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Vickrey–Mirrlees Model
Problem: how much to pay workers of different skills.

Goal: achieve fairness while preserving incentives.

References: William S. Vickrey (1945)
“Measuring Marginal Utility by Reactions to Risk”
Econometrica 13: 319–333.

James A. Mirrlees (1971)
“An Exploration in the Theory of Optimal Income Taxation”
Review of Economic Studies 38: 175–208.

Let n ∈ R+ denote a person’s skill level, defined to mean
that there is a constant rate of marginal substitution
of n1/n2 between hours of work supplied by workers
of the two skill levels n1 and n2.

Thus, a worker’s productivity is proportional to n, personal skill.

Assume that the distribution of workers’ skills can be described
by a continuous density function R+ 3 n 7→ f (n) ∈ R+

which, like a probability density function, satisfies
∫∞
0 f (n)dn = 1.
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Objective and Constraints

We consider a “macro” model
with a “representative consumer/worker”,
whose preferences for consumption/labour supply pairs (c , `) ∈ R2

+

are represented by the utility function u(c)− v(`),
where u′ > 0, v ′ > 0, u′′ < 0, and v ′′ > 0.

The problem is to maximize a social objective by choosing
the pair of functions R+ 3 n 7→ (c(n), `(n)) ∈ R2

+.

The maximand is “mean utility” which is specified
by the utility integral

∫∞
0 [u(c(n))− v(`(n))]f (n) d n.

The resource balance constraint takes the form C ≤ F (L) where

I C :=
∫∞
0 c(n)f (n)dn is mean consumption;

I L :=
∫∞
0 n `(n)f (n)dn is mean effective labour supply.

The aggregate production function R+ 3 L 7→ F (L) ∈ R+

is assumed to satisfy F ′(L) > 0 and F ′′(L) ≤ 0 for all L ≥ 0.
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Pseudo First-Order Conditions
Consider the Lagrangian

L(c(·), `(·)) :=

∫ ∞
0

[u(c(n))− v(`(n))]f (n)dn

− λ
[∫ ∞

0
c(n)f (n)dn − F

(∫ ∞
0

n`(n)f (n)dn

)]
as a functional (rather than a mere function)

of the functions R+ 3 n 7→ (c(n), `(n)) ∈ R2
+.

We derive “pseudo” first-order conditions by pretending

that the derivatives
∂L
∂c(n)

and
∂L
∂`(n)

both exist, for all n ≥ 0.

This gives the pseudo first-order conditions

0 =
∂L
∂c(n)

= [u′(c(n))− λ]f (n)

0 =
∂L
∂`(n)

= −v ′(`(n))f (n) + λF ′(L)nf (n)
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The Marxist First Best
Karl Marx (1875) Critique of the Gotha Programme

For any skill level n such that f (n) > 0, we have the two equations

0 = [u′(c(n))− λ]f (n) = −v ′(`(n))f (n) + λF ′(L)nf (n)

These imply that, for any skill level n with f (n) > 0, we want:

I u′(c(n)) = λ and so c(n) = c∗,
where the constant c∗ uniquely solves u′(c∗) = λ
(“to each according to their need”);

I v ′(`(n)) = λF ′(L)n, implying that v ′′(`(n)) · d`
dn

= λF ′ > 0,

so
d`

dn
> 0 (“from each according to their ability”)

Exercise
Use concavity and convexity arguments to prove
that this is the (essentially unique) solution.

What makes this solution practically infeasible?
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Sufficiency Theorem: Statement

Theorem
Suppose that there exists λ > 0
such that c∗ and the function R+ 3 n 7→ `∗(n)
jointly satisfy the first-order conditions:

u′(c∗) = λ and v ′(`∗(n)) = λF ′(L∗)n for all n ∈ R+

where c∗ = F (L∗) and L∗ =
∫∞
0 n `∗(n)f (n) dn.

Let R+ 3 n 7→ (c(n), `(n)) ∈ R2
+

be any other policy satisfying C = F (L)
where C =

∫∞
0 c(n)f (n) dn and L =

∫∞
0 n`(n)f (n) dn.

Then∫ ∞
0

[u(c(n))− v(`(n))]f (n)dn ≤ u(c∗)−
∫ ∞
0

v(`∗(n))f (n)dn

with strict inequality unless c(n) = c∗ wherever f (n) > 0.
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Sufficiency Theorem: Proof, I
Because u′′ < 0 and so u is strictly concave,
the supergradient property of concave functions implies that

u(c(n))− u(c∗) ≤ u′(c∗)[c(n)− c∗] = λ[c(n)− c∗]

for all n, with strict inequality unless c(n) = c∗.

Integrating this inequality gives the first integral inequality∫ ∞
0

[u(c(n))− u(c∗)] f (n) d n ≤ λ(C − c∗)

with strict inequality unless c(n) = c∗ wherever f (n) > 0.

Similarly, because v ′′ ≥ 0 and so v is convex, for all n
the subgradient property of convex functions implies that

v(`(n))−v(`∗(n)) ≥ v ′(`∗(n))[`(n)−`∗(n)] = λF ′(L∗)[`(n)−`∗(n)]

Integrating this inequality gives the second integral inequality∫ ∞
0

[v(`(n))− v(`∗(n))] f (n) d n ≥ λF ′(L∗)(L− L∗)
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Sufficiency Theorem: Proof, II
We have derived the following two integral inequalities:∫ ∞

0
[u(c(n))− u(c∗)] f (n) d n ≤ λ(C − c∗)∫ ∞

0
[v(`(n))− v(`∗(n))] f (n) d n ≥ λF ′(L∗)(L− L∗)

Subtracting the second integral inequality from the first,
then rearranging, one has

D :=

∫ ∞
0
{[u(c(n))− v(`(n))]− [u(c∗)− v(`∗(n))]} f (n) d n

≤ λ[(C − c∗)− F ′(L∗)(L− L∗)]

Note that: (i) C ≤ F (L), by feasibility; (ii) c∗ = F (L∗);
(iii) because F ′′ ≤ 0 and so F is concave,
one has F (L)− F (L∗) ≤ F ′(L∗)(L− L∗).

It follows that C − c∗ ≤ F (L)− F (L∗) ≤ F ′(L∗)(L− L∗) and so

C − c∗ − F ′(L∗)(L− L∗) ≤ 0
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Sufficiency Theorem: Proof, III

Because λ > 0, the above definition of D implies that

D =

∫ ∞
0
{[u(c(n))− v(`(n))]− [u(c∗)− v(`∗(n))]} f (n) d n

≤ λ[(C − c∗)− F ′(L∗)(L− L∗)] ≤ 0

This proves that no feasible policy R+ 3 n 7→ (c(n), `(n)) ∈ R2
+

can yield more mean utility
∫∞
0 {[u(c(n))− v(`(n))] f (n) d n

than the mean utility
∫∞
0 {[u(c∗)− v(`∗(n))] f (n) d n

which the policy R+ 3 n 7→ (c∗, `∗(n)) ∈ R2
+ yields.

The latter policy is therefore optimal.
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Problem Formulation
The calculus of variations is used to optimize a functional
that maps functions into real numbers.

A typical problem is to choose a path x,
in the form of a function [t0, t1] 3 t 7→ x(t) ∈ R,
in order to maximize the integral objective functional

J(x) =

∫ t1

t0

F (t, x(t), ẋ(t)) d t

subject to the fixed end point conditions x(t0) = x0, x(t1) = x1.

A variation involves moving away from the first path x
to the variant path x + εu,
where u denotes the differentiable function [t0, t1] 3 t 7→ u(t) ∈ R,
and ε ∈ R is a (small) scalar.

To ensure that the end point conditions x(t0) + εu(t0) = x0
and x(t1) + εu(t1) = x1 remain satisfied by x + εu,
one imposes the conditions u(t0) = u(t1) = 0.
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Toward a Necessary First-Order Condition
A maximum of the integral objective J(x) =

∫ t1
t0

F (t, x(t), ẋ(t)) d t
is a path x∗ or function [t0, t1] 3 t 7→ x∗(t) ∈ R:
(i) that satisfies the end point conditions x∗(t0) = x0, x∗(t1) = x1;
(ii) with the property that J(x∗) ≥ J(x)
for any alternative path x = (x(t))t∈[t0,t1]
that also satisfies the end point conditions x(t0) = x0, x(t1) = x1.

A necessary condition for x∗ to maximize J(x) w.r.t. x
is that J(x∗) ≥ J(x∗ + εu) for all small ε.

Alternatively, the function

R 3 ε 7→ fx∗,u(ε) := J(x∗ + εu) ∈ R

must satisfy, for all small ε, the inequality

fx∗,u(0) = J(x∗) ≥ J(x∗ + εu) = fx∗,u(ε)

In case the function ε 7→ fx∗,u(ε) is differentiable at ε = 0,
a necessary first-order condition is therefore f ′x∗,u(0) = 0.
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Evaluating the Derivative

Our definitions of the functions J and fx∗,u imply that

fx∗,u(ε) = J(x∗ + εu) =

∫ t1

t0

F (t, x∗(t) + εu(t), ẋ∗(t) + εu̇(t)) d t

By Leibnitz’s formula, the derivative f ′x∗,u(0) w.r.t. ε at ε = 0
of the function R 3 ε 7→ fx∗,u(ε) = J(x∗ + εu) 7→ R
equals the integral of the derivative of the integrand.

It follows that f ′x∗,u(0) =
∫ t1
t0

[F ′x(t)u(t) + F ′ẋ(t)u̇(t)] d t
where, for each t ∈ [t0, t1],
the partial derivatives F ′x(t) and F ′ẋ(t) of F (t, x , ẋ)
are evaluated at the triple (t, x∗(t), ẋ∗(t)).
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Integrating by Parts

The product rule for differentiation implies that

d

dt
[F ′ẋ(t)u(t)] =

[
d

dt
F ′ẋ(t)

]
u(t) + F ′ẋ(t)u̇(t)

and so, integrating by parts, one has∫ t1

t0

F ′ẋ(t)u̇(t)dt = |t1t0F
′
ẋ(t)u(t)−

∫ t1

t0

[
d

dt
F ′ẋ(t)

]
u(t) d t

But the end point conditions imply that u(t0) = u(t1) = 0,
so the first term on the right-hand side vanishes.
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The Euler Equation

Substituting −
∫ t1
t0

[
d
dtF
′
ẋ(t)

]
u(t) d t for the term

∫ t1
t0

F ′ẋ(t)u̇(t) d t

in the equation f ′x∗,u(0) =
∫ t1
t0

[F ′x(t)u(t) + F ′ẋ(t)u̇(t)] d t,
then recognizing the common factor u(t), we finally obtain

f ′x∗,u(0) =

∫ t1

t0

[
F ′x(t)− d

dt
F ′ẋ(t)

]
u(t) d t

The first-order condition is f ′x∗,u(0) = 0
for every differentiable function t 7→ u(t)
satisfying the two end point conditions u(t0) = u(t1) = 0.

This condition holds if and only if, for (almost) all t ∈ [t0, t1],
the integrand is zero, or equivalently,
if and only if the Euler equation d

dtF
′
ẋ(t) = F ′x(t) holds.
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Are We Saving Too Little?

Kenneth Arrow, Gretchen Daily, Partha Dasgupta, Paul Ehrlich,
Lawrence Goulder, Geoffrey Heal, Simon Levin, Karl-Göran Mäler,
Stephen Schneider, David Starrett and Brian Walker (2004)
“Are We Consuming Too Much?”
Journal of Economic Perspectives 18: 147–172.

Macroeconomic variation in the Solow–Swan growth model.

Given a capital stock K , output Y is given by
the production function Y = f (K ), where f ′ > 0, and f ′′ ≤ 0.

Net investment = gross investment, without depreciation.

So given capital K and consumption C , investment I is given by

I = K̇ = f (K )− C
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The Ramsey Problem and Beyond

The economy’s intertemporal objective is taken to be∫ T

0
e−rtU(C (t)) d t =

∫ T

0
e−rtU(f (K )− K̇ ) d t

Frank Ramsey (Economic Journal, 1928)
assumed T =∞ (infinite horizon) and r = 0 (no discounting).

Nicholas Stern (of the Stern Review on Climate Change)
and others advocate:

I T =∞;

I r as the hazard rate in an exogenous Poisson process
that determines the latest date at which extinction occurs;

this implies that e−rt is the exogenous maximum probability
that the human race has not become extinct by time t.

Chichilnisky, Hammond, and Stern in a special (2020) issue
of Social Choice and Welfare honouring Kenneth Arrow.
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Applying the Calculus of Variations
We apply the calculus of variations
to the objective

∫ T
0 e−rtU(f (K )− K̇ ) d t

with the end conditions K (0) = K̄ , which is exogenous,
and K (T ) = 0 at the finite time horizon T .

Euler’s equation takes the form d
dtF
′
K̇

(t) = F ′K (t)

where F (t,K , K̇ ) = e−rtU(f (K )− K̇ ) = e−rtU(C ).

So Euler’s equation becomes d
dt [−e−rtU ′(C )] = e−rtU ′(C )f ′(K ).

Equivalently, after evaluating the time derivative,

−U ′′(C )Ċ e−rt + rU ′(C )e−rt = e−rtU ′(C )f ′(K )

Cancelling the common factor e−rt and dividing by U ′(C ) > 0,
then rearranging, one obtains

−U ′′(C )

U ′(C )
Ċ = f ′(K )− r
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Further Interpretation
Define the (negative) elasticity of marginal utility as

η(C ) := −d lnU ′(C )

d lnC
= −U ′′(C )C

U ′(C )

This is related to the curvature of the utility function,
and to how quickly marginal utility U ′(C ) decreases as C increases.

Rearranging the equation −U ′′(C )Ċ/U ′(C ) = f ′(K )− r yet again,
one obtains the equation

η(C )
Ċ

C
= f ′(K )− r

whose left hand side is the proportional rate of consumption growth
multiplied by: (i) the elasticity of marginal utility;
or (ii) the elasticity of what macroeconomists call
“an intertemporal marginal rate of substitution”;
or (iii) by analogy with the theories of risk and inequality aversion,
the degree of relative fluctuation aversion.
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Final Recommendation

Morton I. Kamien and Nancy L. Schwartz (2012)
Dynamic Optimization, Second Edition:
The Calculus of Variations and Optimal Control
in Economics and Management (Dover Publications)
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