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Lecture Outline

Solving Second-Order Equations
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Second-Order Equations

A general second-order difference equation
specifies the state x; at each time t
as a function x; = F(x¢—1, x¢—2) of the state at two previous times.

Suppose we define a new variable defined by y; := x;_1.
Then the equation x; = F¢(xt—1, xt—2) can be converted
into the coupled pair

Xt = Ft(Xt—let—l)
Ye = Xt—1

of first-order equations that express the vector (x,y;)' € R?
as a function of the vector (x;_1,y:_1)" € R
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The Linear Case

We focus on linear equations in one variable
with constant coefficients, which take the form

Xt+1 + axe + bxe—1 = f;

Here a, b are scalars, and f; is the forcing term.

We assume that b # 0 because otherwise
we have the first-order equation x;11 + ax; = f;.

If we define y; = x;_1, the equation becomes the coupled pair
Xep1 = —axg — by + fe;  Yey1 = X
In matrix form, these can be written as
) =7 2) )+ )
Yt+1 1 0 Yt 0

Such vector difference equations are the subject of part C.
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The Homogeneous Case

Nevertheless, consider the homogeneous case
when the vector equation is

G- 6)6)-6)

The solution in matrix form is evidently
G- (0 G
Yt 1 0 Yo

. I X
for an arbitrary initial state (y0>'
0

Inspired by our earlier discussion of matrix powers,
consider the case when (\, (xo, y0) ") is an eigenpair, that is

(7570 G)=2(2) v () # )
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Solving the Homogeneous Case

In case ( —a —b ) < ) ( > the solution takes the form
10 Y0 Yo

G- (5 2) G- ()

X0
Yo

the matrix equation —a-A b X0\ _ (0
q 1 -2 ) \w/) " \o)

For a non-trivial solution to exist,

For this to work, the initial vector ( ) must solve

. —a—\A —b . : :
the matrix 1 _\ must be singular, implying that
—a—A —b| _
‘ 1 _)\‘—)\ +a\+b=0
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The Auxiliary Equation

Instead of treating the second-order equation as a coupled pair,
consider directly the homogeneous second-order equation

Xt+1 + axt + bXt—l =0

Inspired by our previous analysis

using eigenvalues of a suitable matrix,

we look for a solution of the form x; = Alxg,
for suitable constants A and xg.

It is a solution provided that AXt1xg 4+ aAfxg + bAI"1xg = 0.

Ignoring the trivial solutions when xg = 0 or A =0,
cancel Af~1xg to obtain the auxiliary or characteristic equation

N+al+b=0

This, of course, is the condition for A to be an eigenvalue.
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The Auxiliary Equation and lts Roots

The auxiliary equation A2 + a\ + b = 0 is quadratic.
It therefore has two roots A1, Ao

satisfying A2 +aX + b = (A — A1)(\ — \a).

In particular Ay + Ao = —a and A1) = b.

The assumption that b # 0 implies

that the two roots A1, A» are both non-zero.

This leaves three cases:

1. two distinct real roots A\, Ay € R,
which is true iff a2 > 4b;

2. two complex conjugate roots A, \» = ret? € C,
which is true iff a% < 4b;

3. two coincident real roots A = A\ = \» € R,
which is true iff a® = 4b.
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Case 1: Two Distinct Real Roots

In this case A> +aX\ + b= (A — A1)(A — \2),
where A1, \» = —%aj: % a2 —4b.

Note that a = A1 + A2 and b = A1)\

with a2 —4b = (A1 + X2)? — 4\ Ao = (A1 — X2)2 > 0.

There are two degrees of freedom in the difference equation,
so we look for two linearly independent solutions xtH(l) and X:I(2)
of the homogeneous difference equation x;11 + ax¢ + bx;—1 = 0.
— that is two solutions for which AxtH(l) + thH(2) =0

implies that the two scalars A and B satisfy A= B = 0.
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Two Linearly Independent Solutions

Note that AX] + BA5 = 0 for both t =0 and ¢t = 1 if and only if

1 1 A\ (0

A1 Ao B) \0O
This has a non-trivial solution in the two constants A and B
. 1 1 . .
iff 0 = ‘)\1 )\2’, or if and only if 0 = Ay — Aq.
So when A1 # Ay, the only solution is trivial, with A= B = 0.
Hence, the two functions xgl) = xpA} and xt(2) = xpA5 with xg # 0
are linearly independent solutions of x¢+1 + ax¢ + bx;—1 = 0.

There are two degrees of freedom in the difference equation.

Therefore, its general solution with these two degrees of freedom
is xx = AN} + B} for arbitrary real constants A and B.
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Example: The Fibonacci Sequence
The Fibonacci sequence is

(xt)i2o = (0,1,1,2,3,5,8,13,21,34,55,89, 144,233, .. .)

It is the unique solution with xg =0 and x; =1
of the Fibonacci difference equation x¢41 — x¢ — x¢—1 = 0.

The characteristic equation is \> — A — 1 =0,
with characteristic roots A\ » = —%(—1 +/5).

Its two roots are:

(i) the golden ratio ¢ := A1 = (1 + v/5) ~ 1.61803398875;
and (i) Ao =1— X1 = %(1 —/5) ~ —0.61803398875.

The general solution of the Fibonacci difference equation

is xx = AN + B} for arbitrary constants A and B.

To obtain the Fibonacci sequence with xp =0 and x; =1
requires B=—Aand 1 = A(\1 — \2) = AV5,

_ _ 1
soB——A——g 5.

Hence x; = $v/5- 271 [(1+ V/5)" — (1 — V5)'], so x; € N.
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Case 2: Two Complex Conjugate Roots

Consider next the case where the equation A2 +a\+ b =0
has two complex conjugate roots that we write as

A= ret® = r(cosf + isinf) where sinf #0
In this case A% 4 a\ + b = (A — re®)(\ — re™%) where
a=re + re7"® = r(cosf + isinf) + r(cos — isinf) = 2rcosf
and b = (re'®)(re=%) = r? with sin6 # 0.

It follows that a®> — 4b = 4r? cos? § — 4r?> = —4r?sin?0 < 0.
Note that r = \/|b| and 6 = arccos (21) = arccos (%a|b\_%).
r
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Case 2: Oscillating Solutions

In the complex plane C, two possible solutions
of the difference equation x;y1 + ax; + bx;—1 = 0 with xp # 0 are

o

(2)

and x;” = xo(re )t = xorte™* = xqrt(cosft — isin0t)

= xo(re®)t = xorte® = xor(cosft + isin0t)

In the real line R, two possible solutions are

(1)

xM = rtcosft and x@ = rtsinft
These are linearly independent because

FORNC

{ 1 0
Xfl) X1(2)

rcosf rsinf

‘:rsinH#O

The general solution is therefore x; = rt(Acos 6t + Bsin 0t)
for arbitrary real constants A and B, where A = xp.
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Case 3: Two Coincident Roots

In this case )\2_+ aA+b= (A —N)?,
where a = —2) and b = )2

Consider the perturbed equation x;y1 + ax; + bxt—1 =0
where 2 = —2 still and b = \?> — € with € a small positive
number.

We consider the behaviour of its general solution as € — 0.

The auxiliary equation )\2_—1— a\ + b=0
can be written as A2 — 22\ + \2 — €2 = 0.

Note that A2 —2XAA + X2 — 2 = (A = A+ e)(A — X —¢).

So the perturbed auxiliary equation
has the two real roots A = A L e¢.
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The Solution with Fixed Initial Conditions

Fix X0 and X1-

The general solution satisfying xo = X and x; = X
is Xt = A(A+€)" + B(A —€)" where 5o = A+ B
and X1 = AA+¢€)+B(A—¢€)=(A+ B)A+ (A— B)e.

Hence A+ B =% and A— B = (1/€)(x1 — %),
implying that A =1 [ + (1/€)(F1 — %oM)]
and B = [0 — (1/€)(x1 — %o))].

The solution for fixed € is therefore
Xt6 = % [)_(0 + (1/6)()_(1 — )_(05\)] (X + €)t
+ % [)?0 — (1/6)()_(1 — )_(05\)] (5\ — E)t
which can be rewritten as
X = %'0 [(/_\ +e)f + (5\ — e)t]
+ 15— 2oN)(1/e) [+ ) = (A= )]
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The Limiting Solution as ¢ — 0

The limit of x{ as € — 0 takes the form

(1/€) [(5\ +e)tf — (N — e)t}

)_(oj\t + %()_(1 — )?05\) !E‘B

To evaluate the last limit, apply I'Hopital’s rule to obtain

limeo [(A+€)f — (A —¢)t] /e
= limeo [tA+ €)1 +t(A—€)f 1] /1
2tAEL = (2t/A) At

Two linearly independent possible solutions

of the difference equation x¢y1 + axs + bx;—1 =0

with xg # 0 are xt(l) = xpAt and x,_gz) = xpt\L.

There are two degrees of freedom in the difference equation.

Its general solution is x; = (C + Dt)\*
for arbitrary real constants C and D.
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A Simpler Approach, |
We are trying to solve the homogeneous second-order
difference equation with a repeated root A, taking the form
Xt4+1 — 2)\X1_- + )\2th1 =0

We know that one solution is x; = xgA! for arbitrary xg.

To find a second linearly independent solution
that we know must exist, try putting x; = Aly;.

Substituting into the original equation gives
Aty =20y, 4+ Ay, 1 =0

Disregarding the trivial case when A =0,
one has yrr1 — 2y + y¢—1 = 0.
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A Simpler Approach, Il

To solve yi+1 — 2y + ye—1 =0,
try introducing yet another new variable z; = y;11 — ys.

This leads to the new difference equation z; — z;_1 = 0
whose solution is obviously z; = zg for all t =1,2,....
Then yr41 — y: = 2o for all t, implying that y; = yo + zot.
It follows that x; = A'yy = (yo + z0t) L.

To conclude, two solutions are xsl) = \' and xt(z) =t

These are linearly independent because

(1) @)

Xg~ Xo

1 @

X1 X1

1 0
AA

‘:A#O

The general solution is therefore x; = (A + Bt)\!
for arbitrary real constants A and B, where A = xp.
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Lecture Outline

Inhomogeneous Equations
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From Particular to General Solutions

The homogeneous equation with constant coefficients
takes the form

Xe+1 +axe + bxe—1 =0
The associated inhomogeneous equation takes the form
Xep1 +axe +bxe_1 = f;

for a general forcing term f; on the RHS.

Let x/ denote a particular solution,
and xC any alternative general solution,
of the inhomogeneous equation.
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Characterizing the General Solution

Our assumptions imply that, for each t = 1,2,..., one has
xtytaxd by = f
Xgl—kaxf—kbxtc_l = f;

Subtracting the first equation from the second implies that

G P G P G P _
Xe1 — Xep1 Al — x¢) + b(xZ g — x¢_1) =0
This shows that x/' := x& — xF

solves the homogeneous equation x¢y1 + ax; + bx;—1 = 0.

So the general solution x°
of the inhomogeneous equation x¢y1 + ax; + bx;—1 = f;

with forcing term f; is the sum x + x} of
» any particular solution xtP of the inhomogeneous equation;

> the general solution x/! of the homogeneous equation.

University of Warwick, ECOA0 Maths for Economists, Day 7 Peter J. Hammond 21 of 56



Linearity in the Forcing Term

Theorem
Suppose that xtP and ytP are particular solutions
of the two respective difference equations

Xey1 T axe +bxe1=dr and yri1+aye+byr1 = et

Then, for any scalars o and (3,
the linear combination z' := axl” 4 ByF is a particular solution

of the equation z;y1 + az; + bz;—1 = ad; + Se;.

Proof.
Routine algebra. O

Consider any equation of the form x;y1 + ax; + bx¢—1 = f;
where f; is a linear combination >_7_; axfX of n forcing terms.

The theorem implies that a particular solution
is the corresponding linear combination > 7_; axxf*

of particular solutions to the equations x;y1 + ax; + bx;_1 = fX.
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Deriving an Explicit Particular Solution, |

In part A we were able to derive an explicit solution
to the general first-order linear equation x; — arx¢—1 = f;.

Here, for the special case of constant coefficients,
we derive an explicit particular solution satisfying xo = x; =0
to the general second-order linear equation x;41 + ax; + bxi—1 = fz.

Indeed, suppose that A2 + aX + b= (A — A1)(A — \2)
because A1 and A, are the roots

(possibly coincident, or possibly complex conjugates)
of the auxiliary equation A2 + a\ + b = 0.

Introduce the new variable y; = x; — A1 x;—1, implying that

Yerl — A2ye = Xep1 — A1Xe — A2Xe + A1daxe—1
= Xer1 — (A1 + X2)xe + A1 Aoxe—1
= Xep1taxe +bxe1 = f
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Deriving an Explicit Particular Solution, I

Instead of the second-order equation x¢y1 + ax; + bx;_1 = f;,
we have the recursive pair of first-order equations

Xt —MXe—1 =Yyt and y1—Xoyr=1f (fort=1,2,..)

where A1 and ), are the roots of A2 4+ a\+ b = 0.

Given the initial conditions xp = x; = 0 and so y; = 0,
the explicit solutions like those derived in Part A are the sums

t—1 t
Vi = Zk:l )\é—k—lfk and  x; = 2522 )\i—sys for t=1,2,...

Substituting the first equation in the second yields the double sum

t s—1
t—s s—k—1
Xy = E A E A f,
‘ s=2 1 k=1"2 k

which we would like to reduce to x; = Zi;ll Er_wk—1fx
— i.e., a linear combination of the forcing terms (f1, f2, ..., f—1).
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Deriving an Explicit Particular Solution, IlI

We begin by introducing
the mapping N x N 3 (k,s) — 1xs{k < s} € {0,1} defined by

1 ifk<s

Lesl < sh:= {0 fk>s

Then we can rewrite x; = Y L_, AL ST ASTFLf
as the double sum x; = S0, STE T 1,0 {k < sIAE=SASTK 17,
Interchanging the order of summation gives
i = YA Lfk < sIAITEASTRLA
= Y4 <Z§:k+1 )‘i_s)\g_k_1> fi
= S (AT AT R AT ) g

This reduces to x; = Zi_:ll &t k_1fx where &, 1= ijzo )\T_j)\é.
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Deriving an Explicit Particular Solution: IV

The value of the sum &,, = Zj:o AT_jAé depends on whether:

> we are in the general case when A1 # Ag;
P> we are in the degenerate case when A1 = Ao = A.

In the general case one has
(1= X)em=2_ (AT+1_j)\£ - /\T_j/\é+1> = AT A

implying the particular solution

1 _
X = g L (M)

In the degenerate case one has £, = (m + 1)A™,
implying the particular solution

t—1 _
xt =y (t— kXK
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Lecture Outline

Particular Solutions in Two Special Cases
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First Special Case with Distinct Real Roots, |
Consider the equation x¢y1 + ax¢ + bxg—1 = f;
in the first special case when f; = p* with p # 0.

In the general case when the two roots A\; and A»
of the auxiliary equation A2 + a\ + b = 0 are distinct,
the particular solution with x{ = x =0 is

1 _
Xf AL — A Zt 1 <)\iik _)\éik) &

But ()\_N) ZZ—:ll )\t—k'uk — EZ 1 ()\t k+1 k _ \t—k k+1) so

ot Aip— Alu A — >\2M
t A1 — Ao A — Ao —
in case pu & {A1, A2}

Disregarding the terms in A} and A}
that solve the corresponding homogeneous equation,

the solution reduces to x{” = aut for a suitable constant «.
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First Special Case with Distinct Real Roots, Il

The degenerate case when p € {A\1, A2} is more complicated.

In case A\1 # A2 = p, the particular solution with x(f =x'=0

is still i )
P _ t= t—k _ yt—k\  k
Xt )\1 )\2 Z <)\1 )\2 ) K

Because A\ = u, this reduces to

1 t—1
=) t—k, k t
Xy = N E 1 ()\1 W= )

1 Ap— At
= t— 1)t
- [ hoNIE )u]

Disregarding the terms in A\! and in \j =
that solve the corresponding homogeneous equation,

the solution reduces to x” = atu’ for a suitable constant «.
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First Special Case with Coincident Real Roots

Consider now the degenerate case
with coincident real roots \; = Ay = A.

So the inhomogeneous equation is x¢11 — 2Ax¢ + Axq = ut.
As before, put y; = x; — Ax¢_1 so that
Yer1 — M = Xer1 — Axe — A + Mxem1 = pf

We consider again the particular solution
with xp = x; =0 and so y; = 0.
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First Special Case with Coincident Real Roots: A\ # u

Provided that A # p, for t = 2,3,... one has

D B
p . P . )\7_1( 'u)\k—l _ Hk—l
and then x; = Y, ATy, = Y AT -
_ th(_2 ,u)\t_l _ )\t—k“k
- N
_ ,U/(t _ 1))\1'71 )\tfllu’2 _ MtJrl
A—p (A= p)?

Hence x = (o + Bt)\f 4 yut for suitable constants a, 8 and v
that depend on A and p, but not on t.

Because (a + Bt)A! is a complementary solution
of the homogeneous equation,
the particular solution can be reduced to x/” = yut.
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First Special Case with Coincident Real Roots: A =

In case A = u, however, for t = 2,3,... one has

VP = iRt = (-
and then xP = >7) _ ATRyP = STh ARk — 1)AkE
= Yook =AY = t(t — 1At
Hence x = (at + Bt?)A! for suitable constants o and 3
that depend on A = y, but not on t.

Because atAf is a complementary solution
of the homogeneous equation,

the particular solution can be reduced to x}” = St2ut.
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Second Special Case: General Theorem

Consider next the equation x;11 + ax¢ + bx;_1 = f;
in the second special case when f; = t"u® with 4 # 0 and r € N.

As before, let \; and \» denote the roots
of the auxiliary equation A2 4+ a\ + b = 0.

Theorem
The difference equation x¢y1 + axt + bxe—1 = t'p
has a particular solution of the form xP = ¢P(t)ut
where £P(t) = Zj’j:o &4t is a polynomial in t which has degree:
> d=rincase p & {1, \2};
> d=r+2incase = A = \o;

» d =r+ 1 otherwise.

t

We begin the proof by introducing, as before,
the new variable y; := x; — A1x;_1, implying that

Yerl — A2Ye = Xepl — A1Xe — AaXe + A1 Aoxe_1
= Xpy1+axe+bxe_1 = t'ut

University of Warwick, ECOA0 Maths for Economists, Day 7 Peter J. Hammond 33 of 56



Continuing the Proof of the General Theorem

By the result in part A, the first-order equation y; 1 — Aoyy = t'ut

has a particular solution of the form y; = Q(t)u,
where Q(t) = Z}j:o qgrjt) is a polynomial in t which has degree:

(iYd=rincase p#Xy; (ii)d=r+1incase u=X\.

By the linearity property of particular solutions, the equation
A _ _ t__ d 4, t
Xt — Axe—1 =y = Q(t)u" = ijo qrt'
has a particular solution x/” = ¢P(t)ut where

d
o =t =) agPi(tn’

is the appropriate linear combination
of the particular solutions x; = Pj(t)u* (j =0,1,2,...,d)
of the d + 1 first-order equations x; — A\1x;—1 = t/ut.
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Ending the Proof of the General Theorem

Again, using the result in part A,
for each j =0,1,2,...,r, the solution x; = P;(t)u’
of the first-order difference equation x; — A1x;_1 = t/ut
involves a polynomial P;(t) in t which has degree:
(i) jincase w# A1; (i) j+ 1in case p = A;.
So the degree of the highest order polynomial Py(t) is
(i) dincase p# A1;  (ii) d+1in case p = ;.
Combined with our previous result on whether d =rord=r+1,
the degree d of £P(t) is now easily seen to be
» d=rincase u & {1, \o};
> d=r+2incase u =\ = \p;
» d = r+ 1 otherwise. []

Using the notation #S for the number of elements in a set S,
these three cases can be summarized as d = r + 3 — #{ A1, \o, u}.
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Lecture Outline

Method of Undetermined Coefficients
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First Special Case: A Simpler Approach

We have proved that the second-order difference equation

Xer1 + axe + bxe—1 =

has a particular solution of the form x = au?.

But there is a much easier way to find x/,

treating the parameter « as an undetermined coefficient.
Indeed, for x; = au' to be a solution,

one needs ottt 4+ aaput 4+ baut~t = ut.

Dividing each side by pf™1

yields the equation a(u? 4 ap + b) =

In the non-degenerate case when p? + ap + b # 0
because p is not a root

of the characteristic equation A2+ a\+b=0,
one has a = p(p? + apu + b) 1

Hence, a particular solution is x” = (u? + ap + b) 1 ut+L.
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Degenerate Case When 11 is a Characteristic Root

The simple degenerate case occurs when p? + a4+ b =0
because i equals one of the two distinct roots A; and Aa
of the characteristic equation A2 4+ a\ + b = 0.

Then we have proved that the second-order difference equation
Xer1 + axe + bxe_1 =
has a particular solution of the form x/ = atut.
To determine the undetermined coefficient o, we must solve
a(t +1)p ™t 4 aatut + ba(t — 1)pt~t = 4t

Dividing each side by p!~! and gathering terms

yields the equation at(u? + ap + b) + a(u? — b) = p.
Provided that ;2 # b, this reduces to o = (> — b) L pu.
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Doubly Degenerate Case

When 2 = b, however, the degenerate case is more complicated.
Indeed, the equation p? 4+ ap + b = 0 implies that ap +2b = 0.
Hence 1 = —2b/a, so > = b = 4b?/a? implying that a® = 4b.

Then the characteristic equation A2 +a\+ b =0
reduces to (A — u£)? = 0, with p as its repeated root.

Inspired by the earlier theorem,

we look for a particular solution of the form x/ = at?ut.

To determine the undetermined coefficient o, we must solve

a(t—i— 1)2Nt+1 + aO”.__2Mt + ba(t _ 1)2'ut71 — Nt

1

Dividing each side by p*~! and gathering terms yields

at?(pu? + ap + b) + a2t + D)p? + ab(=2t +1) = p

Because 2 +apu+ b=0and 0 # b = 2,
this equation reduces to 2au? = u, implying that o = 1/2p.
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Second Special Case

Again, inspired by earlier theorems, we can apply
the method of undetermined coefficients to the equation

m rg Jot
qptaxetbea =) > agt

where we naturally assume that the constants ux (k =1,2,. ..

are all different.

A particular solution takes the form

d, .
P o m k J t
X, = E E it
t k=1 =1 /Bkj 1273

where the degree di of each polynomial Z}”il ﬁkjtj
with undetermined coefficients <<5kj>721>T:1 is

> r in case g € {1, Ao}

> ry+2in case pux = A1 = Ag;

» r, + 1 otherwise.
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Determining the Coefficients

The coefficients <<ﬂkj>7i1>f(":1 of the particular solution

P _ m di it
Xt = Zk:1 Z_,':l Bkjtjuk

can be found (in principle!) by solving, for k =1,2,..., m,
the m independent systems of linear equations

that result from equating coefficients of powers of t

in the expansions

Ik

S Bl + 1Y+ atipl + (e - 1] = 3

| it ik
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Lecture Outline

Higher-Order Linear Equations with Constant Coefficients
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Higher-Order Linear Equations with Constant Coefficients

An nth order linear equation with constant coefficients

takes the form .,
Xt + Zr:l ArXt—r = ﬁ.‘

in the inhomogeneous case, and

n
Xt + E arXt—r = 0
r=1

in the homogeneous case.

The corresponding auxiliary equation is A" +>7_; a,\"~" = 0.
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Roots of the Auxiliary Equation

The auxiliary equation can be written as p,(\) =0
whose LHS is the polynomial A" + "7 ; a,A'"" of degree n.

By the fundamental theorem of algebra,
this equation has at least one root A1, which may be complex.

Then pp(A) can be factored as pp(A\) = (A — A1)pn—1(A).

But now the equation p,—1(A) =0
also has at least one root Ap, which may also be complex.

Repeating this argument n times,
the auxiliary equation p,(A) = 0 has n roots A1, A2, ..., An,
some of which may be repeated.

In particular, pp(A\) = T (A = \i).
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Solving the Homogeneous Equation

Theorem
Consider the homogeneous equation x; + Zle arxi_r =0,
and suppose that the auxiliary equation can be written as

0=A"+3" aatr= HJ;(A )™

with k distinct roots p; (j =1,2,...,k)
whose respective multiplicities m; satisfy Zj'(:l mj = n.

Then the general solution of the homogeneous equation
takes the form

k m; h—1 t
I ST
t j=1 Lap=1 I Pj

for n arbitrary constants ay, (h=1,2,...,mj and j =1,2,... k).
That is, the general solution is an arbitrary linear combination
of the functions t""1pt (h=1,2,...,mjand j =1,2,..., k).
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Solving the Inhomogeneous Equation

Theorem
The general solution of the inhomogeneous equation

> S S awtiuf
X arXe—pr = Qpj
t p=1 IO het Lajqg P Fh

is the sum of: (i) the general complementary solution
to the corresponding homogeneous equation x¢ + > ;_; arxe—r = 0;
and (ii) any particular solution.
. . P _ i d it

One particular solution takes the form x;” =%, 'Zjil Bhjt puj,
where the degree dy, of each polynomial Zjdi 1 Bhit!

. . .. dr i .
with undetermined coefficients ((Bhj);21)}_y is

> qn in case pip & {p1, 2,5 P}

» qn+ mj in case up = pj, a root of multiplicity m;.
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Lecture Outline

Stationary States and Stability for Second-Order Equations
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Stationary States of a Linear Equation

Consider the second-order equation x;4+1 + ax¢ + bx;—1 = f
for a constant forcing term f € R.

Here a stationary state x* € R has the defining property
that x;—1 = xt = x* = x¢41 = x*.
This is satisfied if and only if x* 4+ ax* + bx* = f,
or equivalently, if and only if (1 + a+ b)x* = f.
In case a+ b = —1, there is:
» no stationary state unless f = 0;
» a whole real line R of stationary states if f = 0.

Otherwise, if a+ b # —1,
the only stationary state is x* = (1 + a + b)~f.
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Stability of a Linear Equation

If a+ b # —1, let y; := x; — x* denote the deviation of state x;
from the stationary state x* = (1 +a -+ b)~1f. Then

Yi4l = Xep1 — X* = —axg — bxg_1f — x*
= —a(yr +x") = b(ye—1 +x*) + f —x" = —ay; — by: 1

Thus y; solves the homogenous equation x;41 + ax¢ + bxg—1 = 0.

As already seen, the solution to this homogeneous equation
depends on the two roots A1 > = —%a + %\/32 —4p

of the quadratic characteristic equation
FN=X+ar+b=AN-A)A—X)=0

There are three cases to consider:
1. two distinct real roots because a% — 4b > 0;
2. two complex conjugate roots because a’> — 4b < 0;

3. two coincident real roots because a®> — 4b = 0.
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Stability Condition

With two distinct roots A; and A, real or complex,
the general solution of the homogeneous equation
is xr = AN + BAL.

Stability is satisfied if and only if

for all A, B € R one has x; — 0 as t — oo.

This is true if and only if the absolute values of both roots
satisfy [A1] < 1 and [A\2] < 1.

With two coincident roots A\ = \p = —%a = /b,
the general solution of the homogeneous equation
is xr = (A+ Bt)A'.

Again, stability is satisfied if and only if
for all A,B € R one has x; — 0 as t — o0.

This is true if and only if the absolute value of the double root
satisfies [A| < 1.
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Two Distinct Real Roots

Here A2 +aX+b=(A—A1)(A = \2)
where A1 and A, are both real.

Note that the quadratic function f(\) = A2 + a\ + b is convex
and satisfies f(\) — 400 as A — +oc.

So the real roots of f(A\) = 0 satisfy |[A1| < 1 and |A\2| < 1 iff

f(—=1) > 0 and f(1) > 0 with f/(=1) <0 and /(1) >0

These conditions are equivalent to
l—-a+b>0andl+a+b>0with —2+a<0and2+a>0

orto|al] <2and|a] <1+ b.

Together with the condition a® > 4b
for the equation f(A) = 0 to have two distinct real roots,
these inequalities are equivalent to |[a| —1 < b < 1.

University of Warwick, ECOA0 Maths for Economists, Day 7 Peter J. Hammond 51 of 56



Two Complex Conjugate Roots

The characteristic equation \> + a\+ b =0
has two complex conjugate roots when a®> — 4b < 0.

In this case, these characteristic roots are
Mp=—2atiiv/ab—a2=re* = r(cos Lisin0)

where r = v/b and 6 = arccos(a/2v/b)

Then the general solution of the homogeneous equation
can be written as x; = rf(Acosft + Bsin6t).

Stability is satisfied if and only if
for all A,B € R one has x; — 0 as t — o0.

This is true if and only if b < 1,
as well as a®> — 4b < 0 which implies that b > 0.

University of Warwick, ECOA0 Maths for Economists, Day 7 Peter J. Hammond 52 of 56



A Repeated Real Root

The characteristic equation A> +a\+ b =0

has two coincident real roots roots when a® = 4b.

In this case, A2 + aX + b = (A + 3a)2.

The coincident real roots both equal —%a.

Then the general solution of the homogeneous equation
is x = (A+ Bt)(—%a)t.

Stability is satisfied if and only if

for all A,B € R one has x; — 0 as t — o0.

This is true if and only if the modulus
of the repeated root A\ = —1a satisfies |A| < 1,
and so if and only if |a| < 2.
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A Simpler Stability Condition

Theorem
The linear autonomous equation x¢+1 + axy + bxg—1 = f
is stable, both locally and globally, if and only if |a] <1+ b < 2.

Proof.
Stability requires one of the following three to hold:

1. distinct real roots because a® > 4b, with |a| —1 < b < 1;
2. complex conjugate roots because a® < 4b, with b < 1;
3. a repeated real root because a®> = 4b, with |a| < 2.

A diagram in the (a, b)-plane shows that one of these three holds
if and only if |a| <1+ b < 2. O

University of Warwick, ECOA0 Maths for Economists, Day 7 Peter J. Hammond 54 of 56



Diagram of Stable Region
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The stable region occurs where |a] —1 < b < 1,
in the interior of an isosceles right-angled triangle
with corners at (a, b) = (0,—1) and (a, b) = (£2,1).
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Stability with a Variable Forcing Term

Consider now the second-order equation x;11 + ax; + bx;_1 = f;
for a variable forcing term f;.

The general solution takes the form xC = x!* + x where:

» x! is one particular solution of x;41 + ax; + bx;_1 = f;

» x!!is any one of a two-dimension continuum of solutions
to the homogeneous equation x¢y1 + ax; + bx;—1 = 0.

The stability condition |a| < 1+ b < 2 is necessary and sufficient
for any solution of the homogeneous equation
to satisfy x! — 0 as t — oo.

It is therefore also necessary and sufficient
for the difference between any two solutions xt( ) and x(2)
of the inhomogeneous equation xy+1 + ax; + bx;—1 = f;

to satisfy x(l) (2) — 0 as t — oo.

In the long run, this means that there is

an asymptotically unique solution to x;y1 + ax; + bx—1 = f;.
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