Lecture Notes 9: Measure and Probability Part B: Measure and Multiple Integration

Peter Hammond

2024 September 20th, typeset from measProbB24.tex

Products of Measure Spaces Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in *n* Dimensions An Instructive Example Outline of a Justification

Measurable Rectangles

Let (X, Σ_X) and (Y, Σ_Y) be two measurable spaces, with their respective σ -algebras Σ_X and Σ_Y .

The Cartesian product of X and Y is

$$X \times Y = \{(x, y) \mid x \in X \ y \in Y\}$$

Let $\Sigma_X \times \Sigma_Y = \{A \times B \mid A \in \Sigma_X, \ B \in \Sigma_Y\}$ denote the set of measurable rectangles that are the Cartesian product of two measurable sets

Example

Suppose that $X = \{a, b\}$ and $Y = \{c, d\}$, with $\Sigma_Y = 2^X$ and $\Sigma_Y = 2^Y$.

Then $\#\Sigma_X = \#\Sigma_Y = 4$ and $\#(\Sigma_X \times \Sigma_Y) = 10$ after identifying $E \times \emptyset = \emptyset \times F = \emptyset$ for all $E \subseteq X$ and all $F \subseteq Y$.

But then $(X \times Y) \setminus \{a, c\} = (X \times \{d\}) \cup (\{b\} \times Y) \notin \Sigma_X \times \Sigma_Y$.

This implies that $\Sigma_X \times \Sigma_Y$ is **not** a σ -algebra.

The Product of Two Measurable Spaces

So we define the product σ -algebra, denoted by $\Sigma_X \otimes \Sigma_Y$, as $\sigma(\Sigma_X \times \Sigma_Y)$, the σ -algebra generated by $\Sigma_X \times \Sigma_Y$. It is the smallest σ -algebra that contains all measurable rectangles $A \times B$ with $A \in \Sigma_X$ and $B \in \Sigma_Y$.

And we define the product of the two measurable spaces (X, Σ_X) and (Y, Σ_Y) as the measurable space $(X \times Y, \Sigma_X \otimes \Sigma_Y)$.

The function $X \times Y \ni (x,y) \mapsto f(x,y) \in \mathbb{R}$ of two variables (x,y) is product measurable just in case, for each Borel set $E \in \mathcal{B}(\mathbb{R})$, the inverse $f^{-1}(B)$ is $\Sigma_X \otimes \Sigma_Y$ -measurable.

The Product of Two Measure Spaces

Let (X, Σ_X, μ_X) and (Y, Σ_Y, μ_Y) be two measure spaces, and $(X \times Y, \Sigma_X \otimes \Sigma_Y)$ the product measurable space. Say that μ on $(X \times Y, \Sigma_X \otimes \Sigma_Y)$ is a product measure just in case it is a measure that satisfies $\mu(E \times F) = \mu_X(E) \times \mu_Y(F)$ for all measurable rectangles $E \times F \in \Sigma_X \times \Sigma_Y$.

Typically there is a unique product measure with this property, which we denote by $\mu_X \otimes \mu_Y$.

Then $(X \times Y, \Sigma_X \otimes \Sigma_Y, \mu_X \otimes \mu_Y)$ is the product of the two measure spaces.

The Fubini Theorem

Theorem (Fubini)

Provided that $X \times Y \ni (x,y) \mapsto f(x,y) \in \mathbb{R}$ is measurable w.r.t. the product σ -algebra $\Sigma_X \otimes \Sigma_Y$, its integral w.r.t. the product measure $\mu_X \otimes \mu_Y$ satisfies

$$\int_{X \times Y} f(x, y) (\mu_X \otimes \mu_Y) (dx \times dy)$$

$$= \int_X \left[\int_Y f(x, y) \mu_Y (dy) \right] \mu_X (dx)$$

$$= \int_Y \left[\int_X f(x, y) \mu_X (dx) \right] \mu_Y (dy)$$

That is, for any product measurable function, the order of integration is irrelevant.

Product Measure as a Double Integral

Corollary

For every $E \in \Sigma_X \otimes \Sigma_Y$, its product measure satisfies

$$(\mu_X \otimes \mu_Y)(E) = \int_E 1_E(x, y)(\mu_X \otimes \mu_Y)(dx \times dy)$$
$$= \int_X \left[\int_Y 1_E(x, y)\mu_Y(dy) \right] \mu_X(dx)$$
$$= \int_Y \left[\int_X 1_E(x, y)\mu_X(dx) \right] \mu_Y(dy)$$

The Lebesgue Plane

Example

Suppose the two measure spaces (X, Σ_X, μ_X) and (Y, Σ_Y, μ_Y) are both copies of the Lebesgue real line $(\mathbb{R}, \mathcal{L}, \lambda)$ where:

- 1. \mathcal{L} is the Lebesgue completion of the Borel σ -algebra on \mathbb{R} ;
- 2. λ is the Lebesgue measure which satisfies $\lambda(I) = b a$ for any interval $I \subset \mathbb{R}$ with endpoints a and b satisfying $a \leq b$.

Then the measure product $(\mathbb{R}, \mathcal{L}, \lambda)^2$ is the Lebesgue plane in the form of the measure space $(\mathbb{R}^2, \mathcal{A}, \alpha)$, where:

- 1. $A = \mathcal{L} \otimes \mathcal{L}$ is the product of the Lebesgue σ -algebra on \mathbb{R} with itself;
- 2. $\alpha = \lambda \otimes \lambda$ has the property that, for each $E \in \mathcal{A}$, the measure $\alpha(E)$ is its area.

In particular, the measure α on the measurable space $(\mathbb{R}^2, \mathcal{A})$ is the unique measure that satisfies $\alpha(I_X \times I_Y) = \lambda(I_X)\lambda(I_Y)$ for every product measurable rectangle $I_X \times I_Y$.

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension

Antiderivatives in Two Dimensions

Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in *n* Dimensions An Instructive Example Outline of a Justification

Recalling the Definition of an Antiderivative in $\mathbb R$

The following definition is taken (with some changes of notation) from the review set out in FMEA, Section 4.1.

Definition

Let $I \ni x \mapsto f(x) \in \mathbb{R}$ be a continuous function defined on an interval $I \subset \mathbb{R}$.

An indefinite integral of f is a function $I \ni x \mapsto F(x) \in \mathbb{R}$ whose derivative, for all x in I, exists and is equal to f(x) — in symbols $\int f(\xi) \, \mathrm{d}\, \xi = F(x) + C$ where F'(x) = f(x).

In effect, this defines an equivalence class of functions, where $F \sim G \iff \exists C \in \mathbb{R}; \forall x \in I : F(x) - G(x) = C$.

An indefinite integral is often described as an antiderivative, or an N-L integral where "N-L" stands for "Newton-Leibniz".

Relating Definite to Indefinite Integrals

The following definition is taken (with some changes of notation) from EMEA6, Section 10.2, (10.2.3).

Definition

Let $I \ni x \mapsto f(x) \in \mathbb{R}$ be a continuous function defined on an interval $I \subset \mathbb{R}$.

The definite integral of f over any interval $[a, b] \subset I$ is

$$\int_a^b f(\xi) d\xi = F(b) - F(a)$$

where F is any indefinite integral of f.

Existence of an Antiderivative

Definition

Let $I \ni x \mapsto f(x) \in \mathbb{R}$ be any Lebesgue integrable function which is defined on an interval $I \subset \mathbb{R}$.

For each fixed $a \in \text{int } I$, define the N-L integral function

$$(a, +\infty) \cap \operatorname{int} I \ni x \mapsto F(x) := \int_a^x f(\xi) \, \mathrm{d} \, \xi = \int_a^x f(\xi) \, \lambda(\mathrm{d} \, \xi)$$

where λ denotes Lebesgue measure on \mathbb{R} .

Theorem

Let $I \ni x \mapsto f(x) \in \mathbb{R}$ be any integrable function defined on an interval $I \subset \mathbb{R}$.

Then at any point $x_0 \in I$ where f is continuous, the N-L integral function F is differentiable with $F'(x_0) = f(x_0)$.

Proof.

The proof using upper and lower integrals is left as an exercise.

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension

Antiderivatives in Two Dimensions

Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in *n* Dimensions An Instructive Example Outline of a Justification

A Definition of Antiderivative in Two Dimensions

Definition

Let $D \ni (x,y) \mapsto f(x,y) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^2$.

An indefinite integral of f is a function $D \ni (x,y) \mapsto F(x,y) \in \mathbb{R}$ whose mixed partial derivative, for all $(x,y) \in D$, exists and is equal to f(x,y) — in symbols

$$\int f(\xi,\eta) \, \mathrm{d}\, \xi \, \mathrm{d}\, \eta = F(x,y) + C$$
 where
$$F_{12}''(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y) = f(x,y)$$

Definition of an Integral Function

Given any point $(a, b) \in \mathbb{R}^2$, let

$$(a,b)_{\geq} := \{(x,y) \in \mathbb{R}^2 \mid x \geq a \text{ and } y \geq b\}$$

denote the set $\{(a,b)\} + \mathbb{R}^2_+$ that results when the non-negative quadrant \mathbb{R}^2_+ is shifted so that its the bottom left-hand corner (0,0) is moved to (a,b).

Definition

Let $D \ni (x,y) \mapsto f(x,y) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^2$.

For each fixed $(a, b) \in D$, define the definite integral function

$$(a,b)_{\geq} \cap D \ni (x,y) \mapsto I_f(x,y) := \int_a^x \int_b^y f(\xi,\eta) \, \mathrm{d} \, \xi \, \mathrm{d} \, \eta$$
$$= \int_a^x \int_b^y f(\xi,\eta) \, \lambda^2(\mathrm{d} \, \xi \times \mathrm{d} \, \eta)$$

where λ^2 denotes Lebesgue measure on \mathbb{R}^2 .

Existence of an Antiderivative: Statement of Theorem

Theorem

Let $D \ni (x,y) \mapsto f(x,y) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^2$.

Then given any fixed $(a, b) \in D$, the function

$$(a,b)_{\geq} \cap D \ni (x,y) \mapsto F(x,y) := \int_a^x \int_b^y f(\xi,\eta) \,\mathrm{d}\,\xi \,\mathrm{d}\,\eta \in \mathbb{R}$$

has a mixed second derivative $F_{12}''(x,y) = F_{21}''(x,y)$ that equals f(x,y) at (x,y).

Existence of an Antiderivative: Proof of Theorem

Proof.

Recall the definition

$$(a,b)_{\geqq}\cap D\ni (x,y)\mapsto F(x,y):=\int_a^x\int_b^y f(\xi,\eta)\,\mathrm{d}\,\xi\,\mathrm{d}\,\eta\in\mathbb{R}$$

Differentiating this definition once partially w.r.t. x gives $F_1'(x,y) = \int_b^y f(x,\eta) d\eta$.

Differentiating this equation partially w.r.t. y gives $F_{21}''(x,y) = f(x,y)$.

Because $F_{21}''(x,y) = f(x,y)$ is continuous, Young's theorem on the symmetry of second-order partial derivatives implies that $F_{12}''(x,y) = F_{21}''(x,y)$.

Useful Lemma in Two Dimensions

Lemma

Let $D \ni (x,y) \mapsto f(x,y) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^2$.

For every fixed $(a, b) \in D$, as well as d, e > 0, one has

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon^2} \int_a^{a+\epsilon d} \int_b^{b+\epsilon e} f(\xi,\eta) \, \mathrm{d} \, \xi \, \mathrm{d} \, \eta = d \cdot e \cdot f(a,b)$$

Proof of Lemma

Proof.

Let $\langle \epsilon_k \rangle_{k \in \mathbb{N}}$ be any sequence of positive numbers such that $\epsilon_k \to 0$ as $k \to \infty$.

By the mean value theorem for double integrals, for each $k \in \mathbb{N}$ there exists a point (x_k, y_k) in the rectangle $[a, a + \epsilon_k d] \times [b, b + \epsilon_k e] \subset \mathbb{R}^2$, whose area is $\epsilon_k^2 \cdot d \cdot e$, such that

$$\frac{1}{\epsilon_k^2} \int_a^{a+\epsilon_k d} \int_b^{b+\epsilon_k e} f(\xi, \eta) \, \mathrm{d} \, \xi \, \mathrm{d} \, \eta = d \cdot e \cdot f(x_k, y_k)$$

Because $a \le x_k \le a + \epsilon_k d$ and $b \le y_k \le b + \epsilon_k e$, taking limits as $k \to \infty$ and so $\epsilon_k \downarrow 0$ implies that $x_k \to a$ and $y_k \to b$.

Then continuity of f implies that $f(x_k, y_k)$ converges to f(a, b), so the result follows.

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions

Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in *n* Dimensions An Instructive Example Outline of a Justification

A Definition of Antiderivative in *n* Dimensions

Given a function $\mathbb{R}^n \supset S \ni \mathbf{x} \mapsto F(\mathbf{x}) \in \mathbb{R}$, we introduce the notation $\partial^n F(\mathbf{x})$ as an abbreviation for the *n*th order partial derivative $\frac{\partial^n}{\partial x_1 \partial x_2 ... \partial x_n} F(\mathbf{x})$, when it exists.

Definition

Let $D \ni \mathbf{x} \mapsto f(\mathbf{x}) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^n$.

An indefinite integral of f is a function $D \ni \mathbf{x} \mapsto F(\mathbf{x}) \in \mathbb{R}$ whose mixed partial derivative $\partial^n F(\mathbf{x})$, for all $\mathbf{x} \in D$, exists and is equal to $f(\mathbf{x})$ — in symbols

$$\iint \cdots \int f(\mathbf{x}) \, d\mathbf{x} = F(\mathbf{x}) + C \quad \text{where} \quad \partial^n F(\mathbf{x}) = f(\mathbf{x})$$

Orthants and Cuboids in \mathbb{R}^n

Given any two points $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, define the following three subsets of \mathbb{R}^n :

- 1. $\mathbf{a}_{\geq} := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \geq \mathbf{a} \} = \{ \mathbf{a} \} + \mathbb{R}^n_+, \text{ the set that results}$ when the non-negative orthant \mathbb{R}^n_+ of \mathbb{R}^n is shifted so that the corner or extreme point at $\mathbf{0}$ is moved to \mathbf{a} ;
- 2. $\mathbf{b}_{\leq} := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \leq \mathbf{b} \} = \{ \mathbf{b} \} \mathbb{R}_+^n$, the set that results when the non-positive orthant $\mathbb{R}_-^n = -\mathbb{R}_+^n$ of \mathbb{R}^n is shifted so that the corner or extreme point at $\mathbf{0}$ is moved to \mathbf{b} ;
- 3. $[\mathbf{a}, \mathbf{b}] := \mathbf{a}_{\geq} \cap \mathbf{b}_{\leq}$ denote the (possibly empty) *n*-dimensional cuboid $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}.$

Definition of an Integral Function

For each $E \subseteq \mathbb{R}^n$, recall the definition $\mathbb{R}^n \ni \mathbf{x} \mapsto 1_E(\mathbf{x}) \in \{0,1\}$ of the indicator function for the set E that satisfies $1_E(\mathbf{x}) = 1 \Longleftrightarrow x \in E$.

Definition

Let $D \ni \mathbf{x} \mapsto f(\mathbf{x}) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^n$.

For each fixed $\mathbf{a} \in D$, define the definite integral function

$$\mathbf{a}_{\geq} \cap D \ni \mathbf{b} \mapsto F(\mathbf{b}) := \int_{\mathbf{a}}^{\mathbf{b}} 1_{D}(\mathbf{x}) f(\mathbf{x}) \lambda^{n}(d\mathbf{x})$$
$$= \int_{D} 1_{[\mathbf{a},\mathbf{b}]}(\mathbf{x}) f(\mathbf{x}) \lambda^{n}(d\mathbf{x})$$

where λ^n denotes Lebesgue measure on \mathbb{R}^n .

Existence of an Antiderivative

Theorem

Let $D \ni \mathbf{x} \mapsto f(\mathbf{x}) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^n$.

Then given any fixed $\mathbf{a} \in D$, for each $\mathbf{b} \in \mathbf{a}_{\geq} \cap D$, the function $\mathbf{b} \mapsto F(\mathbf{b}) := \int_{\mathbf{a}}^{\mathbf{b}} f(\mathbf{x}) \, d\mathbf{x}$ has a mixed nth derivative $\partial^n F(\mathbf{x})$ that equals $f(\mathbf{x})$ at \mathbf{x} .

Proof.

The proof, based on integrating n times the function $\mathbf{x} \mapsto f(\mathbf{x})$, is a straightforward extension of the proof given for \mathbb{R}^2 .

Useful Lemma in *n* Dimensions

Lemma

Let $D \ni \mathbf{x} \mapsto f(\mathbf{x}) \in \mathbb{R}$ be a continuous function defined on an open and convex domain $D \subset \mathbb{R}^n$.

For every fixed $\mathbf{a} \in D$ and $\mathbf{e} = \langle e_i \rangle_{i=1}^n \in \mathbb{R}_{++}^n$, one has

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon^n} \int_{\mathbf{a}}^{\mathbf{a} + \epsilon \mathbf{e}} f(\mathbf{x}) \, \mathrm{d} \, \mathbf{x} = \prod_{i=1}^n e_i \cdot f(\mathbf{a})$$

Proof.

The proof is similar to that we gave when n = 2.

Remark

Recall that,

given the diagonal matrix $\operatorname{\mathbf{diag}} \mathbf{e} = \operatorname{\mathbf{diag}}(e_1, e_2, \dots, e_n)$, the product $\prod_{i=1}^n e_i$ equals the volume $\operatorname{vol}_n(\operatorname{\mathbf{diag}} \mathbf{e})$

of the n-dimensional cuboid $\sum_{i=1}^{n} [\mathbf{0}, e_i \mathbf{e}_i]$

where each $\mathbf{e}_i = (\delta_{ij})_{i=1}^n$ is the ith column of the identity matrix \mathbf{I} .

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension

Changing the Variables of Integration in *n* Dimensions An Instructive Example Outline of a Justification

Integration by Substitution in One Variable

Suppose that, in looking for an antiderivative function

$$\mathbb{R} \ni x \mapsto F(x) = \int f(x) \, \mathrm{d} \, x \in R$$

such that F'(x) = f(x), we try the substitution x = g(u).

This implies that dx = g'(u) du.

So the original antiderivative $F(x) = \int f(x) dx$ becomes the transformed antiderivative $G(u) = \int f(g(u))g'(u) du$, which may be easier to find.

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in *n* Dimensions An Instructive Example
Outline of a Justification

Change of Variables (FMEA, Theorem 4.7.2)

Theorem

Suppose that $A' \ni \mathbf{u} \mapsto \mathbf{g}(\mathbf{u}) = (g_1(\mathbf{u}), \dots, g_n(\mathbf{u})) \in \mathbb{R}^n$ is used to specify the transformation $\mathbf{x} = \mathbf{g}(\mathbf{u})$ from an open and bounded set $A' \subset \mathbb{R}^n$ in " \mathbf{u} -space" onto an open and bounded set $A \subset \mathbb{R}^n$ in " \mathbf{x} -space". Suppose that the Jacobian matrix function

$$A' \ni \mathbf{u} \mapsto \mathbf{J}(\mathbf{u}) = \frac{\partial (g_1, \dots, g_n)}{\partial (u_1, \dots, u_n)}(\mathbf{u}) = \frac{\partial \mathbf{g}}{\partial \mathbf{u}}(\mathbf{u}) \in \mathbb{R}^{n \times n}$$

is bounded.

Let f be a bounded, continuous function defined on A. Then

$$\int \dots \int_{A} f(x_{1}, \dots x_{n}) dx_{1} \dots dx_{n}$$

$$= \int \dots \int_{A'} f(g_{1}(\mathbf{u}), \dots, g_{n}(\mathbf{u})) | \det \mathbf{J}(\mathbf{u}) | du_{1} \dots du_{n}$$

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variables of Integration in One Dimension Changing the Variables of Integration in n Dimensions

An Instructive Example

Outline of a Justification

An Instructive Example, I

In one dimension, integration by substitution leads to the formula $\int f(g(u))g'(u) du$.

By contrast, in n dimensions, one has

$$\int \dots \int_{A} f(x_{1}, \dots x_{n}) dx_{1} \dots dx_{n}$$

$$= \int \dots \int_{A'} f(g_{1}(\mathbf{u}), \dots, g_{n}(\mathbf{u})) | \det \mathbf{J}(\mathbf{u}) | du_{1} \dots du_{n}$$

with the absolute value of the Jacobian determinant.

Why is there this contrast?

An Instructive Example, II

Consider the definite integral

$$J = \int_0^1 (1-x) \, \mathrm{d} \, x = |\frac{1}{0}(x-\frac{1}{2}x^2) = 1 - \frac{1}{2} = \frac{1}{2}$$

Suppose we try to make things even simpler by using the substitution u = 1 - x.

Then u = 1 when x = 0 and u = 0 when x = 1.

Also dx = -du, so the integral becomes

$$J = \int_{1}^{0} u(-du) = |_{1}^{0}(-\frac{1}{2}u^{2}) = \frac{1}{2}$$

An Instructive Example, III

We are integrating over the interval I = [0, 1], so $J = \int_I (1 - x) dx$.

When we make the substitution u=1-x, where $\mathrm{d}\,x=(-1)\,\mathrm{d}\,u$, the integration by substitution formula seems to suggest the transformation

$$\widetilde{J} = \int_{I} u(-1) du = \int_{0}^{1} u(-1) du = |_{0}^{1}(-\frac{1}{2}u^{2}) = -\frac{1}{2}u^{2}$$

But then $\tilde{J} = -J$, so we evidently have a wrong answer!

To get the right answer, we need to consider the absolute value +1 of the Jacobian scalar -1.

This gives $J^* = \int_I u(+1) \, du = \int_0^1 u \, du = |_0^1 (\frac{1}{2}u^2) = \frac{1}{2}$ which is the right answer.

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in n Dimensions An Instructive Example

Outline of a Justification

Outline of a Justification in a Special Case, I

Let $D \ni \mathbf{x} \mapsto f(\mathbf{x}) \in \mathbb{R}$ be a C^1 function defined on an open and convex domain $D \subset \mathbb{R}^n$.

Consider the special case when the mapping $D' \ni \mathbf{u} \mapsto \mathbf{g}(\mathbf{u}) \in \mathbb{R}^n$ determines a C^1 diffeomorphism between a cuboid $[\mathbf{a}, \mathbf{b}] \subset D'$ and its image $\mathbf{g}([\mathbf{a}, \mathbf{b}]) \subset D$.

That is, suppose there exists a continuously differentiable bijection $[a,b] \ni u \mapsto g(u) \in g([a,b])$ whose inverse $g([a,b]) \ni v \mapsto g^{-1}(v) \in [a,b]$ is also continuously differentiable.

Suppose too that at each $\mathbf{u} \in [\mathbf{a}, \mathbf{b}]$, each partial derivative $\partial g_i/\partial x_j$ of the Jacobian matrix $\mathbf{J}(\mathbf{u})$ is positive.

Outline of a Justification in a Special Case, II

Now, given any $\mathbf{e}\gg \mathbf{0}$, the "useful lemma" can be applied, together with the fact that, with $\mathbf{c}=\mathbf{g}(\mathbf{a})$ and so $\mathbf{g}(\mathbf{a}+\epsilon\mathbf{e})\approx \mathbf{c}+\epsilon\mathbf{J}(\mathbf{a})\mathbf{e}$, one has

$$\begin{split} \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon^n} \int_{\mathbf{g}([\mathbf{a}, \mathbf{a} + \epsilon \mathbf{e}])} f(\mathbf{x}) \, \mathrm{d} \, \mathbf{x} &= \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon^n} \int_{\mathbf{c}}^{\mathbf{c} + \epsilon \mathbf{J}(\mathbf{a}) \mathbf{e}} f(\mathbf{x}) \, \mathrm{d} \, \mathbf{x} \\ &= \mathrm{vol}_n(\mathbf{J}(\mathbf{a}) \, \mathbf{diag}(\mathbf{e})) \cdot f(\mathbf{c}) \end{split}$$
 and
$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon^n} \int_{\mathbf{a}}^{\mathbf{a} + \epsilon \mathbf{e}} f(\mathbf{g}(\mathbf{u})) \, \mathrm{d} \, \mathbf{u} &= \mathrm{vol}_n(\mathbf{diag}(\mathbf{e})) \cdot f(\mathbf{g}(\mathbf{a})) \end{split}$$

Outline of a Justification in a Special Case, II

Recall that, for any $n \times n$ matrix \mathbf{A} , the volume $\operatorname{vol}_n(\mathbf{A})$ of the paralleliped $\sum_{j=1}^n [\mathbf{0}, \mathbf{a}^j]$ spanned by its columns \mathbf{a}^j $(j \in \mathbb{N}_n)$ equals $|\det \mathbf{A}|$.

It follows that

$$\mathsf{vol}_n(\mathsf{J}(\mathsf{a})\,\mathsf{diag}(\mathsf{e})) = |\det(\mathsf{J}(\mathsf{a})\,\mathsf{diag}(\mathsf{e}))|$$

= $|\det(\mathsf{J}(\mathsf{a})|\cdot|\det(\mathsf{diag}(\mathsf{e}))|$
= $|\det(\mathsf{J}(\mathsf{a})|\cdot\mathsf{vol}_n(\mathsf{diag}(\mathsf{e}))$

For this special case when each element of $\mathbf{J}(\mathbf{u})$ is positive, this allows us to conclude that when the variables of integration are transformed from $\mathbf{x} = \mathbf{g}(\mathbf{u})$ to \mathbf{u} , the integrand $f(\mathbf{x})$ should be replaced, not by $f(\mathbf{g}(\mathbf{u}))$, but by $f(\mathbf{g}(\mathbf{u})) \cdot |\det(\mathbf{J}(\mathbf{a})|$.

Products of Measure Spaces

Definition

Integration and Antiderivatives

Antiderivatives in One Dimension Antiderivatives in Two Dimensions Antiderivatives in *n* Dimensions

Changing Variables of Integration

Changing the Variable of Integration in One Dimension Changing the Variables of Integration in *n* Dimensions An Instructive Example Outline of a Justification

Carl-Friedrich Gauss (1777-1855) on a German Banknote

Portrait with (i) the graph of the "bell curve"; (ii) part of the University of Göttingen (where Gauss was a professor);

(iii) the formula
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Gaussian Integral, I

For each $b \in \mathbb{R}_+$, let $S(b) := [-b, b]^2$ denote the Cartesian product of the line interval [-b, b] with itself.

That is, S(b) is the solid square subset of \mathbb{R}^2 which is centred at the origin and has sides of length 2b.

For each $b \in \mathbb{R}$ define $I(b) := \int_{-b}^{+b} e^{-x^2} dx$.

Then the Fubini theorem implies that

$$[I(b)]^{2} = \left(\int_{-b}^{+b} e^{-x^{2}} dx \right) \left(\int_{-b}^{+b} e^{-y^{2}} dy \right)$$

$$= \int_{-b}^{+b} \left(\int_{-b}^{+b} e^{-y^{2}} dy \right) e^{-x^{2}} dx$$

$$= \int_{-b}^{+b} \int_{-b}^{+b} e^{-x^{2}} e^{-y^{2}} dx dy$$

$$= \int_{S(b)} e^{-x^{2}-y^{2}} dx dy$$

The Gaussian Integral, II

Next, let $D(b) := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le b^2\}$ denote the disk of radius b centred at the origin.

Consider the transformation $(r, \theta) \mapsto (x, y) = (r \cos \theta, r \sin \theta)$ from polar to Cartesian coordinates.

The Jacobian determinant of this transformation is

$$\begin{vmatrix} \partial x/\partial r & \partial x/\partial \theta \\ \partial y/\partial r & \partial y/\partial \theta \end{vmatrix} = \begin{vmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r$$

It follows that changing to polar coordinates in the double integral $J(b)=\int_{D(b)}e^{-(x^2+y^2)}\,\mathrm{d}\,x\,\,\mathrm{d}\,y$ transforms it to

$$J(b) = \int_0^b \int_0^{2\pi} r e^{-r^2} dr d\theta = \left(\int_0^b r e^{-r^2} dr \right) \left(\int_0^{2\pi} 1 d\theta \right)$$
$$= \left[|_0^b (-\frac{1}{2} e^{-r^2})|^2 2\pi = \pi (1 - e^{-b^2}) \right]$$

Square with Inscribed and Circumscribed Circles

The Gaussian Integral, III

In the previous slide:

- 1. S(b) is the square whose four corners are $(\pm b, \pm b)$;
- 2. D(b) is the circular disk that is inscribed in S(b);
- 3. $D(b\sqrt{2})$ is the circular disk that circumscribes S(b).

It follows that $D(b) \subset S(b) \subset D(b\sqrt{2})$.

But the integrand $e^{-x^2-y^2}$ is non-negative, so

$$J(b) = \int_{D(b)} e^{-(x^2+y^2)} dx dy$$

$$\leq [I(b)]^2 = \int_{S(b)} e^{-(x^2+y^2)} dx dy$$

$$\leq J(b\sqrt{2}) = \int_{D(b\sqrt{2})} e^{-(x^2+y^2)} dx dy$$

From the previous definitions and calculations, it follows that

$$\pi(1 - e^{-b^2}) = J(b) \le [I(b)]^2 \le J(b\sqrt{2}) = \pi(1 - e^{-2b^2})$$

The Gaussian Integral, IV

Given
$$I(b) = \int_{-b}^{+b} e^{-x^2} dx$$
, we have shown that $\pi(1 - e^{-b^2}) \le [I(b)]^2 \le \pi(1 - e^{-2b^2})$.

As $b \to \infty$, both the lower bound $\pi(1-e^{-b^2})$ and upper bound $\pi(1-e^{-2b^2})$ converge to π .

From the squeezing principle, it follows that $[I(b)]^2 \to \pi$.

Because I(b) is evidently positive, one has $I(b) \to \sqrt{\pi}$.

This proves that:

Theorem

The Gaussian integral $\int_{-\infty}^{+\infty} e^{-x^2} dx$ equals $\sqrt{\pi}$.