

xlabel(’TIME (IN YEARS)’); ylabel(’PROFIT RATE (IN %)’); grid on

elseif chart==6

plot(t,100*r)

xlabel(’TIME (IN YEARS)’); ylabel(’NOMINAL INTEREST (IN %)’)

axis([0 T 0 18]); grid on

elseif chart==7

plot(t,g)

xlabel(’TIME (IN YEARS)’); ylabel(’GDP GROWTH RATE (IN %)’); grid on

elseif chart==8

plot(t,Y)

24

xlabel(’TIME (IN YEARS)’); ylabel(’GDP (IN USD)’)

axis([0 T 0 400]); grid on

elseif chart==9

last=902; % <- only first 60 years

plot(100*lambda(1:last,:),100*i(1:last,:))

xlabel(’EMPLOYMENT (IN %)’); ylabel(’INFLATION (IN % PER YEAR)’); grid on

elseif chart==10

last=902; % <- only first 60 years

x1=100*(1-lambda(1:last));

x2=100*i(1:last);

x3=100*d(1:last);

c = 1:length(t(1:last)); % <- number of colors

h = surface([x1(:), x1(:)], [x2(:), x2(:)], [x3(:), x3(:)], ...

[c(:), c(:)], ’EdgeColor’,’flat’, ’FaceColor’,’none’); colormap(jet(numel(t)))

xlabel(’UNEMPLOYMENT RATE’); ylabel(’INFLATION’)

zlabel(’PRIVATE DEBT TO GDP’); grid on

elseif chart==11

% Investment function

pt=linspace(-0.05,0.11,1601);

It=(y_i-m_i)*exp(s_i*(pt-x_i)/(y_i-m_i))+m_i;

plot(100*nu*pt,100*It); % <- x has to be multiplied by nu

xlabel(’PROFIT (IN %)’); ylabel(’INVESTMENT (IN % OF GDP)’)

axis tight; grid on;

elseif chart==12

% Phillips curve

lt=linspace(0.8,1.01,2101);

Wt=(y_w-m_w)*exp(s_w*(lt-x_w)/(y_w-m_w))+m_w;

plot(100*lt,Wt);

xlabel(’EMPLOYMENT RATE (IN %)’); ylabel(’ANNUAL CHANGE IN REAL WAGE (IN %)’);

axis([80 101 -10 1200]); grid on;

end

The minsky III dx() function is defined as:

function dx = minsky_III_dx(tspan,x,params)

alpha=params(1); beta=params(2); delta=params(3); nu=params(4);

r_b=params(5); s=params(6); tau_p=params(7); tau_i=params(8);

x_i=params(9); y_i=params(10); s_i=params(11); m_i=params(12);

x_w=params(13); y_w=params(14); s_w=params(15); m_w=params(16);

r=r_b; % <- interest rate

if x(4)>0

r=r+x(4);

end

p=1-x(2)-r*x(3);

f=-(1/tau_p)*(1-x(2)/(1-s));

I=(y_i-m_i)*exp(s_i*((p/nu)-x_i)/(y_i-m_i))+m_i;

W=(y_w-m_w)*exp(s_w*(x(1)-x_w)/(y_w-m_w))+m_w;

25

dx=zeros(4,1);

dx(1)=(((1/nu)*I-delta) -(alpha + beta))*x(1);

dx(2)=(W - (alpha+f))*x(2);

dx(3)=(I-p) -((1/nu)*I - delta + f)*x(3);

dx(4)=-(1/tau_i)*(x(4)-f);

end

That is all for today. Thank you!

References

Keen, S., 2013a. A monetary Minsky model of the Great Moderation and the Great Recession.
Journal of Economic Behavior & Organization 86, 221–235.

Keen, S., 2013b. Predicting the ‘Global Financial Crisis’: Post-Keynesian Macroeconomics. Eco-
nomic Record 89, 228–254.

26

	Differential Equations
	Ordinary linear equation: An example
	Equations with delays: logistic equation
	Deterministic chaos: Lorenz attractor
	Instability in economic systems: Minsky model(s)

