Lecture Notes 7: Dynamic Equations Part C: Linear Difference Equation Systems

Peter J. Hammond

latest revision 2024 September 16th typeset from dynEqLects24C.tex

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

Systems of Linear Difference Equations

Many empirical economic models involve simultaneous time series for several different variables.

Consider a first-order linear difference equation

$$\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{f}_t$$

for an n-dimensional process $T \ni t \mapsto \mathbf{x}_t \in \mathbb{R}^n$, where each matrix \mathbf{A}_t is $n \times n$.

We will prove by induction on t that for $t=0,1,2,\ldots$ there exist suitable $n\times n$ matrices $\mathbf{P}_{t,k}$ $(k=0,1,2,\ldots,t)$ such that, given any possible value of the initial state vector \mathbf{x}_0 and of the forcing terms \mathbf{f}_t $(t=0,1,2,\ldots)$, the unique solution can be expressed as

$$\mathbf{x}_t = \mathbf{P}_{t,0}\mathbf{x}_0 + \sum_{k=1}^t \mathbf{P}_{t,k}\mathbf{f}_{k-1}$$

The proof, of course, will also involve deriving a recurrence relation for these matrices.

Early Terms of the Matrix Solution

Because $\mathbf{x}_0 = \mathbf{P}_{0,0}\mathbf{x}_0 = \mathbf{x}_0$, the first term is obviously $\mathbf{P}_{0,0} = \mathbf{I}$ when t = 0.

Next $\mathbf{x}_1 = \mathbf{A}_0 \mathbf{x}_0 + \mathbf{f}_0$ when t = 1 implies that $\mathbf{P}_{1,0} = \mathbf{A}_0$, $\mathbf{P}_{1,1} = \mathbf{I}$.

Next, the solution for t = 2 is

$$\mathbf{x}_2 = \mathbf{A}_1 \mathbf{x}_1 + \mathbf{f}_1 = \mathbf{A}_1 \mathbf{A}_0 \mathbf{x}_0 + \mathbf{A}_1 \mathbf{f}_0 + \mathbf{f}_1$$

This formula matches the formula

$$\mathbf{x}_t = \mathbf{P}_{t,0}\mathbf{x}_0 + \sum_{k=1}^t \mathbf{P}_{t,k}\mathbf{f}_{k-1}$$

when t = 2 provided that:

- $ightharpoonup P_{2,0} = A_1 A_0;$
- $ightharpoonup P_{2,1} = A_1;$
- $P_{2,2} = I$.

Matrix Solution

Now, substituting the two expansions

$$\mathbf{x}_t = \mathbf{P}_{t,0} \mathbf{x}_0 + \sum_{k=1}^t \mathbf{P}_{t,k} \mathbf{f}_{k-1}$$
 and $\mathbf{x}_{t+1} = \mathbf{P}_{t+1,0} \mathbf{x}_0 + \sum_{k=1}^{t+1} \mathbf{P}_{t+1,k} \mathbf{f}_{k-1}$

into both sides of the original equation $\mathbf{x}_{t+1} = \mathbf{A}_t \mathbf{x}_t + \mathbf{f}_t$ gives

$$\begin{aligned} \mathbf{P}_{t+1,0} \mathbf{x}_0 + \sum_{k=1}^{t+1} \mathbf{P}_{t+1,k} \mathbf{f}_{k-1} \\ &= \mathbf{A}_t \left(\mathbf{P}_{t,0} \mathbf{x}_0 + \sum_{k=1}^{t} \mathbf{P}_{t,k} \mathbf{f}_{k-1} \right) + \mathbf{f}_t \end{aligned}$$

Equating the matrix coefficients of \mathbf{x}_0 and of each \mathbf{f}_{k-1} in this equation implies that for general t one has

$$\mathbf{P}_{t+1,k} = \mathbf{A}_t \mathbf{P}_{t,k}$$
 for $k = 0, 1, \dots, t$, with $\mathbf{P}_{t+1,t+1} = \mathbf{I}$

Matrix Solution, II

The equation $\mathbf{P}_{t+1,k} = \mathbf{A}_t \mathbf{P}_{t,k}$ for $k = 0, 1, \dots, t$ implies that

$$\mathbf{P}_{t,0} = \mathbf{A}_{t-1} \cdot \mathbf{A}_{t-2} \cdots \mathbf{A}_0$$
 when $k = 0$
 $\mathbf{P}_{t,k} = \mathbf{A}_{t-1} \cdot \mathbf{A}_{t-2} \cdots \mathbf{A}_k$ when $k = 1, 2, \dots, t$

or, after defining the product of the empty set of matrices as \boldsymbol{I} ,

$$\mathsf{P}_{t,\,k} = \prod_{s=1}^{t-k} \mathsf{A}_{t-s}$$

Inserting these into our formula

$$\mathbf{x}_t = \mathbf{P}_{t,0}\mathbf{x}_0 + \sum_{k=1}^t \mathbf{P}_{t,k}\mathbf{f}_{k-1}$$

implies that

$$\mathbf{x}_t = \left(\prod_{s=1}^t \mathbf{A}_{t-s}\right) \mathbf{x}_0 + \sum_{k=1}^t \left(\prod_{s=1}^{t-k} \mathbf{A}_{t-s}\right) \mathbf{f}_{k-1}$$

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

Complementary Solutions to the Homogeneous Equation

We are considering the general first-order linear difference equation

$$\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{f}_t$$

in \mathbb{R}^n , where each \mathbf{A}_t is an $n \times n$ matrix.

The associated homogeneous equation takes the form

$$\mathbf{x}_t - \mathbf{A}_t \mathbf{x}_{t-1} = \mathbf{0}$$
 (for all $t \in \mathbb{N}$)

Its general solution is the *n*-dimensional linear subspace of functions $\mathbb{N} \ni t \mapsto \mathbf{x}_t \in \mathbb{R}^n$ satisfying

$$\mathbf{x}_t = \left(\prod_{s=1}^t \mathbf{A}_s
ight) \mathbf{x}_0 \quad ext{(for all } t \in \mathbb{N} ext{)}$$

where $\mathbf{x}_0 \in \mathbb{R}^n$ is an arbitrary constant vector.

From Particular to General Solutions

The homogeneous equation takes the form

$$\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{0}$$

An associated inhomogeneous equation takes the form

$$\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{f}_t$$

for a general vector forcing term $\mathbf{f}_t \in \mathbb{R}^n$.

Let \mathbf{x}_t^P denote a particular solution of the inhomogeneous equation and \mathbf{x}_t^G any alternative general solution of the same equation.

Our assumptions imply that, for each t = 1, 2, ..., one has

$$\mathbf{x}_{t+1}^P - \mathbf{A}_t \mathbf{x}_t^P = \mathbf{f}_t$$
 and $\mathbf{x}_{t+1}^G - \mathbf{A}_t \mathbf{x}_t^G = \mathbf{f}_t$

Subtracting the first equation from the second implies that

$$\mathbf{x}_{t+1}^G - \mathbf{x}_{t+1}^P - \mathbf{A}_t(\mathbf{x}_t^G - \mathbf{x}_t^P) = \mathbf{0}$$

This shows that $\mathbf{x}_t^H := \mathbf{x}_t^G - \mathbf{x}_t^P$ solves the homogeneous equation.

Characterizing the General Solution

So the general solution \mathbf{x}_t^G of the inhomogeneous equation $\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{f}_t$ with forcing term \mathbf{f}_t is the sum $\mathbf{x}_t^P + \mathbf{x}_t^H$ of

- \triangleright any particular solution \mathbf{x}_t^P of the inhomogeneous equation;
- ▶ the general complementary solution \mathbf{x}_t^H of the homogeneous equation $\mathbf{x}_{t+1} \mathbf{A}_t \mathbf{x}_t = \mathbf{0}$.

Linearity in the Forcing Term

Theorem

Suppose that \mathbf{x}_t^P and \mathbf{y}_t^P are particular solutions of the two respective difference equations

$$\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_{t-1} = \mathbf{d}_t$$
 and $\mathbf{y}_{t+1} - \mathbf{A}_t \mathbf{y}_{t-1} = \mathbf{e}_t$

Then, for any scalars α and β , the linear combination $\mathbf{z}_t^P := \alpha \mathbf{x}_t^P + \beta \mathbf{y}_t^P$ is a particular solution of the equation $\mathbf{z}_{t+1} - \mathbf{A}_t \mathbf{z}_{t-1} = \alpha \mathbf{d}_t + \beta \mathbf{e}_t$.

This can be proved by routine algebra.

University of Warwick, EC9A0 Maths for Economists, Day 7

Consider any equation of the form $\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_{t-1} = \mathbf{f}_t$ whose right-hand side is a linear combination $\mathbf{f}_t = \sum_{k=1}^n \alpha_k \mathbf{f}_t^k$ of the n forcing vectors $(\mathbf{f}_t^1, \dots, \mathbf{f}_n^1)$.

The theorem implies that a particular solution is the corresponding linear combination $\mathbf{x}_t^P = \sum_{k=1}^n \alpha_k \mathbf{x}_t^{Pk}$ of particular solutions to the n equations $\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_{t-1} = \mathbf{f}_t^k$.

Peter J. Hammond

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

The Autonomous Case

The general first-order equation in \mathbb{R}^n can be written as $\mathbf{x}_{t+1} = \mathbf{F}_t(\mathbf{x}_t)$ where $T \times \mathbb{R}^n \ni (t, \mathbf{x}) \mapsto \mathbf{F}_t(\mathbf{x}) \in \mathbb{R}^n$.

In the autonomous case, the function $(t, \mathbf{x}) \mapsto \mathbf{F}_t(\mathbf{x})$ reduces to $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x})$, independent of t.

In the linear case with constant coefficients, the function $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x})$ takes the affine form $\mathbf{F}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{f}$.

That is, $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{f}$.

In our previous formula, products like $\prod_{s=1}^{t-k} \mathbf{A}_{t-s}$ reduce to powers \mathbf{A}^{t-k} .

Specifically, $\mathbf{P}_{t,k} = \mathbf{A}^{t-k}$, where $\mathbf{A}^0 = \mathbf{I}$.

The solution to $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{f}$ is therefore

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \sum_{k=1}^t \mathbf{A}^{t-k} \mathbf{f}$$

Summing the Geometric Series

Recall the trick for finding $s_t := 1 + a + a^2 + \cdots + a^{t-1}$ is to multiply each side by 1 - a.

Because all terms except the first and last cancel, this trick yields the equation $(1-a)s_t = 1-a^t$.

Hence $s_t = (1-a)^{-1}(1-a^t)$ provided that $a \neq 1$.

Applying the same trick to $\mathbf{S}_t := \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \cdots + \mathbf{A}^{t-1}$ yields the two matrix equations $(\mathbf{I} - \mathbf{A})\mathbf{S}_t = \mathbf{I} - \mathbf{A}^t = \mathbf{S}_t(\mathbf{I} - \mathbf{A})$.

Provided that $(\mathbf{I} - \mathbf{A})^{-1}$ exists, we can pre-multiply $(\mathbf{I} - \mathbf{A})\mathbf{S}_t = \mathbf{I} - \mathbf{A}^t$ and post-multiply $\mathbf{I} - \mathbf{A}^t = \mathbf{S}_t(\mathbf{I} - \mathbf{A})$ on each side by this inverse to get the two equations

$$\mathbf{S}_t = (\mathbf{I} - \mathbf{A})^{-1}(\mathbf{I} - \mathbf{A}^t) = (\mathbf{I} - \mathbf{A}^t)(\mathbf{I} - \mathbf{A})^{-1}$$

So the previous solution $\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \sum_{k=1}^t \mathbf{A}^{t-k} \mathbf{f}$ reduces to

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \mathbf{S}_t \mathbf{f} = \mathbf{A}^t \mathbf{x}_0 + (\mathbf{I} - \mathbf{A}^t)(\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}$$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

First-Order Linear Equation with a Constant Matrix

Recall that the solution to the general first-order linear equation $\mathbf{x}_t - \mathbf{A}_t x_{t-1} = \mathbf{f}_t$ takes the form

$$\mathbf{x}_t = \left(\prod_{s=1}^t \mathbf{A}_{t-s}\right) \mathbf{x}_0 + \sum_{k=1}^t \left(\prod_{s=1}^{t-k} \mathbf{A}_{t-s}\right) \mathbf{f}_{k-1}$$

From now on, we restrict attention to a constant coefficient matrix $\mathbf{A}_t = \mathbf{A}$, independent of t.

Then the solution reduces to

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \sum_{s=1}^t \mathbf{A}^{t-s} \mathbf{f}_{s-1}$$

Indeed, this is easily verified by induction.

University of Warwick, EC9A0 Maths for Economists, Day 7

One particular solution, of course, comes from taking $\mathbf{x}_0 = \mathbf{0}$, implying that

$$\mathbf{x}_t = \sum_{s=1}^t \mathbf{A}^{t-s} \mathbf{f}_{s-1}$$

Now we will start to analyse this particular solution for some special forcing terms \mathbf{f}_t .

Special Case

The special case we consider is when there exists a fixed vector $\mathbf{f}_0 \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $\mathbf{x}_t - \mathbf{A}_t x_{t-1} = \mathbf{f}_t = \mu^t \mathbf{f}_0$ for the discrete exponential or power function $\mathbb{Z}_+ \ni t \mapsto \mu^t \in \mathbb{R}$.

Then the particular solution satisfying $\mathbf{x}_0 = \mathbf{0}$ is $\mathbf{x}_t = \mathbf{S}_t \mathbf{f}_0$ where $\mathbf{S}_t := \sum_{k=1}^t \mu^{k-1} \mathbf{A}^{t-k}$.

Note that

$$\mathbf{S}_t(\mathbf{A} - \mu \mathbf{I}) = \sum_{k=1}^t (\mu^{k-1} \mathbf{A}^{t-k+1} - \mu^k \mathbf{A}^{t-k}) = \mathbf{A}^t - \mu^t \mathbf{I}$$

We ignore the degenerate case when μ is an eigenvalue of **A**.

Otherwise, when μ is not an eigenvalue of **A**, so $\mathbf{A} - \mu \mathbf{I}$ is non-singular, it follows that

$$\mathbf{S}_t = (\mathbf{A}^t - \mu^t \mathbf{I})(\mathbf{A} - \mu \mathbf{I})^{-1}$$

Then the particular solution we are looking for takes the form

$$\mathbf{x}_{t}^{P} = (\mathbf{A}^{t} - \mu^{t} \mathbf{I}) \mathbf{f}^{*}$$

for the particular fixed vector $\mathbf{f}^* := (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{f}_0$.

University of Warwick, EC9A0 Maths for Economists, Day 7

17 of 46

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

Characteristic Roots and Eigenvalues

Recall the characteristic equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$.

It is a polynomial equation of degree n in the unknown scalar λ .

By the fundamental theorem of algebra, it has a set $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ of n characteristic roots, some of which may be repeated.

These roots may be real, or appear in conjugate pairs $\lambda = \alpha \pm i\beta \in \mathbb{C}$ where $\alpha, \beta \in \mathbb{R}$.

Because the λ_i are characteristic roots, one has

$$|\mathbf{A} - \lambda \mathbf{I}| = \prod_{i=1}^{n} (\lambda_i - \lambda)$$

When λ solves $|\mathbf{A} - \lambda \mathbf{I}| = 0$, there is a non-trivial eigenspace E_{λ} of eigenvectors $\mathbf{x} \neq \mathbf{0}$ that solve the equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Then λ is an eigenvalue.

Linearly Independent Eigenvectors

In the matrix algebra lectures, we proved this result:

Theorem

Let **A** be an $n \times n$ matrix, with a collection $\lambda_1, \lambda_2, \ldots, \lambda_m$ of $m \le n$ distinct eigenvalues. Suppose the non-zero vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_m$ in \mathbb{C}^n are corresponding eigenvectors satisfying

$$\mathbf{A}\mathbf{u}_k = \lambda_k \mathbf{u}_k$$
 for $k = 1, 2, \dots, m$

Then the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ must be linearly independent. We also discussed similar and diagonalizable matrices.

An Eigenvector Matrix

Suppose the $n \times n$ matrix **A** has the maximum possible number of n linearly independent eigenvectors, namely $\{\mathbf{u}_j\}_{j=1}^n$.

A sufficient, but not necessary, condition for this is that $|\mathbf{A} - \lambda \mathbf{I}| = 0$ has n distinct characteristic roots.

Define the $n \times n$ eigenvector matrix $\mathbf{V} = (\mathbf{u}_j)_{j=1}^n$ whose columns are the linearly independent eigenvectors.

By definition of eigenvalue and eigenvector, for $j=1,2,\ldots,n$ one has $\mathbf{A}\mathbf{u}_j=\lambda_j\mathbf{u}_j$.

The j column of the $n \times n$ matrix **AV** is $\mathbf{A}\mathbf{u}_i$, which equals $\lambda_i \mathbf{u}_i$.

But with $\Lambda := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,

the elements of Λ satisfy $(\Lambda)_{ki} = \delta_{ki}\lambda_i$.

So the elements of $V\Lambda$ satisfy

$$(\mathbf{V}\mathbf{\Lambda})_{ij} = \sum_{k=1}^{n} (\mathbf{V})_{ik} \delta_{kj} \lambda_j = (\mathbf{V})_{ij} \lambda_j = \lambda_j (\mathbf{u}_j)_i = (\mathbf{A}\mathbf{u}_j)_i$$

It follows that $AV = V\Lambda$ because all the elements are all equal.

Diagonalization

Recall the hypothesis that the $n \times n$ matrix **A** has n linearly independent eigenvectors $\{\mathbf{u}_j\}_{j=1}^n$.

So the eigenvector matrix ${f V}$ is invertible.

We proved on the last slide that $AV = V\Lambda$.

Pre-multiplying this equation by V^{-1} yields $V^{-1}AV = \Lambda$, which gives a diagonalization of Λ .

Furthermore, post-multiplying $AV = V\Lambda$ by the inverse matrix V^{-1} yields $A = V\Lambda V^{-1}$.

This is a decomposition of **A** into the product of:

- 1. the eigenvector matrix **V**;
- 2. the diagonal eigenvalue matrix Λ ;
- 3. the inverse eigenvector matrix V^{-1} .

A Non-Diagonalizable 2×2 Matrix

Example

The non-symmetric matrix $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ cannot be diagonalized.

Its characteristic equation is
$$0 = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2$$
.

It follows that $\lambda = 0$ is the unique eigenvalue.

The eigenvalue equation is
$$0 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}$$
 or $x_2 = 0$, whose only solutions take the form $x_2 (1, 0)^{\top}$.

Thus, every eigenvector is a non-zero multiple of the column vector $(1,0)^{\top}$.

This makes it impossible to find any set of two linearly independent eigenvectors.

A Non-Diagonalizable $n \times n$ Matrix: Specification

The following $n \times n$ matrix also has a unique eigenvalue, whose eigenspace is of dimension 1.

Example

Consider the non-symmetric $n \times n$ matrix \mathbf{A} whose elements in the first n-1 rows satisfy $a_{ij} = \delta_{i,j-1}$ for $i=1,2,\ldots,n-1$ but whose last row is $\mathbf{0}^{\top}$.

Such a matrix is upper triangular, and takes the special form

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{0}_{n-1} & \mathbf{I}_{n-1} \\ 0 & \mathbf{0}_{n-1}^\top \end{pmatrix}$$

in which the elements in the first n-1 rows and last n-1 columns make up the identity matrix.

A Non-Diagonalizable $n \times n$ Matrix: Analysis

Because $\mathbf{A} - \lambda \mathbf{I}$ is also upper triangular, its characteristic equation is $0 = |\mathbf{A} - \lambda \mathbf{I}| = (-\lambda)^n$.

This has $\lambda = 0$ as an *n*-fold repeated root.

So $\lambda = 0$ is the unique eigenvalue.

University of Warwick, EC9A0 Maths for Economists, Day 7

The eigenvalue equation $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ with $\lambda = 0$ takes the form $\mathbf{A}\mathbf{x} = \mathbf{0}$ or

$$0 = \sum_{i=1}^{n} \delta_{i,j-1} x_j = x_{i+1} \quad (i = 1, 2, \dots, n-1)$$

with an extra nth equation of the form 0 = 0.

The only solutions take the form $x_j = 0$ for j = 2, ..., n, with x_1 arbitrary.

So all the eigenvectors of **A** are non-zero multiples of the first canonical basis vector $\mathbf{e}_1 = (1, 0, \dots, 0)^{\top}$.

This implies that there is just one eigenspace, of dimension 1.

Peter J. Hammond

25 of 46

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

Uncoupling via Diagonalization

Consider the matrix difference equation $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{f}_t$ for t = 1, 2, ..., with \mathbf{x}_0 given.

The extra forcing term \mathbf{f}_t makes the equation inhomogeneous (unless $\mathbf{f}_t = \mathbf{0}$ for all t).

Consider the case when the $n \times n$ matrix \mathbf{A} has n distinct eigenvalues, or at least a set of n linearly independent eigenvectors making up the columns of an invertible eigenvector matrix \mathbf{V} .

Define a new vector $\mathbf{y}_t = \mathbf{V}^{-1}\mathbf{x}_t$ for each t.

This new vector satisfies the transformed matrix difference equation

$$y_t = V^{-1}x_t = V^{-1}(Ax_{t-1} + f_t) = V^{-1}AVy_{t-1} + e_t$$

where \mathbf{e}_t denotes the transformed forcing term $\mathbf{V}^{-1}\mathbf{f}_t$. The diagonalization $\mathbf{V}^{-1}\mathbf{A}\mathbf{V}=\mathbf{\Lambda}$ reduces this equation to the uncoupled matrix difference equation $\mathbf{y}_t=\mathbf{\Lambda}\mathbf{y}_{t-1}+\mathbf{e}_t$ with initial condition $\mathbf{y}_0=\mathbf{V}^{-1}\mathbf{x}_0$.

Transforming the Uncoupled Equations

Consider the uncoupled matrix difference equation $\mathbf{y}_t = \mathbf{\Lambda} \mathbf{y}_{t-1} + \mathbf{e}_t$ where $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Note that, if there is any i for which $\lambda_i = 0$, then the solution $\mathbf{y}_t = (y_{ti})_{i=1}^n$ must satisfy $y_{ti} = e_{ti}$ for all $t = 1, 2, \ldots$

So we eliminate all i such that $\lambda_i = 0$, and assume from now on that $\lambda_i \neq 0$ for all i.

This assumption ensures that Λ^{-1} exists.

This allows us to define the transformed vector $\mathbf{z}_t := \mathbf{\Lambda}^{-t} \mathbf{y}_t$ where

$$\mathbf{\Lambda}^{-t} = [\operatorname{diag}(\lambda_1, \dots, \lambda_n)]^{-t} = \operatorname{diag}(\lambda_1^{-t}, \dots, \lambda_n^{-t}) = (\mathbf{\Lambda}^{-1})^t$$

With this transformation, evidently

$$\mathbf{z}_t = \mathbf{\Lambda}^{-t} \mathbf{y}_t = \mathbf{\Lambda}^{-t} (\mathbf{\Lambda} \mathbf{y}_{t-1} + \mathbf{e}_t) = \mathbf{\Lambda}^{1-t} \mathbf{y}_{t-1} + \mathbf{\Lambda}^{-t} \mathbf{e}_t = \mathbf{z}_{t-1} + \mathbf{w}_t$$

where \mathbf{w}_t is the transformed forcing term $\mathbf{\Lambda}^{-t}\mathbf{e}_t$.

University of Warwick, EC9A0 Maths for Economists, Day 7

Peter J. Hammond

28 of 46

The Decoupled Solution

The solution of $\mathbf{z}_t = \mathbf{z}_{t-1} + \mathbf{w}_t$ is obviously

$$\mathbf{z}_t = \mathbf{z}_0 + \sum_{s=1}^t \mathbf{w}_s$$

Inverting the previous transformation $\mathbf{z}_t = \mathbf{\Lambda}^{-t} \mathbf{y}_t$, we see that

$$\mathbf{y}_t = \mathbf{\Lambda}^t \mathbf{z}_t = \mathbf{\Lambda}^t \left(\mathbf{z}_0 + \sum_{s=1}^t \mathbf{w}_s \right)$$

But $\mathbf{z}_0 = \mathbf{y}_0$ and $\mathbf{w}_s = \mathbf{\Lambda}^{-s} \mathbf{e}_s$, so one has

$$\mathbf{y}_t = \mathbf{\Lambda}^t \mathbf{y}_0 + \sum_{s=1}^t \mathbf{\Lambda}^{t-s} \mathbf{e}_s$$

Now, each power $\mathbf{\Lambda}^k$ is the diagonal matrix $\mathbf{diag}(\lambda_1^k, \dots, \lambda_n^k)$.

So, for each separate component y_{ti} of \mathbf{y}_t and corresponding component w_{si} of \mathbf{w}_s , this solution can be written in the obviously uncoupled form

$$y_{ti} = (\lambda_i)^t y_{0i} + \sum_{i=1}^t (\lambda_i)^{t-s} w_{si}$$
 (for $i = 1, 2, ... n$)

University of Warwick, EC9A0 Maths for Economists, Day 7

Peter J. Hammond

The Recoupled Solution

Finally, inverting also the previous transformation $\mathbf{y}_t = \mathbf{V}^{-1}\mathbf{x}_t$, while noting that $\mathbf{e}_s = \mathbf{V}^{-1}\mathbf{f}_s$, one has

$$\mathbf{x}_t = \mathbf{V}\mathbf{y}_t = \mathbf{V}\mathbf{\Lambda}^t\mathbf{V}^{-1}\mathbf{x}_0 + \sum_{s=1}^t \mathbf{V}\mathbf{\Lambda}^{t-s}\mathbf{V}^{-1}\mathbf{f}_s$$

as the solution of the original equation $\mathbf{x}_t = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} \mathbf{x}_{t-1} + \mathbf{f}_t$.

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

Stationary States

Given an autonomous equation $\mathbf{x}_{t+1} = \mathbf{F}(\mathbf{x}_t)$, a stationary state is a fixed point $\mathbf{x}^* \in \mathbb{R}^n$ of the mapping $\mathbb{R}^n \ni \mathbf{x} \mapsto \mathbf{F}(\mathbf{x}) \in \mathbb{R}^n$.

It earns its name because if $\mathbf{x}_s = \mathbf{x}^*$ for any finite s, then $\mathbf{x}_t = \mathbf{x}^*$ for all $t = s, s + 1, \dots$

Wherever it exists, the solution of the autonomous equation can be written as a function $\mathbf{x}_t = \Phi_{t-s}(\mathbf{x}_s)$ (t=s,s+1,...) of the state \mathbf{x}_s at time s,

as well as of the number of periods t - s that the function **F** must be iterated in order to determine the state \mathbf{x}_t at time t.

Indeed, the sequence of functions $\Phi_k : \mathbb{R}^n \to \mathbb{R}^n \ (k \in \mathbb{N})$ is defined iteratively by $\Phi_k(\mathbf{x}) = \mathbf{F}(\Phi_{k-1}(\mathbf{x}))$ for all \mathbf{x} .

Note that any stationary state \mathbf{x}^* is a fixed point of each mapping Φ_k in the sequence, as well as of $\Phi_1 \equiv \mathbf{F}$.

Local and Global Stability

The stationary state \mathbf{x}^* is:

- ▶ globally stable if $\Phi_k(\mathbf{x}_0) \to \mathbf{x}^*$ as $k \to \infty$, regardless of the initial state \mathbf{x}_0 ;
- ▶ locally stable if there is an (open) neighbourhood $N \subset \mathbb{R}^n$ of \mathbf{x}^* such that whenever $\mathbf{x}_0 \in N$ one has $\Phi_k(\mathbf{x}_0) \to \mathbf{x}^*$ as $k \to \infty$.

We begin by studying linear systems, for which local stability is equivalent to global stability.

Later, we will consider the local stability of non-linear systems.

Stability in the Linear Case

Recall that the autonomous linear equation takes the form $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{d}$.

The vector $\mathbf{x}^* \in \mathbb{R}^n$ is a stationary state if and only if $\mathbf{x}_t = \mathbf{x}^* \Longrightarrow \mathbf{x}_{t+1} = \mathbf{x}^*$, which is true if and only if $\mathbf{x}^* = \mathbf{A}\mathbf{x}^* + \mathbf{d}$, or iff \mathbf{x}^* solves the linear equation $(\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{d}$.

Of course, if the matrix $\mathbf{I} - \mathbf{A}$ is singular, then there could either be no stationary state, or a continuum of stationary states.

For simplicity, we assume that I - A has an inverse.

Then there is a unique stationary state $\mathbf{x}^* = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{d}$.

Homogenizing the Linear Equation

Given the equation $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{d}$ and the stationary state $\mathbf{x}^* = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{d}$, define the new state as the deviation $\mathbf{y} := \mathbf{x} - \mathbf{x}^*$ of the state \mathbf{x} from the stationary state \mathbf{x}^* .

This transforms the original equation $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{d}$ to

$$\mathbf{y}_{t+1} + \mathbf{x}^* = \mathbf{A}(\mathbf{y}_t + \mathbf{x}^*) + \mathbf{d} = \mathbf{A}\mathbf{y}_t + \mathbf{A}\mathbf{x}^* + \mathbf{d}$$

Because the stationary state satisfies $\mathbf{x}^* = \mathbf{A}\mathbf{x}^* + \mathbf{d}$, this reduces the original equation $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{d}$ to the homogeneous equation $\mathbf{y}_{t+1} = \mathbf{A}\mathbf{y}_t$, whose obvious solution is $\mathbf{y}_t = \mathbf{A}^t\mathbf{y}_0$.

Stability in the Diagonal Case

Suppose that **A** is the diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

Then the powers are easy:

$$\mathbf{A}^t = \mathbf{\Lambda}^t = \mathbf{diag}(\lambda_1^t, \lambda_2^t, \dots, \lambda_n^t)$$

The "homogenized" vector equation $\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1}$ can be expressed component by component as the set

$$y_{i,t} = \lambda_i y_{i,t-1}$$
 $(i = 1, 2, ..., n)$

of *n* uncoupled difference equations in one variable.

The solution of $\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1}$ with $\mathbf{y}_0 = \mathbf{z} = (z_1, z_2, \dots, z_n)$ is then $\mathbf{y}_t = (\lambda_1^t z_1, \lambda_2^t z_2, \dots, \lambda_n^t z_n)$.

Hence $\mathbf{y}_t \to \mathbf{0}$ holds for all \mathbf{y}_0 if and only if, for i = 1, 2, ..., n, the modulus $|\lambda_i|$ of each diagonal element λ_i satisfies $|\lambda_i| < 1$.

Recall that when $\lambda = \alpha \pm i\beta$, the modulus is $|\lambda| := \sqrt{\alpha^2 + \beta^2}$.

First Warning Example

Consider the 2 × 2 matrix
$$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}$$
.

The solution of the difference equation $\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1}$ with $\mathbf{y}_0 = \mathbf{z} = (z_1, z_2)$ is then

$$\mathbf{y}_t = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}^t \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 2^{-t} & 0 \\ 0 & 2^t \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 2^{-t}z_1 \\ 2^t z_2 \end{pmatrix}$$

Then $\mathbf{y}_t \to 0$ as $t \to \infty$ provided that $z_2 = 0$.

But the norm $\|\mathbf{y}_t\| \to +\infty$ whenever $z_2 \neq 0$.

In this case one says that the solution $\mathbf{y}_t = (2^{-t}z_1, 2^tz_2)$ exhibits saddle point stability because

- ightharpoonup starting with $z_2 = 0$ allows convergence;
- ightharpoonup starting with $z_2 \neq 0$ ensures divergence.

This explains why one says that the $n \times n$ matrix **A** is stable just in case $\mathbf{A}^t \mathbf{y} \to \mathbf{0}$ for all $\mathbf{y} \in \mathbb{R}^n$.

Second Example: The Fibonacci Equation

Consider the Fibonacci equation $x_{t+1} = x_t + x_{t-1}$.

This has a general solution of the form $x_t = A\lambda_1^t + B\lambda_2^t$ for arbitrary constants $A, B \in \mathbb{R}$, where $\lambda_1 = \frac{1}{2}(1+\sqrt{5})$ and $\lambda_2 = \frac{1}{2}(1-\sqrt{5})$ are the two roots of the quadratic characteristic equation $\lambda^2 = \lambda + 1$.

Because $|\lambda_1|>1$ and $|\lambda_2|<1$, this general solution also exhibits saddle point stability.

A Condition for Stability

The solution $\mathbf{y}_t = \mathbf{A}^t \mathbf{y}_0$ of the homogeneous equation $\mathbf{y}_{t+1} = \mathbf{A} \mathbf{y}_t$ is globally stable just in case $\mathbf{A}^t \mathbf{y}_0 \to \mathbf{0}$ or $\|\mathbf{A}^t \mathbf{y}_0\| \to 0$ as $t \to \infty$, regardless of \mathbf{y}_0 .

This holds if and only if $\mathbf{A}^t \to \mathbf{0}_{n \times n}$ in the sense that all n^2 elements of the $n \times n$ matrix \mathbf{A}^t converge to 0 as $n \to \infty$.

In case the matrix \mathbf{A} is the diagonal matrix $\mathbf{\Lambda} = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, stability holds if and only if $|\lambda_i| < 1$ for $i = 1, 2, \dots, n$.

Suppose the matrix $\bf A$ is the diagonalizable matrix ${\bf V}{\bf \Lambda}{\bf V}^{-1}$, where $\bf V$ is a matrix of linearly independent eigenvectors, and the diagonal elements of the diagonal matrix $\bf \Lambda$ are eigenvalues.

Then $\mathbf{A}^t = \mathbf{V} \mathbf{\Lambda}^t \mathbf{V}^{-1} \to 0$ if and only if $\mathbf{\Lambda}^t \to 0$, which is true if and only if $|\lambda_i| < 1$ for i = 1, 2, ..., n.

The Classic Stability Condition

Definition

The $n \times n$ matrix **A** is stable just in case, as $t \to \infty$, so

- 1. \mathbf{A}^t converges element by element to the zero matrix $\mathbf{0}_{n \times n}$;
- 2. or equivalently, $\mathbf{y}_t = \mathbf{A}^t \mathbf{y}_0 \to \mathbf{0}$ for all $\mathbf{y}_0 \in \mathbb{R}^n$.

Theorem

The n \times n matrix **A** is stable if and only if each of its eigenvalues λ (real or complex) has modulus $|\lambda| < 1$.

We have already proved this result in case **A** is diagonalizable.

But the same stability condition applies

University of Warwick, EC9A0 Maths for Economists, Day 7

for a general $n \times n$ matrix **A**, even one that is not diagonalizable.

For such a general matrix we will only prove necessity — "only if".

Let λ^* denote the eigenvalue λ whose modulus $|\lambda|$ is largest, and let $\mathbf{x}^* \neq \mathbf{0}$ be an associated eigenvector.

In case $|\lambda^*| \geq 1$, the solution $\mathbf{x}_t = \mathbf{A}^t \mathbf{x}^* = \lambda^{*t} \mathbf{x}^*$ satisfies $\|\mathbf{x}_t\| = |\lambda^*|^t \|\mathbf{x}^*\| \geq \|\mathbf{x}^*\| \neq 0$, so **A** is unstable.

Peter J. Hammond

Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

Local Stability

Consider the autonomous non-linear system $\mathbf{x}_{t+1} = \mathbf{F}(\mathbf{x}_t)$ with steady state \mathbf{x}^* .

Let

$$\mathbf{J}(\mathbf{x}^*) = \mathbf{F}'(\mathbf{x}^*) = \left(\frac{\partial F_i}{\partial x_j}\right)_{ii} (\mathbf{x}^*)$$

denote the $n \times n$ Jacobian matrix of partial derivatives evaluated at the steady state \mathbf{x}^* .

Theorem

Suppose that the elements of the Jacobian matrix $J(x^*)$ are continuous in a neighbourhood of the steady state x^* .

Let $\bar{\lambda}$ denote the eigenvalue of $\mathbf{J}(\mathbf{x}^*)$ whose modulus is largest.

The system is locally stable about the steady state x^* :

$$\text{if } |\bar{\lambda}| < 1; \quad \text{only if } |\bar{\lambda}| \leq 1.$$

In case $|\bar{\lambda}|=1$, the system may or may not be locally stable.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond

Complete Metric Spaces

Let (X, d) denote any metric space.

Definition

A Cauchy sequence $\langle x_n \rangle_{n \in \mathbb{N}}$ in X is a sequence for which, given any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $m, n > N_{\epsilon} \Longrightarrow d(x_m, x_n) < \epsilon$.

Definition

A metric space (X, d) is complete just in case all its Cauchy sequences converge.

Example

Recall that one definition of the real line \mathbb{R} is as the completion of the metric space $(\mathbb{Q}, d_{\mathbb{Q}})$, where \mathbb{Q} is the set of rational numbers, equipped with the metric $d_{\mathbb{Q}}(r, r') = |r - r'|$ for all $r, r' \in \mathbb{Q}$.

That is, $(\mathbb{R}, d_{\mathbb{R}})$ is the smallest complete metric space which includes the metric space $(\mathbb{Q}, d_{\mathbb{Q}})$.

Global Stability: Contraction Mapping Theorem

Definition

The function $X \ni x \mapsto F(x) \in X$ is a contraction mapping on the metric space (X, d) just in case there is a positive contraction factor K < 1 such that $d(F(x), F(y)) \le K d(x, y)$ for all $x, y \in X$.

Theorem

Suppose that $X \ni x \mapsto F(x) \in X$ is a contraction mapping on the complete metric space (X, d).

Then for any $x_0 \in X$ the process defined by $x_t = F(x_{t-1})$ for all $t \in \mathbb{N}$ has a unique steady state $x^* \in X$ that is globally stable.

Iteration Yields a Cauchy Sequence

Because $F: X \to X$ is a contraction mapping with contraction factor K, and $x_t = F(x_{t-1})$ for all $t \in \mathbb{N}$, one has $d(x_{t+1}, x_t) = d(F(x_t), F(x_{t-1})) \le Kd(x_t, x_{t-1})$.

It follows by induction on t that $d(x_{t+1}, x_t) \leq K^t d(x_1, x_0)$.

If n > m, then repeated application of the triangle inequality gives

$$d(x_{m}, x_{n}) \leq \sum_{r=1}^{n-m} d(x_{m+r-1}, x_{m+r})$$

$$\leq \sum_{r=1}^{n-m} K^{m+r-1} d(x_{1}, x_{0})$$

$$= \frac{K^{m} - K^{n}}{1 - K} d(x_{1}, x_{0}) < \frac{K^{m}}{1 - K} d(x_{1}, x_{0})$$

Hence $d(x_m, x_n) < \epsilon$ provided that $K^m \le \epsilon(1 - K)/d(x_1, x_0)$ or, since $\ln K < 0$, if $m \ge (1/\ln K)[\ln \epsilon(1 - K) - \ln d(x_1, x_0)]$.

This proves that $\langle x_t \rangle_{t \in \mathbb{N}}$ is a Cauchy sequence.

Completing the Proof

Because $(x_t)_{t\in\mathbb{N}}$ is a Cauchy sequence, the hypothesis that (X,d) is a complete metric space implies that there is a limit point $x^*\in X$ such that $x_t\to x^*$ as $t\to\infty$.

Then, by the triangle inequality and the contraction property,

$$d(F(x^*), x^*) \leq d(F(x^*), x_{t+1}) + d(x_{t+1}, x^*) \leq Kd(x^*, x_t) + d(x_{t+1}, x^*) \to 0$$

as $t \to \infty$, implying that $d(F(x^*), x^*) = 0$.

Because (X, d) is a metric space, it follows that $F(x^*) = x^*$, so the limit point $x^* \in X$ is a steady state.

On the other hand, if $\bar{x} \in X$ is any steady state, then $d(x^*, \bar{x}) = d(F(x^*), F(\bar{x})) \leq Kd(x^*, \bar{x})$.

Hence $(1 - K)d(x^*, \bar{x}) \le 0$ which, because K < 1, implies that $d(x^*, \bar{x}) < 0$ and so $\bar{x} = x^*$.

University of Warwick, EC9A0 Maths for Economists, Day 7