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Philosophical, Methodological, and Historical Preface
Andrei Nikolayevich Kolmogorov (1933)
Grundbegriffe der Wahrscheinlichkeitsrechnung

This short monograph was the first to set out the fundamental
abstract mathematical concept of a probability space.

A probability space is a particular kind of measure space,
another abstract concept due to Borel, Lebesgue, and others,
in which the probability attached to the whole space is 1.

Like any mathematical model, one based on a probability space
“is always wrong, but may be useful”.

Indeed, a probability space may, or may not, help us formulate:

I empirical models based on past data;

I predictive models intended to forecast what to expect
in data that have not yet been observed.

Our journey starts with measure spaces and Lebesgue integration,
before venturing on to probability spaces.
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Power Sets and Indicator Functions

Definition
Given any abstract set S , the power set of S
is the family P(S) := {T | T ⊆ S} of all subsets of S .

Definition
Given any abstract set S and any T ⊆ S ,
the mapping S 3 s 7→ 1T (s) ∈ {0, 1} ⊂ R
is an indicator function of the set T just in case

1T (s) = 1⇐⇒ s ∈ T and 1T (s) = 0⇐⇒ s 6∈ T

Thus, the function s 7→ 1T (s) “indicates” whether s ∈ T .
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The Cardinality of a Finite Set

Definition
Given any finite set S , its cardinality, denoted by #S ,
is the number of its distinct elements.

Remark
Much of mathematical logic has been concerned
with extending the concept of cardinality to infinite sets.

Notation
Given any domain set X and any co-domain set Y ,
let Y X := {〈y(x)〉x∈X | ∀x ∈ X : y(x) ∈ Y },
which is the Cartesian product of copies of Y ,
one for each element x ∈ X ,
denote the space of all functions X 3 x 7→ f (x) ∈ Y .
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Counting Finite Power Sets

Theorem
Given any finite set S of n elements,
one has #P(S) = #{0, 1}S = 2n.

Proof.
Evidently the mapping P(S) 3 T 7→ 1T (·) ∈ {0, 1}S is a bijection,
implying that #P(S) = #{0, 1}S .

Furthermore {0, 1}S = {〈y(s)〉s∈S | ∀s ∈ S : y(s) ∈ {0, 1}}.

When #S = n, this is the Cartesian product of n copies of {0, 1}.

Therefore #{0, 1}S = 2n.

This result helps explain why the power set P(S)
is often denoted by 2S , even when S is infinite.
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Boolean Algebras, Sigma-Algebras, and Measurable Spaces

Definition

1. The family A ⊆ P(S) is a Boolean algebra on S just in case
I ∅ ∈ A;
I A ∈ A implies that the complement S \ A ∈ A;
I if A,B lie in A, then the union A ∪ B ∈ A.

2. The family Σ ⊆ P(S) is a σ-algebra just in case
it is a Boolean algebra with the following stronger property:
whenever {An}∞n=1 is a countably infinite family of sets in Σ,
then their union ∪∞n=1An ∈ Σ.

3. The pair (S ,Σ) is a measurable space
just in case Σ is a σ-algebra.

Exercise
Prove that if A ⊆ P(S) is a Boolean algebra on S ,
then S ∈ A.
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Simple Examples
1. Given any set S , the minimal σ-algebra is {∅,S}.
2. Given any set S , the maximal σ-algebra is 2S ,

the power set of all subsets of S .

3. If #S = 1, the only σ-algebras on S
are the minimal and the maximal, which coincide.

4. If #S = 2, the only σ-algebras on S
are the minimal and the maximal, which differ.

5. If #S ≥ 3, then for each x ∈ S
the family {∅, {x},S \ {x},S} is a σ-algebra on S
that is neither minimal nor maximal.

6. In the real line R, the family of all countable
and pairwise disjoint collections ∪k∈K Ik
of left-open and right-closed intervals Ik = (ak , bk ]
is one particular σ-algebra
(which you should verify as an exercise).

What happens in Q, the set of rational numbers?
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Exercise

Exercise
Consider the countable family {( 1

n , 1] | n ∈ N}
of left-open and right-closed intervals in Q.

The union
⋃

n∈N( 1
n , 1] includes every member of (0, 1] ∩Q.

But it does not include 0.

So
⋃

n∈N( 1
n , 1] = (0.1].
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Exercise on Boolean Algebras and Sigma-Algebras

Exercise

1. Let A be a Boolean algebra on S .

Prove that if A,B ∈ A, then A ∩ B ∈ A.

2. Let Σ be a σ-algebra on S .

Prove that if {An}∞n=1 is a countably infinite family of sets
in Σ, then ∩∞n=1An ∈ Σ.

Hint

1. For part 1, use de Morgan’s laws

S \ (A ∩ B) = (S \ A) ∪ (S \ B)
S \ (A ∪ B) = (S \ A) ∩ (S \ B)

2. For part 2, use the infinite extension of de Morgan’s laws:

S \ (∩∞n=1An) = ∪∞n=1(S \ An); S \ (∪∞n=1An) = ∩∞n=1(S \ An)
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Finite and Co-finite Sets in a Boolean Algebra

Definition
Given any infinite set S , say that the subset T ⊆ S is co-finite
just in case its complement S \ T is finite.

Exercise
Let S be any infinite set, and let F := {{s} | s ∈ S}
denote the family of all singleton subsets of X .

Show that the smallest Boolean algebra α(F)
containing all sets in F consists of all subsets of S
that are either finite or co-finite.

Hint Show that the union of a finite set and a co-finite set
is co-finite.
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Generating a Sigma-Algebra

Theorem
Let {Σi | i ∈ I} be any indexed family of σ-algebras on X .

Then the intersection Σ∩ := ∩i∈IΣi is also a σ-algebra on X .

Proof left as an exercise.

Let X be a space, and F ⊂ 2X any family of subsets.

Since the power set 2X of X is obviously a σ-algebra on X ,
there exists a non-empty set S(F) of σ-algebras on X
that each include F .

Definition
Let σ(F) denote the intersection ∩{Σ | Σ ∈ S(F)};
it is the smallest σ-algebra that includes F ,
otherwise known as the σ-algebra generated by F .
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Topological Spaces

Definition
Given a set X , a topology T on X
is a family of open subsets U ⊆ X satisfying:

1. ∅ ∈ T and X ∈ T ;

2. if U,V ∈ T , then U ∩ V ∈ T ;

3. if {Uα | α ∈ A} is any (possibly uncountable) collection
of open sets Uα ∈ T , then the union ∪α∈AUα ∈ T .

A topological space (X , T ) is any set X together with a topology T
that consists of all the open subsets of X .

Parts 2 and 3 of the above definition of topology say that:

I finite intersections of open sets are open;

I arbitrary unions of open sets are open.
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Closed Sets, Closures, Interiors, and Boundaries

Definition
Recall that, in a topological space (X , T ),
a set S is closed just in case its complement X \ S is open.

Exercise
Prove that if {Vα | α ∈ A} is any (possibly uncountable) collection
of closed sets Vα in the topological space (X , T ),
then the intersection ∩α∈AVα is closed.

Definition
Let S be an arbitrary subset of the topological space (X , T ).

1. The closure cl S of S
is the intersection of all the closed sets that are supersets of S .

2. The interior int S of S
is the union of all the open sets that are subsets of S .

3. The boundary bd S of S , also denoted by ∂S , is cl S \ int S ,
the complement of the interior in the closure.
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The Metric Topology

Definition
Let (X , d) be any metric space.

The open ball of radius r centred at x is the set

Br (x) := {y ∈ X | d(x , y) < r}

The metric topology Td of (X , d) is the smallest topology
that includes the entire family {Br (x) | x ∈ X and r > 0}
of all open balls in X .

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 15 of 59



Borel Sets and the Borel Sigma-Algebra

Definition
Let (X , T ) be any topological space.

Its Borel σ-algebra is defined as σ(T )
— i.e., the smallest σ-algebra containing every open set of X .

Each set B ∈ σ(T ) is then a Borel set.

Example

Suppose the topological space is a metric space (X , d)
with its metric topology Td .

Then the Borel σ-algebra is generated
by all the open balls Br (x) := {x ′ ∈ X | d(x , x ′) < r} in X .

For the case of the real line when X = R,
its Borel σ-algebra is generated by all the open intervals of R.

Indeed, it is even generated by the countable family
consisting of all the open intervals (q1, q2) where q1, q2 ∈ Q.
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More Borel Sets

Exercise
Show that every closed subset of a topological space (X , T )
is a Borel set.

Definition
A Gδ set in any topological space is the intersection
of any countable collection of open sets.

Example

In R, the infinite intersection
⋂

n∈N(− 1
n ,

1
n ) of open intervals

is the Gδ set {0}, which is not open.

Exercise
Given any topological space (X , T ), show that:

1. the complement of any Gδ subset is the union
of a countable collection of closed sets;

2. any Gδ subset is a Borel set.
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Finitely Additive Set Functions

Let R̄ := R ∪ {−∞+∞} = [−∞,+∞]
denote the extended real line which, at each end,
has an endpoint added at infinity.

Let R̄+ := R+ ∪ {+∞} = [0,+∞] be the non-negative part of R̄.

Any family F of subsets A ⊆ X is said to be pairwise disjoint
just in case A ∩ B = ∅ whenever A,B ∈ F with A 6= B.

Definition
Let (X ,Σ) be a measurable space.

A mapping µ : Σ→ R̄+ whose domain is a family of sets
is said to be a set function (but not a set-valued function).

The set function µ : Σ→ R̄+

is said to be additive (or finitely additive)
just in case, for any pair {A,B} of disjoint sets in Σ,
one has µ(A ∪ B) = µ(A) + µ(B).
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Implications of Finite Additivity

Lemma
If the set function µ : Σ→ R̄+ is finitely additive, then µ(∅) = 0.

Proof.
For any non-empty A ∈ Σ, the sets A and ∅ are disjoint.

Additivity implies that µ(A) = µ(A ∪ ∅) = µ(A) + µ(∅),
so µ(∅) = 0.

Exercise
For any finite collection {An}kn=1 of pairwise disjoint sets in Σ,
prove by induction on k that finite additivity implies

µ
(
∪kn=1An

)
=
∑k

n=1
µ(An)
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Disjoint Does Not Imply Pairwise Disjoint

Example

Suppose that S = {a, b, c} where a, b, c are all different.

Consider the three different pair subsets

S−a := S \ {a} = {b, c}
S−b := S \ {b} = {a, c}
S−c := S \ {c} = {a, b}

These three sets obviously satisfy S−a ∩ S−b ∩ S−c = ∅,
so are disjoint.

Yet S−a ∩ S−b = {c}, S−a ∩ S−c = {b}, and S−b ∩ S−c = {a}
are all non-empty, so the three sets are not pairwise disjoint.
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Additivity for Pairwise Disjoint, but not for Disjoint Sets

Exercise
Let S be any finite set, with power set 2S .

Show that the only additive function µ
on the measurable space (S , 2S)
which satisfies µ({x}) = 1 for all x ∈ S
is the counting measure defined by µ(E ) = #E for all E ⊆ S .

Exercise
Following the previous example,
let S = {a, b, c} where a, b, c are all different,
and let S−x := S \ {x} for each x ∈ S .

Following the previous exercise,
let µ be the counting measure on (S , 2S).

Verify that, though the sets S−a, S−b, S−c are disjoint, one has

µ(S−a ∪ S−b ∪ S−c) = µ(S) = 3

6= µ(S−a) + µ(S−b) + µ(S−c) = 3 · 2 = 6
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Measure as a Countably Additive Set Function

Definition
The set function µ : Σ→ R̄+ on a measurable space (X ,Σ)
is said to be σ-additive or countably additive just in case,
for any countable collection {An}∞n=1

of pairwise disjoint sets in Σ, one has

µ
(⋃∞

n=1
An

)
=
∑∞

n=1
µ(An)

A measure on a measurable space (X ,Σ)
is a countably additive set function µ : Σ→ R̄+.
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Measure Space

Definition
A measure space is a triple (X ,Σ, µ) where

1. Σ is a σ-algebra on X ;

2. µ is a measure on the measurable space (X ,Σ).
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The Borel Real Line

Example

A prominent example of a measure space
is the Borel real line (R,B, `) where:

1. B is the Borel σ-algebra
generated by the open sets of the real line R;

2. the measure `(J) of any interval J ⊂ R is its length,
defined whenever (a, b) ∈ R2 with a ≤ b by

`([a, b]) = `([a, b)) = `((a, b]) = `((a, b)) = b − a

3. ` is extended to all of B so as to satisfy countable additivity
(it can be shown that this extension is unique).
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Atoms and Non-Atomic Measure Spaces

Definition
An atom in a measure space (X ,Σ, µ) is a set A ∈ Σ
such that µ(A) > 0 and, for all B ∈ Σ with B ⊂ A,
one has µ(B) ∈ {0, µ(A)}.
Equivalently, there is no α ∈ (0, 1) and set B ∈ Σ with B ⊂ A
such that µ(B) = αµ(A).

The measure space (X ,Σ, µ) is non-atomic
just in case no set A ∈ Σ is an atom.

Exercise
Given any measure space (X ,Σ, µ), prove that:

1. if x ∈ X satisfies µ({x}) > 0, then {x} is an atom;

2. if (X ,Σ, µ) is non-atomic and S ∈ Σ is a countable set,
then µ(S) = 0.

Prove too that the Borel real line is non-atomic as a measure space.
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Probability Measure and Probability Space

Definition
Consider a measure space (X ,Σ, µ).

The measure µ is a probability measure just in case µ(X ) = 1.

Then (X ,Σ, µ) is a probability space.

Often one writes (Ω,F ,P) in this case, where:

1. Ω is the sample space;

2. F is the σ-algebra (or σ-field) of measurable events;

3. for each event E ∈ F , the probability that E occurs is P(E ).

Then, because P is a measure satisfying P(Ω) = 1,
one has 0 ≤ P(E ) ≤ 1 for all E ∈ F .
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Probability as Normalized Measure

Definition
A measure space (X ,Σ, µ) is:

1. finite just in case µ(X ) < +∞;

2. σ-finite just in case there is a countable collection {Sn}n∈N
of measurable sets Sn ∈ Σ with µ(Sn) < +∞ for all n ∈ N
such that X = ∪n∈NSn.

Obviously any finite measure space (X ,Σ, µ) can be given
a normalized measure defined for all E ∈ Σ by P(E ) = µ(E )/µ(X ).

This normalization makes P(X ) = 1,
so (X ,Σ,P) is a probability space.

Exercise
Verify that the Borel real line (R,B, `)
is not a finite measure space, but it is σ-finite.
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Lebesgue Measurable Subsets of the Real Line

Definition
In the Borel real line (R,B, `) a subset N ⊂ R,
even if it is not a Borel set, is null just in case there exists
a Borel subset B ∈ B with `(B) = 0 such that N ⊆ B.

Let N denote the family of all null subsets of R
(including non-Borel sets).

These null sets can be used to generate the Lebesgue σ-algebra
of Lebesgue measurable sets, which is σ(B ∪N ).

The symmetric difference of any two sets S and B is defined
as the set

S4B := (S \ B) ∪ (B \ S) = (S ∪ B) \ (S ∩ B)

of elements s that belong to one of the two sets, but not to both.

One can show that S ∈ σ(B ∪N ) if and only if
there exists a Borel set B ∈ B such that S4B ∈ N
— i.e., S differs from a Borel set only by a null set.
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The Lebesgue Real Line

There is a well-defined function λ : σ(B ∪N )→ R̄+

that satisfies λ(S) := `(B) whenever S4B ∈ N .

Moreover, one can prove
that the function S 7→ λ(S) is countably additive.

This makes λ a measure, called the Lebesgue measure.

The associated measure space (R, σ(B ∪N ), λ)
is called the Lebesgue real line.

Because λ(R) = +∞, the Lebesgue real line cannot be normalized
to form a probability space.
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Measurable Functions and Measurable Partitions

Definition
Let (X ,Σ, µ) be a measure space,
and (R, σ(B ∪N ), λ) the Lebesgue real line.

The function X 3 x 7→ f (x) ∈ R is measurable
(with respect to the σ-algebras Σ on X and σ(B ∪N ) on R)
just in case the set f −1(B) = {x ∈ X | f (x) ∈ B} is Σ-measurable
for every Lebesgue measurable set B ∈ σ(B ∪N ).

Example

Let X and Y be topological spaces.

The function X 3 x 7→ f (x) ∈ Y is continuous
just in case the set f −1(B) is open in X whenever B is open in Y .

Then any continuous function f : X → Y is measurable
provided that X and Y are each given their Borel σ-algebra.
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Step Functions

Recall that for any set E ⊆ X , the indicator function of E satisfies

X 3 x 7→ 1E (x) :=

{
1 if x ∈ E

0 if x 6∈ E

Definition
A real-valued mapping X 3 x 7→ f (x) ∈ R is a step function
just in case there is a finite collection {Ik}k∈Km

of m pairwise disjoint open intervals Ik = (ak , bk) ⊂ R,
together with a corresponding collection {ck}k∈Km

of m constants ck ∈ R, such that f (x) ≡
∑m

k=1 ck 1Ik (x).
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Graphs of Step Functions

Exercise
Show that the graph in R2

of the non-trivial step function f (x) ≡
∑m

k=1 ck 1Ik (x)
consists of:

1. one finite collection {Ik × {ck}}mk=1

of m finitely long horizontal line segments
on which y belongs to the range ∪mk=1{ck} of f ;

2. a complementary finite collection of line segments
along the horizontal axis y = 0,
of which the two “at the ends” are infinitely long.
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Integrating a Step Function

Definition
The integral of any step function

R 3 x 7→ f (x) =
∑m

k=1
ck 1Ik (x) ∈ R

is defined as
∑m

k=1 ck `(Ik) where, for each k ∈ Nm,
the finite length of the interval Ik is `(Ik).
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Simple Functions

Definition
Given any measurable space (X ,Σ),
the finite collection {Ek |k ∈ Nm}
of m pairwise disjoint measurable sets Ek ∈ Σ
is a measurable partition of X just in case ∪mk=1Ek = X .

Definition
A real-valued mapping X 3 x 7→ f (x) ∈ R is a simple function
just in case there exist a measurable partition {Ek |k ∈ Nm} of X
together with a corresponding collection (ck)mk=1

of m different real constants such that f (x) ≡
∑m

k=1 ck1Ek
(x).

Note that the range f (X ) := {y ∈ R | ∃x ∈ X : y = f (x)}
of the simple function f (x) =

∑m
k=1 ck1Ek

(x)
is precisely the finite set {0} ∪ {ck |k ∈ Nm}
of at most m real constants, including 0.
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Step Functions Are Simple

Lemma
Any step function R 3 x 7→ f (x) ≡

∑m
k=1 ck 1Ik (x) ∈ R

where the sets {Ik}k∈Km are m pairwise disjoint intervals Ik ⊂ R

is identical to a simple function R 3 x 7→ f̃ (x) ≡
∑m+1

k=1 c̃k 1Ek
(x)

where:

1. for each k ∈ Nm one has c̃k = ck and Ek = Ik ;

2. Em+1 = R \ ∪k∈Km Ik and c̃m+1 = 0.

Proof.
By obvious and routine checking of a few details.

Let F0 denote the set of all real-valued step functions defined on R.

Let F(X ,Σ) denote the set of all real-valued simple functions
defined on the measurable space (X ,Σ).

It is easy to see that both F0 and F(X ,Σ) are real vector spaces.
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 37 of 59



Integrable Simple Functions

We have seen how to integrate step functions defined on R.

What about simple functions which are defined
on a general measure space (X ,Σ, µ)?

For as many functions f : X 7→ R as possible,
we want to define the integral

∫
X f (x) dµ =

∫
X f (x)µ(d x).

Definition
The simple function f (x) =

∑m
k=1 ck 1Ek

(x) on (X ,Σ, µ)

is µ-integrable just in case one has µ(Ek) < +∞ for all k ∈ Nm.

In case f (x) =
∑m

k=1 ck 1Ek
(x) is µ-integrable,

we define
∫
X f (x) dµ :=

∑m
k=1 ck µ(Ek).

In particular, integrability requires that the support of f
defined by supp f := {x ∈ X | f (x) 6= 0} satisfies µ(supp f ) < +∞.
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The Heaviside and Dirichlet Functions

Example

The Heaviside quasi-step (or “step”)
function R 3 x 7→ H(x) ∈ {0, 1} is defined by H(x) := 1[0,∞)(x).

In our terminology (which is not standard),
it is a “quasi-step” step rather than a step function
because it is non-zero on the interval [0,∞) with λ([0,∞)) > 0,
where λ is the Lebesgue measure on R.

In particular, the function is not λ-integrable.

Exercise
The Dirichlet simple function R 3 x 7→ D(x) ∈ {0, 1}
is defined by D(x) := 1Q(x).

Explain why it is not a step function.
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Measurable Functions

Definition
Given the measure space (X ,Σ, µ),
the function X 3 x 7→ f (x) ∈ R is measurable just in case
the inverse image f −1(B) := {x ∈ X | f (x) ∈ B}
of each Borel set B ⊂ R satisfies f −1(B) ∈ Σ.

Note that we have defined a simple function to be measurable.
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Upper and Lower Bounds

In this subsection, we consider the case
of a finite measure satisfying µ(X ) < +∞.

In case X ⊆ R and µ is Lebesgue measure,
this implies that X must be bounded — for example, X = [a, b].

In case µ is a probability measure satisfying µ(X ) = 1,
it is automatically a finite measure.
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Upper and Lower Step Functions

Recall that F0 denotes the family
of step functions R 3 x 7→

∑m
k=1 ck1Ik (x)

where all the sets Ik are finite intervals.

Definition
Given any function R 3 x 7→ f (x) ∈ R, define the two sets

F+
0 (f ) := {f + ∈ F0 | ∀x ∈ X : f +(x) ≥ f (x)}
F−0 (f ) := {f − ∈ F0 | ∀x ∈ X : f −(x) ≤ f (x)}

of step functions whose graph lies respectively above or below
that of the function f .
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Upper and Lower Step Functions Illustrated

When trying to find the integral of the red curve,
a lower approximation is the sum of the four green rectangles,
and an upper approximation adds the sum of the grey rectangles.

Source: https://en.wikipedia.org/wiki/Darboux_integral.
This also illustrates decreasing error as you add more steps.
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Upper and Lower Integrals of Step Functions

The integral
∫
X f +(x)µ(d x) of each step function f + ∈ F+

0 (f )
is an over-estimate of the true integral

∫
X f (x)µ(d x) of f .

But the integral
∫
X f −(x)µ(d x) of each step function f − ∈ F−0 (f )

is an under-estimate of the true integral
∫
X f (x)µ(d x) of f .

Definition
The upper integral and lower integral of f are, respectively:

I+(f ) := inff +∈F+
0 (f )

∫
X f +(x)µ(d x)

and I−(f ) := supf −∈F−0 (f )

∫
X f −(x)µ(d x)

These are respectively the smallest possible over-estimate
and greatest possible under-estimate of the integral.

Of course, in case f is itself a step function,
one has I+(f ) = I−(f ) =

∫
X f (x)µ(d x).

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 45 of 59



The Darboux Integral

Definition
The function R 3 x 7→ f (x) ∈ R is Darboux integrable
just in case its upper and lower integrals I+(f ) and I−(f )
are both well defined and equal,
in which case its Darboux integral is the common value
of its upper and lower integrals.

Theorem
The function R 3 x 7→ f (x) ∈ R is Darboux integrable
if and only if it is Riemann integrable,
in which case its Darboux and Riemann integrals are equal.
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Upper and Lower Simple Functions

Let (X ,Σ, µ) be any measure space.

Let f (x) =
∑m

k=1 ck 1Ek
(x) be any simple function on (X ,Σ, µ).

Recall that, by definition, the simple function f is µ-integrable
just in case one has µ(Ek) < +∞ for all k ∈ Nm.

Let FS(X ,Σ, µ) denote the set of µ-integrable simple functions
on the measure space (X ,Σ, µ).

Given an arbitrary function f : X → R, define the two sets

F∗(f ;X ,Σ, µ) := {f ∗ ∈ FS(X ,Σ, µ) | ∀x ∈ X : f ∗(x) ≥ f (x)}
F∗(f ;X ,Σ, µ) := {f∗ ∈ FS(X ,Σ, µ) | ∀x ∈ X : f∗(x) ≤ f (x)}

of µ-integrable simple functions
that are respectively upper or lower bounds for the function f .
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Upper and Lower Bounds on an Integral

Given an arbitrary function f : X → R,
suppose there exists a “meaningful definition”
of the integral J =

∫
X f (x)µ(d x).

Then the well-defined integral
∫
X f ∗(x)µ(d x)

of each µ-integrable simple function f ∗ ∈ F∗(f ;X ,Σ, µ),
should be an over-estimate of the true integral J of f .

Similarly, the integral
∫
X f∗(x)µ(d x)

of each µ-integrable simple function f∗ ∈ F∗(f ;X ,Σ, µ),
is an under-estimate of the true integral J of f .
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Upper and Lower Integrals

Inspired by the previous definition of the Darboux integral,
we define the upper integral and lower integral of f as, respectively

I ∗(f ) := inff ∗∈F∗(f ;X ,Σ,µ)

∫
X f ∗(x)µ(d x)

and I∗(f ) := supf∗∈F∗(f ;X ,Σ,µ)

∫
X f∗(x)µ(d x)

These are respectively the smallest possible over-estimate
and greatest possible under-estimate
of the integral J =

∫
X f (x)µ(d x).

Example

Of course, in case f is itself a µ-integrable simple function,
one has I ∗(f ) = I∗(f ) =

∫
X f (x)µ(d x)
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Integrability and the Lebesgue Integral

Definition
Let X 3 x 7→ f (x) ∈ R be defined on the measure space (X ,Σ, µ).

1. The function f is integrably bounded
just in case the mapping X 3 x 7→ |f (x)| ∈ R+

is bounded above by a µ-integrable simple function.

2. The function f is Lebesgue integrable just in case
its upper and lower integrals I ∗(f ) and I∗(f ) are equal.

3. In case f is integrable, its Lebesgue integral
∫
X f (x)µ(d x)

is defined as the common value
of its upper integral I ∗(f ) and its lower integral I∗(f ).

Remark
We emphasize that, whereas our definition of the Darboux integral
applies only to integrands that are defined on R,
our definition of the Lebesgue integral
applies to integrands that are defined on any measure space.
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Main Theorem

Theorem
The function X 3 x 7→ f (x) ∈ R on (X ,Σ, µ)
is Lebesgue integrable if and only if
it is both measurable and integrably bounded.

Proof.
See, for example, the cited text by Royden.

Exercise
Given the measure space (X ,Σ, µ) and any constant c ∈ R,
prove that the function R 3 x 7→ f (x) = c ∈ R is integrable
if and only if either µ(X ) < +∞
or else µ(X ) = +∞ and c = 0.
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Integration over an Interval or Other Measurable Set

Let X 3 x 7→ f (x) ∈ R be a function
defined on the measure space (X ,Σ, µ)
that is measurable and integrably bounded.

Let E ∈ Σ be any measurable set, with indicator function 1E (x).

Then the function X 3 x 7→ 1E (x)f (x) ∈ {f (x), 0} ⊂ R
is also measurable and integrably bounded.

So we can define the integral of f over E by∫
E
f (x)µ(d x) :=

∫
X

1E (x)f (x)µ(d x)

In case (X ,Σ, µ) is the Lebesgue real line,
and E is the interval [a, b],

one usually writes
∫ b
a f (x) d x instead of

∫
[a,b] f (x)µ(d x).
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Upper and Lower Bounds on an Integral

Exercise
Let X 3 x 7→ f (x) ∈ R be a function
defined on the measure space (X ,Σ, µ)
that is measurable and integrably bounded.

Let E ∈ Σ be any measurable set, with indicator function 1E (x).

Suppose that a ≤ f (x) ≤ b for all x ∈ E .

1. For any f ∗ ∈ F∗(f ;X ,Σ, µ) and f∗ ∈ F∗(f ;X ,Σ, µ),
show that for all x ∈ E one has

1E (x)f ∗(x) ≥ 1E (x)a and 1E (x)f∗(x) ≤ 1E (x)b

2. Show that µ(E )a ≤
∫
E f (x)µ(d x) ≤ µ(E )b.
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The Integral of a Nonnegative Function is a Measure

Exercise
Prove the following:

1. If E and E ′ are subsets of X ,
then the indicator functions satisfy 1E∪E ′ = 1E + 1E ′

if and only if E and E ′ are disjoint.

2. If E and E ′ are disjoint measurable subsets
of the measure space (X ,Σ, µ),
and X 3 x 7→ f (x) ∈ R is integrable w.r.t. µ,
then

∫
E∪E ′ f (x)µ(d x) =

∫
E f (x)µ(d x) +

∫
E ′ f (x)µ(d x).

3. If (En)n∈N is an infinite sequence
of pairwise disjoint subsets of X , then:
I 1∪k

n=1En
=
∑k

n=1 1En for each k ∈ N;

I 1∪∞
n=1En = supk 1∪k

n=1En
= supk

∑k
n=1 1En =

∑∞
n=1 1En .

4. If X 3 x 7→ f (x) ∈ R+ is integrable w.r.t. µ,
then Σ 3 E 7→

∫
E f (x)µ(d x) ∈ R+ is a measure on (X ,Σ).
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The Integral of a General Function is a Signed Measure

A general function X 3 x 7→ f (x) ∈ R
may have negative values at some points x ∈ X

Then the mapping Σ 3 E 7→
∫
E f (x)µ(d x) ∈ R

will generally have negative values for some measurable sets E ∈ Σ.

So E 7→
∫
E f (x)µ(d x) will generally not be a measure,

whose values must be nonnegative.

Instead, the mapping is a signed measure
on the measurable space (X ,Σ).

That is, it is a σ-additive set function
whose values are allowed to be negative.
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The Integral as a Function of Its Upper Limit

Let I 3 x 7→ f (x) ∈ R be any continuous function
defined on a finite interval I = [A,B) ⊂ R.

Then the function R 3 x 7→ 1I (x)f (x) is measurable
and also integrably bounded,
because its range f (I ) is a finite interval in R.

Given any fixed a ∈ [A,B) and the Lebesgue measure λ on R,
we can define the integral function of the upper limit b by

[a,B) 3 b 7→ J(b) :=

∫ b

a
f (x)λ(d x)

Theorem (Leibniz’s Formula for the Lebesgue Integral)

At any point b ∈ [A,B) where [A,B) 3 x 7→ f (x) is continuous,
the integral function J(b) is differentiable, with J ′(b) = f (b).
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Proof of Leibniz’s Formula

Proof.
For fixed a, b ∈ [A,B) with a < b, for all small h > 0,
define φ∗(h) and φ∗(h) respectively
as the infimum and supremum of the set {f (x) | x ∈ (b, b + h)}.
These definitions imply that hφ∗(h) ≤

∫ b+h
b f (x)λ(d x) ≤ hφ∗(h).

But the Newton quotient of J at b is

q(h) = 1
h [J(b + h)− J(b)] = 1

h

∫ b+h
b f (x)λ(d x)

It follows that φ∗(h) ≤ q(h) ≤ φ∗(h) for all small h.

Then continuity of f at b implies that, for all small ε > 0,
there exists δ > 0 such that |x − b| < δ implies |f (x)− f (b)| < ε.

Hence |h| < δ implies that f (b)− ε < φ∗(h) ≤ φ∗(h) < f (b) + ε.

This proves that as h→ 0,
so φ∗(h), φ∗(h) and therefore q(h) all converge to f (b).
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