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Systems of Linear Difference Equations
Many empirical economic models involve
simultaneous time series for several different variables.

Consider a first-order linear difference equation

xt+1 − Atxt = ft

for an n-dimensional process T 3 t 7→ xt ∈ Rn,
where each matrix At is n × n.

We will prove by induction on t that for t = 0, 1, 2, . . .
there exist suitable n × n matrices Pt,k (k = 0, 1, 2, . . . , t)
such that, given any possible value of the initial state vector x0
and of the forcing terms ft (t = 0, 1, 2, . . .),
the unique solution can be expressed as

xt = Pt,0x0 +
∑t

k=1
Pt,k fk−1

The proof, of course, will also involve
deriving a recurrence relation for these matrices.
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Early Terms of the Matrix Solution
Because x0 = P0,0x0 = x0,
the first term is obviously P0, 0 = I when t = 0.

Next x1 = A0x0 + f0 when t = 1
implies that P1, 0 = A0, P1, 1 = I.

Next, the solution for t = 2 is

x2 = A1x1 + f1 = A1A0x0 + A1f0 + f1

This formula matches the formula

xt = Pt,0x0 +
∑t

k=1
Pt,k fk−1

when t = 2 provided that:

I P2, 0 = A1A0;

I P2, 1 = A1;

I P2, 2 = I.
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Matrix Solution

Now, substituting the two expansions

xt = Pt,0x0 +
∑t

k=1 Pt,k fk−1

and xt+1 = Pt+1,0x0 +
∑t+1

k=1 Pt+1,k fk−1

into both sides of the original equation xt+1 = Atxt + ft gives

Pt+1,0x0 +
∑t+1

k=1
Pt+1,k fk−1

= At

(
Pt,0x0 +

∑t

k=1
Pt,k fk−1

)
+ ft

Equating the matrix coefficients of x0 and of each fk−1
in this equation implies that for general t one has

Pt+1,k = AtPt,k for k = 0, 1, . . . , t, with Pt+1,t+1 = I
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Matrix Solution, II
The equation Pt+1,k = AtPt,k for k = 0, 1, . . . , t implies that

Pt, 0 = At−1 · At−2 · · ·A0 when k = 0
Pt, k = At−1 · At−2 · · ·Ak when k = 1, 2, . . . , t

or, after defining the product of the empty set of matrices as I,

Pt, k =
∏t−k

s=1
At−s

Inserting these into our formula

xt = Pt,0x0 +
∑t

k=1
Pt,k fk−1

implies that

xt =
(∏t

s=1
At−s

)
x0 +

∑t

k=1

(∏t−k

s=1
At−s

)
fk−1

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 6 of 46



Lecture Outline

Systems of Linear Difference Equations

Complementary, Particular, and General Solutions

Constant Coefficient Matrix

Some Particular Solutions

Diagonalizing a Non-Symmetric Matrix

Uncoupling via Diagonalization

Stability of Linear Systems

Stability of Non-Linear Systems

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 7 of 46



Complementary Solutions to the Homogeneous Equation

We are considering the general first-order linear difference equation

xt+1 − Atxt = ft

in Rn, where each At is an n × n matrix.

The associated homogeneous equation takes the form

xt − Atxt−1 = 0 (for all t ∈ N)

Its general solution is the n-dimensional linear subspace
of functions N 3 t 7→ xt ∈ Rn satisfying

xt =
(∏t

s=1
As

)
x0 (for all t ∈ N)

where x0 ∈ Rn is an arbitrary constant vector.
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From Particular to General Solutions
The homogeneous equation takes the form

xt+1 − Atxt = 0

An associated inhomogeneous equation takes the form

xt+1 − Atxt = ft

for a general vector forcing term ft ∈ Rn.

Let xPt denote a particular solution of the inhomogeneous equation
and xGt any alternative general solution of the same equation.

Our assumptions imply that, for each t = 1, 2, . . ., one has

xPt+1 − Atx
P
t = ft and xGt+1 − Atx

G
t = ft

Subtracting the first equation from the second implies that

xGt+1 − xPt+1 − At(xGt − xPt ) = 0

This shows that xHt := xGt − xPt solves the homogeneous equation.
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Characterizing the General Solution

So the general solution xGt
of the inhomogeneous equation xt+1 − Atxt = ft
with forcing term ft is the sum xPt + xHt of

I any particular solution xPt of the inhomogeneous equation;

I the general complementary solution xHt
of the homogeneous equation xt+1 − Atxt = 0.
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Linearity in the Forcing Term

Theorem
Suppose that xPt and yPt are particular solutions
of the two respective difference equations

xt+1 − Atxt−1 = dt and yt+1 − Atyt−1 = et

Then, for any scalars α and β,
the linear combination zPt := αxPt + βyPt is a particular solution
of the equation zt+1 − Atzt−1 = αdt + βet .

This can be proved by routine algebra.

Consider any equation of the form xt+1 − Atxt−1 = ft
whose right-hand side is a linear combination ft =

∑n
k=1 αk fkt

of the n forcing vectors (f1t , . . . , f
1
n).

The theorem implies that a particular solution
is the corresponding linear combination xPt =

∑n
k=1 αkxPkt

of particular solutions to the n equations xt+1 − Atxt−1 = fkt .
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The Autonomous Case
The general first-order equation in Rn

can be written as xt+1 = Ft(xt)
where T × Rn 3 (t, x) 7→ Ft(x) ∈ Rn.

In the autonomous case, the function (t, x) 7→ Ft(x)
reduces to x 7→ F(x), independent of t.

In the linear case with constant coefficients,
the function x 7→ F(x) takes the affine form F(x) = Ax + f.

That is, xt+1 = Axt + f.

In our previous formula, products like
∏t−k

s=1 At−s
reduce to powers At−k .

Specifically, Pt, k = At−k , where A0 = I.

The solution to xt+1 = Axt + f is therefore

xt = Atx0 +
∑t

k=1
At−k f
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Summing the Geometric Series
Recall the trick for finding st := 1 + a + a2 + · · ·+ at−1

is to multiply each side by 1− a.

Because all terms except the first and last cancel,
this trick yields the equation (1− a)st = 1− at .

Hence st = (1− a)−1(1− at) provided that a 6= 1.

Applying the same trick to St := I + A + A2 + · · ·+ At−1

yields the two matrix equations (I− A)St = I− At = St(I− A).

Provided that (I− A)−1 exists,
we can pre-multiply (I− A)St = I− At

and post-multiply I− At = St(I− A)
on each side by this inverse to get the two equations

St = (I− A)−1(I− At) = (I− At)(I− A)−1

So the previous solution xt = Atx0 +
∑t

k=1 At−k f reduces to

xt = Atx0 + Stf = Atx0 + (I− At)(I− A)−1f
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First-Order Linear Equation with a Constant Matrix
Recall that the solution
to the general first-order linear equation xt − Atxt−1 = ft
takes the form

xt =
(∏t

s=1
At−s

)
x0 +

∑t

k=1

(∏t−k

s=1
At−s

)
fk−1

From now on, we restrict attention
to a constant coefficient matrix At = A, independent of t.

Then the solution reduces to

xt = Atx0 +
∑t

s=1
At−s fs−1

Indeed, this is easily verified by induction.

One particular solution, of course, comes from taking x0 = 0,
implying that

xt =
∑t

s=1
At−s fs−1

Now we will start to analyse this particular solution
for some special forcing terms ft .
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Special Case
The special case we consider is when there exists
a fixed vector f0 ∈ Rn \ {0} such that xt − Atxt−1 = ft = µtf0
for the discrete exponential or power function Z+ 3 t 7→ µt ∈ R.

Then the particular solution satisfying x0 = 0
is xt = Stf0 where St :=

∑t
k=1 µ

k−1At−k .

Note that

St(A− µI) =
∑t

k=1
(µk−1At−k+1 − µkAt−k) = At − µtI

We ignore the degenerate case when µ is an eigenvalue of A.

Otherwise, when µ is not an eigenvalue of A,
so A− µI is non-singular, it follows that

St = (At − µtI)(A− µI)−1

Then the particular solution we are looking for takes the form

xPt = (At − µtI)f∗

for the particular fixed vector f∗ := (A− µI)−1f0.
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Characteristic Roots and Eigenvalues

Recall the characteristic equation |A− λI| = 0.

It is a polynomial equation of degree n in the unknown scalar λ.

By the fundamental theorem of algebra,
it has a set {λ1, λ2, . . . , λn} of n characteristic roots,
some of which may be repeated.

These roots may be real,
or appear in conjugate pairs λ = α± iβ ∈ C where α, β ∈ R.

Because the λi are characteristic roots, one has

|A− λI| =
∏n

i=1
(λi − λ)

When λ solves |A− λI| = 0, there is a non-trivial eigenspace Eλ
of eigenvectors x 6= 0 that solve the equation Ax = λx.

Then λ is an eigenvalue.
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Linearly Independent Eigenvectors

In the matrix algebra lectures, we proved this result:

Theorem
Let A be an n × n matrix,
with a collection λ1, λ2, . . . , λm of m ≤ n distinct eigenvalues.

Suppose the non-zero vectors u1,u2, . . . ,um in Cn

are corresponding eigenvectors satisfying

Auk = λkuk for k = 1, 2, . . . ,m

Then the set {u1,u2, . . . ,um} must be linearly independent.

We also discussed similar and diagonalizable matrices.
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An Eigenvector Matrix
Suppose the n × n matrix A has the maximum possible number
of n linearly independent eigenvectors, namely {uj}nj=1.

A sufficient, but not necessary, condition for this
is that |A− λI| = 0 has n distinct characteristic roots.

Define the n × n eigenvector matrix V = (uj)
n
j=1

whose columns are the linearly independent eigenvectors.

By definition of eigenvalue and eigenvector,
for j = 1, 2, . . . , n one has Auj = λjuj .

The j column of the n × n matrix AV is Auj , which equals λjuj .

But with Λ := diag(λ1, λ2, . . . , λn),
the elements of Λ satisfy (Λ)kj = δkjλj .

So the elements of VΛ satisfy

(VΛ)ij =
∑n

k=1
(V)ikδkjλj = (V)ijλj = λj(uj)i = (Auj)i

It follows that AV = VΛ because all the elements are all equal.
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Diagonalization

Recall the hypothesis that the n × n matrix A
has n linearly independent eigenvectors{uj}nj=1.

So the eigenvector matrix V is invertible.

We proved on the last slide that AV = VΛ.

Pre-multiplying this equation by V−1 yields V−1AV = Λ,
which gives a diagonalization of A.

Furthermore, post-multiplying AV = VΛ by the inverse matrix V−1

yields A = VΛV−1.

This is a decomposition of A into the product of:

1. the eigenvector matrix V;

2. the diagonal eigenvalue matrix Λ;

3. the inverse eigenvector matrix V−1.
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A Non-Diagonalizable 2× 2 Matrix

Example

The non-symmetric matrix A =

(
0 1
0 0

)
cannot be diagonalized.

Its characteristic equation is 0 = |A− λI| =

∣∣∣∣−λ 1
0 −λ

∣∣∣∣ = λ2.

It follows that λ = 0 is the unique eigenvalue.

The eigenvalue equation is 0

(
x1
x2

)
=

(
0 1
0 0

)(
x1
x2

)
=

(
x2
0

)
or x2 = 0, whose only solutions take the form x2 (1, 0)>.

Thus, every eigenvector is a non-zero multiple
of the column vector (1, 0)>.

This makes it impossible to find
any set of two linearly independent eigenvectors.
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A Non-Diagonalizable n × n Matrix: Specification
The following n × n matrix also has a unique eigenvalue,
whose eigenspace is of dimension 1.

Example

Consider the non-symmetric n × n matrix A
whose elements in the first n − 1 rows satisfy aij = δi ,j−1
for i = 1, 2, . . . , n − 1 but whose last row is 0>.

Such a matrix is upper triangular, and takes the special form

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 =

(
0n−1 In−1

0 0>n−1

)

in which the elements in the first n− 1 rows and last n− 1 columns
make up the identity matrix.
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A Non-Diagonalizable n × n Matrix: Analysis
Because A− λI is also upper triangular,
its characteristic equation is 0 = |A− λI| = (−λ)n.

This has λ = 0 as an n-fold repeated root.

So λ = 0 is the unique eigenvalue.

The eigenvalue equation Ax = λx with λ = 0
takes the form Ax = 0 or

0 =
∑n

j=1
δi ,j−1xj = xi+1 (i = 1, 2, . . . , n − 1)

with an extra nth equation of the form 0 = 0.

The only solutions take the form xj = 0 for j = 2, . . . , n,
with x1 arbitrary.

So all the eigenvectors of A are non-zero multiples
of the first canonical basis vector e1 = (1, 0, . . . , 0)>.

This implies that there is just one eigenspace, of dimension 1.
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Uncoupling via Diagonalization
Consider the matrix difference equation xt = Axt−1 + ft
for t = 1, 2, . . ., with x0 given.

The extra forcing term ft makes the equation inhomogeneous
(unless ft = 0 for all t).

Consider the case when the n × n matrix A
has n distinct eigenvalues,
or at least a set of n linearly independent eigenvectors
making up the columns of an invertible eigenvector matrix V.

Define a new vector yt = V−1xt for each t.

This new vector satisfies the transformed matrix difference equation

yt = V−1xt = V−1 (Axt−1 + ft) = V−1AVyt−1 + et

where et denotes the transformed forcing term V−1ft .
The diagonalization V−1AV = Λ reduces this equation
to the uncoupled matrix difference equation yt = Λyt−1 + et
with initial condition y0 = V−1x0.
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Transforming the Uncoupled Equations
Consider the uncoupled matrix difference equation yt = Λyt−1 + et
where Λ = diag(λ1, . . . , λn).

Note that, if there is any i for which λi = 0,
then the solution yt = (yti )

n
i=1

must satisfy yti = eti for all t = 1, 2, . . ..

So we eliminate all i such that λi = 0,
and assume from now on that λi 6= 0 for all i .

This assumption ensures that Λ−1 exists.

This allows us to define the transformed vector zt := Λ−tyt where

Λ−t = [diag(λ1, . . . , λn)]−t = diag(λ−t1 , . . . , λ−tn ) = (Λ−1)t

With this transformation, evidently

zt = Λ−tyt = Λ−t(Λyt−1 + et) = Λ1−tyt−1 + Λ−tet = zt−1 + wt

where wt is the transformed forcing term Λ−tet .
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The Decoupled Solution
The solution of zt = zt−1 + wt is obviously

zt = z0 +
∑t

s=1
ws

Inverting the previous transformation zt = Λ−tyt , we see that

yt = Λtzt = Λt
(

z0 +
∑t

s=1
ws

)
But z0 = y0 and ws = Λ−ses , so one has

yt = Λty0 +
∑t

s=1
Λt−ses

Now, each power Λk is the diagonal matrix diag(λk1 , . . . , λ
k
n).

So, for each separate component yti of yt
and corresponding component wsi of ws ,
this solution can be written in the obviously uncoupled form

yti = (λi )
ty0i +

∑t

s=1
(λi )

t−swsi (for i = 1, 2, . . . n)
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The Recoupled Solution

Finally, inverting also the previous transformation yt = V−1xt ,
while noting that es = V−1fs , one has

xt = Vyt = VΛtV−1x0 +
∑t

s=1
VΛt−sV−1fs

as the solution of the original equation xt = VΛV−1xt−1 + ft .
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Stationary States

Given an autonomous equation xt+1 = F(xt),
a stationary state is a fixed point x∗ ∈ Rn

of the mapping Rn 3 x 7→ F(x) ∈ Rn.

It earns its name because if xs = x∗ for any finite s,
then xt = x∗ for all t = s, s + 1, . . . .

Wherever it exists, the solution of the autonomous equation
can be written as a function xt = Φt−s(xs) (t = s, s + 1, . . .)
of the state xs at time s,
as well as of the number of periods t − s that the function F
must be iterated in order to determine the state xt at time t.

Indeed, the sequence of functions Φk : Rn → Rn (k ∈ N)
is defined iteratively by Φk(x) = F(Φk−1(x)) for all x.

Note that any stationary state x∗ is a fixed point
of each mapping Φk in the sequence, as well as of Φ1 ≡ F.
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Local and Global Stability

The stationary state x∗ is:

I globally stable if Φk(x0)→ x∗ as k →∞,
regardless of the initial state x0;

I locally stable if there is
an (open) neighbourhood N ⊂ Rn of x∗

such that whenever x0 ∈ N
one has Φk(x0)→ x∗ as k →∞.

We begin by studying linear systems,
for which local stability is equivalent to global stability.

Later, we will consider the local stability of non-linear systems.
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Stability in the Linear Case

Recall that the autonomous linear equation
takes the form xt+1 = Axt + d.

The vector x∗ ∈ Rn is a stationary state
if and only if xt = x∗ =⇒ xt+1 = x∗,
which is true if and only if x∗ = Ax∗ + d,
or iff x∗ solves the linear equation (I− A)x = d.

Of course, if the matrix I− A is singular,
then there could either be no stationary state,
or a continuum of stationary states.

For simplicity, we assume that I− A has an inverse.

Then there is a unique stationary state x∗ = (I− A)−1d.
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Homogenizing the Linear Equation

Given the equation xt+1 = Axt + d
and the stationary state x∗ = (I− A)−1d,
define the new state as the deviation y := x− x∗

of the state x from the stationary state x∗.

This transforms the original equation xt+1 = Axt + d to

yt+1 + x∗ = A(yt + x∗) + d = Ayt + Ax∗ + d

Because the stationary state satisfies x∗ = Ax∗ + d,
this reduces the original equation xt+1 = Axt + d
to the homogeneous equation yt+1 = Ayt ,
whose obvious solution is yt = Aty0.
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Stability in the Diagonal Case
Suppose that A is the diagonal matrix Λ = diag(λ1, λ2, . . . , λn).

Then the powers are easy:

At = Λt = diag(λt1, λ
t
2, . . . , λ

t
n)

The “homogenized” vector equation yt = Ayt−1
can be expressed component by component as the set

yi ,t = λiyi ,t−1 (i = 1, 2, . . . , n)

of n uncoupled difference equations in one variable.

The solution of yt = Ayt−1 with y0 = z = (z1, z2, . . . , zn)
is then yt = (λt1z1, λ

t
2z2, . . . , λ

t
nzn).

Hence yt → 0 holds for all y0 if and only if, for i = 1, 2, . . . , n,
the modulus |λi | of each diagonal element λi satisfies |λi | < 1.

Recall that when λ = α± iβ, the modulus is |λ| :=
√
α2 + β2.
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First Warning Example

Consider the 2× 2 matrix A =

(
1
2 0
0 2

)
.

The solution of the difference equation yt = Ayt−1
with y0 = z = (z1, z2) is then

yt =

(
1
2 0
0 2

)t (
z1
z2

)
=

(
2−t 0

0 2t

)(
z1
z2

)
=

(
2−tz1
2tz2

)
Then yt → 0 as t →∞ provided that z2 = 0.

But the norm ‖yt‖ → +∞ whenever z2 6= 0.

In this case one says that the solution yt = (2−tz1, 2
tz2)

exhibits saddle point stability because

I starting with z2 = 0 allows convergence;

I starting with z2 6= 0 ensures divergence.

This explains why one says that the n × n matrix A is stable
just in case Aty→ 0 for all y ∈ Rn.
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Second Example: The Fibonacci Equation

Consider the Fibonacci equation xt+1 = xt + xt−1.

This has a general solution of the form xt = Aλt1 + Bλt2
for arbitrary constants A,B ∈ R,
where λ1 = 1

2(1 +
√

5) and λ2 = 1
2(1−

√
5) are the two roots

of the quadratic characteristic equation λ2 = λ+ 1.

Because |λ1| > 1 and |λ2| < 1,
this general solution also exhibits saddle point stability.
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A Condition for Stability

The solution yt = Aty0 of the homogeneous equation yt+1 = Ayt
is globally stable just in case Aty0 → 0
or ‖Aty0‖ → 0 as t →∞, regardless of y0.

This holds if and only if At → 0n×n
in the sense that all n2 elements of the n × n matrix At

converge to 0 as n→∞.

In case the matrix A
is the diagonal matrix Λ = diag(λ1, λ2, . . . , λn),
stability holds if and only if |λi | < 1 for i = 1, 2, . . . , n.

Suppose the matrix A is the diagonalizable matrix VΛV−1,
where V is a matrix of linearly independent eigenvectors,
and the diagonal elements of the diagonal matrix Λ
are eigenvalues.

Then At = VΛtV−1 → 0 if and only if Λt → 0,
which is true if and only if |λi | < 1 for i = 1, 2, . . . , n.
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The Classic Stability Condition

Definition
The n × n matrix A is stable just in case, as t →∞, so

1. At converges element by element to the zero matrix 0n×n;

2. or equivalently, yt = Aty0 → 0 for all y0 ∈ Rn.

Theorem
The n × n matrix A is stable if and only if
each of its eigenvalues λ (real or complex) has modulus |λ| < 1.

We have already proved this result in case A is diagonalizable.

But the same stability condition applies
for a general n × n matrix A, even one that is not diagonalizable.

For such a general matrix we will only prove necessity — “only if”.

Let λ∗ denote the eigenvalue λ whose modulus |λ| is largest,
and let x∗ 6= 0 be an associated eigenvector.

In case |λ∗| ≥ 1, the solution xt = Atx∗ = λ∗t x∗

satisfies ‖xt‖ = |λ∗|t‖x∗‖ ≥ ‖x∗‖ 6= 0, so A is unstable.
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Local Stability
Consider the autonomous non-linear system xt+1 = F(xt)
with steady state x∗.

Let

J(x∗) = F′(x∗) =

(
∂Fi
∂xj

)
ij

(x∗)

denote the n × n Jacobian matrix of partial derivatives
evaluated at the steady state x∗.

Theorem
Suppose that the elements of the Jacobian matrix J(x∗)
are continuous in a neighbourhood of the steady state x∗.

Let λ̄ denote the eigenvalue of J(x∗) whose modulus is largest.

The system is locally stable about the steady state x∗:

if |λ̄| < 1; only if |λ̄| ≤ 1.

In case |λ̄| = 1, the system may or may not be locally stable.
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Complete Metric Spaces
Let (X , d) denote any metric space.

Definition
A Cauchy sequence 〈xn〉n∈N in X is a sequence for which,
given any ε > 0, there exists Nε ∈ N
such that m, n > Nε =⇒ d(xm, xn) < ε.

Definition
A metric space (X , d) is complete
just in case all its Cauchy sequences converge.

Example

Recall that one definition of the real line R
is as the completion of the metric space (Q, dQ),
where Q is the set of rational numbers,
equipped with the metric dQ(r , r ′) = |r − r ′| for all r , r ′ ∈ Q.

That is, (R, dR) is the smallest complete metric space
which includes the metric space (Q, dQ).
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Global Stability: Contraction Mapping Theorem

Definition
The function X 3 x 7→ F (x) ∈ X
is a contraction mapping on the metric space (X , d)
just in case there is a positive contraction factor K < 1
such that d(F (x),F (y)) ≤ K d(x , y) for all x , y ∈ X .

Theorem
Suppose that X 3 x 7→ F (x) ∈ X is a contraction mapping
on the complete metric space (X , d).

Then for any x0 ∈ X
the process defined by xt = F (xt−1) for all t ∈ N
has a unique steady state x∗ ∈ X that is globally stable.
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Iteration Yields a Cauchy Sequence

Because F : X → X is a contraction mapping
with contraction factor K , and xt = F (xt−1) for all t ∈ N,
one has d(xt+1, xt) = d(F (xt),F (xt−1)) ≤ Kd(xt , xt−1).

It follows by induction on t that d(xt+1, xt) ≤ K td(x1, x0).

If n > m, then repeated application of the triangle inequality gives

d(xm, xn) ≤
∑n−m

r=1 d(xm+r−1, xm+r )

≤
∑n−m

r=1 Km+r−1d(x1, x0)

=
Km − Kn

1− K
d(x1, x0) <

Km

1− K
d(x1, x0)

Hence d(xm, xn) < ε provided that Km ≤ ε(1− K )/d(x1, x0) or,
since lnK < 0, if m ≥ (1/ lnK )[ln ε(1− K )− ln d(x1, x0)].

This proves that 〈xt〉t∈N is a Cauchy sequence.
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Completing the Proof
Because (xt)t∈N is a Cauchy sequence,
the hypothesis that (X , d) is a complete metric space
implies that there is a limit point x∗ ∈ X
such that xt → x∗ as t →∞.

Then, by the triangle inequality and the contraction property,

d(F (x∗), x∗) ≤ d(F (x∗), xt+1) + d(xt+1, x
∗)

≤ Kd(x∗, xt) + d(xt+1, x
∗)→ 0

as t →∞, implying that d(F (x∗), x∗) = 0.

Because (X , d) is a metric space, it follows that F (x∗) = x∗,
so the limit point x∗ ∈ X is a steady state.

On the other hand, if x̄ ∈ X is any steady state,
then d(x∗, x̄) = d(F (x∗),F (x̄)) ≤ Kd(x∗, x̄).

Hence (1− K )d(x∗, x̄) ≤ 0 which, because K < 1,
implies that d(x∗, x̄) ≤ 0 and so x̄ = x∗.
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