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Second-Order Equations

A general second-order difference equation
specifies the state xt at each time t
as a function xt = Ft(xt−1, xt−2) of the state at two previous times.

Suppose we define a new variable defined by yt := xt−1.
Then the equation xt = Ft(xt−1, xt−2) can be converted
into the coupled pair

xt = Ft(xt−1, yt−1)
yt = xt−1

of first-order equations that express the vector (xt , yt)
> ∈ R2

as a function of the vector (xt−1, yt−1)> ∈ R2.
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The Linear Case
We focus on linear equations in one variable
with constant coefficients, which take the form

xt+1 + axt + bxt−1 = ft

Here a, b are scalars, and ft is the forcing term.

We assume that b 6= 0 because otherwise
we have the first-order equation xt+1 + axt = ft .

If we define yt = xt−1, the equation becomes the coupled pair

xt+1 = −axt − byt + ft ; yt+1 = xt

In matrix form, these can be written as(
xt+1

yt+1

)
=

(
−a −b

1 0

)(
xt
yt

)
+

(
ft
0

)
Such vector difference equations are the subject of part C.
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The Homogeneous Case
Nevertheless, consider the homogeneous case
when the vector equation is(

xt+1

yt+1

)
−
(
−a −b

1 0

)(
xt
yt

)
=

(
0
0

)
The solution in matrix form is evidently(

xt
yt

)
=

(
−a −b

1 0

)t (
x0
y0

)

for an arbitrary initial state

(
x0
y0

)
.

Inspired by our earlier discussion of matrix powers,
consider the case when (λ, (x0, y0)>) is an eigenpair, that is(

−a −b
1 0

)(
x0
y0

)
= λ

(
x0
y0

)
where

(
x0
y0

)
6=
(

0
0

)
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Solving the Homogeneous Case

In case

(
−a −b

1 0

)(
x0
y0

)
= λ

(
x0
y0

)
, the solution takes the form

(
xt
yt

)
=

(
−a −b

1 0

)t (
x0
y0

)
= λt

(
x0
y0

)

For this to work, the initial vector

(
x0
y0

)
must solve

the matrix equation

(
−a− λ −b

1 −λ

)(
x0
y0

)
=

(
0
0

)
.

For a non-trivial solution to exist,

the matrix

(
−a− λ −b

1 −λ

)
must be singular, implying that

∣∣∣∣ −a− λ −b
1 −λ

∣∣∣∣ = λ2 + aλ+ b = 0
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The Auxiliary Equation

Instead of treating the second-order equation as a coupled pair,
consider directly the homogeneous second-order equation

xt+1 + axt + bxt−1 = 0

Inspired by our previous analysis
using eigenvalues of a suitable matrix,
we look for a solution of the form xt = λtx0,
for suitable constants λ and x0.

It is a solution provided that λt+1x0 + aλtx0 + bλt−1x0 = 0.

Ignoring the trivial solutions when x0 = 0 or λ = 0,
cancel λt−1x0 to obtain the auxiliary or characteristic equation

λ2 + aλ+ b = 0

This, of course, is the condition for λ to be an eigenvalue.
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The Auxiliary Equation and Its Roots

The auxiliary equation λ2 + aλ+ b = 0 is quadratic.

It therefore has two roots λ1, λ2
satisfying λ2 + aλ+ b = (λ− λ1)(λ− λ2).

In particular λ1 + λ2 = −a and λ1λ2 = b.

The assumption that b 6= 0 implies
that the two roots λ1, λ2 are both non-zero.

This leaves three cases:

1. two distinct real roots λ1, λ2 ∈ R,
which is true iff a2 > 4b;

2. two complex conjugate roots λ1, λ2 = re±iθ ∈ C,
which is true iff a2 < 4b;

3. two coincident real roots λ = λ1 = λ2 ∈ R,
which is true iff a2 = 4b.
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Case 1: Two Distinct Real Roots

In this case λ2 + aλ+ b = (λ− λ1)(λ− λ2),

where λ1, λ2 = −1
2a±

1
2

√
a2 − 4b.

Note that a = λ1 + λ2 and b = λ1λ2
with a2 − 4b = (λ1 + λ2)2 − 4λ1λ2 = (λ1 − λ2)2 > 0.

There are two degrees of freedom in the difference equation,

so we look for two linearly independent solutions x
H(1)
t and x

H(2)
t

of the homogeneous difference equation xt+1 + axt + bxt−1 = 0.

— that is two solutions for which Ax
H(1)
t + Bx

H(2)
t ≡ 0

implies that the two scalars A and B satisfy A = B = 0.
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Two Linearly Independent Solutions

Note that Aλt1 + Bλt2 = 0 for both t = 0 and t = 1 if and only if(
1 1
λ1 λ2

)(
A
B

)
=

(
0
0

)
This has a non-trivial solution in the two constants A and B

iff 0 =

∣∣∣∣ 1 1
λ1 λ2

∣∣∣∣, or if and only if 0 = λ2 − λ1.

So when λ1 6= λ2, the only solution is trivial, with A = B = 0.

Hence, the two functions x
(1)
t = x0λ

t
1 and x

(2)
t = x0λ

t
2 with x0 6= 0

are linearly independent solutions of xt+1 + axt + bxt−1 = 0.

There are two degrees of freedom in the difference equation.

Therefore, its general solution with these two degrees of freedom
is xt = Aλt1 + Bλt2 for arbitrary real constants A and B.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 10 of 56



Example: The Fibonacci Sequence
The Fibonacci sequence is

(xt)
∞
t=0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .)

It is the unique solution with x0 = 0 and x1 = 1
of the Fibonacci difference equation xt+1 − xt − xt−1 = 0.

The characteristic equation is λ2 − λ− 1 = 0,
with characteristic roots λ1,2 = −1

2(−1±
√

5).

Its two roots are:
(i) the golden ratio ϕ := λ1 = 1

2(1 +
√

5) ≈ 1.61803398875;

and (ii) λ2 = 1− λ1 = 1
2(1−

√
5) ≈ −0.61803398875.

The general solution of the Fibonacci difference equation
is xt = Aλt1 + Bλt2 for arbitrary constants A and B.

To obtain the Fibonacci sequence with x0 = 0 and x1 = 1
requires B = −A and 1 = A(λ1 − λ2) = A

√
5,

so B = −A = −1
5

√
5.

Hence xt = 1
5

√
5 · 2−t

[
(1 +

√
5)t − (1−

√
5)t
]
, so xt ∈ N.
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Case 2: Two Complex Conjugate Roots

Consider next the case where the equation λ2 + aλ+ b = 0
has two complex conjugate roots that we write as

λ = re±iθ = r(cos θ ± i sin θ) where sin θ 6= 0

In this case λ2 + aλ+ b = (λ− re iθ)(λ− re−iθ) where

a = re iθ + re−iθ = r(cos θ + i sin θ) + r(cos θ − i sin θ) = 2r cos θ

and b = (re iθ)(re−iθ) = r2 with sin θ 6= 0.

It follows that a2 − 4b = 4r2 cos2 θ − 4r2 = −4r2 sin2 θ < 0.

Note that r =
√
|b| and θ = arccos

( a

2r

)
= arccos

(
1
2a|b|

− 1
2

)
.
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Case 2: Oscillating Solutions

In the complex plane C, two possible solutions
of the difference equation xt+1 + axt + bxt−1 = 0 with x0 6= 0 are

x
(1)
t = x0(re iθ)t = x0r

te iθt = x0r
t(cos θt + i sin θt)

and x
(2)
t = x0(re−iθ)t = x0r

te−iθt = x0r
t(cos θt − i sin θt)

In the real line R, two possible solutions are

x
(1)
t = r t cos θt and x

(2)
t = r t sin θt

These are linearly independent because∣∣∣∣∣x (1)0 x
(2)
0

x
(1)
1 x

(2)
1

∣∣∣∣∣ =

∣∣∣∣ 1 0
r cos θ r sin θ

∣∣∣∣ = r sin θ 6= 0

The general solution is therefore xt = r t(A cos θt + B sin θt)
for arbitrary real constants A and B, where A = x0.
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Case 3: Two Coincident Roots

In this case λ2 + aλ+ b = (λ− λ̄)2,
where a = −2λ̄ and b = λ̄2.

Consider the perturbed equation xt+1 + axt + b̃xt−1 = 0
where a = −2λ̄ still and b̃ = λ̄2 − ε2 with ε a small positive
number.

We consider the behaviour of its general solution as ε→ 0.

The auxiliary equation λ2 + aλ+ b̃ = 0
can be written as λ2 − 2λ̄λ+ λ̄2 − ε2 = 0.

Note that λ2 − 2λ̄λ+ λ̄2 − ε2 = (λ− λ̄+ ε)(λ− λ̄− ε).

So the perturbed auxiliary equation
has the two real roots λ = λ̄± ε.
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The Solution with Fixed Initial Conditions
Fix x̄0 and x̄1.

The general solution satisfying x0 = x̄0 and x1 = x̄1
is xt = A(λ̄+ ε)t + B(λ̄− ε)t where x̄0 = A + B
and x̄1 = A(λ̄+ ε) + B(λ̄− ε) = (A + B)λ̄+ (A− B)ε.

Hence A + B = x̄0 and A− B = (1/ε)(x̄1 − x̄0λ̄),
implying that A = 1

2

[
x̄0 + (1/ε)(x̄1 − x̄0λ̄)

]
and B = 1

2

[
x̄0 − (1/ε)(x̄1 − x̄0λ̄)

]
.

The solution for fixed ε is therefore

xεt = 1
2

[
x̄0 + (1/ε)(x̄1 − x̄0λ̄)

]
(λ̄+ ε)t

+ 1
2

[
x̄0 − (1/ε)(x̄1 − x̄0λ̄)

]
(λ̄− ε)t

which can be rewritten as

xεt = 1
2 x̄0
[
(λ̄+ ε)t + (λ̄− ε)t

]
+ 1

2(x̄1 − x̄0λ̄)(1/ε)
[
(λ̄+ ε)t − (λ̄− ε)t

]
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The Limiting Solution as ε→ 0
The limit of xεt as ε→ 0 takes the form

x̄0λ̄
t + 1

2(x̄1 − x̄0λ̄) lim
ε→0

(1/ε)
[
(λ̄+ ε)t − (λ̄− ε)t

]
To evaluate the last limit, apply l’Hôpital’s rule to obtain

limε→0

[
(λ̄+ ε)t − (λ̄− ε)t

]
/ε

= limε→0

[
t(λ̄+ ε)t−1 + t(λ̄− ε)t−1

]
/1

= 2tλ̄t−1 = (2t/λ̄) λ̄t

Two linearly independent possible solutions
of the difference equation xt+1 + axt + bxt−1 = 0

with x0 6= 0 are x
(1)
t = x0λ

t and x
(2)
t = x0tλ

t .

There are two degrees of freedom in the difference equation.

Its general solution is xt = (C + Dt)λt

for arbitrary real constants C and D.
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A Simpler Approach, I

We are trying to solve the homogeneous second-order
difference equation with a repeated root λ, taking the form

xt+1 − 2λxt + λ2xt−1 = 0

We know that one solution is xt = x0λ
t for arbitrary x0.

To find a second linearly independent solution
that we know must exist, try putting xt = λtyt .

Substituting into the original equation gives

λt+1yt+1 − 2λt+1yt + λt+1yt−1 = 0

Disregarding the trivial case when λ = 0,
one has yt+1 − 2yt + yt−1 = 0.
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A Simpler Approach, II

To solve yt+1 − 2yt + yt−1 = 0,
try introducing yet another new variable zt = yt+1 − yt .

This leads to the new difference equation zt − zt−1 = 0
whose solution is obviously zt = z0 for all t = 1, 2, . . ..

Then yt+1 − yt = z0 for all t, implying that yt = y0 + z0t.

It follows that xt = λtyt = (y0 + z0t)λt .

To conclude, two solutions are x
(1)
t = λt and x

(2)
t = tλt .

These are linearly independent because∣∣∣∣∣x (1)0 x
(2)
0

x
(1)
1 x

(2)
1

∣∣∣∣∣ =

∣∣∣∣1 0
λ λ

∣∣∣∣ = λ 6= 0

The general solution is therefore xt = (A + Bt)λt

for arbitrary real constants A and B, where A = x0.
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From Particular to General Solutions

The homogeneous equation with constant coefficients
takes the form

xt+1 + axt + bxt−1 = 0

The associated inhomogeneous equation takes the form

xt+1 + axt + bxt−1 = ft

for a general forcing term ft on the RHS.

Let xPt denote a particular solution,
and xGt any alternative general solution,
of the inhomogeneous equation.
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Characterizing the General Solution

Our assumptions imply that, for each t = 1, 2, . . ., one has

xPt+1 + axPt + bxPt−1 = ft

xGt+1 + axGt + bxGt−1 = ft

Subtracting the first equation from the second implies that

xGt+1 − xPt+1 + a(xGt − xPt ) + b(xGt−1 − xPt−1) = 0

This shows that xHt := xGt − xPt
solves the homogeneous equation xt+1 + axt + bxt−1 = 0.

So the general solution xGt
of the inhomogeneous equation xt+1 + axt + bxt−1 = ft
with forcing term ft is the sum xPt + xHt of

I any particular solution xPt of the inhomogeneous equation;

I the general solution xHt of the homogeneous equation.
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Linearity in the Forcing Term

Theorem
Suppose that xPt and yPt are particular solutions
of the two respective difference equations

xt+1 + axt + bxt−1 = dt and yt+1 + ayt + byt−1 = et

Then, for any scalars α and β,
the linear combination zPt := αxPt + βyPt is a particular solution
of the equation zt+1 + azt + bzt−1 = αdt + βet .

Proof.
Routine algebra.

Consider any equation of the form xt+1 + axt + bxt−1 = ft
where ft is a linear combination

∑n
k=1 αk f

k
t of n forcing terms.

The theorem implies that a particular solution
is the corresponding linear combination

∑n
k=1 αkx

Pk
t

of particular solutions to the equations xt+1 + axt + bxt−1 = f kt .
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Deriving an Explicit Particular Solution, I

In part A we were able to derive an explicit solution
to the general first-order linear equation xt − atxt−1 = ft .

Here, for the special case of constant coefficients,
we derive an explicit particular solution satisfying x0 = x1 = 0
to the general second-order linear equation xt+1 + axt + bxt−1 = ft .

Indeed, suppose that λ2 + aλ+ b = (λ− λ1)(λ− λ2)
because λ1 and λ2 are the roots
(possibly coincident, or possibly complex conjugates)
of the auxiliary equation λ2 + aλ+ b = 0.

Introduce the new variable yt = xt − λ1xt−1, implying that

yt+1 − λ2yt = xt+1 − λ1xt − λ2xt + λ1λ2xt−1
= xt+1 − (λ1 + λ2)xt + λ1λ2xt−1
= xt+1 + axt + bxt−1 = ft
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Deriving an Explicit Particular Solution, II
Instead of the second-order equation xt+1 + axt + bxt−1 = ft ,
we have the recursive pair of first-order equations

xt − λ1xt−1 = yt and yt+1 − λ2yt = ft (for t = 1, 2, . . .)

where λ1 and λ2 are the roots of λ2 + aλ+ b = 0.

Given the initial conditions x0 = x1 = 0 and so y1 = 0,
the explicit solutions like those derived in Part A are the sums

yt =
∑t−1

k=1
λt−k−12 fk and xt =

∑t

s=2
λt−s1 ys for t = 1, 2, . . .

Substituting the first equation in the second yields the double sum

xt =
∑t

s=2
λt−s1

∑s−1

k=1
λs−k−12 fk

which we would like to reduce to xt =
∑t−1

k=1 ξt−k−1fk
— i.e., a linear combination of the forcing terms (f1, f2, . . . , ft−1).
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Deriving an Explicit Particular Solution, III
We begin by introducing
the mapping N× N 3 (k, s) 7→ 1ks{k < s} ∈ {0, 1} defined by

1ks{k < s} :=

{
1 if k < s

0 if k ≥ s

Then we can rewrite xt =
∑t

s=2 λ
t−s
1

∑s−1
k=1 λ

s−k−1
2 fk

as the double sum xt =
∑t

s=2

∑t−1
k=1 1ks{k < s}λt−s1 λs−k−12 fk .

Interchanging the order of summation gives

xt =
∑t−1

k=1

∑t
s=2 1ks{k < s}λt−s1 λs−k−12 fk

=
∑t−1

k=1

(∑t
s=k+1 λ

t−s
1 λs−k−12

)
fk

=
∑t−1

k=1

(
λt−k−11 + λt−k−21 λ2 + . . .+ λ1λ

t−k−2
2 + λt−k−12

)
fk

This reduces to xt =
∑t−1

k=1 ξt−k−1fk where ξm :=
∑m

j=0 λ
m−j
1 λj2.
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Deriving an Explicit Particular Solution: IV
The value of the sum ξm =

∑m
j=0 λ

m−j
1 λj2 depends on whether:

I we are in the general case when λ1 6= λ2;

I we are in the degenerate case when λ1 = λ2 = λ.

In the general case one has

(λ1 − λ2)ξm =
∑m

j=0

(
λm+1−j
1 λj2 − λ

m−j
1 λj+1

2

)
= λm+1

1 − λm+1
2

implying the particular solution

xPt =
1

λ1 − λ2

∑t−1

k=1

(
λt−k1 − λt−k2

)
fk

In the degenerate case one has ξm = (m + 1)λm,
implying the particular solution

xPt =
∑t−1

k=1
(t − k)λt−k fk
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First Special Case with Distinct Real Roots, I
Consider the equation xt+1 + axt + bxt−1 = ft
in the first special case when ft = µt with µ 6= 0.

In the general case when the two roots λ1 and λ2
of the auxiliary equation λ2 + aλ+ b = 0 are distinct,
the particular solution with xP0 = xP1 = 0 is

xPt =
1

λ1 − λ2

∑t−1

k=1

(
λt−k1 − λt−k2

)
µk

But (λ− µ)
∑t−1

k=1 λ
t−kµk =

∑t−1
k=1

(
λt−k+1µk − λt−kµk+1

)
, so

xPt =
1

λ1 − λ2

(
λt1µ− λ1µt

λ1 − µ
− λt2µ− λ2µt

λ2 − µ

)
in case µ 6∈ {λ1, λ2}.

Disregarding the terms in λt1 and λt2
that solve the corresponding homogeneous equation,
the solution reduces to xPt = αµt for a suitable constant α.
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First Special Case with Distinct Real Roots, II

The degenerate case when µ ∈ {λ1, λ2} is more complicated.

In case λ1 6= λ2 = µ, the particular solution with xP0 = xP1 = 0
is still

xPt =
1

λ1 − λ2

∑t−1

k=1

(
λt−k1 − λt−k2

)
µk

Because λ2 = µ, this reduces to

xPt =
1

λ1 − µ
∑t−1

k=1

(
λt−k1 µk − µt

)
=

1

λ1 − µ

[
λt1µ− λ1µt

λ1 − µ
− (t − 1)µt

]
Disregarding the terms in λt1 and in λt2 = µt

that solve the corresponding homogeneous equation,
the solution reduces to xPt = αtµt for a suitable constant α.
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First Special Case with Coincident Real Roots

Consider now the degenerate case
with coincident real roots λ1 = λ2 = λ.

So the inhomogeneous equation is xt+1 − 2λxt + λ2xt−1 = µt .

As before, put yt = xt − λxt−1 so that

yt+1 − λyt = xt+1 − λxt − λxt + λ2xt−1 = µt

We consider again the particular solution
with x0 = x1 = 0 and so y1 = 0.
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First Special Case with Coincident Real Roots: λ 6= µ

Provided that λ 6= µ, for t = 2, 3, . . . one has

yPt =
∑t

k=2 λ
t−kµk−1 =

µ(λt−1 − µt−1)

λ− µ

and then xPt =
∑t

k=2 λ
t−kyPk =

∑t
k=2 λ

t−kµ
λk−1 − µk−1

λ− µ

=
∑t

k=2

µλt−1 − λt−kµk

λ− µ

=
µ(t − 1)λt−1

λ− µ
− λt−1µ2 − µt+1

(λ− µ)2

Hence xPt = (α + βt)λt + γµt for suitable constants α, β and γ
that depend on λ and µ, but not on t.

Because (α + βt)λt is a complementary solution
of the homogeneous equation,
the particular solution can be reduced to xPt = γµt .
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First Special Case with Coincident Real Roots: λ = µ

In case λ = µ, however, for t = 2, 3, . . . one has

yPt =
∑t

k=2 λ
t−kµk−1 = (t − 1)λt−1

and then xPt =
∑t

k=2 λ
t−kyPk =

∑t
k=2 λ

t−k(k − 1)λk−1

=
∑t

k=2(k − 1)λt−1 = 1
2 t(t − 1)λt−1

Hence xPt = (αt + βt2)λt for suitable constants α and β
that depend on λ = µ, but not on t.

Because αtλt is a complementary solution
of the homogeneous equation,
the particular solution can be reduced to xPt = βt2µt .
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Second Special Case: General Theorem
Consider next the equation xt+1 + axt + bxt−1 = ft
in the second special case when ft = trµt with µ 6= 0 and r ∈ N.

As before, let λ1 and λ2 denote the roots
of the auxiliary equation λ2 + aλ+ b = 0.

Theorem
The difference equation xt+1 + axt + bxt−1 = trµt

has a particular solution of the form xPt = ξP(t)µt

where ξP(t) =
∑d

j=0 ξrj t
j is a polynomial in t which has degree:

I d = r in case µ 6∈ {λ1, λ2};
I d = r + 2 in case µ = λ1 = λ2;

I d = r + 1 otherwise.

We begin the proof by introducing, as before,
the new variable yt := xt − λ1xt−1, implying that

yt+1 − λ2yt = xt+1 − λ1xt − λ2xt + λ1λ2xt−1
= xt+1 + axt + bxt−1 = trµt
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Continuing the Proof of the General Theorem

By the result in part A, the first-order equation yt+1 − λ2yt = trµt

has a particular solution of the form yt = Q(t)µt ,
where Q(t) =

∑d
j=0 qrj t

j is a polynomial in t which has degree:

(i) d = r in case µ 6= λ2; (ii) d = r + 1 in case µ = λ2.

By the linearity property of particular solutions, the equation

xt − λ1xt−1 = yt = Q(t)µt =
∑d

j=0
qrj t

jµt

has a particular solution xPt = ξP(t)µt where

xPt = ξP(t)µt =
∑d

j=0
qrjPj(t)µt

is the appropriate linear combination
of the particular solutions xt = Pj(t)µt (j = 0, 1, 2, . . . , d)
of the d + 1 first-order equations xt − λ1xt−1 = t jµt .
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Ending the Proof of the General Theorem

Again, using the result in part A,
for each j = 0, 1, 2, . . . , r , the solution xt = Pj(t)µt

of the first-order difference equation xt − λ1xt−1 = t jµt

involves a polynomial Pj(t) in t which has degree:

(i) j in case µ 6= λ1; (ii) j + 1 in case µ = λ1.

So the degree of the highest order polynomial Pd(t) is
(i) d in case µ 6= λ1; (ii) d + 1 in case µ = λ1.

Combined with our previous result on whether d = r or d = r + 1,
the degree d of ξP(t) is now easily seen to be

I d = r in case µ 6∈ {λ1, λ2};
I d = r + 2 in case µ = λ1 = λ2;

I d = r + 1 otherwise.

Using the notation #S for the number of elements in a set S ,
these three cases can be summarized as d = r + 3−#{λ1, λ2, µ}.
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First Special Case: A Simpler Approach
We have proved that the second-order difference equation

xt+1 + axt + bxt−1 = µt

has a particular solution of the form xPt = αµt .

But there is a much easier way to find xPt ,
treating the parameter α as an undetermined coefficient.

Indeed, for xt = αµt to be a solution,
one needs αµt+1 + aαµt + bαµt−1 = µt .

Dividing each side by µt−1

yields the equation α(µ2 + aµ+ b) = µ.

In the non-degenerate case when µ2 + aµ+ b 6= 0
because µ is not a root
of the characteristic equation λ2 + aλ+ b = 0,
one has α = µ(µ2 + aµ+ b)−1.

Hence, a particular solution is xPt = (µ2 + aµ+ b)−1µt+1.
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Degenerate Case When µ is a Characteristic Root

The simple degenerate case occurs when µ2 + aµ+ b = 0
because µ equals one of the two distinct roots λ1 and λ2
of the characteristic equation λ2 + aλ+ b = 0.

Then we have proved that the second-order difference equation

xt+1 + axt + bxt−1 = µt

has a particular solution of the form xPt = αtµt .

To determine the undetermined coefficient α, we must solve

α(t + 1)µt+1 + aαtµt + bα(t − 1)µt−1 = µt

Dividing each side by µt−1 and gathering terms
yields the equation αt(µ2 + aµ+ b) + α(µ2 − b) = µ.

Provided that µ2 6= b, this reduces to α = (µ2 − b)−1µ.
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Doubly Degenerate Case
When µ2 = b, however, the degenerate case is more complicated.

Indeed, the equation µ2 + aµ+ b = 0 implies that aµ+ 2b = 0.

Hence µ = −2b/a, so µ2 = b = 4b2/a2 implying that a2 = 4b.

Then the characteristic equation λ2 + aλ+ b = 0
reduces to (λ− µ)2 = 0, with µ as its repeated root.

Inspired by the earlier theorem,
we look for a particular solution of the form xPt = αt2µt .

To determine the undetermined coefficient α, we must solve

α(t + 1)2µt+1 + aαt2µt + bα(t − 1)2µt−1 = µt

Dividing each side by µt−1 and gathering terms yields

αt2(µ2 + aµ+ b) + α(2t + 1)µ2 + αb(−2t + 1) = µ

Because µ2 + aµ+ b = 0 and 0 6= b = µ2,
this equation reduces to 2αµ2 = µ, implying that α = 1/2µ.
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Second Special Case
Again, inspired by earlier theorems, we can apply
the method of undetermined coefficients to the equation

xt+1 + axt + bxt−1 =
∑m

k=1

∑rk

j=1
αkj t

jµtk

where we naturally assume that the constants µk (k = 1, 2, . . . ,m)
are all different.

A particular solution takes the form

xPt =
∑m

k=1

∑dk

j=1
βkj t

jµtk

where the degree dk of each polynomial
∑dk

j=1 βkj t
j

with undetermined coefficients 〈〈βkj〉dkj=1〉mk=1 is

I rk in case µk 6∈ {λ1, λ2};
I rk + 2 in case µk = λ1 = λ2;

I rk + 1 otherwise.
University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 40 of 56



Determining the Coefficients

The coefficients 〈〈βkj〉dkj=1〉mk=1 of the particular solution

xPt =
∑m

k=1

∑dk

j=1
βkj t

jµtk

can be found (in principle!) by solving, for k = 1, 2, . . . ,m,
the m independent systems of linear equations
that result from equating coefficients of powers of t
in the expansions∑dk

j=1
βkj [(t + 1)jµ2k + at jµtk + b(t − 1)j ] =

∑rk

j=1
αkj t

jµk
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Higher-Order Linear Equations with Constant Coefficients

An nth order linear equation with constant coefficients
takes the form

xt +
∑n

r=1
arxt−r = ft

in the inhomogeneous case, and

xt +
∑n

r=1
arxt−r = 0

in the homogeneous case.

The corresponding auxiliary equation is λn +
∑n

r=1 arλ
n−r = 0.
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Roots of the Auxiliary Equation

The auxiliary equation can be written as pn(λ) = 0
whose LHS is the polynomial λn +

∑n
r=1 arλ

t−r of degree n.

By the fundamental theorem of algebra,
this equation has at least one root λ1, which may be complex.

Then pn(λ) can be factored as pn(λ) ≡ (λ− λ1)pn−1(λ).

But now the equation pn−1(λ) = 0
also has at least one root λ2, which may also be complex.

Repeating this argument n times,
the auxiliary equation pn(λ) = 0 has n roots λ1, λ2, . . . , λn,
some of which may be repeated.

In particular, pn(λ) ≡
∏n

i=1(λ− λi ).
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Solving the Homogeneous Equation

Theorem
Consider the homogeneous equation xt +

∑n
r=1 arxt−r = 0,

and suppose that the auxiliary equation can be written as

0 = λn +
∑n

r=1
arλ

t−r =
∏k

j=1
(λ− ρj)mj

with k distinct roots ρj (j = 1, 2, . . . , k)

whose respective multiplicities mj satisfy
∑k

j=1mj = n.

Then the general solution of the homogeneous equation
takes the form

xt =
∑k

j=1

∑mj

h=1
αjht

h−1ρtj

for n arbitrary constants αjh (h = 1, 2, . . . ,mj and j = 1, 2, . . . , k).

That is, the general solution is an arbitrary linear combination
of the functions th−1ρtj (h = 1, 2, . . . ,mj and j = 1, 2, . . . , k).
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Solving the Inhomogeneous Equation

Theorem
The general solution of the inhomogeneous equation

xt +
∑n

r=1
arxt−r =

∑i

h=1

∑qh

j=1
αhj t

jµth

is the sum of: (i) the general complementary solution
to the corresponding homogeneous equation xt +

∑n
r=1 arxt−r = 0;

and (ii) any particular solution.

One particular solution takes the form xPt =
∑i

h=1

∑dh
j=1 βhj t

jµth
where the degree dh of each polynomial

∑dh
j=1 βhj t

j

with undetermined coefficients 〈〈βhj〉dhj=1〉ih=1 is

I qh in case µh 6∈ {ρ1, ρ2, . . . , ρk};
I qh + mj in case µh = ρj , a root of multiplicity mj .
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Stationary States of a Linear Equation

Consider the second-order equation xt+1 + axt + bxt−1 = f
for a constant forcing term f ∈ R.

Here a stationary state x∗ ∈ R has the defining property
that xt−1 = xt = x∗ =⇒ xt+1 = x∗.

This is satisfied if and only if x∗ + ax∗ + bx∗ = f ,
or equivalently, if and only if (1 + a + b)x∗ = f .

In case a + b = −1, there is:

I no stationary state unless f = 0;

I a whole real line R of stationary states if f = 0.

Otherwise, if a + b 6= −1,
the only stationary state is x∗ = (1 + a + b)−1f .
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Stability of a Linear Equation
If a + b 6= −1, let yt := xt − x∗ denote the deviation of state xt
from the stationary state x∗ = (1 + a + b)−1f . Then

yt+1 = xt+1 − x∗ = −axt − bxt−1f − x∗

= −a(yt + x∗)− b(yt−1 + x∗) + f − x∗ = −ayt − byt−1

Thus yt solves the homogenous equation xt+1 + axt + bxt−1 = 0.

As already seen, the solution to this homogeneous equation

depends on the two roots λ1,2 = −1
2a±

1
2

√
a2 − 4b

of the quadratic characteristic equation

f (λ) ≡ λ2 + aλ+ b ≡ (λ− λ1)(λ− λ2) = 0

There are three cases to consider:

1. two distinct real roots because a2 − 4b > 0;

2. two complex conjugate roots because a2 − 4b < 0;

3. two coincident real roots because a2 − 4b = 0.
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Stability Condition

With two distinct roots λ1 and λ2, real or complex,
the general solution of the homogeneous equation
is xt = Aλt1 + Bλt2.

Stability is satisfied if and only if
for all A,B ∈ R one has xt → 0 as t →∞.

This is true if and only if the absolute values of both roots
satisfy |λ1| < 1 and |λ2| < 1.

With two coincident roots λ1 = λ2 = −1
2a =

√
b,

the general solution of the homogeneous equation
is xt = (A + Bt)λt .

Again, stability is satisfied if and only if
for all A,B ∈ R one has xt → 0 as t →∞.

This is true if and only if the absolute value of the double root
satisfies |λ| < 1.
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Two Distinct Real Roots

Here λ2 + aλ+ b = (λ− λ1)(λ− λ2)
where λ1 and λ2 are both real.

Note that the quadratic function f (λ) ≡ λ2 + aλ+ b is convex
and satisfies f (λ)→ +∞ as λ→ ±∞.

So the real roots of f (λ) = 0 satisfy |λ1| < 1 and |λ2| < 1 iff

f (−1) > 0 and f (1) > 0 with f ′(−1) < 0 and f ′(1) > 0

These conditions are equivalent to

1− a + b > 0 and 1 + a + b > 0 with − 2 + a < 0 and 2 + a > 0

or to |a| < 2 and |a| < 1 + b.

Together with the condition a2 > 4b
for the equation f (λ) = 0 to have two distinct real roots,
these inequalities are equivalent to |a| − 1 < b < 1.
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Two Complex Conjugate Roots

The characteristic equation λ2 + aλ+ b = 0
has two complex conjugate roots when a2 − 4b < 0.

In this case, these characteristic roots are

λ1,2 = −1
2a±

1
2 i
√

4b − a2 = r e±iθ = r(cos θ ± i sin θ)

where r =
√
b and θ = arccos(a/2

√
b)

Then the general solution of the homogeneous equation
can be written as xt = r t(A cos θt + B sin θt).

Stability is satisfied if and only if
for all A,B ∈ R one has xt → 0 as t →∞.

This is true if and only if b < 1,
as well as a2 − 4b < 0 which implies that b > 0.
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A Repeated Real Root

The characteristic equation λ2 + aλ+ b = 0
has two coincident real roots roots when a2 = 4b.

In this case, λ2 + aλ+ b = (λ+ 1
2a)2.

The coincident real roots both equal −1
2a.

Then the general solution of the homogeneous equation
is xt = (A + Bt)(−1

2a)t .

Stability is satisfied if and only if
for all A,B ∈ R one has xt → 0 as t →∞.

This is true if and only if the modulus
of the repeated root λ = −1

2a satisfies |λ| < 1,
and so if and only if |a| < 2.
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A Simpler Stability Condition

Theorem
The linear autonomous equation xt+1 + axt + bxt−1 = f
is stable, both locally and globally, if and only if |a| < 1 + b < 2.

Proof.
Stability requires one of the following three to hold:

1. distinct real roots because a2 > 4b, with |a| − 1 < b < 1;

2. complex conjugate roots because a2 < 4b, with b < 1;

3. a repeated real root because a2 = 4b, with |a| < 2.

A diagram in the (a, b)-plane shows that one of these three holds
if and only if |a| < 1 + b < 2.
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Diagram of Stable Region

The stable region occurs where |a| − 1 < b < 1,
in the interior of an isosceles right-angled triangle
with corners at (a, b) = (0,−1) and (a, b) = (±2, 1).
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Stability with a Variable Forcing Term
Consider now the second-order equation xt+1 + axt + bxt−1 = ft
for a variable forcing term ft .

The general solution takes the form xGt = xHt + xPt where:

I xPt is one particular solution of xt+1 + axt + bxt−1 = ft ;

I xHt is any one of a two-dimension continuum of solutions
to the homogeneous equation xt+1 + axt + bxt−1 = 0.

The stability condition |a| < 1 + b < 2 is necessary and sufficient
for any solution of the homogeneous equation
to satisfy xHt → 0 as t →∞.

It is therefore also necessary and sufficient

for the difference between any two solutions x
(1)
t and x

(2)
t

of the inhomogeneous equation xt+1 + axt + bxt−1 = ft
to satisfy x

(1)
t − x

(2)
t → 0 as t →∞.

In the long run, this means that there is
an asymptotically unique solution to xt+1 + axt + bxt−1 = ft .
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