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Complex Eigenvalues

The eigenvalues we are about to define may be complex numbers.

Instead of Rn we need to consider the linear space Cn

whose elements are n-vectors with complex coordinates.

That is, we consider a linear space whose field of scalars is,
instead of the line R of real numbers a,
the plane C of complex numbers a + b i, where a, b ∈ R
and i denotes the basic imaginary number that satisfies i2 = −1.

Nevertheless, we consider here only n × n matrices A
whose n2 elements are all real.

Definition
The complex scalar λ ∈ C is an eigenvalue
just in case the equation Ax = λx has a non-zero solution;
then that solution x ∈ Cn \ {0} is an eigenvector.
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Complex Eigenvalues Go with Complex Eigenvectors

Proposition

Given any real n × n matrix A,
suppose that λ ∈ C \ R is a complex eigenvalue.

Then any eigenvector of A satisfies x ∈ Cn \ Rn.

Proof.
Suppose that the equation Ax = λx has a solution
with λ = α + iβ ∈ C and x = y + i z ∈ Cn \ {0}.
Writing out Ax = λx in full gives A(y + i z) = (α + iβ)(y + i z).

Equating the imaginary parts gives Az = βy + αz.

Now, if z = 0, then β y = 0 but y + i z = y 6= 0, so β = 0.

On the other hand, if λ = α + iβ ∈ C \ R is an eigenvalue of A
with eigenvector x = y + i z, then z 6= 0 and so x ∈ Cn \ Rn.

So we have proved that real eigenvalues go with real eigenvectors,
whereas complex eigenvalues go with complex eigenvectors.
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The Spectrum of a General Real Square Matrix

Definition
Consider any n × n matrix A whose elements are all real.

The scalar λ ∈ C is an eigenvalue of A just in case
the equation Ax = λx has a non-zero solution x ∈ Cn \ {0}.
In this case the solution x ∈ Cn \ {0} is an eigenvector,
and the pair (λ, x) is an eigenpair.

The spectrum of the matrix A is the set SA of its eigenvalues.

Let SR
A ⊂ R denote the subset of its real eigenvalues.

Let SC
A ⊂ C \ R denote the subset of its complex eigenvalues,

which satisfies SC
A = SA \ SR

A .
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Summary of Main Properties

We will be demonstrating the following properties:

1. SR
A ⊆ SA and #SA ≤ n

2. The number #SC
A of complex eigenvalues is even,

and the members of SC
A

are complex conjugate pairs λ± µi where µ 6= 0.

3. SR
A = ∅ is possible in case n is even, but not if n is odd.

4. In case A is symmetric, one has SC
A = ∅ and SR

A = SA.
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The Eigenspace

Given any eigenvalue λ ∈ C,
let Eλ := {x ∈ Cn \ {0} | Ax = λx}
denote the associated set of eigenvectors.

Given any two eigenvectors x, y ∈ Eλ

and any two scalars α, β ∈ C, note that

A(αx + βy) = αAx + βAy = αλx + βλy = λ(αx + βy)

Hence the linear combination αx + βy,
unless it is 0, is also an eigenvector in Eλ.

It follows that the set Eλ ∪ {0} is a linear subspace of Cn

which we call the eigenspace associated with the eigenvalue λ.
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Powers of a Matrix

Theorem
Suppose that (λ, x) is an eigenpair of the n × n matrix A.

Then Amx = λmx for all m ∈ N.

Proof.
By definition, Ax = λx.

Premultiplying each side of this equation by the matrix A gives

A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x

As the induction hypothesis,
suppose that Am−1x = λm−1x for any m = 2, 3, . . .

Premultiplying each side of this last equation by the matrix A gives

Amx = A(Am−1x) = A(λm−1x) = λm−1(Ax) = λm−1(λx) = λmx

This completes the proof by induction on m.
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The Characteristic Equation
The equation Ax = λx holds for x ∈ Cn \ {0n}
if and only if x ∈ Cn \ {0n} solves (A− λI)x = 0.

This holds if and only if the matrix A− λI is singular,
which holds if and only if λ is a characteristic root
— i.e., it solves the characteristic equation |A− λI| = 0.

Equivalently, λ is a zero
of the polynomial P(λ) ≡ |A− λI| of degree n.

Suppose |A− λI| = 0 has k distinct roots λ1, λ2, . . . , λk in C
whose multiplicities are respectively m1,m2, . . . ,mk .

This means that

|A− λI| = (−1)n(λ− λ1)m1(λ− λ2)m2 · · · (λ− λk)mk

= (−1)n
∏k

j=1(λ− λj)mj

The polynomial has degree m1 + m2 + . . .+ mk , which equals n.

This implies that k ≤ n,
so there can be at most n distinct eigenvalues.
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Eigenvalues of a 2× 2 matrix

Consider the 2× 2 matrix A =

(
a11 a12
a21 a22

)
.

The characteristic equation for its eigenvalues is

|A− λI| =

∣∣∣∣a11 − λ a12
a21 a22 − λ

∣∣∣∣ = 0

Evaluating the determinant gives the equation

0 = (a11 − λ)(a22 − λ)− a12a21
= λ2 − (a11 + a22)λ+ (a11a22 − a12a21)
= λ2 − (tr A)λ+ |A| = (λ− λ1)(λ− λ2)

where the two roots λ1 and λ2 of the quadratic equation have:
I a sum λ1 + λ2 equal to the trace tr A of A

(the sum of its diagonal elements);
I a product λ1 · λ2 equal to the determinant |A| of A.

Let Λ denote the diagonal matrix diag(λ1, λ2)
whose diagonal elements are the eigenvalues.

Note that tr A = tr Λ and |A| = |Λ|.
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The Case of a Diagonal Matrix, I
For the diagonal matrix D = diag(d1, d2, . . . , dn)
one has D− λI = diag(d1 − λ, d2 − λ, . . . , dn − λ).

Then the characteristic equation |D− λI| = 0
takes the degenerate form

∏n
k=1(dk − λ) = 0.

So the spectrum SD of D equals
the subset of the set {d1, d2, . . . , dn} of diagonal elements
that results from dropping repeated elements.

The natural number #SD could be anywhere between 1 and n.

The ith component of the vector equation Dx = dkx
takes the form dixi = dkxi ,
which has a non-trivial solution if and only if di = dk .

For each k ∈ Nn, the kth column vector ek = (δjk)nj=1

of the canonical orthonormal basis of Rn

satisfies the equation Dek = dkek .

Hence ek is an eigenvector associated with the eigenvalue dk .
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The Case of a Diagonal Matrix, II

Apart from non-zero multiples of the canonical basis vector ek ,
there are other eigenvectors associated with dk
only if a different element di of the diagonal also equals dk .

In fact, the eigenspace associated with each eigenvalue dk
equals the space spanned by the set {ei | di = dk}
of canonical basis vectors.

Example

In case D = diag(1, 1, 0) the spectrum is {0, 1} with:

I the one-dimensional eigenspace

E0 = {x3 (0, 0, 1)> | x3 ∈ R}

I the two-dimensional eigenspace

E1 = {x1 (1, 0, 0)> + x2 (0, 1, 0)> | (x1, x2) ∈ R2}
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Characterizing 2× 2 Orthogonal Matrices

By definition, an orthogonal matrix P satisfies P>P = PP> = I.

In the 2× 2 case when P = (pij)2×2 , the matrix PP> equals(
p11 p12
p21 p22

)(
p11 p21
p12 p22

)
=

(
(p11)2 + (p12)2 p11p21 + p12p22
p21p11 + p22p12 (p21)2 + (p22)2

)
This equals I if and only if (p11)2 + (p12)2 = (p21)2 + (p22)2 = 1
and also p11p21 + p12p22 = p21p11 + p22p12 = 0.

Inspired by the trigonometric identity sin2 ω + cos2 ω ≡ 1,
suppose we put p11 = cos θ and p22 = cos η,
along with p12 = − sin θ and p21 = sin η.

These choices of sign make P equal

to the rotation matrix Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
where θ ∈ R is the angle of rotation measured in radians.

This is illustrated in the next slide.
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Rotation Matrices Illustrated in an Argand Diagram

Illustrating Pθ = Rθ

(
1
0

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1
0

)
=

(
cos θ
sin θ

)
.

Also Pθ+ 1
2
π = Rθ

(
0
1

)
=

(
cos θ − sin θ
sin θ cos θ

)(
0
1

)
=

(
− sin θ
cos θ

)
.
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Confirming that 2× 2 Rotation Matrices are Orthogonal

Given any 2-dimensional rotation matrix Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
,

note that

RθR>θ =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ 0

0 sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
Hence Rθ is an orthogonal matrix.
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Rotations in Polar Coordinates

The rotation matrix Rθ =

(
cos θ − sin θ
sin θ cos θ

)
transforms any vector x = (x1, x2) ∈ R2 to

Rθx =

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
=

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
Introducing polar coordinates (r , η),
where x = (x1, x2) = r(cos η, sin η),
and then using trigonometric identities, we obtain

Rθx = r

(
cos η cos θ − sin η sin θ
cos η sin θ + sin η cos θ

)
= r

(
cos(η + θ)
sin(η + θ)

)
This makes it easy to verify that:

1. RθRη = RηRθ = Rθ+η for all θ, η ∈ R;

2. Rθ+2kπ = Rθ for all θ ∈ R and all k ∈ Z.
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Does a Rotation Matrix Have Real Eigenvalues?
The characteristic equation |Rθ − λI| = 0 takes the form

0 =

∣∣∣∣cos θ − λ − sin θ
sin θ cos θ − λ

∣∣∣∣ = (cos θ−λ)2+sin2 θ = 1−2λ cos θ+λ2

1. A degenerate case occurs when θ = kπ for some k ∈ Z
so cos θ = (−1)k and sin θ = 0.

Indeed Rθ reduces to (−1)k I2 in this degenerate case,
where I2 denotes the identity matrix.

2. Otherwise, the real matrix Rθ has no real eigenvalues.

To show this, suppose that sin θ 6= 0 and so cos2 θ < 1.

Then the characteristic equation (cos θ − λ)2 + sin2 θ = 0
can be written as (cos θ − λ)2 = (i sin θ)2.

This has two distinct complex conjugate roots or eigenvalues
given by λ = cos θ ± i sin θ = e± i θ.

The associated eigenspaces
must both consist of complex eigenvectors.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 18 of 77



Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Let C 3 λ 7→ P(λ) = λn +
∑n−1

k=0 pkλ
k ∈ C

be a polynomial function of λ of degree n,
possibly with complex coefficients pk .

Then there exists at least one root λ̂ ∈ C such that P(λ̂) = 0.

The proof, which is omitted from these notes,
involves relatively advanced techniques in complex analysis.
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Polynomial Remainder Theorem

Taken from EMEA section 4.7, then extended to C.

Theorem
Given the fraction P(x)/Q(x),
let the numerator function C 3 x 7→ P(x) ∈ C
and denominator function C 3 x 7→ Q(x) ∈ C
be polynomials of degrees m and n respectively, where m > n.

Then there exist a quotient polynomial q(x) of degree m − n,
as well as a remainder polynomial r(x) of degree less than n,
such that P(x) ≡ q(x)Q(x) + r(x).
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Polynomial Remainder Theorem: Special Case

An important special case of the polynomial remainder theorem
occurs when the denominator function
takes the form Q(x) ≡ x − c for some c ∈ C, so that n = 1.

In this case the polynomial remainder theorem states
that P(x) ≡ q(x)(x − c) + r(x) where the remainder r(x)
is a polynomial of degree 0, so a constant r ∈ C.

Thus P(x) ≡ q(x)(x − c) + r .

Putting x = c gives P(c) = r .

Applying this result when r = 0
implies that the polynomial equation P(x) = 0 of degree m
has a root x = c if and only if P(x) = q(x)(x − c),
where q(x) is of degree m − 1.

In other words, x − c must be a factor of the polynomial P(x).
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Polynomial Factorization: Theorem

Theorem (Polynomial Factor Theorem)

Suppose that C 3 x 7→ P(x) ∈ C
is a polynomial function of degree n.

Then P(x) =
∏n

k=1(x − ck)
where the numbers c1, . . . , cn ∈ C are the n roots,
some of which may coincide, of the equation P(x) = 0.
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Polynomial Factorization: Proof

Proof.
The proof will be by induction on n.

The result is trivial when n = 1.

For n > 1, by the fundamental theorem of algebra,
the equation P(x) = 0 has a root cn ∈ C.

The polynomial remainder theorem implies that there exists
a polynomial function q(x) of degree n − 1
such that P(x) = q(x)(x − cn).

As the induction hypothesis, suppose that q(x) =
∏n−1

k=1(x − ck).

It follows that P(x) = q(x)(x − cn) =
∏n

k=1(x − ck).

This confirms the induction step.
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Polynomial Factorization

Theorem
Given the n × n matrix A,
the characteristic polynomial P(λ) = |A− λI of degree n
can be factorized
as the product Pn(λ) ≡

∏n
r=1(λ− λr ) of exactly n linear terms.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 24 of 77



Characteristic Roots as Eigenvalues

Theorem
Every n × n matrix A ∈ Cn×n with complex elements
has exactly n eigenvalues (real or complex)
corresponding to the roots, counting multiple roots,
of the characteristic equation |A− λI| = 0.

Proof.
The characteristic equation can be written in the form Pn(λ) = 0
where Pn(λ) ≡ |λI− A| is the characteristic polynomial,
which has degree n.

Because of polynomial factorization, the polynomial |λI− A|
equals the product

∏n
r=1(λ− λr )

of n linear terms, where each λr is a root of Pn(λ) = 0.

For any of these roots λr the matrix A− λr I is singular.

So there exists x 6= 0 such that (A− λr I)x = 0 or Ax = λrx,
implying that λr is an eigenvalue.
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Linear Independence of Eigenvectors

The following theorem tells us
that eigenvectors associated with distinct eigenvalues
must be linearly independent.

Theorem
Let {λk}mk=1 = {λ1, λ2, . . . , λm}
be any collection of m ≤ n distinct eigenvalues.

Then any corresponding set {xk}mk=1 of associated eigenvectors
must be linearly independent.

The proof will be by induction on m.

Because x1 6= 0, the set {x1} is linearly independent.

So the result is evidently true when m = 1.

As the induction hypothesis, suppose the result holds for m − 1.
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Completing the Proof by Induction, I

Suppose that one solution of the equation Ax = λmx,
which may be zero, is the linear combination x =

∑m−1
k=1 αkxk

of the preceding m − 1 eigenvectors. Hence

Ax = λmx =
∑m−1

k=1
αkλmxk

Then the hypothesis that {(λk , xk)}m−1k=1
is a collection of eigenpairs implies that this x satisfies

Ax =
∑m−1

k=1
αkAxk =

∑m−1

k=1
αkλkxk

Subtracting this equation from the prior equation gives

0 =
∑m−1

k=1
αk(λm − λk)xk
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Completing the Proof by Induction, II
So we have

0 =
∑m−1

k=1
αk(λm − λk)xk

The induction hypothesis is that the set {xk}m−1k=1
of distinct eigenvectors is linearly independent, implying that

αk(λm − λk) = 0 for k = 1, . . . ,m − 1

But we are assuming
that all the m eigenvalues in {λ1, λ2, . . . , λm} are distinct,
so λm − λk 6= 0 for k = 1, . . . ,m − 1.

It follows that αk = 0 for k = 1, . . . ,m − 1.

So we have proved that if x =
∑m−1

k=1 αkxk solves Ax = λmx,
then x = 0, so x is not an eigenvector.

This completes the proof by induction that no eigenvector x ∈ Eλm

can be a linear combination
of the eigenvectors xk ∈ Eλk

(k = 1, . . . ,m − 1).
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Similar Matrices

Definition
The two n × n matrices A and B are similar
just in case there exists an invertible n × n matrix S
such that the following three equivalent statements all hold

B = S−1AS⇐⇒ SB = AS⇐⇒ A = SBS−1

When A and B are similar, we write A ∼ B.
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Similarity versus Quadratic Form Invariance

Remark
Previously we proved that two symmetric n × n matrices A and B
have the same definiteness, or satisfy quadratic form invariance,
provided there exists an invertible n × n matrix R
such that B = RAR>.

We have just defined A and B to be similar
just in case there exists an n × n matrix S
such that B = S−1AS.

The two definitions of similarity and quadratic form invariance
are evidently different in general,
even when A and B are both symmetric.

In case, however, there is an orthogonal matrix P
such that B = PAP> = PAP−1,
the two symmetric matrices A and B
are both similar and quadratic form invariant.
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Similarity is an Equivalence Relation

Theorem
The similarity relation is an equivalence relation — i.e., ∼ is:

reflexive A ∼ A;

symmetric A ∼ B⇐⇒ B ∼ A;

transitive A ∼ B & B ∼ C =⇒ A ∼ C

Proof.
The proofs that ∼ is reflexive and symmetric are elementary.

Suppose that A ∼ B and B ∼ C.

By definition, there exist invertible matrices S and T
such that B = S−1AS and C = T−1BT.

Define U := ST, which is invertible with U−1 = T−1S−1.

Then C = T−1(S−1AS)T = (T−1S−1)A(ST) = U−1AU.

So A ∼ C.
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Similar Matrices Have Identical Spectra

Theorem
If A ∼ B then SA = SB.

Proof.
Suppose that A = SBS−1 and that (λ, x) is an eigenpair of A.

Then x 6= 0 solves Ax = SBS−1x = λx.

Premultiplying each side of the equation SBS−1x = λx by S−1,
it follows that y := S−1x solves By = λy.

Moreover, because S−1 has the inverse S, the equation S−1x = y
would have only the trivial solution x = Sy = 0 in case y = 0.

Hence y 6= 0, implying that (λ, y) is an eigenpair of B.

A symmetric argument shows
that if (λ, y) is an eigenpair of B = S−1SA,
then (λ,Sy) is an eigenpair of A.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 34 of 77



Diagonalization Theorem

Definition
An n × n matrix A is diagonalizable just in case
it is similar to a diagonal matrix Λ = diag(λ1, λ2, . . . , λn).

Then the n × n matrix S that satisfies Λ = S−1AS
is said to diagonalize A.

Theorem
Given any diagonalizable n × n matrix A:

1. The columns of any matrix S that diagonalizes A
must consist of n linearly independent eigenvectors of A.

2. The matrix A is diagonalizable if and only if
it has a set of n linearly independent eigenvectors.

3. The matrix A and its diagonalization Λ = S−1AS
have the same set of eigenvalues.
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Proof of Diagonalization Theorem: Part 1

Suppose that Λ = S−1AS and so AS = SΛ,
where A = (aij)

n×n, S = (sij)
n×n, and Λ = diag(λ1, λ2, . . . , λn).

Then for each i , k ∈ Nn, equating the elements
in row i and column k of the equal matrices AS and SΛ
implies that

∑n
j=1 aijsjk =

∑n
j=1 sijδjkλk = sikλk .

It follows that Ask = λksk

where sk = (sik)ni=1 denotes the kth column of the matrix S.

Because the diagonalizing matrix S must be invertible:

I each column sk must be non-zero, so an eigenvector of A;

I the set {sk}nk=1 of all these n columns
must be linearly independent.
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Proof of Diagonalization Theorem: Parts 2 and 3

Proof of Part 2: By part 1, if the diagonalizing matrix S exists,
its columns must form a set of n linearly independent eigenvectors
for the matrix A.

Conversely, suppose that A does have a set {x1, x2, . . . , xn}
of n linearly independent eigenvectors,
with Axk = λkxk for k = 1, 2, . . . , n.

Now define S as the n × n matrix whose kth column
is the eigenvector xk , for each k = 1, 2, . . . , n.

Then it is easy to check that AS = SΛ
where Λ = diag(λ1, λ2, . . . , λn).

Proof of Part 3: By definition,
the two matrices A and Λ are similar.

So they have the same spectrum of eigenvalues.
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Complex Conjugate Matrices

Recall that any complex number c ∈ C can be expressed as a + i b
with a ∈ R as the real part and b ∈ R as the imaginary part.

The complex conjugate of c is c̄ = a− i b.

Note that cc̄ = c̄c = (a + i b)(a− i b) = a2 + b2 = |c |2,
where |c | is the modulus of c.

Note that any m × n complex matrix C = (cij)m×n ∈ Cm×n

can be written as A + iB,
where A = (aij)m×n and B = (bij)m×n are real m × n matrices
whose respective elements satisfy cij = aij + i bij for all i , j ∈ Nn.

The complex conjugate of the complex matrix C = A + iB
is C̄ = A− iB with respective elements c̄ij = aij − i bij
for all i , j ∈ Nn.
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Adjoint Matrices

The adjoint of the m × n complex matrix C = A + iB
is the n×m complex matrix C∗ := C̄> = (A− iB)> = A> − iB>.

This is the transpose of the complex conjugate matrix C̄ = A− iB
whose elements are the complex conjugates c̄ij = aij − i bij
of the corresponding elements cij = aij + i bij of C.

That is, each element of C∗ is given by c∗ij = aji − i bji .

Alternatively, the adjoint matrix C∗ = A> − iB>

is the complex conjugate of the transpose matrix C> = A> + iB>.

In the case of a real matrix A, whose imaginary part is 0,
its adjoint is simply the transpose A>.
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Self-Adjoint and Symmetric Matrices

An n × n complex matrix C = A + iB
is defined to be self-adjoint just in case C∗ = C
— that is, just in case C equals its own adjoint C∗.

Self-adjointness holds if and only if A> − iB> = A + iB,
and so if and only if:

I the real part A is symmetric;

I the imaginary part B is anti-symmetric
in the sense that B> = −B.

Of course, a real matrix is self-adjoint if and only if it is symmetric.
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A Self-Adjoint Matrix has only Real Eigenvalues

Theorem
Any eigenvalue of a self-adjoint complex matrix is a real scalar.

Proof.
Given any A ∈ Cn×n,
suppose that the scalar λ ∈ C and vector x ∈ Cn \ {0}
together satisfy the eigenvalue equation Ax = λx.

Taking the adjoint of this equation gives x∗A∗ = λ̄x∗.

By the associative law of complex matrix multiplication,
one has x∗Ax = x∗(Ax) = x∗(λx) = λ(x∗x)
as well as x∗A∗x = (x∗A∗)x = (λ̄x∗)x = λ̄(x∗x).

In case A is self-adjoint and so A∗ = A,
it follows that λ(x∗x) = x∗Ax = x∗A∗x = λ̄(x∗x).

But x is an eigenvector, so x 6= 0 and x∗x =
∑n

j=1 x̄jxj > 0.

It follows that λ = λ̄, so λ must be real.
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The Case of a Symmetric Real Matrix

Corollary

Given any symmetric real n × n matrix A:

1. any eigenvalue is a real scalar;

2. associated with any eigenvalue,
there must be at least one real eigenvector.

Proof.

1. The matrix A is trivially self-adjoint, so any eigenvalue is real.

2. Suppose that a,b ∈ Rn and λ ∈ R
satisfy Ax = λx where x = a + ib 6= 0 + i 0.

Equating the real and imaginary parts of Ax and λx,
it follows that Aa = λa and Ab = λb.

Also, at least one of a and b must be non-zero.

So at least one of a and b is a real eigenvector
that is associated with the eigenvalue λ.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 44 of 77



Outline

Eigenvalues and Eigenvectors
Definitions and Basic Properties
The Characteristic Equation
Linear Independence of Eigenvectors

Diagonalizing a General Matrix
Similar Matrices

Properties of Adjoint and Symmetric Matrices
Definitions of Adjoint and Self-Adjoint Matrices
A Self-Adjoint Matrix has only Real Eigenvalues
The Eigenvalue Test for a Definite Quadratic Form

Diagonalizing a Symmetric Matrix
Orthogonal Matrices and Projections
The Spectral Theorem
Why is the Set of Eigenvalues Called the Spectrum?

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 45 of 77



The Rayleigh Quotient Function

For all x 6= 0, define the Rayleigh quotient function

Rn \ {0} 3 x 7→ f (x) :=
x>Ax

x>x
=

∑n
i=1

∑n
j=1 xiaijxj∑n

i=1 x
2
i

It is homogeneous of degree zero, and left undefined at x = 0.

Its partial derivative w.r.t. any component xh of the vector x is

∂f

∂xh
=

2

(x>x)2

[∑n

j=1
ahjxj(x>x)− (x>Ax)xh

]
The point x̂ 6= 0 is critical if and only if ∂f /∂xh = 0 for all h,
and so if and only if (x̂>x̂)Ax̂ = (x̂>Ax̂)x̂,
or equivalently, iff Ax̂ = λx̂ where λ = (x̂>Ax̂)/(x̂>x̂) = f (x̂).

That is, a point x̂ 6= 0 is critical if and only if it is an eigenvector,
with the corresponding function value f (x̂)
as the associated eigenvalue.
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More Properties of the Rayleigh Quotient Function

Using the Rayleigh quotient function

Rn \ {0} 3 x 7→ f (x) :=
x>Ax

x>x
=

∑n
i=1

∑n
j=1 xiaijxj∑n

i=1 x
2
i

one can state and prove the following lemma.

Lemma
Every n × n symmetric square matrix A:

1. has a maximum eigenvalue λ∗ with λ∗ real,
and any associated eigenvector x∗ as a maximum point of f ;

2. has a minimum eigenvalue λ∗ with λ∗ real,
and any associated eigenvector x∗ as a minimum point of f ;

3. satisfies A = λI if and only if λ∗ = λ∗ = λ.
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Proof of Parts 1 and 2

The unit sphere Sn−1 is a closed and bounded subset of Rn.

Moreover, the Rayleigh quotient function f is continuous
when restricted to Sn−1.

By the extreme value theorem, f restricted to Sn−1 must have:

I a maximum value λ∗ attained at some point x∗;

I a minimum value λ∗ attained at some point x∗.

Because f is homogeneous of degree zero,
these are the maximum and minimum values of f
over the whole domain Rn \ {0}.
In particular, f must be critical at any maximum point x∗,
as well as at any minimum point x∗.

But critical points must be eigenvectors.

This proves parts 1 and 2 of the lemma.

Part 3 is left as an exercise.
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The Eigenvalue Test of Definiteness

Theorem
The quadratic form x>Ax is:

positive definite if and only if all eigenvalues of A are positive;

negative definite if and only if all eigenvalues of A are negative;

positive semi-definite if and only if
all eigenvalues of A are non-negative;

negative semi-definite if and only if
all eigenvalues of A are non-positive;

indefinite if and only if A
has both positive and negative eigenvalues.

Proof.
The maximum and minimum values
of the Rayleigh quotient function are respectively equal
to the largest and smallest eigenvalues λ∗ and λ∗.

The rest of the proof is straightforward.
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Final Remark on Comparing Definiteness Tests

Remark
The eigenvalue test features prominently in Math Econ textbooks,
including EMEA and FMEA.

Yet there are no simple finite algorithms for finding eigenvalues,
or critical points of the Rayleigh quotient function.

For this reason, the symmetric pivoting algorithm discussed earlier
is likely to be much more practical
if there are more than about 3 dimensions.

Symmetric pivoting, of course,
is also computationally superior to the Sylvester criterion
which requires calculating many determinants.

The diagonalization procedure we are about to discuss
could also be used to find the eigenvalues.

But it relies on finding successive eigenvalues
by some other method, yet to be specified.
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Orthogonal and Orthonormal Sets of Vectors

Recall our earlier definition:

Definition
A set of k vectors {x1, x2, . . . , xk} ⊂ Rn is said to be:

I pairwise orthogonal just in case xi · xj = 0 whenever j 6= i ;

I orthonormal just in case, in addition, each ‖xi‖ = 1
— i.e., all k elements of the set are vectors of unit length.

The set of k vectors {x1, x2, . . . , xk} ⊂ Rn is orthonormal
just in case xi · xj = δij for all pairs i , j ∈ {1, 2, . . . , k}.
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Theorem Characterizing Orthogonal Matrices: Recall

Definition
Any n × n matrix is orthogonal
just in case its n columns (or rows) form an orthonormal set.

Theorem
Given any n × n matrix P, the following are equivalent:

1. P is orthogonal;

2. PP> = P>P = I;

3. P−1 = P>;

4. P> is orthogonal.
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Proofs of Fourfold Equivalence

(1)⇐⇒ (2): Each (i , j) element of the two matrices satisfies

(PP>)ij =
∑n

k=1
pikpjk = p>i · p>j

and (P>P)ij =
∑n

k=1
pkipkj = pi · pj

Both right-hand sides equal the Kronecker delta δij
if and only if the rows and columns both form orthonormal sets,
as well as if and only if PP> = P>P = I.

(2)⇐⇒ (3): Immediate from the definition of inverse matrix.

(3)⇐⇒ (4): Taking the transpose of (3), then premultiplying
each side by the invertible matrix (P−1)> = (P>)−1, one has

P−1 = P> ⇐⇒ (P−1)>P−1 = (P>)−1P> = I

This proves that P−1 = P> if and only if P> is orthogonal.
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The Complex Case: Self-Adjoint and Unitary Matrices

We briefly consider matrices with complex elements.

Recall that the adjoint A∗ of an m × n matrix A
is the matrix formed from the transpose A>

by taking the complex conjugate of each element.

The appropriate extension to complex numbers of:

I a symmetric matrix satisfying A> = A
is a self-adjoint matrix satisfying A∗ = A;

I an orthogonal matrix satisfying P−1 = P>

is a unitary matrix satisfying U−1 = U∗.
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Orthogonal Projections

Definition
A general n × n matrix P is idempotent just in case P2 = P,
and so Pn = P for all n ∈ N.

A symmetric n × n matrix P is an orthogonal projection
just in case it is idempotent.

It follows that if P is an orthogonal projection,
then P− P2 = P(I− P) = 0n×n.

So the projection y = Px and the displacement z = x− Px
of any x ∈ Rn are orthogonal because

y>z = (Px)>(x− Px) = x>Px− x>P2x = x>(P− P2)x = 0

Remark
An orthogonal projection matrix is generally not orthogonal.
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Orthogonal Complements

Example

Given any m, n ∈ N with m < n,
the m × n block diagonal matrix diag(Im, 0m×(n−m))
is a projection from Rn onto Rm.

Definition
A subset L ⊆ Rn is a linear subspace just in case λx + µy ∈ L
for every pair of vectors x, y in L and every pair of scalars λ, µ in R.

Definition
Given any linear subspace L of Rn, its orthogonal complement L⊥

is the set of all vectors y ∈ Rn such that x · y = 0 for all x ∈ L.
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Two Examples

Example

Suppose that L is the space spanned
by any finite subset {ei | i ∈ I}
of the canonical basis {ei | i = 1, 2, . . . , n} of Rn.

Then L⊥ is the space spanned
by the complementary set {ei | i 6∈ I} of canonical basis vectors.

Example

Any c 6= 0 in Rn generates the straight line L(c) = {λc | λ ∈ R},
which is a one-dimensional linear subspace in Rn.

Its orthogonal complement L(c)⊥ = {x | c · x = 0}
consists of an n − 1-dimensional subspace
which is the unique hyperplane in Rn that has c as a normal.
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Useful Lemma

Lemma
Suppose that the n ×m matrix X has full rank m < n.
Then X>X is invertible.

Proof.
Because X has full rank, its m columns are linearly independent.
It follows that Xy = 0 =⇒ y = 0.
But then

X>Xy = 0 =⇒ y>X>Xy = (Xy)>Xy = 0 =⇒ Xy = 0

So
X>Xy = 0 =⇒ y = 0
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Orthogonal Projection Matrices

Theorem
Suppose that the n ×m matrix X has full rank m < n.

Let L ⊂ Rn be the linear subspace spanned
by m linearly independent columns of X.

Define the n × n matrix P := X(X>X)
−1

X>. Then:

1. The matrix P is an orthogonal projection onto L.

2. The matrix I− P is an orthogonal projection
onto the orthogonal complement L⊥ of L.

3. For each vector y ∈ Rn, its orthogonal projection onto L
is the unique vector v = Py ∈ L
that minimizes the distance ‖y − v‖ between y and L
— i.e., ‖y − v‖ ≤ ‖y − u‖ for all u ∈ L.
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Proof of Part 1

First note that if X is an n ×m matrix, then X>X is m ×m.

Then, provided that (X>X)−1 exists,
so does the n × n matrix P = X(X>X)−1X>.

Because of the rules for the transposes of products and inverses,

the definition P := X(X>X)
−1

X> implies that P> = P and also

P2 = X(X>X)
−1

X>X(X>X)
−1

X> = X(X>X)
−1

X> = P

Moreover, if Pv = 0 and u = Px for some x ∈ Rn, then

u · v = u>v = x>P>v = x>Pv = 0

Finally, for every y ∈ Rn, the vector Py equals Xb, where

b = (X>X)
−1

X>y

Hence Py ∈ L.
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Proof of Part 2

Evidently (I− P)> = I− P> = I− P, and

(I− P)2 = I− 2P + P2 = I− 2P + P = I− P

Hence I− P is a projection.

This projection is also orthogonal because if (I− P)v = 0
and u = (I− P)x for some x ∈ Rn, then

u · v = u>v = x>(I− P)>v = x>(I− P)v = 0

Next, suppose that v = Xb ∈ L and that y = (I− P)x
belongs to the range of (I− P). Then

y · v = y>v = x>(I− P)>Xb = x>Xb− x>Xb = 0

Hence y ∈ L⊥.
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Proof of Part 3
For any vector v = Xb ∈ L and any y ∈ Rn,
because y>Xb and b>X>y are equal scalars, one has

‖y − v‖2 = (y − Xb)>(y − Xb) = y>y − 2y>Xb + b>X>Xb

Now define b̂ := (X>X)
−1

X>y (which is the OLS estimator of b
in the linear regression equation y = Xb + e) and v̂ := Xb̂ = Py.

Because P>P = P> = P = P
2
, one has

‖y − v‖2 = y>y − 2y>Xb + b>X>Xb

= (b− b̂)>X>X(b− b̂) + y>y − b̂>X>Xb̂

= ‖v − v̂‖2 + y>y − y>P>Py = ‖v − v̂‖2 + y>y − y>Py

On the other hand, given that v̂ = Py, one also has

‖y − v̂‖2 = y>y − 2y>v̂ + v̂>v̂

= y>y − 2y>Py + y>P>Py = y>y − y>Py

So ‖y − v‖2 − ‖y − v̂‖2 = ‖v − v̂‖2 ≥ 0 with = iff v = v̂.
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A Minor Lemma

Lemma
Let A be a symmetric n × n matrix.

Suppose that λ and µ are distinct eigenvalues,
with corresponding eigenvectors x and y.

Then x and y are orthogonal — that is, x · y = 0.

Proof.
Suppose that the non-zero vectors x and y
satisfy Ax = λx and Ay = µy.

Because A is symmetric, one has

λx>y = (Ax)>y = x>A>y = x>Ay = µx>y

In case λ 6= µ, it follows that 0 = x>y = x · y.
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A Useful Lemma

Lemma
Let A be a symmetric n × n matrix.

Suppose that there are m < n eigenvectors {uk}mk=1

which form an orthonormal set of column n-vectors,
as well as the m columns of an n ×m matrix U.

Then there is at least one more eigenvector x 6= 0n

that satisfies U>x = 0n

— i.e., it is orthogonal to each of the m eigenvectors uk .
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Constructive Proof, Part 1

For each eigenvector uk , let λk be the associated eigenvalue,
so that Auk = λkuk for k = 1, 2, . . . ,m.

Then the n ×m matrix U satisfies AU = UΛ
where Λ is the m ×m matrix diag(λk)mk=1.

Also, because the eigenvectors {uk}mk=1 form an orthonormal set,
one has U>U = Im.

Hence U>AU = U>UΛ = Λ.

Also, transposing AU = UΛ gives U>A = ΛU>.
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Constructive Proof, Part 2
Consider now the n × n matrix Â := (In −UU>)A(In −UU>).

Then Â is symmetric because both A and UU> are symmetric.

Note that, because AU = UΛ and so U>A = ΛU>, one has

Â = A−UU>A− AUU> + UU>AUU>

= A−UΛU> −UΛU> + UΛU> = A−UΛU>

Because the matrix Â is symmetric,
it has at least one real eigenvalue λ.

Let x 6= 0 be an associated real eigenvector, which must satisfy

Âx = (I−UU>)A(I−UU>)x = (A−UΛU>)x = λx

Pre-multiplying each side of the last equality
by the m × n matrix U> shows that

λU>x = U>Ax−U>UΛU>x = ΛU>x− ΛU>x = 0m
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Constructive Proof, Part 3

There are now two cases.

Consider first the generic case
when Â has at least one eigenvalue λ 6= 0.

Then there is a corresponding eigenvector x 6= 0 of Â

that was shown in Part 2 to satisfy λU>x = 0m and so U>x = 0
>
m.

But then the earlier equation

Âx = (I−UU>)A(I−UU>)x = (A−UΛU>)x = λx

implies that
Ax = (Â + UΛU>)x = Âx = λx

Hence x is an eigenvector of A as well as of Â.
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Constructive Proof, Part 4

The remaining exceptional case occurs
when the only eigenvalue of the symmetric matrix Â is λ = 0.

Given the properties of the Rayleigh quotient function,
this implies that Â = 0 and so A = UΛU>.

Then any vector x 6= 0 satisfying U>x = 0
must satisfy Ax = UΛU>x = 0.

This implies that x is an eigenvector of A
associated with the eigenvalue λ = 0.

So, whether or not the only eigenvalue of Â is 0,
associated with the common eigenvalue λ of both Â and A

is an eigenvector x of A that satisfies U>x = 0
>
m.

This completes the proof. �
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Spectral Theorem

Theorem
Given any symmetric n × n matrix A:

1. the set of all its eigenvectors spans the whole of Rn;

2. there exists an orthogonal matrix P that diagonalizes A
in the sense that P>AP = P−1AP is a diagonal matrix Λ,
whose elements are the eigenvalues of A, all real.

When A is a complex n × n matrix
that is required to be self-adjoint rather than symmetric,
and the eigenvectors may be complex, the corresponding result is:

1. the set of all eigenvectors of A spans the whole of Cn;

2. there exists a unitary matrix U that diagonalizes A
in the sense that U∗AU = U−1AU is a diagonal matrix Λ
whose elements are the eigenvalues of A, all real.

We give a proof for the case when A is real and symmetric.
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Proof of Spectral Theorem, Part 1

The symmetric matrix A has at least one eigenvalue λ,
which must be real.

The associated eigenvector x, normalized to satisfy x>x = 1,
forms an orthonormal set {u1} consisting of only one n-vector.

As the induction hypothesis,
suppose that there are m < n eigenvectors {uk}mk=1

which form an orthonormal set of m vectors.

We have just proved that this hypothesis holds for m = 1.

The “useful lemma” establishes the induction step showing that,
if the hypothesis holds for any m ∈ Nn−1, then it holds for m + 1.

So the result follows for m = n by induction.

In particular, when m = n, there exists an orthonormal set
of n eigenvectors, which must then span the whole of Rn.
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Proof of Spectral Theorem, Part 2

Also, by the previous result,
we can take P as an orthogonal matrix
whose columns are an orthonormal set of n eigenvectors.

Then AP = PΛ.

So premultiplying by P> = P−1 gives P>AP = P−1AP = Λ. �
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Art Transcends Physics?
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Definition of Spectrum

Definition
The spectrum of a self-adjoint n × n matrix A
is the set {λ1, λ2, . . . , λm} of its m ≤ n distinct eigenvalues.

Isaac Newton introduced the word “spectrum” (ghosts?)
to describe the decomposition of sunlight into different colours
that we observe in rainbows,
and that he could produce using a prism.

These different colours were later identified with:

1. the wavelengths (`) and corresponding frequencies (f )
of different kinds of light, whose speed in a vacuum
is c = ` f = 299, 792, 458 metres per second
(by the modern definition of a metre);

2. the eigenvalues of a self-adjoint matrix that appears
in the Schrödinger wave equation of quantum mechanics.

Physicists used the spectrum illustrated on the next slide
to help discover the “new” element helium in the sun’s atmosphere.
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The Visible Part of the Helium Emission Spectrum

Note: nm is an abbreviation for nanometre = 10−9 metre,
which is one millionth of a millimetre.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 77 of 77


	Eigenvalues and Eigenvectors
	Definitions and Basic Properties
	The Characteristic Equation
	Linear Independence of Eigenvectors

	Diagonalizing a General Matrix
	Similar Matrices

	Properties of Adjoint and Symmetric Matrices
	Definitions of Adjoint and Self-Adjoint Matrices
	A Self-Adjoint Matrix has only Real Eigenvalues
	The Eigenvalue Test for a Definite Quadratic Form

	Diagonalizing a Symmetric Matrix
	Orthogonal Matrices and Projections
	The Spectral Theorem
	Why is the Set of Eigenvalues Called the Spectrum?


