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Measurable Rectangles
Let (X ,ΣX ) and (Y ,ΣY ) be two measurable spaces,
with their respective σ-algebras ΣX and ΣY .

The Cartesian product of X and Y is

X × Y = {(x , y) | x ∈ X y ∈ Y }

Let ΣX × ΣY = {A× B | A ∈ ΣX , B ∈ ΣY }
denote the set of measurable rectangles
that are the Cartesian product of two measurable sets

Example

Suppose that X = {a, b} and Y = {c, d},
with ΣX = 2X and ΣY = 2Y .

Then #ΣX = #ΣY = 4 and #(ΣX × ΣY ) = 10
after identifying E × ∅ = ∅ × F = ∅ for all E ⊆ X and all F ⊆ Y .

But then (X × Y ) \ {a, c} = (X × {d}) ∪ ({b} × Y ) 6∈ ΣX × ΣY .

This implies that ΣX × ΣY is not a σ-algebra.
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The Product of Two Measurable Spaces

So we define the product σ-algebra, denoted by ΣX ⊗ ΣY ,
as σ(ΣX × ΣY ), the σ-algebra generated by ΣX × ΣY .

It is the smallest σ-algebra
that contains all measurable rectangles A× B
with A ∈ ΣX and B ∈ ΣY .

And we define the product
of the two measurable spaces (X ,ΣX ) and (Y ,ΣY )
as the measurable space (X × Y ,ΣX ⊗ ΣY ).

The function X × Y 3 (x , y) 7→ f (x , y) ∈ R of two variables (x , y)
is product measurable just in case,
for each Borel set E ∈ B(R),
the inverse f −1(B) is ΣX ⊗ ΣY -measurable.
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The Product of Two Measure Spaces

Let (X ,ΣX , µX ) and (Y ,ΣY , µY ) be two measure spaces,
and (X × Y ,ΣX ⊗ ΣY ) the product measurable space.

Say that µ on (X × Y ,ΣX ⊗ ΣY ) is a product measure
just in case it is a measure
that satisfies µ(E × F ) = µX (E )× µY (F )
for all measurable rectangles E × F ∈ ΣX × ΣY .

Typically there is a unique product measure with this property,
which we denote by µX ⊗ µY .

Then (X × Y ,ΣX ⊗ ΣY , µX ⊗ µY )
is the product of the two measure spaces.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 5 of 44



The Fubini Theorem

Theorem (Fubini)

Provided that X × Y 3 (x , y) 7→ f (x , y) ∈ R
is measurable w.r.t. the product σ-algebra ΣX ⊗ ΣY ,
its integral w.r.t. the product measure µX ⊗ µY satisfies∫

X×Y
f (x , y)(µX ⊗ µY )(d x × d y)

=

∫
X

[∫
Y
f (x , y)µY (d y)

]
µX (d x)

=

∫
Y

[∫
X
f (x , y)µX (d x)

]
µY (d y)

That is, for any product measurable function,
the order of integration is irrelevant.
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Product Measure as a Double Integral

Corollary

For every E ∈ ΣX ⊗ ΣY , its product measure satisfies

(µX ⊗ µY )(E ) =

∫
E

1E (x , y)(µX ⊗ µY )(d x × d y)

=

∫
X

[∫
Y

1E (x , y)µY (d y)

]
µX (d x)

=

∫
Y

[∫
X

1E (x , y)µX (d x)

]
µY (d y)
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The Lebesgue Plane

Example

Suppose the two measure spaces (X ,ΣX , µX ) and (Y ,ΣY , µY )
are both copies of the Lebesgue real line (R,L, λ) where:

1. L is the Lebesgue completion of the Borel σ-algebra on R;

2. λ is the Lebesgue measure which satisfies λ(I ) = b − a
for any interval I ⊂ R with endpoints a and b satisfying a ≤ b.

Then the measure product (R,L, λ)2 is the Lebesgue plane
in the form of the measure space (R2,A, α), where:

1. A = L ⊗ L is the product of the Lebesgue σ-algebra on R
with itself;

2. α = λ⊗ λ has the property that,
for each E ∈ A, the measure α(E ) is its area.

In particular, the measure α on the measurable space (R2,A)
is the unique measure that satisfies α(IX × IY ) = λ(IX )λ(IY )
for every product measurable rectangle IX × IY .
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Recalling the Definition of an Antiderivative in R

The following definition is taken (with some changes of notation)
from the review set out in FMEA, Section 4.1.

Definition
Let I 3 x 7→ f (x) ∈ R be a continuous function
defined on an interval I ⊂ R.

An indefinite integral of f is a function I 3 x 7→ F (x) ∈ R
whose derivative, for all x in I , exists and is equal to f (x)
— in symbols

∫
f (ξ) d ξ = F (x) + C where F ′(x) = f (x).

In effect, this defines an equivalence class of functions,
where F ∼ G ⇐⇒ ∃C ∈ R; ∀x ∈ I : F (x)− G (x) = C .

An indefinite integral is often described as an antiderivative,
or an N–L integral where “N–L” stands for “Newton–Leibniz”.
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Relating Definite to Indefinite Integrals

The following definition is taken (with some changes of notation)
from EMEA6, Section 10.2, (10.2.3).

Definition
Let I 3 x 7→ f (x) ∈ R be a continuous function
defined on an interval I ⊂ R.

The definite integral of f over any interval [a, b] ⊂ I is∫ b

a
f (ξ) d ξ = F (b)− F (a)

where F is any indefinite integral of f .
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Existence of an Antiderivative

Definition
Let I 3 x 7→ f (x) ∈ R be any Lebesgue integrable function
which is defined on an interval I ⊂ R.

For each fixed a ∈ int I , define the N–L integral function

(a,+∞) ∩ int I 3 x 7→ F (x) :=

∫ x

a
f (ξ) d ξ =

∫ x

a
f (ξ)λ(d ξ)

where λ denotes Lebesgue measure on R.

Theorem
Let I 3 x 7→ f (x) ∈ R be any integrable function
defined on an interval I ⊂ R.

Then at any point x0 ∈ I where f is continuous,
the N–L integral function F is differentiable with F ′(x0) = f (x0).

Proof.
The proof using upper and lower integrals is left as an exercise.
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A Definition of Antiderivative in Two Dimensions

Definition
Let D 3 (x , y) 7→ f (x , y) ∈ R be a continuous function
defined on an open and convex domain D ⊂ R2.

An indefinite integral of f is a function D 3 (x , y) 7→ F (x , y) ∈ R
whose mixed partial derivative, for all (x , y) ∈ D,
exists and is equal to f (x , y) — in symbols∫

f (ξ, η) d ξ d η = F (x , y) + C

where F ′′12(x , y) =
∂2

∂x∂y
F (x , y) = f (x , y)
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Definition of an Integral Function
Given any point (a, b) ∈ R2, let

(a, b)= := {(x , y) ∈ R2 | x = a and y = b}

denote the set {(a, b)}+ R2
+ that results

when the non-negative quadrant R2
+ is shifted

so that its the bottom left-hand corner (0, 0) is moved to (a, b).

Definition
Let D 3 (x , y) 7→ f (x , y) ∈ R be a continuous function
defined on an open and convex domain D ⊂ R2.

For each fixed (a, b) ∈ D, define the definite integral function

(a, b)= ∩ D 3 (x , y) 7→ If (x , y) :=

∫ x

a

∫ y

b
f (ξ, η) d ξ d η

=

∫ x

a

∫ y

b
f (ξ, η)λ2(d ξ × d η)

where λ2 denotes Lebesgue measure on R2.
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Existence of an Antiderivative: Statement of Theorem

Theorem
Let D 3 (x , y) 7→ f (x , y) ∈ R be a continuous function
defined on an open and convex domain D ⊂ R2.

Then given any fixed (a, b) ∈ D, the function

(a, b)= ∩ D 3 (x , y) 7→ F (x , y) :=

∫ x

a

∫ y

b
f (ξ, η) d ξ d η ∈ R

has a mixed second derivative F ′′12(x , y) = F ′′21(x , y)
that equals f (x , y) at (x , y).
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Existence of an Antiderivative: Proof of Theorem

Proof.
Recall the definition

(a, b)= ∩ D 3 (x , y) 7→ F (x , y) :=

∫ x

a

∫ y

b
f (ξ, η) d ξ d η ∈ R

Differentiating this definition once partially w.r.t. x
gives F ′1(x , y) =

∫ y
b f (x , η) d η.

Differentiating this equation partially w.r.t. y
gives F ′′21(x , y) = f (x , y).

Because F ′′21(x , y) = f (x , y) is continuous, Young’s theorem
on the symmetry of second-order partial derivatives
implies that F ′′12(x , y) = F ′′21(x , y).
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Useful Lemma in Two Dimensions

Lemma
Let D 3 (x , y) 7→ f (x , y) ∈ R be a continuous function
defined on an open and convex domain D ⊂ R2.

For every fixed (a, b) ∈ D, as well as d , e > 0, one has

lim
ε↓0

1

ε2

∫ a+εd

a

∫ b+εe

b
f (ξ, η) d ξ d η = d · e · f (a, b)
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Proof of Lemma

Proof.
Let 〈εk〉k∈N be any sequence of positive numbers
such that εk → 0 as k →∞.

By the mean value theorem for double integrals,
for each k ∈ N there exists a point (xk , yk)
in the rectangle [a, a + εkd ]× [b, b + εke] ⊂ R2,
whose area is ε2k · d · e, such that

1

ε2k

∫ a+εkd

a

∫ b+εke

b
f (ξ, η) d ξ d η = d · e · f (xk , yk)

Because a ≤ xk ≤ a + εkd and b ≤ yk ≤ b + εke,
taking limits as k →∞ and so εk ↓ 0
implies that xk → a and yk → b.

Then continuity of f implies that f (xk , yk) converges to f (a, b),
so the result follows.
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A Definition of Antiderivative in n Dimensions

Given a function Rn ⊃ S 3 x 7→ F (x) ∈ R,
we introduce the notation ∂nF (x) as an abbreviation
for the nth order partial derivative ∂n

∂x1∂x2...,∂xn
F (x), when it exists.

Definition
Let D 3 x 7→ f (x) ∈ R be a continuous function
defined on an open and convex domain D ⊂ Rn.

An indefinite integral of f is a function D 3 x 7→ F (x) ∈ R
whose mixed partial derivative ∂nF (x), for all x ∈ D,
exists and is equal to f (x) — in symbols∫ ∫

· · ·
∫

f (x) d x = F (x) + C where ∂nF (x) = f (x)
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Orthants and Cuboids in Rn

Given any two points a,b ∈ Rn,
define the following three subsets of Rn:

1. a= := {x ∈ Rn | x = a} = {a}+ Rn
+, the set that results

when the non-negative orthant Rn
+ of Rn is shifted

so that the corner or extreme point at 0 is moved to a;

2. b5 := {x ∈ Rn | x 5 b} = {b} − Rn
+, the set that results

when the non-positive orthant Rn
− = −Rn

+ of Rn is shifted
so that the corner or extreme point at 0 is moved to b;

3. [a,b] := a= ∩ b5 denote the (possibly empty)
n-dimensional cuboid {x ∈ Rn | a 5 x 5 b}.
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Definition of an Integral Function

For each E ⊆ Rn, recall the definition Rn 3 x 7→ 1E (x) ∈ {0, 1}
of the indicator function for the set E
that satisfies 1E (x) = 1⇐⇒ x ∈ E .

Definition
Let D 3 x 7→ f (x) ∈ R be a continuous function
defined on an open and convex domain D ⊂ Rn.

For each fixed a ∈ D, define the definite integral function

a= ∩ D 3 b 7→ F (b) :=

∫ b

a
1D(x) f (x)λn(d x)

=

∫
D

1[a,b](x)f (x)λn(d x)

where λn denotes Lebesgue measure on Rn.
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Existence of an Antiderivative

Theorem
Let D 3 x 7→ f (x) ∈ R be a continuous function
defined on an open and convex domain D ⊂ Rn.

Then given any fixed a ∈ D, for each b ∈ a= ∩ D,

the function b 7→ F (b) :=
∫ b
a f (x) d x

has a mixed nth derivative ∂nF (x) that equals f (x) at x.

Proof.
The proof, based on integrating n times the function x 7→ f (x),
is a straightforward extension of the proof given for R2.
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Useful Lemma in n Dimensions

Lemma
Let D 3 x 7→ f (x) ∈ R be a continuous function
defined on an open and convex domain D ⊂ Rn.

For every fixed a ∈ D and e = 〈ei 〉ni=1 ∈ Rn
++, one has

lim
ε↓0

1

εn

∫ a+εe

a
f (x) d x =

∏n

i=1
ei · f (a)

Proof.
The proof is similar to that we gave when n = 2.

Remark
Recall that,
given the diagonal matrix diag e = diag(e1, e2, . . . , en),
the product

∏n
i=1 ei equals the volume voln(diag e)

of the n-dimensional cuboid
∑n

i=1[0, eiei ]
where each ei = (δij)

n
j=1 is the ith column of the identity matrix I.
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Integration by Substitution in One Variable

Suppose that, in looking for an antiderivative function

R 3 x 7→ F (x) =

∫
f (x) d x ∈ R

such that F ′(x) = f (x), we try the substitution x = g(u).

This implies that d x = g ′(u) d u.

So the original antiderivative F (x) =
∫
f (x) d x becomes

the transformed antiderivative G (u) =
∫
f (g(u))g ′(u) d u,

which may be easier to find.
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Change of Variables (FMEA, Theorem 4.7.2)

Theorem
Suppose that A′ 3 u 7→ g(u) = (g1(u), . . . , gn(u)) ∈ Rn

is used to specify the transformation x = g(u)
from an open and bounded set A′ ⊂ Rn in “u-space”
onto an open and bounded set A ⊂ Rn in “x-space”.

Suppose that the Jacobian matrix function

A′ 3 u 7→ J(u) =
∂(g1, . . . , gn)

∂(u1, . . . , un)
(u) =

∂g

∂u
(u) ∈ Rn×n

is bounded.

Let f be a bounded, continuous function defined on A. Then∫
. . .

∫
A
f
(
x1, . . . xn) d x1 . . . d xn

=

∫
. . .

∫
A′
f
(
g1(u), . . . , gn(u)

)
| det J(u)| d u1 . . . d un
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An Instructive Example, I

In one dimension, integration by substitution
leads to the formula

∫
f (g(u))g ′(u) d u.

By contrast, in n dimensions, one has∫
. . .

∫
A
f
(
x1, . . . xn) d x1 . . . d xn

=

∫
. . .

∫
A′
f
(
g1(u), . . . , gn(u)

)
| det J(u)| d u1 . . . d un

with the absolute value of the Jacobian determinant.

Why is there this contrast?
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An Instructive Example, II

Consider the definite integral

J =

∫ 1

0
(1− x) d x = |10(x − 1

2x
2) = 1− 1

2 = 1
2

Suppose we try to make things even simpler by using the
substitution u = 1− x .

Then u = 1 when x = 0 and u = 0 when x = 1.

Also d x = − d u, so the integral becomes

J =

∫ 0

1
u(− d u) = |01(−1

2u
2) = 1

2
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An Instructive Example, III

We are integrating over the interval I = [0, 1], so J =
∫
I (1− x) d x .

When we make the substitution u = 1− x , where d x = (−1) d u,
the integration by substitution formula
seems to suggest the transformation

J̃ =

∫
I
u(−1) d u =

∫ 1

0
u(−1) d u = |10(−1

2u
2) = −1

2

But then J̃ = −J, so we evidently have a wrong answer!

To get the right answer, we need to consider
the absolute value +1 of the Jacobian scalar −1.

This gives J∗ =
∫
I u(+1) d u =

∫ 1
0 u d u = |10(12u

2) = 1
2

which is the right answer.
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Outline of a Justification in a Special Case, I

Let D 3 x 7→ f (x) ∈ R be a C 1 function
defined on an open and convex domain D ⊂ Rn.

Consider the special case when the mapping D ′ 3 u 7→ g(u) ∈ Rn

determines a C 1 diffeomorphism
between a cuboid [a,b] ⊂ D ′ and its image g([a,b]) ⊂ D.

That is, suppose there exists
a continuously differentiable bijection [a,b] 3 u 7→ g(u) ∈ g([a,b])
whose inverse g([a,b]) 3 v 7→ g−1(v) ∈ [a,b]
is also continuously differentiable.

Suppose too that at each u ∈ [a,b], each partial derivative ∂gi/∂xj
of the Jacobian matrix J(u) is positive.
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Outline of a Justification in a Special Case, II

Now, given any e� 0, the “useful lemma” can be applied,
together with the fact that, with c = g(a)
and so g(a + εe) ≈ c + εJ(a)e, one has

lim
ε↓0

1

εn

∫
g([a,a+εe])

f (x) d x = lim
ε↓0

1

εn

∫ c+εJ(a)e

c
f (x) d x

= voln(J(a)diag(e)) · f (c)

and lim
ε↓0

1

εn

∫ a+εe

a
f (g(u)) du = voln(diag(e)) · f (g(a))
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Outline of a Justification in a Special Case, II

Recall that, for any n × n matrix A,
the volume voln(A) of the paralleliped

∑n
j=1[0, aj ]

spanned by its columns aj (j ∈ Nn) equals | detA|.

It follows that

voln(J(a)diag(e)) = | det(J(a)diag(e))|
= | det(J(a)| · | det(diag(e))|
= | det(J(a)| · voln(diag(e))

For this special case when each element of J(u) is positive,
this allows us to conclude that when the variables of integration
are transformed from x = g(u) to u,
the integrand f (x) should be replaced,
not by f (g(u)), but by f (g(u)) · | det(J(a)|.
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Carl-Friedrich Gauss (1777–1855) on a German Banknote

Portrait with (i) the graph of the “bell curve”; (ii) part of
the University of Göttingen (where Gauss was a professor);

(iii) the formula f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .
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The Gaussian Integral, I

For each b ∈ R+, let S(b) := [−b, b]2

denote the Cartesian product
of the line interval [−b, b] with itself.

That is, S(b) is the solid square subset of R2

which is centred at the origin and has sides of length 2b.

For each b ∈ R define I (b) :=
∫ +b
−b e−x

2
d x .

Then the Fubini theorem implies that

[I (b)]2 =
(∫ +b
−b e−x

2
d x
)(∫ +b

−b e−y
2

d y
)

=
∫ +b
−b

(∫ +b
−b e−y

2
d y
)
e−x

2
d x

=
∫ +b
−b
∫ +b
−b e−x

2
e−y

2
d x d y

=
∫
S(b) e

−x2−y2
d x d y
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The Gaussian Integral, II

Next, let D(b) := {(x , y) ∈ R2 | x2 + y2 ≤ b2}
denote the disk of radius b centred at the origin.

Consider the transformation (r , θ) 7→ (x , y) = (r cos θ, r sin θ)
from polar to Cartesian coordinates.

The Jacobian determinant of this transformation is∣∣∣∣∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

It follows that changing to polar coordinates
in the double integral J(b) =

∫
D(b) e

−(x2+y2) d x d y
transforms it to

J(b) =
∫ b
0

∫ 2π
0 re−r

2
d r d θ =

(∫ b
0 re−r

2
d r
)(∫ 2π

0 1 d θ
)

=
[
|b0(−1

2e
−r2)

]
2π = π(1− e−b

2
)
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Square with Inscribed and Circumscribed Circles

x

y

(0, 0)

(b, b)

(b,−b)

(−b, b)

(−b,−b)

(0,
√

2b)

(0,−
√

2b)

(
√

2b, 0)(−
√

2b, 0)
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The Gaussian Integral, III

In the previous slide:

1. S(b) is the square whose four corners are (±b,±b);

2. D(b) is the circular disk that is inscribed in S(b);

3. D(b
√

2) is the circular disk that circumscribes S(b).

It follows that D(b) ⊂ S(b) ⊂ D(b
√

2).

But the integrand e−x
2−y2

is non-negative, so

J(b) =
∫
D(b) e

−(x2+y2) d x d y

≤ [I (b)]2 =
∫
S(b) e

−(x2+y2) d x d y

≤ J(b
√

2) =
∫
D(b
√
2) e
−(x2+y2) d x d y

From the previous definitions and calculations, it follows that

π(1− e−b
2
) = J(b) ≤ [I (b)]2 ≤ J(b

√
2) = π(1− e−2b

2
)
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The Gaussian Integral, IV

Given I (b) =
∫ +b
−b e−x

2
d x ,

we have shown that π(1− e−b
2
) ≤ [I (b)]2 ≤ π(1− e−2b

2
).

As b →∞, both the lower bound π(1− e−b
2
)

and upper bound π(1− e−2b
2
) converge to π.

From the squeezing principle, it follows that [I (b)]2 → π.

Because I (b) is evidently positive, one has I (b)→
√
π.

This proves that:

Theorem
The Gaussian integral

∫ +∞
−∞ e−x

2
d x equals

√
π.
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