Lecture Notes 7: Dynamic Equations Part C: Linear Difference Equation Systems

Peter J. Hammond

latest revision 2024 September 16th typeset from dynEqLects24C.tex

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 1 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

- [Complementary, Particular, and General Solutions](#page-6-0)
- [Constant Coefficient Matrix](#page-11-0)
- [Some Particular Solutions](#page-14-0)
- [Diagonalizing a Non-Symmetric Matrix](#page-17-0)
- [Uncoupling via Diagonalization](#page-25-0)
- [Stability of Linear Systems](#page-30-0)
- [Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 2 of 46

Systems of Linear Difference Equations

Many empirical economic models involve simultaneous time series for several different variables.

Consider a first-order linear difference equation

$$
\mathbf{x}_{t+1}-\mathbf{A}_t\mathbf{x}_t=\mathbf{f}_t
$$

for an n-dimensional process $\overline{I} \ni t \mapsto \mathbf{x}_t \in \mathbb{R}^n$, where each matrix \mathbf{A}_t is $n \times n$.

We will prove by induction on t that for $t = 0, 1, 2, \ldots$ there exist suitable $n \times n$ matrices $P_{t,k}$ $(k = 0, 1, 2, \ldots, t)$ such that, given any possible value of the initial state vector x_0 and of the forcing terms f_t $(t = 0, 1, 2, ...)$, the unique solution can be expressed as

$$
\mathbf{x}_t = \mathbf{P}_{t,0}\mathbf{x}_0 + \sum\nolimits_{k=1}^t \mathbf{P}_{t,k}\mathbf{f}_{k-1}
$$

The proof, of course, will also involve deriving a recurrence relation for these matrices. University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 3 of 46

Early Terms of the Matrix Solution

Because $x_0 = P_0$ $_0x_0 = x_0$, the first term is obviously $P_{0, 0} = I$ when $t = 0$.

Next $\mathbf{x}_1 = \mathbf{A}_0 \mathbf{x}_0 + \mathbf{f}_0$ when $t = 1$ implies that $P_{1,0} = A_0$, $P_{1,1} = I$.

Next, the solution for $t = 2$ is

$$
\textbf{x}_2 = \textbf{A}_1 \textbf{x}_1 + \textbf{f}_1 = \textbf{A}_1 \textbf{A}_0 \textbf{x}_0 + \textbf{A}_1 \textbf{f}_0 + \textbf{f}_1
$$

This formula matches the formula

$$
\mathbf{x}_t = \mathbf{P}_{t,0} \mathbf{x}_0 + \sum\nolimits_{k=1}^t \mathbf{P}_{t,k} \mathbf{f}_{k-1}
$$

when $t = 2$ provided that:

 \blacktriangleright P_{2,0} = A₁A₀; \blacktriangleright P_{2,1} = A₁; \blacktriangleright P_{2, 2} = I.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 4 of 46

Matrix Solution

Now, substituting the two expansions

$$
\begin{array}{rcl}\n\mathbf{x}_t & = & \mathbf{P}_{t,0}\mathbf{x}_0 + \sum_{k=1}^t \mathbf{P}_{t,k}\mathbf{f}_{k-1} \\
\text{and} & \mathbf{x}_{t+1} & = & \mathbf{P}_{t+1,0}\mathbf{x}_0 + \sum_{k=1}^{t+1} \mathbf{P}_{t+1,k}\mathbf{f}_{k-1}\n\end{array}
$$

into both sides of the original equation $x_{t+1} = A_t x_t + f_t$ gives

$$
\mathbf{P}_{t+1,0}\mathbf{x}_{0} + \sum\nolimits_{k=1}^{t+1} \mathbf{P}_{t+1,k}\mathbf{f}_{k-1} = \mathbf{A}_{t}\left(\mathbf{P}_{t,0}\mathbf{x}_{0} + \sum\nolimits_{k=1}^{t} \mathbf{P}_{t,k}\mathbf{f}_{k-1}\right) + \mathbf{f}_{t}
$$

Equating the matrix coefficients of x_0 and of each f_{k-1} in this equation implies that for general t one has

$$
P_{t+1,k} = A_t P_{t,k}
$$
 for $k = 0, 1, ..., t$, with $P_{t+1,t+1} = I$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 5 of 46

Matrix Solution, II

The equation $P_{t+1,k} = A_t P_{t,k}$ for $k = 0, 1, \ldots, t$ implies that

$$
\begin{array}{rcl}\n\mathbf{P}_{t,0} & = & \mathbf{A}_{t-1} \cdot \mathbf{A}_{t-2} \cdots \mathbf{A}_0 \quad \text{when } k = 0 \\
\mathbf{P}_{t,k} & = & \mathbf{A}_{t-1} \cdot \mathbf{A}_{t-2} \cdots \mathbf{A}_k \quad \text{when } k = 1,2,\ldots,t\n\end{array}
$$

or, after defining the product of the empty set of matrices as I,

$$
\mathbf{P}_{t,k} = \prod_{s=1}^{t-k} \mathbf{A}_{t-s}
$$

Inserting these into our formula

$$
\mathbf{x}_t = \mathbf{P}_{t,0}\mathbf{x}_0 + \sum\nolimits_{k=1}^t \mathbf{P}_{t,k}\mathbf{f}_{k-1}
$$

implies that

$$
\mathbf{x}_t = \left(\prod\nolimits_{s=1}^t \mathbf{A}_{t-s}\right) \mathbf{x}_0 + \sum\nolimits_{k=1}^t \left(\prod\nolimits_{s=1}^{t-k} \mathbf{A}_{t-s}\right) \mathbf{f}_{k-1}
$$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 6 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

- [Complementary, Particular, and General Solutions](#page-6-0)
- [Constant Coefficient Matrix](#page-11-0)
- [Some Particular Solutions](#page-14-0)
- [Diagonalizing a Non-Symmetric Matrix](#page-17-0)
- [Uncoupling via Diagonalization](#page-25-0)
- [Stability of Linear Systems](#page-30-0)
- [Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 7 of 46

Complementary Solutions to the Homogeneous Equation

We are considering the general first-order linear difference equation

$$
\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{f}_t
$$

in \mathbb{R}^n , where each \mathbf{A}_t is an $n \times n$ matrix.

The associated homogeneous equation takes the form

$$
\mathbf{x}_t - \mathbf{A}_t \mathbf{x}_{t-1} = \mathbf{0} \quad \text{(for all } t \in \mathbb{N}\text{)}
$$

Its general solution is the *n*-dimensional linear subspace of functions $\mathbb{N} \ni t \mapsto \mathbf{x}_t \in \mathbb{R}^n$ satisfying

$$
\mathbf{x}_t = \left(\prod\nolimits_{s=1}^t \mathbf{A}_s\right) \mathbf{x}_0 \quad \text{(for all } t \in \mathbb{N}\text{)}
$$

where $\mathbf{x}_0 \in \mathbb{R}^n$ is an arbitrary constant vector.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 8 of 46

From Particular to General Solutions

The homogeneous equation takes the form

$$
\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{0}
$$

An associated inhomogeneous equation takes the form

$$
\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_t = \mathbf{f}_t
$$

for a general vector forcing term $\mathbf{f}_t \in \mathbb{R}^n$.

Let \mathbf{x}_t^P denote a particular solution of the inhomogeneous equation and \mathbf{x}_t^G any alternative general solution of the same equation.

Our assumptions imply that, for each $t = 1, 2, \ldots$, one has

$$
\mathbf{x}_{t+1}^P - \mathbf{A}_t \mathbf{x}_t^P = \mathbf{f}_t \quad \text{and} \quad \mathbf{x}_{t+1}^G - \mathbf{A}_t \mathbf{x}_t^G = \mathbf{f}_t
$$

Subtracting the first equation from the second implies that

$$
\mathbf{x}_{t+1}^G-\mathbf{x}_{t+1}^P-\mathbf{A}_t(\mathbf{x}_t^G-\mathbf{x}_t^P)=\mathbf{0}
$$

This shows that $\mathbf{x}_t^H := \mathbf{x}_t^G - \mathbf{x}_t^P$ solves the homogeneous equation. University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 9 of 46

Characterizing the General Solution

So the general solution x_t^G of the inhomogeneous equation $x_{t+1} - A_t x_t = f_t$ with forcing term \mathbf{f}_t is the sum $\mathbf{x}_t^P + \mathbf{x}_t^H$ of

- **D** any particular solution \mathbf{x}_t^P of the inhomogeneous equation;
- ighthe general complementary solution x_t^H of the homogeneous equation $x_{t+1} - A_t x_t = 0$.

Linearity in the Forcing Term

Theorem

Suppose that \mathbf{x}_t^P and \mathbf{y}_t^P are particular solutions of the two respective difference equations

 $x_{t+1} - A_t x_{t-1} = d_t$ and $y_{t+1} - A_t y_{t-1} = e_t$

Then, for any scalars α and β , the linear combination $\mathbf{z}_t^P := \alpha \mathbf{x}_t^P + \beta \mathbf{y}_t^P$ is a particular solution of the equation $z_{t+1} - A_t z_{t-1} = \alpha \mathbf{d}_t + \beta \mathbf{e}_t$. This can be proved by routine algebra.

Consider any equation of the form $x_{t+1} - A_t x_{t-1} = f_t$ whose right-hand side is a linear combination $\mathbf{f}_t = \sum_{k=1}^n \alpha_k \mathbf{f}_t^k$ of the *n* forcing vectors (f_t^1, \ldots, f_n^1) .

The theorem implies that a particular solution is the corresponding linear combination $\mathbf{x}_t^P = \sum_{k=1}^n \alpha_k \mathbf{x}_t^{Pk}$ of particular solutions to the *n* equations $\mathbf{x}_{t+1} - \mathbf{A}_t \mathbf{x}_{t-1} = \mathbf{f}_t^k$. University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 11 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

[Complementary, Particular, and General Solutions](#page-6-0)

[Constant Coefficient Matrix](#page-11-0)

[Some Particular Solutions](#page-14-0)

[Diagonalizing a Non-Symmetric Matrix](#page-17-0)

[Uncoupling via Diagonalization](#page-25-0)

[Stability of Linear Systems](#page-30-0)

[Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 12 of 46

The Autonomous Case

The general first-order equation in \mathbb{R}^n can be written as $\mathbf{x}_{t+1} = \mathbf{F}_t(\mathbf{x}_t)$ where $\mathcal{T} \times \mathbb{R}^n \ni (t, \mathbf{x}) \mapsto \mathbf{F}_t(\mathbf{x}) \in \mathbb{R}^n$.

In the autonomous case, the function $(t, x) \mapsto F_t(x)$ reduces to $x \mapsto F(x)$, independent of t.

In the linear case with constant coefficients, the function $x \mapsto F(x)$ takes the affine form $F(x) = Ax + f$.

That is,
$$
\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{f}
$$
.

In our previous formula, products like $\prod_{s=1}^{t-k} \mathsf{A}_{t-s}$ reduce to powers \mathbf{A}^{t-k} .

Specifically, $\mathsf{P}_{t,\,k}=\mathsf{A}^{t-k},$ where $\mathsf{A}^{0}=\mathsf{I}.$

The solution to $x_{t+1} = Ax_t + f$ is therefore

$$
\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \sum\nolimits_{k=1}^t \mathbf{A}^{t-k} \mathbf{f}
$$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 13 of 46

Summing the Geometric Series

Recall the trick for finding $s_t := 1 + a + a^2 + \cdots + a^{t-1}$ is to multiply each side by $1 - a$.

Because all terms except the first and last cancel, this trick yields the equation $(1-a)s_t = 1-a^t$.

Hence $s_t = (1-a)^{-1}(1-a^t)$ provided that $a \neq 1$.

Applying the same trick to ${\sf S}_t := {\sf I} + {\sf A} + {\sf A}^2 + \cdots + {\sf A}^{t-1}$ yields the two matrix equations $(I - A)S_t = I - A^t = S_t(I - A)$.

Provided that $(I - A)^{-1}$ exists, we can pre-multiply $(I - A)S_t = I - A^t$ and post-multiply $I - A^t = S_t(I - A)$ on each side by this inverse to get the two equations

$$
S_t = (I - A)^{-1}(I - A^t) = (I - A^t)(I - A)^{-1}
$$

So the previous solution $\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \sum_{k=1}^t \mathbf{A}^{t-k} \mathbf{f}$ reduces to

$$
\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \mathbf{S}_t \mathbf{f} = \mathbf{A}^t \mathbf{x}_0 + (\mathbf{I} - \mathbf{A}^t)(\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}
$$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 14 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

[Complementary, Particular, and General Solutions](#page-6-0)

[Constant Coefficient Matrix](#page-11-0)

[Some Particular Solutions](#page-14-0)

[Diagonalizing a Non-Symmetric Matrix](#page-17-0)

[Uncoupling via Diagonalization](#page-25-0)

[Stability of Linear Systems](#page-30-0)

[Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 15 of 46

First-Order Linear Equation with a Constant Matrix

Recall that the solution

to the general first-order linear equation $x_t - A_t x_{t-1} = f_t$ takes the form

$$
\mathbf{x}_t = \left(\prod\nolimits_{s=1}^t \mathbf{A}_{t-s}\right) \mathbf{x}_0 + \sum\nolimits_{k=1}^t \left(\prod\nolimits_{s=1}^{t-k} \mathbf{A}_{t-s}\right) \mathbf{f}_{k-1}
$$

From now on, we restrict attention to a constant coefficient matrix $A_t = A$, independent of t.

Then the solution reduces to

$$
\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + \sum\nolimits_{s=1}^t \mathbf{A}^{t-s} \mathbf{f}_{s-1}
$$

Indeed, this is easily verified by induction.

One particular solution, of course, comes from taking $x_0 = 0$, implying that

$$
\mathbf{x}_t = \sum\nolimits_{s=1}^t \mathbf{A}^{t-s} \mathbf{f}_{s-1}
$$

Now we will start to analyse this particular solution for some special forcing terms ${\mathsf f}_t.$ University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 16 of 46

Special Case

The special case we consider is when there exists

a fixed vector $\mathbf{f}_0 \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $\mathbf{x}_t - \mathbf{A}_t x_{t-1} = \mathbf{f}_t = \mu^t \mathbf{f}_0$ for the discrete exponential or power function $\mathbb{Z}_+ \ni t \mapsto \mu^t \in \mathbb{R}.$

Then the particular solution satisfying $x_0 = 0$ is $\mathbf{x}_t = \mathbf{S}_t \mathbf{f}_0$ where $\mathbf{S}_t := \sum_{k=1}^t \mu^{k-1} \mathbf{A}^{t-k}$.

Note that

$$
\mathbf{S}_t(\mathbf{A} - \mu \mathbf{I}) = \sum_{k=1}^t (\mu^{k-1} \mathbf{A}^{t-k+1} - \mu^k \mathbf{A}^{t-k}) = \mathbf{A}^t - \mu^t \mathbf{I}
$$

We ignore the degenerate case when μ is an eigenvalue of **A**.

Otherwise, when μ is not an eigenvalue of **A**, so $\mathbf{A} - \mu \mathbf{I}$ is non-singular, it follows that

$$
\mathbf{S}_t = (\mathbf{A}^t - \mu^t \mathbf{I})(\mathbf{A} - \mu \mathbf{I})^{-1}
$$

Then the particular solution we are looking for takes the form

$$
\mathbf{x}_t^P = (\mathbf{A}^t - \mu^t \mathbf{I}) \mathbf{f}^*
$$

for the particular fixed vector ${\bold f}^* := ({\bold A} - \mu {\bold l})^{-1} {\bold f}_0.$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 17 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

[Complementary, Particular, and General Solutions](#page-6-0)

[Constant Coefficient Matrix](#page-11-0)

[Some Particular Solutions](#page-14-0)

[Diagonalizing a Non-Symmetric Matrix](#page-17-0)

[Uncoupling via Diagonalization](#page-25-0)

[Stability of Linear Systems](#page-30-0)

[Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 18 of 46

Characteristic Roots and Eigenvalues

Recall the characteristic equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$.

It is a polynomial equation of degree *n* in the unknown scalar λ .

By the fundamental theorem of algebra, it has a set $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ of *n* characteristic roots, some of which may be repeated.

These roots may be real, or appear in conjugate pairs $\lambda = \alpha \pm i\beta \in \mathbb{C}$ where $\alpha, \beta \in \mathbb{R}$.

Because the λ_i are characteristic roots, one has

$$
|\mathbf{A} - \lambda \mathbf{I}| = \prod_{i=1}^{n} (\lambda_i - \lambda)
$$

When λ solves $|\mathbf{A} - \lambda \mathbf{I}| = 0$, there is a non-trivial eigenspace E_{λ} of eigenvectors $x \neq 0$ that solve the equation $Ax = \lambda x$.

Then λ is an eigenvalue.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 19 of 46

Linearly Independent Eigenvectors

In the matrix algebra lectures, we proved this result:

Theorem

Let **A** be an $n \times n$ matrix. with a collection $\lambda_1, \lambda_2, \ldots, \lambda_m$ of $m \leq n$ distinct eigenvalues. Suppose the non-zero vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ in \mathbb{C}^n are corresponding eigenvectors satisfying

$$
Au_k = \lambda_k u_k \text{ for } k = 1, 2, \ldots, m
$$

Then the set $\{u_1, u_2, \ldots, u_m\}$ must be linearly independent. We also discussed similar and diagonalizable matrices.

An Eigenvector Matrix

Suppose the $n \times n$ matrix **A** has the maximum possible number of n linearly independent eigenvectors, namely $\{{\bf u}_j\}_{j=1}^n$.

A sufficient, but not necessary, condition for this is that $|\mathbf{A} - \lambda \mathbf{I}| = 0$ has *n* distinct characteristic roots.

Define the $n \times n$ eigenvector matrix $\mathbf{V} = (\mathbf{u}_j)_{j=1}^n$ whose columns are the linearly independent eigenvectors. By definition of eigenvalue and eigenvector, for $j=1,2,\ldots,n$ one has ${\bf Au}_j=\lambda_j{\bf u}_j.$ The j column of the $n\times n$ matrix AV is Au_j , which equals $\lambda_j\mathsf{u}_j$. But with $\mathbf{\Lambda} := \mathbf{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$, the elements of **Λ** satisfy $(\mathbf{\Lambda})_{kj}=\delta_{kj}\lambda_j.$ So the elements of VΛ satisfy

$$
(\mathbf{V}\mathbf{\Lambda})_{ij} = \sum_{k=1}^n (\mathbf{V})_{ik} \delta_{kj} \lambda_j = (\mathbf{V})_{ij} \lambda_j = \lambda_j (\mathbf{u}_j)_i = (\mathbf{A}\mathbf{u}_j)_i
$$

It follows that $AV = VA$ because all the elements are all equal.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 21 of 46

Diagonalization

Recall the hypothesis that the $n \times n$ matrix **A** has n linearly independent eigenvectors $\{\mathbf u_j\}_{j=1}^n$.

So the eigenvector matrix V is invertible.

We proved on the last slide that $AV = VA$.

Pre-multiplying this equation by V^{-1} yields $\mathsf{V}^{-1}\mathsf{AV}=\mathsf{\Lambda},$ which gives a diagonalization of **A**.

Furthermore, post-multiplying $AV = VA$ by the inverse matrix V^{-1} yields $\mathsf{A}=\mathsf{V}\mathsf{\Lambda}\mathsf{V}^{-1}.$

This is a decomposition of A into the product of:

- 1. the eigenvector matrix V ;
- 2. the diagonal eigenvalue matrix Λ;
- 3. the inverse eigenvector matrix V^{-1} .

A Non-Diagonalizable 2×2 Matrix

Example

The non-symmetric matrix $\mathbf{A} = \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$ cannot be diagonalized.

Its characteristic equation is
$$
0 = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2
$$
.

It follows that $\lambda = 0$ is the unique eigenvalue.

The eigenvalue equation is
$$
0 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}
$$

or $x_2 = 0$, whose only solutions take the form $x_2 (1, 0)^\top$.

Thus, every eigenvector is a non-zero multiple of the column vector $(1,0)^{\top}$.

This makes it impossible to find any set of two linearly independent eigenvectors.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 23 of 46

A Non-Diagonalizable $n \times n$ Matrix: Specification

The following $n \times n$ matrix also has a unique eigenvalue, whose eigenspace is of dimension 1.

Example

Consider the non-symmetric $n \times n$ matrix **A** whose elements in the first $n - 1$ rows satisfy $a_{ij} = \delta_{i,j-1}$ for $i=1,2,\ldots,n-1$ but whose last row is $\mathbf{0}^\top.$

Such a matrix is upper triangular, and takes the special form

$$
\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{0}_{n-1} & \mathbf{I}_{n-1} \\ 0 & \mathbf{0}_{n-1}^{\top} \end{pmatrix}
$$

in which the elements in the first $n-1$ rows and last $n-1$ columns make up the identity matrix.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 24 of 46

A Non-Diagonalizable $n \times n$ Matrix: Analysis

Because $\mathbf{A} - \lambda \mathbf{I}$ is also upper triangular, its characteristic equation is $0 = |\mathbf{A} - \lambda \mathbf{I}| = (-\lambda)^n$.

This has $\lambda = 0$ as an *n*-fold repeated root.

So $\lambda = 0$ is the unique eigenvalue.

The eigenvalue equation $Ax = \lambda x$ with $\lambda = 0$ takes the form $Ax = 0$ or

$$
0 = \sum_{j=1}^{n} \delta_{i,j-1} x_j = x_{i+1} \quad (i = 1, 2, \dots, n-1)
$$

with an extra nth equation of the form $0 = 0$.

The only solutions take the form $x_i = 0$ for $j = 2, \ldots, n$, with x_1 arbitrary.

So all the eigenvectors of A are non-zero multiples of the first canonical basis vector $\mathbf{e}_1 = (1, 0, \dots, 0)^\top$.

This implies that there is just one eigenspace, of dimension 1. University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 25 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

[Complementary, Particular, and General Solutions](#page-6-0)

[Constant Coefficient Matrix](#page-11-0)

[Some Particular Solutions](#page-14-0)

[Diagonalizing a Non-Symmetric Matrix](#page-17-0)

[Uncoupling via Diagonalization](#page-25-0)

[Stability of Linear Systems](#page-30-0)

[Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 26 of 46

Uncoupling via Diagonalization

Consider the matrix difference equation $x_t = Ax_{t-1} + f_t$ for $t = 1, 2, \ldots$, with x_0 given.

The extra forcing term f_t makes the equation inhomogeneous (unless $f_t = 0$ for all t).

Consider the case when the $n \times n$ matrix **A**

has *n* distinct eigenvalues,

or at least a set of n linearly independent eigenvectors making up the columns of an invertible eigenvector matrix V .

Define a new vector $\mathbf{v}_t = \mathbf{V}^{-1} \mathbf{x}_t$ for each t.

This new vector satisfies the transformed matrix difference equation

$$
\textbf{y}_t = \textbf{V}^{-1} \textbf{x}_t = \textbf{V}^{-1} \left(\textbf{A} \textbf{x}_{t-1} + \textbf{f}_t \right) = \textbf{V}^{-1} \textbf{A} \textbf{V} \textbf{y}_{t-1} + \textbf{e}_t
$$

where \mathbf{e}_t denotes the transformed forcing term $\mathbf{V}^{-1} \mathbf{f}_t.$ The diagonalization $V^{-1}AV = \Lambda$ reduces this equation to the uncoupled matrix difference equation $y_t = \Lambda y_{t-1} + e_t$ with initial condition $y_0 = V^{-1}x_0$. University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 27 of 46

Transforming the Uncoupled Equations

Consider the uncoupled matrix difference equation $y_t = \Lambda y_{t-1} + e_t$ where $\mathbf{\Lambda} = \mathbf{diag}(\lambda_1, \ldots, \lambda_n)$.

Note that, if there is any *i* for which $\lambda_i = 0$, then the solution $\mathbf{y}_t = (y_{ti})_{i=1}^n$ must satisfy $y_{ti} = e_{ti}$ for all $t = 1, 2, \ldots$.

So we eliminate all *i* such that $\lambda_i = 0$, and assume from now on that $\lambda_i \neq 0$ for all *i*.

This assumption ensures that $\boldsymbol{\Lambda}^{-1}$ exists.

This allows us to define the transformed vector $\textsf{z}_t:=\bm{\Lambda}^{-t}\textsf{y}_t$ where

$$
\mathbf{\Lambda}^{-t}=[\textbf{diag}(\lambda_1,\ldots,\lambda_n)]^{-t}=\textbf{diag}(\lambda_1^{-t},\ldots,\lambda_n^{-t})=(\mathbf{\Lambda}^{-1})^t
$$

With this transformation, evidently

$$
\mathbf{z}_t = \mathbf{\Lambda}^{-t} \mathbf{y}_t = \mathbf{\Lambda}^{-t} (\mathbf{\Lambda} \mathbf{y}_{t-1} + \mathbf{e}_t) = \mathbf{\Lambda}^{1-t} \mathbf{y}_{t-1} + \mathbf{\Lambda}^{-t} \mathbf{e}_t = \mathbf{z}_{t-1} + \mathbf{w}_t
$$

where \mathbf{w}_t is the transformed forcing term $\boldsymbol{\Lambda}^{-t}\mathbf{e}_t.$ University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 28 of 46

The Decoupled Solution

The solution of $z_t = z_{t-1} + w_t$ is obviously

$$
\textbf{z}_t = \textbf{z}_0 + \sum\nolimits_{s=1}^t \textbf{w}_s
$$

Inverting the previous transformation $\mathsf{z}_t = \boldsymbol{\Lambda}^{-t} \mathsf{y}_t$, we see that

$$
\textbf{y}_t = \textbf{\Lambda}^t \textbf{z}_t = \textbf{\Lambda}^t \left(\textbf{z}_0 + \sum\nolimits_{s=1}^t \textbf{w}_s \right)
$$

But $\mathbf{z}_0 = \mathbf{y}_0$ and $\mathbf{w}_s = \mathbf{\Lambda}^{-s} \mathbf{e}_s$, so one has

$$
\textbf{y}_t = \textbf{\Lambda}^t \textbf{y}_0 + \sum\nolimits_{s=1}^t \textbf{\Lambda}^{t-s} \textbf{e}_s
$$

Now, each power $\pmb{\Lambda}^k$ is the diagonal matrix $\pmb{\mathrm{diag}}(\lambda_1^k,\ldots,\lambda_n^k).$ So, for each separate component v_{ti} of v_t and corresponding component w_{si} of w_s , this solution can be written in the obviously uncoupled form

$$
y_{ti}=(\lambda_i)^t y_{0i}+\sum_{s=1}^t(\lambda_i)^{t-s}w_{si} \quad \text{(for } i=1,2,\ldots n\text{)}
$$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 29 of 46

The Recoupled Solution

Finally, inverting also the previous transformation $\mathbf{y}_t = \mathbf{V}^{-1} \mathbf{x}_t$, while noting that $\mathbf{e}_s = \mathbf{V}^{-1} \mathbf{f}_s$, one has

$$
\textbf{x}_t = \textbf{V}\textbf{y}_t = \textbf{V}\textbf{\Lambda}^t\textbf{V}^{-1}\textbf{x}_0 + \sum\nolimits_{s=1}^t \textbf{V}\textbf{\Lambda}^{t-s}\textbf{V}^{-1}\textbf{f}_s
$$

as the solution of the original equation $\bm{{\mathsf{x}}}_t = \bm{\mathsf{V}} \bm{\mathsf{\Lambda}} \bm{\mathsf{V}}^{-1} \bm{{\mathsf{x}}}_{t-1} + \bm{{\mathsf{f}}}_t.$

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

[Complementary, Particular, and General Solutions](#page-6-0)

[Constant Coefficient Matrix](#page-11-0)

[Some Particular Solutions](#page-14-0)

[Diagonalizing a Non-Symmetric Matrix](#page-17-0)

[Uncoupling via Diagonalization](#page-25-0)

[Stability of Linear Systems](#page-30-0)

[Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 31 of 46

Stationary States

Given an autonomous equation $x_{t+1} = F(x_t)$, a stationary state is a fixed point $\mathbf{x}^* \in \mathbb{R}^n$ of the mapping $\mathbb{R}^n \ni \mathbf{x} \mapsto \mathbf{F}(\mathbf{x}) \in \mathbb{R}^n$.

It earns its name because if $x_s = x^*$ for any finite s, then $\mathbf{x}_t = \mathbf{x}^*$ for all $t = s, s + 1, \dots$.

Wherever it exists, the solution of the autonomous equation can be written as a function $x_t = \Phi_{t-s}(x_s)$ $(t = s, s + 1, ...)$ of the state x_s at time s,

as well as of the number of periods $t - s$ that the function **F** must be iterated in order to determine the state x_t at time t.

Indeed, the sequence of functions $\Phi_k : \mathbb{R}^n \to \mathbb{R}^n$ $(k \in \mathbb{N})$ is defined iteratively by $\Phi_k(\mathbf{x}) = \mathbf{F}(\Phi_{k-1}(\mathbf{x}))$ for all x.

Note that any stationary state x^* is a fixed point of each mapping Φ_k in the sequence, as well as of $\Phi_1 \equiv \mathbf{F}$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 32 of 46

Local and Global Stability

The stationary state x^* is:

- ► globally stable if $\Phi_k(\mathbf{x}_0) \to \mathbf{x}^*$ as $k \to \infty$, regardless of the initial state x_0 ;
- \triangleright locally stable if there is an (open) neighbourhood $N \subset \mathbb{R}^n$ of \mathbf{x}^* such that whenever $x_0 \in N$ one has $\Phi_k(\mathbf{x}_0) \to \mathbf{x}^*$ as $k \to \infty$.

We begin by studying linear systems, for which local stability is equivalent to global stability.

Later, we will consider the local stability of non-linear systems.

Stability in the Linear Case

Recall that the autonomous linear equation takes the form $x_{t+1} = Ax_t + d$.

The vector $\mathbf{x}^* \in \mathbb{R}^n$ is a stationary state if and only if $\mathbf{x}_t = \mathbf{x}^* \Longrightarrow \mathbf{x}_{t+1} = \mathbf{x}^*$, which is true if and only if $\mathbf{x}^* = \mathbf{A}\mathbf{x}^* + \mathbf{d}$, or iff x^* solves the linear equation $(I - A)x = d$.

Of course, if the matrix $I - A$ is singular, then there could either be no stationary state, or a continuum of stationary states.

For simplicity, we assume that $I - A$ has an inverse.

Then there is a unique stationary state $\mathbf{x}^* = \left(\mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{d}.$

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 34 of 46

Homogenizing the Linear Equation

Given the equation $x_{t+1} = Ax_t + d$ and the stationary state $\mathbf{x}^* = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{d}$, define the new state as the deviation $\mathbf{y} := \mathbf{x} - \mathbf{x}^*$ of the state x from the stationary state x^* .

This transforms the original equation $x_{t+1} = Ax_t + d$ to

$$
\mathbf{y}_{t+1} + \mathbf{x}^* = \mathbf{A}(\mathbf{y}_t + \mathbf{x}^*) + \mathbf{d} = \mathbf{A}\mathbf{y}_t + \mathbf{A}\mathbf{x}^* + \mathbf{d}
$$

Because the stationary state satisfies $\mathbf{x}^* = \mathbf{A}\mathbf{x}^* + \mathbf{d}$, this reduces the original equation $x_{t+1} = Ax_t + d$ to the homogeneous equation $\mathbf{y}_{t+1} = \mathbf{A} \mathbf{y}_{t}$, whose obvious solution is $y_t = A^t y_0$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 35 of 46

Stability in the Diagonal Case

Suppose that **A** is the diagonal matrix $\mathbf{\Lambda} = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Then the powers are easy:

$$
\mathbf{A}^t = \mathbf{\Lambda}^t = \mathbf{diag}(\lambda_1^t, \lambda_2^t, \dots, \lambda_n^t)
$$

The "homogenized" vector equation $y_t = Ay_{t-1}$ can be expressed component by component as the set

$$
y_{i,t} = \lambda_i y_{i,t-1} \quad (i=1,2,\ldots,n)
$$

of *n* uncoupled difference equations in one variable.

The solution of $y_t = Ay_{t-1}$ with $y_0 = z = (z_1, z_2, \ldots, z_n)$ is then $\mathbf{y}_t = (\lambda_1^t z_1, \lambda_2^t z_2, \dots, \lambda_n^t z_n).$

Hence $y_t \to 0$ holds for all y_0 if and only if, for $i = 1, 2, \ldots, n$, the modulus $|\lambda_i|$ of each diagonal element λ_i satisfies $|\lambda_i| < 1$. Recall that when $\lambda = \alpha \pm i \beta$, the modulus is $|\lambda| := \sqrt{\alpha^2 + \beta^2}$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 36 of 46

First Warning Example

Consider the 2 \times 2 matrix $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 0 \ 0 & 2 \end{pmatrix}$.

The solution of the difference equation $y_t = Ay_{t-1}$ with $\mathbf{y}_0 = \mathbf{z} = (z_1, z_2)$ is then

$$
\textbf{y}_t = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}^t \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 2^{-t} & 0 \\ 0 & 2^t \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 2^{-t}z_1 \\ 2^t z_2 \end{pmatrix}
$$

Then $y_t \to 0$ as $t \to \infty$ provided that $z_2 = 0$.

But the norm $\|\mathbf{y}_t\| \to +\infty$ whenever $z_2 \neq 0$.

In this case one says that the solution $\mathbf{y}_t = (2^{-t}z_1, 2^t z_2)$ exhibits saddle point stability because

- In starting with $z_2 = 0$ allows convergence;
- In starting with $z_2 \neq 0$ ensures divergence.

This explains why one says that the $n \times n$ matrix **A** is stable just in case $\mathsf{A}^{t}\mathsf{y} \to \mathsf{0}$ for all $\mathsf{y} \in \mathbb{R}^{n}$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 37 of 46

Second Example: The Fibonacci Equation

Consider the Fibonacci equation $x_{t+1} = x_t + x_{t-1}$.

This has a general solution of the form $x_t = A\lambda_1^t + B\lambda_2^t$ for arbitrary constants $A, B \in \mathbb{R}$, where $\lambda_1=\frac{1}{2}$ Lonstants $A, B \in \mathbb{R}$,
 $\frac{1}{2}(1+\sqrt{5})$ and $\lambda_2 = \frac{1}{2}$ $rac{1}{2}(1 -$ √ 5) are the two roots of the quadratic characteristic equation $\lambda^2=\lambda+1.$

Because $|\lambda_1| > 1$ and $|\lambda_2| < 1$, this general solution also exhibits saddle point stability.

A Condition for Stability

The solution $y_t = A^t y_0$ of the homogeneous equation $y_{t+1} = Ay_t$ is globally stable just in case $A^t v_0 \rightarrow 0$ or $\|\mathbf{A}^t\mathbf{v}_0\| \to 0$ as $t \to \infty$, regardless of \mathbf{v}_0 .

This holds if and only if $A^t \rightarrow 0_{n \times n}$ in the sense that all n^2 elements of the $n\times n$ matrix A^t converge to 0 as $n \to \infty$.

In case the matrix A is the diagonal matrix $\mathbf{\Lambda} = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, stability holds if and only if $|\lambda_i| < 1$ for $i = 1, 2, \ldots, n$.

Suppose the matrix **A** is the diagonalizable matrix $\mathsf{V}\mathsf{\Lambda}\mathsf{V}^{-1}$, where V is a matrix of linearly independent eigenvectors, and the diagonal elements of the diagonal matrix Λ are eigenvalues.

Then $\mathsf{A}^t = \mathsf{V}\mathsf{\Lambda}^t\mathsf{V}^{-1} \to 0$ if and only if $\mathsf{\Lambda}^t \to 0$, which is true if and only if $|\lambda_i| < 1$ for $i = 1, 2, \ldots, n$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 39 of 46

The Classic Stability Condition

Definition

The $n \times n$ matrix **A** is stable just in case, as $t \to \infty$, so

- 1. A^t converges element by element to the zero matrix $\bm{0}_{n\times n};$
- 2. or equivalently, $\mathbf{y}_t = \mathbf{A}^t \mathbf{y}_0 \to \mathbf{0}$ for all $\mathbf{y}_0 \in \mathbb{R}^n$.

Theorem

The $n \times n$ matrix **A** is stable if and only if each of its eigenvalues λ (real or complex) has modulus $|\lambda| < 1$.

We have already proved this result in case A is diagonalizable. But the same stability condition applies for a general $n \times n$ matrix **A**, even one that is not diagonalizable. For such a general matrix we will only prove necessity $-$ "only if". Let λ^* denote the eigenvalue λ whose modulus $|\lambda|$ is largest, and let $\mathsf{x}^* \neq \mathsf{0}$ be an associated eigenvector. In case $|\lambda^*| \geq 1$, the solution $\mathbf{x}_t = \mathbf{A}^t \mathbf{x}^* = \lambda^{*t} \mathbf{x}^*$ satisfies $\|\mathbf x_t\| = |\lambda^*|^t \|\mathbf x^*\| \geq \|\mathbf x^*\| \neq 0$, so $\mathbf A$ is unstable.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 40 of 46

Lecture Outline

[Systems of Linear Difference Equations](#page-1-0)

[Complementary, Particular, and General Solutions](#page-6-0)

[Constant Coefficient Matrix](#page-11-0)

[Some Particular Solutions](#page-14-0)

[Diagonalizing a Non-Symmetric Matrix](#page-17-0)

[Uncoupling via Diagonalization](#page-25-0)

[Stability of Linear Systems](#page-30-0)

[Stability of Non-Linear Systems](#page-40-0)

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 41 of 46

Local Stability

Consider the autonomous non-linear system $x_{t+1} = F(x_t)$ with steady state **x***.

Let

$$
\mathbf{J}(\mathbf{x}^*) = \mathbf{F}'(\mathbf{x}^*) = \left(\frac{\partial F_i}{\partial x_j}\right)_{ij} (\mathbf{x}^*)
$$

denote the $n \times n$ Jacobian matrix of partial derivatives evaluated at the steady state x^* .

Theorem

Suppose that the elements of the Jacobian matrix $J(x^*)$ are continuous in a neighbourhood of the steady state x^* .

Let $\bar{\lambda}$ denote the eigenvalue of $\mathbf{J}(\mathbf{x}^*)$ whose modulus is largest.

The system is locally stable about the steady state x^* :

$$
if |\bar{\lambda}| < 1; \quad only \ if |\bar{\lambda}| \leq 1.
$$

In case $|\bar{\lambda}| = 1$, the system may or may not be locally stable. University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 42 of 46

Complete Metric Spaces

Let (X, d) denote any metric space.

Definition

A Cauchy sequence $\langle x_n \rangle_{n \in \mathbb{N}}$ in X is a sequence for which, given any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $m, n > N_e \Longrightarrow d(x_m, x_n) < \epsilon$.

Definition

A metric space (X, d) is complete just in case all its Cauchy sequences converge.

Example

Recall that one definition of the real line $\mathbb R$ is as the completion of the metric space $(\mathbb{Q}, d_{\mathbb{Q}})$, where $\mathbb O$ is the set of rational numbers, equipped with the metric $d_{\mathbb{Q}}(r,r') = |r - r'|$ for all $r, r' \in \mathbb{Q}$.

That is, $(\mathbb{R}, d_{\mathbb{R}})$ is the smallest complete metric space which includes the metric space $(\mathbb{Q}, d_{\mathbb{Q}})$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 43 of 46

Global Stability: Contraction Mapping Theorem

Definition

The function $X \ni x \mapsto F(x) \in X$

is a contraction mapping on the metric space (X, d) just in case there is a positive contraction factor $K < 1$ such that $d(F(x), F(y)) \leq K d(x, y)$ for all $x, y \in X$.

Theorem

Suppose that $X \ni x \mapsto F(x) \in X$ is a contraction mapping on the complete metric space (X, d) .

Then for any $x_0 \in X$ the process defined by $x_t = F(x_{t-1})$ for all $t \in \mathbb{N}$ has a unique steady state $x^* \in X$ that is globally stable.

Iteration Yields a Cauchy Sequence

Because $F: X \rightarrow X$ is a contraction mapping with contraction factor K, and $x_t = F(x_{t-1})$ for all $t \in \mathbb{N}$. one has $d(x_{t+1}, x_t) = d(F(x_t), F(x_{t-1})) \leq K d(x_t, x_{t-1}).$

It follows by induction on t that $d(x_{t+1}, x_t) \leq K^t d(x_1, x_0)$.

If $n > m$, then repeated application of the triangle inequality gives

$$
d(x_m, x_n) \leq \sum_{r=1}^{n-m} d(x_{m+r-1}, x_{m+r})
$$

\n
$$
\leq \sum_{r=1}^{n-m} K^{m+r-1} d(x_1, x_0)
$$

\n
$$
= \frac{K^m - K^n}{1 - K} d(x_1, x_0) < \frac{K^m}{1 - K} d(x_1, x_0)
$$

Hence $d(x_m, x_n) < \epsilon$ provided that $K^m \leq \epsilon(1 - K)/d(x_1, x_0)$ or, since $\ln K$ < 0, if $m > (1/\ln K) [\ln \epsilon (1 - K) - \ln d(x_1, x_0)].$

This proves that $\langle x_t \rangle_{t \in \mathbb{N}}$ is a Cauchy sequence.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 45 of 46

Completing the Proof

Because $(x_t)_{t\in\mathbb{N}}$ is a Cauchy sequence, the hypothesis that (X, d) is a complete metric space implies that there is a limit point $x^* \in X$ such that $x_t \to x^*$ as $t \to \infty$.

Then, by the triangle inequality and the contraction property,

$$
d(F(x^*),x^*) \leq d(F(x^*),x_{t+1}) + d(x_{t+1},x^*)
$$

$$
\leq Kd(x^*,x_t) + d(x_{t+1},x^*) \to 0
$$

as $t \to \infty$, implying that $d(F(x^*), x^*) = 0$.

Because (X, d) is a metric space, it follows that $F(x^*) = x^*$, so the limit point $x^* \in X$ is a steady state.

On the other hand, if $\bar{x} \in X$ is any steady state, then $d(x^*, \bar{x}) = d(F(x^*), F(\bar{x})) \leq K d(x^*, \bar{x}).$

Hence $(1 - K)d(x^*, \bar{x}) \leq 0$ which, because $K < 1$, implies that $d(x^*, \bar{x}) \leq 0$ and so $\bar{x} = x^*$.

University of Warwick, EC9A0 Maths for Economists, Day 7 Peter J. Hammond 46 of 46