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Probability Measure

Fix a measurable space (S ,Σ),
where S is a set of unknown states of the world.

Then Σ is a σ-algebra of unknown events.

A probability measure on (S ,Σ) is a measure P : Σ→ R̄+

satisfying the additional requirement that P(S) = 1.

Countable additivity (or just additivity) of the measure P
implies that, for every event E ∈ Σ,
one has P(E ) + P(E c) = 1 where E c := S \ E .

For all E ∈ Σ, because P(E ) ≥ 0, it follows that P(E ) ∈ [0, 1].
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Probability Space

Following Kolmogorov (1933), a probability space
is a triple (S ,Σ,P) where:

1. S is the state space;

2. Σ is a σ-algebra of measurable events,
making (S ,Σ) a measurable space;

3. Σ 3 E 7→ P(E ) ∈ [0, 1] is a probability measure on (S ,Σ),
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Properties of Probability

Theorem
Let (S ,Σ,P) be a probability space.

Then the following hold for all Σ-measurable sets E ,E ′ etc.

1. P(E ) ≤ 1 and P(S \ E ) = 1− P(E );

2. P(E \ E ′) = P(E )− P(E ∩ E ′) and
P(E ∪ E ′) = P(E ) + P(E ′)− P(E ∩ E ′);

3. for every partition {En}mn=1 of S
into m pairwise disjoint Σ-measurable sets,
one has P(E ) =

∑m
n=1 P(E ∩ En);

4. P(E ∩ E ′) ≥ P(E ) + P(E ′)− 1.

5. P(∪∞n=1En) ≤
∑∞

n=1 P(En).

Proof.
We leave the routine proof as an exercise.
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Trivial and Minimal Probability Spaces

Exercise
Given any non-empty set S, show that the triple (S , {∅,S},P)
in which Σ consists of only two sets is a probability space,
called the trivial probability space,
just in case P(∅) = 0 and P(S) = 1.

Exercise
Let (S ,Σ,P) be any probability space.

Given any event E ∈ Σ with ∅ ( E ( S,
show that the σ-algebra σ({E}) generated by {E}
is the Boolean algebra {∅,E ,S \ E , S}.

Show too that (S , σ({E}),PE ) is a probability space,
called a minimal non-trivial probability space,
provided that, for any PE (E ) ∈ [0, 1], we take:

PE (∅) = 0, PE (S \ E ) = 1− PE (E ), and PE (S) = 1
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Two Limiting Properties

Theorem
Let (S ,Σ,P) be a probability space,
and (En)∞n=1 an infinite sequence of Σ-measurable sets.

1. If En ⊆ En+1 for all n ∈ N,
then P(∪∞n=1En) = limn→∞ P(En) = supn P(En).

2. If En ⊇ En+1 for all n ∈ N,
then P(∩∞n=1En) = limn→∞ P(En) = infn P(En).

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 7 of 85



Proving the Two Limiting Properties

Proof.

1. Because En ⊆ En+1 for all n ∈ N, it follows that

En = E1 ∪ [
⋃n

k=2(Ek \ Ek−1)]
and ∪∞n=1 En = E1 ∪ [

⋃∞
k=2(Ek \ Ek−1)]

Note that E1 and the sets Ek \ Ek−1 for k = 2, 3, . . .
are all pairwise disjoint.

Because probabilities are non-negative,
additivity and countable additivity imply that

P(En) = P(E1) +
∑n

k=2 P(Ek \ Ek−1)

P(∪∞n=1En) = P(E1) +
∑∞

k=2 P(Ek \ Ek−1)

= limn→∞ [P(E1) +
∑n

k=2 P(Ek \ Ek−1)]

= limn→∞ P(En)

2. Apply part 1 to the complements S \ En of the sets En.
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Conditional Probability and an Extension
Let (S ,Σ,P) be any probability space with σ-algebra Σ ⊆ 2S .

Let E ∗ ∈ Σ be any measurable event satisfying P(E ∗) > 0.

Exercise
Define Σ(E ∗) := {E ∩ E ∗ | E ∈ Σ} = {E ∈ Σ | E ⊆ E ∗}

and the mapping Σ(E ∗) 3 E 7→ P(E |E ∗) :=
P(E )

P(E ∗)
∈ [0, 1].

Prove that:

1. Σ(E ∗) is a σ-algebra;

2. the mapping E 7→ P(E |E ∗) is a probability measure,
called the conditional probability measure given the event E ∗,
defined on the measurable space (S ,Σ(E ∗));

3. the mapping Σ 3 E 7→ P(E |E ∗) :=
P(E ∩ E ∗)

P(E ∗)
∈ [0, 1]

is an extended conditional probability measure given E ∗,
defined on the whole of Σ while satisfying P(E ∗|E ∗) = 1
as well as P(E \ E ∗|E ∗) = 0 for all E ∈ Σ.
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Bayes’ Rule

The formula P(E |E ∗) =
P(E ∩ E ∗)

P(E ∗)
for all E ,E ∗ ∈ Σ with P(E ∗) > 0
is sometimes known as Bayes’ Rule.
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Conditional Probability: The Law of Total Probability

Proposition

Provided that P(E ) ∈ (0, 1), one has

P(E ′) = P(E )P(E ′|E ) + (1− P(E ))P(E ′|E c)

Proof.
The extended definition of conditional probability implies that

P(E )P(E ′|E ) + (1− P(E ))P(E ′|E c)

= P(E )
P(E ′ ∩ E )

P(E )
+ P(E c)

P(E ′ ∩ E c)

P(E c)

= P(E ′ ∩ E ) + P(E ′ ∩ E c)

But (E ′ ∩ E ) ∩ (E ′ ∩ E c) = ∅ and (E ′ ∩ E ) ∪ (E ′ ∩ E c) = E ′,
so P(E ′ ∩ E ) + P(E ′ ∩ E c) = P(E ′).
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Conditional Probability: Multiplicative Rule

Proposition

Let (Ek)nk=1 be any finite list of events
in the probability space (S ,Σ,P).

Provided that P(∩n−1
k=1Ek) > 0, one has

P(∩nk=1Ek) = P(E1)P(E2|E1)P(E3|E1 ∩ E2) . . . P(En| ∩n−1
k=1 Ek)

Proof.
By induction,
using the extended definition of conditional probability.

Details are left as an exercise.
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Independent Events

The finite or countably infinite family {Ek}k∈K of events
in the probability space (S ,Σ,P) is:

I pairwise independent
if P(E ∩ E ′) = P(E )P(E ′) whenever E 6= E ′;

I independent if for any finite subfamily {Ek}nk=1,
one has P(∩nk=1Ek) =

∏n
k=1 P(Ek).
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Pairwise Independence Does Not Imply Independence

Example

Consider the probability space (S , 2S ,P) where S = N9

and P({s}) = 1/9 for all s ∈ S .

Consider the three events

E1 = {1, 2, 7}, E2 = {3, 4, 7} and E3 = {5, 6, 7}

which all have probability 1
3 .

Note that for each pair i , j ∈ N3 with i 6= j one has Ei ∩ Ej = {7}
and so P(Ei ∩ Ej) = P({7}) = 1

9 = P(Ei )P(Ej).

Thus, the three events are pairwise independent.

Yet E1 ∩ E2 ∩ E3 = {7}
so P(E1 ∩ E2 ∩ E3) = 1

9 6= P(E1)P(E2)P(E3) =
(

1
3

)3
= 1

27 ,
implying that the three events are not independent.
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Implications of Independence

Let (S ,Σ,P) be any probability space.

Notation
Given any E ⊆ S, let E c := S \E denote the complementary event.

Exercise
Show that, if the two events E and Ẽ in Σ are independent, then:

1. the pairs {E c , Ẽ} and {E , Ẽ c} are both independent;

2. provided that P(E ) and P(Ẽ ) are both positive,
the conditional probabilities satisfy:
I P(E |Ẽ ) = P(E ∩ Ẽ )/P(Ẽ ) = P(E ), independent of Ẽ ;
I P(Ẽ |E ) = P(E ∩ Ẽ )/P(E ) = P(Ẽ ), independent of E .
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The Measurable Product Space

Definition
Let 〈(Sk ,Σk)〉nk=1 be a finite list of n measurable spaces.

Then the measurable space (S ,Σ)
is the product of these n measurable spaces just in case:

1. the state space S is the Cartesian product
∏n

k=1 Sk
of the individual state spaces;

2. the σ-algebra Σ on S =
∏n

k=1 Sk
is the measurable product

⊗n
k=1 Σk

of the individual σ-algebras,
defined as the σ-algebra σ (

∏n
k=1 Σk)

generated by all measurable rectangles
∏n

k=1 Ek

satisfying Ek ∈ Σk for all k ∈ Nn.
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The Product of a Finite List of Probability Spaces

Definition
Let 〈(Sk ,Σk ,Pk)〉nk=1 be a finite list of n probability spaces.

Then the probability space (S ,Σ,P)
is the product of these n probability spaces just in case:

1. the measurable space (S ,Σ)
is the measurable product (

∏n
k=1 Sk ,

⊗n
k=1 Σk)

of the n measurable spaces (Sk ,Σk);

2. the probability measure P is the product measure ⊗n
k=1Pk ,

defined as the unique extension
to the product σ-algebra

⊗n
k=1 Σk of the function that,

for each product
∏n

k=1 Ek of measurable rectangles,
satisfies ⊗n

k=1Pk (
∏n

k=1 Ek) =
∏n

k=1 Pk(Ek).
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Independence for Marginal Probabilities

Given the product probability space (
∏n

k=1 Sk ,
⊗n

k=1 Σk ,⊗n
k=1Pk),

any k ∈ Nn, and any event Ek ∈ Σk , there is a corresponding
product measurable marginal event

∏k−1
i=1 Si × Ek ×

∏n
j=k+1 Sj

whose probability is Pk(Ek),
which equals the marginal probability [margSk P](Ek).

The above definitions imply that,
whenever k , ` ∈ Nn with k < ` and also Ek ∈ Σk , E` ∈ Σ`,
then the two marginal events

∏k−1
i=1 Si × Ek ×

∏n
j=k+1 Sj

and
∏`−1

i=1 Si × E` ×
∏n

j=`+1 Sj are independent,
because their intersection∏k−1

h=1
Sh × Ek ×

∏`−1

i=k+1
Si × E` ×

∏n

j=`+1
Sj

has probability Pk(Ek)P`(E`).
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The Product of a Sequence of Probability Spaces

Definition
Let 〈(Sk ,Σk)〉k∈N be an infinite sequence of probability spaces.

Then the measurable space (S ,Σ,P) is the product(∏
k∈N

Sk ,
⊗

k∈N
Σk ,⊗k∈NPk

)
of all these probability spaces just in case:

1. the state space S is the Cartesian product
∏

k∈N Sk
of all the individual state spaces;

2. the σ-algebra Σ on S =
∏

k∈N Sk
is the σ-algebra σ (∪n∈N

⊗n
k=1 Σk) generated by the union

of all the finite product σ-algebras
⊗n

k=1 Σk ;

3. P is the product probability measure ⊗k∈NPk ,
defined as the unique measure that,
for each infinite product

∏
k∈N Ek of measurable rectangles,

satisfies ⊗k∈NPk

(∏
k∈N Ek

)
= infn∈N⊗n

k=1Pk (
∏n

k=1 Ek).
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Random Variables

Definition
Let (S ,Σ,P) be a fixed probability space.

I The function X : S → R is Σ-measurable just in case
for every x ∈ R one has

X−1 ( (−∞, x ] ) := {s ∈ S | X (s) ≤ x} ∈ Σ

I A random variable (with values in R)
is a Σ-measurable function S 3 s 7→ X (s) ∈ R.

I The distribution function or cumulative distribution function
(cdf) of X is the mapping FX : R→ [0, 1] defined by

x 7→ FX (x) = P({s ∈ S | X (s) ≤ x}) = P
(
X−1 ( (−∞, x ] )

)

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 21 of 85



Properties of Distribution Functions, I

Theorem
The CDF of any random variable s 7→ X (s) satisfies:

1. limx→−∞ FX (x) = 0 and limx→+∞ FX (x) = 1.

2. x ≥ x ′ implies FX (x) ≥ FX (x ′).

3. limh↓0 FX (x + h) = FX (x).

4. P({s ∈ S | X (s) > x}) = 1− FX (x).

5. P({s ∈ S : x < X (s) ≤ x ′}) = FX (x ′)− FX (x)
whenever x < x ′,

6. P({s ∈ S : X (s) = x}) = FX (x)− limh↑0 FX (x + h).

Because of Properties 3 and 6 in particular,
CDFs are sometimes said to be càdlàg,
which is a French acronym for continue à droite, limite à gauche
(continuous on the right, limit on the left).
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Properties of Distribution Functions, II

Definition
A continuity point of the CDF FX : R→ [0, 1]
is an x̄ ∈ R at which the mapping x 7→ FX (x) is continuous.

Is it always true that limh↑0 FX (x + h) = FX (x)?

Exercise
Let FX : R→ [0, 1] be the CDF
of any random variable S 3 s 7→ X (s)→ R, and x̄ ∈ R any point.

Prove that the following three conditions are equivalent:

1. x̄ is a continuity point of FX ;

2. P({s ∈ S | X (s) = x̄}) = 0;

3. limh↑0 FX (x̄ + h) = FX (x̄).
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Continuous Random Variables

Definition
I A random variable S 3 s 7→ X (s)→ R is

1. continuously distributed just in case x 7→ FX (x) is continuous;
2. absolutely continuous just in case

there exists a density function R 3 x 7→ fX (x)→ R+

such that FX (x) =
∫ x

−∞ fX (u)du for all x ∈ R.

I The support of the random variable S 3 s 7→ X (s)→ R
is the closure of the set on which FX is strictly increasing.

Example

The uniform distribution on a closed interval [a, b] of R
has density function f and distribution function F given by

fX (x) :=
1

b − a
1[a,b](x) and FX (x) :=


0 if x < a
x − a

b − a
if x ∈ [a, b]

1 if x > b
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The Standard Normal or Gaussian Distribution

Example

The standard normal distribution on R
has density function f given by fX (x) := ke−

1
2 x

2

where the normalizing constant k must be chosen

so that
∫ +∞
−∞ ke−

1
2 x

2

d x = 1.

Make the substitution y = x/
√

2,
implying that y2 = 1

2x
2 and d x =

√
2 d y .

Using the rule for integration by substitution, for each b ∈ R
one has

∫ +b
−b ke−

1
2 x

2

d x =
∫ +b/

√
2

−b/
√

2
k
√

2e−y
2

d y .

Taking limits as b →∞, we see that
∫ +∞
−∞ ke−

1
2 x

2

d x = 1

only if
∫ +∞
−∞ k

√
2e−y

2
d y = 1.

But the Gaussian integral is
∫ +∞
−∞ e−y

2
d y =

√
π and so k

√
2π = 1

implying that k = 1/
√

2π and so fX (x) := (1/
√

2π)e−
1
2 x

2

.
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Expectation w.r.t. a Probability Measure

Given the probability space (S ,Σ,P),
consider the Σ-measurable random variable S 3 s 7→ X (s) ∈ R.

Provided that S 3 s 7→ |X (s)| ∈ R+ is integrable,
with

∫
S |X (s)|P(d s) < +∞,

we can define the expectation or expected value
of the random variable S 3 s 7→ X (s) ∈ R
as the Lebesgue integral

∫
S X (s)P(d s).
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Expectation w.r.t. a Density Function

Let g : R→ R be any Borel measurable function,
and x 7→ fX (x) the density function of the random variable X .

Whenever the integral
∫∞
−∞ |g(x)|fX (x)dx exists,

the expectation of g ◦ X is defined as

E(g(X )) =

∫ ∞
−∞

g(x)fX (x)dx

Theorem
Let g1, g2 : R→ R and a, b, c ∈ R. Then:

1. E(ag1(X ) + bg2(X ) + c) = aE(g1(X )) + bE(g2(X )) + c.

2. If g1 ≥ 0, then E(g1(X )) ≥ 0.

3. If g1 ≥ g2, then E(g1(X )) ≥ E(g2(X )).
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Chebychev’s Inequality: Statement

Theorem
For any random variable S 3 s 7→ X (s) ∈ Z,
fix any measurable function g : Z → R+ with E[g(X (s))] < +∞.

Then for all r > 0 one has P(g(X ) ≥ r) ≤ 1

r
E[g(X )].
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Chebychev’s Inequality: Proof

Proof.
The two indicator functions s 7→ 1g(X )≥r (s) and s 7→ 1g(X )<r (s)

satisfy 1g(X )≥r (s) + 1g(X )<r (s) = 1 for all s ∈ S .

Because g(X (s)) ≥ 0 for all s ∈ S , one has

E[g(X )] = E[{1g(X )≥r (s) + 1g(X )<r (s)} g(X (s))]

= E[1g(X )≥r (s) g(X (s))] + E[1g(X )<r (s) g(X (s))]

≥ E[1g(X )≥r (s) g(X (s))]

≥ r E[1g(X )≥r (s)] = r P(g(X ) ≥ r)

Dividing by r , which is positive,

it follows that
1

r
E[g(X )] ≥ P(g(X ) ≥ r).
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Moments and Central Moments

For a random variable X and any k ∈ N:

I its kth (noncentral) moment is E[X k ]
(where X k(s) denotes the kth power
of the random variable X (s));

I its kth central moment is E[(X − E[X ])k ],
assuming that E[X ] exists in R;

I its variance, VarX , is its second central moment.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 31 of 85



Odd Central Moments of the Gaussian Distribution

Given any n ∈ N and any a > 0,

define mn(a) :=
∫ +a
−a

1√
2π
xne−

1
2 x

2

dx .

When n is odd, one has (−x)n = −xn, so

mn(a) =

∫ +a

−a

1√
2π

xne−
1
2 x

2

dx

=

∫ 0

−a

1√
2π

xne−
1
2 x

2

dx +

∫ +a

0

1√
2π

xne−
1
2 x

2

dx

= −
∫ +a

0

1√
2π

xne−
1
2 x

2

dx +

∫ +a

0

1√
2π

xne−
1
2 x

2

dx

= 0

This allows us to define mn :=
∫ +∞
−∞

1√
2π
xne−

1
2 x

2

dx

as the nth central moment of the standard Gaussian distribution,
and to assert that mn = 0 when n is odd.
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Even Central Moments of the Gaussian Distribution
Now suppose n = 2r , where r ∈ N.

Because
d

dx
e−

1
2 x

2

= −x e−
1
2 x

2

, integrating by parts gives∫ +a

−a

1√
2π

xne−
1
2 x

2

dx = −
∫ +a

−a

1√
2π

xn−1

(
d

dx
e−

1
2 x

2

)
dx

= −
∣∣∣∣+a
−a

1√
2π

xn−1e−
1
2 x

2

+

∫ +a

−a

1√
2π

(n − 1)xn−2e−
1
2 x

2

dx

= − 1√
2π

[an−1 − (−a)n−1]e−
1
2a

2

+

∫ +a

−a

1√
2π

(n − 1)xn−2e−
1
2 x

2

dx

Taking the limit as a→∞, the first non-integral term tends to 0,
so one obtains mn = (n − 1)mn−2.

Note that m0 = 1, so when n is an even integer 2r , one has

m2r = (2r − 1)(2r − 3) · · · 5 · 3 · 1

=
2r(2r − 1)(2r − 2)(2r − 3) · · · 5 · 4 · 3 · 2 · 1

2r(2r − 2)(2r − 4) · · · 6 · 4 · 2
=

(2r)!

2r r !
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Bivariate Distribution

Let (S ,Σ,P) be a probability space.

Suppose that S 3 s 7→ (X (s),Y (s)) ∈ R2

is a pair of Σ-measurable functions.

The bivariate probability distribution function is the mapping
defined by R2 3 (x , y) 7→ FX ,Y (x , y) ∈ [0, 1]
where FX ,Y (x , y) := P({s ∈ S | X (s) ≤ x and Y (s) ≤ y}).

There are two separate
marginal distributions x 7→ FX (x) and y 7→ FY (y)
of the two random variables X (s) and Y (s) given by

FX (x) := P({s ∈ S | X (s) ≤ x}) = lim
y→∞

FX ,Y (x , y)

FY (y) := P({s ∈ S | Y (s) ≤ y}) = lim
x→∞

FX ,Y (x , y)
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Multiple Random Variables

Let S 3 s 7→ X(s) = (Xn(s))Nn=1

be an N-dimensional vector of random variables
defined on the probability space (S ,Σ,P).

I Its joint distribution function is the mapping defined by

RN 3 x 7→ FX(x) := P({s ∈ S | X(s) 5 x}) ∈ [0, 1]

I The random vector X is absolutely continuous
just in case there exists a density function fX : RN → R+

such that

FX(x) =

∫
u5x

fX(u) du for all x ∈ RN
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Independent Random Variables

Let X be an N-dimensional vector valued random variable.

I If X is absolutely continuous,
the marginal density R 3 x 7→ fXn(x) of its nth component Xn

is defined as the N − 1-dimensional iterated integral

fXn(x) =

∫
· · ·
∫

fX(x1, . . . , xn−1, x , xn+1, . . . , xN) dx1 . . . dxN

in which every random variable except Xn gets “integrated out”.

I The N components of X are independent just in case:

1. the joint density fX is the product
∏N

n=1 fXn

of the marginal densities;
2. the joint CDF FX is the product

∏N
n=1 FXn

of the marginal CDFs.

I The infinite sequence (Xn)∞n=1 of random variables
is independent just in case
every finite subsequence (Xn)n∈K (K finite) is independent.
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Expectations of a Function of N Random Variables
Let X be an N-dimensional vector valued random variable,
and g : RN → R a measurable function.

The expectation of g(X) is defined as the N-dimensional integral

E[g(X)] :=

∫
RN

g(u)fX(u) du

when this integral exists.

Theorem
If the collection (Xn)Nn=1 of random variables is independent,

then E
[∏N

n=1 Xn

]
=
∏N

n=1 E(Xn).

Exercise
Prove that if the pair (X1,X2) of r.v.s is independent,
then its covariance satisfies

Cov(X1,X2) := E[(X1 − E[X1])(X2 − E[X2])] = 0
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Zero Covariance Does Not Imply Independence

Example

1. Suppose that X and Y are two independent random variables
that induce on R the respective measures

ξ = 1
2δ0 + 1

2δ1 and η = 1
2δ−1 + 1

2δ1

2. Suppose that Z is the random variable defined by Z = XY .

The measure it induces on R is ζ = 1
4δ−1 + 1

2δ0 + 1
4δ1,

with EZ = 0.

3. The joint measure that (X ,Z ) induces on R2 is

1
2δ(0,0) + 1

4δ(1,−1) + 1
4δ(1,1)

Evidently Cov(X ,Z ) := E[(X − 1
2 )Z ] = E[XZ ] = 0.

Yet the conditional distributions of Z
are δ0 given X = 0 but 1

2δ−1 + 1
2δ1 given X = 1.
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Marginal and Conditional Density
Fix the pair (X1,X2) of random variables.

I The marginal density of X1 is

fX1(x1) =

∫ ∞
−∞

f(X1,X2)(x1, x2)dx2.

I At points x1 where fX1(x1) > 0,
the conditional density of X2 given that X1 = x1 is

fX2|X1
(x2|x1) =

f(X1,X2)(x1, x2)

fX1(x1)

Theorem
If the pair (X1,X2) is independent and fX1(x1) > 0, then

fX2|X1
(x2|x1) = fX2(x2)
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Conditional Expectations
Fix the pair (X1,X2) of random variables.
I The conditional expectation of g(X2) given that X1 = x1 is

E[g(X2)|X1 = x1] =

∫ ∞
−∞

g(x2)fX2|X1
(x2|x1)dx2.

I Given any measurable function (x1, x2) 7→ g(x1, x2),
the law of iterated expectations states that

Ef(X1,X2)
[g((X1,X2)(s))] = EfX1

[EfX2|X1
[g((X1,X2)(s))]]

Proof.

Ef(X1,X2)
[g ] =

∫
R2 g(x1, x2) f(X1,X2)(x1, x2) dx1 dx2

=
∫
R
[∫

R g(x1, x2) fX2|X1
(x2|x1) dx2

]
fX1(x1) dx1

= EfX1
[EfX2|X1

g(x1, x2)]]
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Convergence of Random Variables

The sequence (Xn)∞n=1 of random variables:

I converges in probability to X (written as Xn
p→ X )

just in case, for all ε > 0, one has

lim
n→∞

P(|Xn − X | < ε) = 1.

I converges in distribution to X (written as Xn
d→ X )

just in case, for all x at which FX is continuous,

lim
n→∞

FXn(x) = FX (x)
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Definition of Weak Convergence

Definition
Let (X ,Σ,P) be any probability space
where (X , T ) is a topological space.

Then a continuity set of (X ,Σ,P)
is any set B ∈ Σ whose boundary ∂B satisfies P(∂B) = 0.

Definition
Let (X , d) be a metric space with its Borel σ-algebra Σ
— i.e., the σ-algebra generated by the open sets of (X , d).

A sequence (Pn)n∈N of probability measures
on the measurable space (X ,Σ) converges weakly
to the probability measure P, written Pn ⇒ P,
just in case Pn(B)→ P(B) as n→∞
for any continuity set B of (X ,Σ,P).
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Portmanteau Theorem

Theorem
Let P and (Pn)n∈N be probability measures
on the measurable space (X ,Σ).

Then Pn ⇒ P if and only if:

1. for all bounded continuous functions f : X → R, one has:∫
X
f (x)Pn(d x)→

∫
X
f (x)P(d x)

2. lim sup
n→∞

Pn(C ) ≤ P(C ) for every closed subset C ⊂ X;

3. lim inf
n→∞

Pn(U) ≥ P(U) for every open set U ⊂ X.
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Convergence of Distribution Functions

Theorem
Let F and (Fn)n∈N be cumulative distribution functions on R
with associated probability measures P and (Pn)n∈N
on the Lebesgue real line that satisfy

F (x) = P((−∞, x ]) and Fn(x) = Pn((−∞, x ]) (n ∈ N)

on the measurable space (X ,Σ).

Then Pn ⇒ P if and only if Fn(x)→ F (x)
for all x at which F is continuous.
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Convergence of Probabilities: Warning

The following example shows that it is not very sensible
to say that the sequence of probability measures Pn (n ∈ N)
on a measurable space (X ,Σ) converges to P
just in case Pn(E )→ P(E ) for all E ∈ Σ,
even when E is not a continuity set.

Example

Suppose that for each n ∈ N the probability measure Pn

on the Borel real line corresponds to the uniform distribution
on the interval In := (− 1

n ,
1
n ).

Then Pn ⇒ δ0,
the degenerate probability measure that satisfies δ0({0}) = 1,
even though Pn({0}) = 0 for all n ∈ N.

Verify that 0 is not a continuity point of δ0.
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The Weak Law of Large Numbers

I The sequence (Xn)∞n=1 of random variables is i.i.d.
— i.e., independently and identically distributed
— just in case

1. it is independent, and
2. for every Borel set D ⊆ R, one has P(Xn ∈ D) = P(Xn′ ∈ D).

I The weak law of large numbers:
Let (Xn)∞n=1 be i.i.d. with E(Xn) = µ.
Define the sequence

(X̄n)∞n=1 :=

(
1

n

∑n

k=1
Xk

)∞
n=1

of sample means. Then, X̄n
p→ µ.
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A “Frequentist” Interpretation of Probability

Prove the following:

Let γ = p(X ∈ Ω) ∈ (0, 1).

Consider the following experiment:
“n realizations of X are taken independently.”

Let Gn be the relative frequency with which a realization in Ω
is obtained in the experiment.

Then, Gn
p→ γ.
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The Central Limit Theorem

I The central limit theorem:
Let (Xk)∞k=1 be an infinite sequence of i.i.d. random variables
with common mean E(Xk) = µ and variance V(Xk) = σ2.

For each n ∈ N, define X̄n := 1
n

∑n
k=1 Xk

as the sample average of n observations. Then:

1. E(X̄n) = µ and V(X̄n) =
1

n2

∑n
k=1 V(Xk) =

nσ2

n2
=
σ2

n
;

2. For each n ∈ N, the random variable Zn :=
√
n
X̄n − µ
σ

is standardized in the sense that E[Zn] = 0 and E[Z 2
n ] = 1.

3. One has Zn
d→ Y where Y has the standard normal cdf

given by FY (x) = 1√
2π

∫ x

−∞ e−
1
2 u

2

du for all x ∈ R.

In particular, E(Y ) = 0 and E(Y 2) = 1.
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The Fundamental Theorems
Let (Xn)∞n=1 be i.i.d., with E[Xn] = µ and V(Xn) = σ2. Then:

I by the law of large numbers,

X̄n
p→ µ;

so
X̄n

d→ µ;

I but by the central limit theorem,

Zn :=
X̄n − µ
(σ/
√
n)

d→ Z where FZ (x) =
1√
2π

∫ x

−∞
e−

1
2
u2

du

Example

In case each Xn is Gaussian, it can be shown
that the linear combination Zn is Gaussian.

But E[Zn] = 0 and V(Zn) = 1,
so each Zn is exactly Gaussian with mean 0 and variance 1.
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Concepts of Convergence, I

Definition
Say that the sequence Xn of random variables
converges almost surely or with probability 1 or strongly
towards X just in case, for every ε > 0, one has

lim inf
n→∞

P({ω ∈ Ω | |Xn(ω)− X (ω)| < ε}) = 1

Hence, the values of Xn approach those of X ,
in the sense that the event that Xn(ω)
does not converge to X (ω) has probability 0.

Almost sure convergence is often denoted by Xn −−→
P−a.s.

X ,

with “P-a.s.” under the arrow that indicates convergence.

Of course, the concept of almost sure convergence
depends on the probability measure being used.
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Concepts of Convergence, II

For generic random elements Xn on a general metric space (S , d),
almost sure convergence is defined similarly,
replacing the absolute value |Xn(ω)− X (ω)|
by the distance d(Xn(ω),X (ω)).

Almost sure convergence implies convergence in probability,
and a fortiori convergence in distribution.

It is the notion of convergence
used in the strong law of large numbers.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 53 of 85



The Strong Law

Definition
The strong law of large numbers (or SLLN)
states that the sample average X̄n

converges almost surely to the expected value µ = EX .

It is this law (rather than the weak LLN)
that justifies the intuitive interpretation
of the expected value of a random variable
as its “long-term average when sampling repeatedly.”
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Differences Between the Weak and Strong Laws

The weak law states that for a specified large n, the average X̄n

is likely to be near µ.

This leaves open the possibility that |X̄n − µ| ≥ ε
happens an infinite number of times, although at
infrequent intervals.

The strong law shows that this almost surely will not occur.

In particular, it implies that with probability 1,
for any ε > 0 there exists nε
such that |X̄n − µ| < ε holds for all n > nε.
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Moment-Generating Functions

Definition
The nth moment about the origin is defined as mn := E[X n].

This may not exist for large n unless the random variable X
is essentially bounded both above and below,
meaning that there exists an upper bound x̄ on the modulus
such that P({ω ∈ Ω | |X (ω)| ≤ x̄}) = 1.

Definition
The moment-generating function of a random variable X is

R 3 t 7→ MX (t) := E[etX ]

wherever this expectation exists.

At t = 0, of course, MX (0) = 1.

For t 6= 0, however, unless X is essentially bounded,
the expectation may not exist because etX can be unbounded.
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The Gaussian Case
For a normal or Gaussian distribution N(µ, σ2),
even though the random variable is unbounded,
the tails of the distribution are thin enough to ensure
that the moment generating function exists and is given by

M(t; µ, σ2) = E[etX ] =

∫ ∞
−∞

etx
1√

2πσ2
e−(x−µ)2/2σ2

dx

=

∫ ∞
−∞

1√
2πσ2

etx−(x−µ)2/2σ2
dx

Now make the substitution y = (x − µ− σ2t)/σ,
implying that dx = σdy and that

tx − (x − µ)2

2σ2
= −1

2y
2 + µt + 1

2σ
2t2

This transforms the integral to

M(t; µ, σ2) =

∫ ∞
−∞

1√
2π

e−
1
2
y2
eµt+ 1

2
σ2t2

dy = eµt+ 1
2
σ2t2
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From Moment-Generating Functions to Moments

Note that

etX = 1 + tX +
t2X 2

2!
+

t3X 3

3!
+ · · ·+ tnX n

n!
+ · · · =

∑∞

n=0

tnX n

n!

Taking the expectation term by term
and then using the definition of the moments of the distribution,
one obtains

MX (t) = E[etX ]

= 1 + tE[X ] +
t2

2!
E[X 2] + · · ·+ tn

n!
E[X n] + · · ·

= 1 + tm1 +
t2

2!
m2 + · · ·+ tn

n!
mn + · · ·

=
∑∞

n=0

tn

n!
mn
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Derivatives of the Moment-Generating Function
Suppose we find the nth derivative with respect to t

of MX (t) =
∑∞

k=0

tk

k!
mk .

One can easily proved by induction on n that

dn

dtn
tk = k(k − 1)(k − 2) . . . (k − n + 1)tk−n =

k!

(k − n)!
tk−n

So differentiating t 7→ MX (t) term by term n times, one obtains

M
(n)
X (t) = E

[
dn

dtn
etX
]

=
∑∞

k=n

k!

(k − n)!

tk−n

k!
mk

=
∑∞

k=n

tk−n

(k − n)!
mk

Putting t = 0 yields the equality M
(n)
X (0) = t0

0!mn = mn.

In this sense, the moment-generating function
does “exponentially generate”
the moments of the probability distribution.
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 60 of 85



Definition of Characteristic Functions
The moment-generating function may not exist
because the expectation need not converge absolutely.

By contrast, the expectation of the bounded function e itX

always lies in the unit disc of the complex plane C.

So the characteristic function
that we are about to introduce always exists,
which makes it more useful in many contexts.

Definition
For a scalar random variable X with CDF x 7→ FX (x),
the characteristic function is defined
as the (complex) expected value of e itX = cos tX + i sin tX ,
where i =

√
−1 is the imaginary unit,

and t ∈ R is the argument of the characteristic function:

R 3 t 7→ φX (t) = Ee itx =

∫ +∞

−∞
e itxdFX (x) ∈ C
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Gaussian Case

Consider a normally distributed random variable X
with mean µ and variance σ2.

Its characteristic function can be found
by replacing t by it in the expression for the moment

M(t; µ, σ2) = E[etX ] = eµt+ 1
2
σ2t2

Recalling that (it)2 = −t2, the result is

ϕ(t; µ, σ2) =

∫ ∞
−∞

e itx
1√

2πσ2
e−

1
2

(x−µ)2/σ2
dx = e iµt−

1
2
σ2t2

In the standard normal or N(0, 1) case, when µ = 0 and σ2 = 1,

one has ϕ(t; 0, 1) = e−
1
2
t2

.
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Linear Combinations of Gaussian Random Variables

Suppose that the two independent random variables X and Y
have respective means mX ,mY and variances vX , vY .

Consider the linear combination Z := αX + βY where α, β ∈ R.

Exercise
Show that Z has mean mZ = αmX + βmY

and variance vZ = α2vX + β2vY .

Proposition

If X and Y are both Gaussian, then so is Z .
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Proofs

Proof of Proposition.

Because X and Y are independent and Gaussian,
the char. function ϕZ (t) = E[e itZ ] of Z = αX + βY satisfies

ϕZ (t) = E[e it(αX+βY )] = E[e i(αt)X ]E[e i(βt)Y ] = ϕX (αt)ϕY (βt)

But X and Y are Gaussian
with respective means mX , mY and variances vX , vY .

So ϕX (t) = e imX t− 1
2
vX t

2
and ϕY (t) = e imY t− 1

2
vY t2

, implying that

ϕX (αt) = e iαmX t− 1
2
α2vX t

2
and ϕY (βt) = e iβmY t− 1

2
β2vY t2

It follows that ϕZ (t) = ϕX (αt)ϕY (βt)
takes the form exp[i(αmX + βmY )t − 1

2 (α2vX + β2vY )t2],

which is the characteristic function e imZ t− 1
2
vZ t

2

of a Gaussian random variable with mean mZ = αmX + βmY

and variance vZ = α2vX + β2vY .
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Use of Characteristic Functions

Characteristic functions can be used
to give superficially simple proofs
of both the LLN and the classical central limit theorems.

The following merely sketches the argument.

For much more careful detail,
see Richard M. Dudley’s major text, Real Analysis and Probability.

A key tool is Lévy’s continuity theorem.

For a sequence of random variables,
this connects convergence in distribution
to pointwise convergence of their characteristic functions.
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Statement of Lévy’s Continuity Theorem

Theorem
Suppose (Xn)∞n=1 is a sequence of random variables,
not necessarily sharing a common probability space,
with the corresponding sequence

R 3 t 7→ ϕn(t) = Ee itXn ∈ C (n ∈ N)

of complex-valued characteristic functions.

If Xn converges in distribution to the random variable X ,
then t 7→ ϕn(t) converges pointwise to t 7→ ϕ(t) = Ee itX ,
the characteristic function of X .

Conversely, if t 7→ ϕn(t) converges pointwise
to a function t 7→ ϕ(t) which is continuous at t = 0,
then t 7→ ϕ(t) is the characteristic function Ee itX
of a random variable X , and Xn converges in distribution to X .
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Linear Approximation to the Characteristic Function

Suppose that the random variable X
has a mean µX := EX =

∫∞
−∞ xdF (x).

One can then differentiate within the expectation to obtain

d

dt
Ee itX = E

[
d

dt
e itX

]
= E[iXe itX ]

Consider the linear approximation

Ee ihX = 1 + i [µ+ ξ(h)]h where ξ(h) := (Ee ihX − 1− ihµ)/h

By l’Hôpital’s rule, one has

lim
h→0

ξ(h) = “0/0” = lim
h→0

(E[iXe ihX ]− iµ)/1 = E[iX ]− iµ = 0
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Quadratic Approximation to the Characteristic Function
Next, suppose that the random variable X
has not only a mean µX :=

∫∞
−∞ xdF (x),

but also a variance σ2
X :=

∫∞
−∞(x − µ)2dF (x).

One can then differentiate twice within the expectation to obtain

d2

dt2
Ee itX = E

[
d2

dt2
e itX

]
= E[(iX )2e itX ] = −E[X 2e itX ]

Consider the quadratic approximation

Ee ihX = 1 + iµh − 1
2 [σ2 + µ2 + η(h)]h2

where η(h) := (1/h2)[Ee ihX − 1− ihµ] + 1
2 (σ2 + µ2).

Applying l’Hôpital’s rule twice, one has

lim
h→0

1

h2
[Ee ihX − 1− ihµ] = “0/0” = lim

h→0

1

2h
(E[iXe ihX ]− iµ)

= “0/0” = lim
h→0

1
2E[(iX )2e ihX ] = −1

2EX
2 = −1

2 (σ2 + µ2)

implying that η(h)→ 0 as h→ 0.
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A Helpful Lemma

Lemma
Suppose that R 3 h 7→ ζ(h) ∈ C satisfies ζ(h)→ 0 as h→ 0.

Then for all z ∈ C, one has {1 + 1
n [z + ζ(1/n)]}n → ez as n→∞.

For a sketch proof, first one can show that

lim
n→∞
{1 +

1

n
[z + ζ(1/n)]}n = lim

n→∞
(1 +

1

n
z)n

Second, in case z ∈ R, putting h = 1/n and taking logs gives

ln

[
lim
n→∞

(1 +
1

n
z)n
]

= ln

[
lim
h→0

(1 + hz)1/h

]
= lim

h→0

1

h
[ln(1 + hz)− ln 1] =

d

dh
ln(1 + hz)

∣∣∣∣
h=0

= z

implying that (1 + 1
nz)n → ez as n→∞.

Dealing with the case when z is complex is more tricky.
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Sketch Proof of the Weak LLN, I

Consider now any infinite sequence X1,X2, . . . of observations
of IID random variables drawn from a common CDF F (x) on R,
with common characteristic function t 7→ ϕX (t) = E[e itX ].

For each n ∈ N, let X̄n := 1
n

∑n
j=1 Xj denote the random variable

whose value is the sample mean of the first n observations.

This sample mean has its own characteristic function

ϕX̄n
(t) := E[e itX̄n ] = E

[∏n

j=1
e itXj/n

]
Then

ϕX̄n
(t) =

∏n

j=1
E[e itXj/n] =

(
E[e itX/n]

)n
because the random variables Xj

are respectively independently and identically distributed.
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Sketch Proof of the Weak LLN, II
Suppose we take the linear approximation

Ee ihX = 1 + i [µ+ ξ(h)]h where ξ(h)→ 0 as h→ 0

and replace h by t/n to obtain

E[e itX̄n ] = {1 + (it/n)[µ+ ξ(t/n)]}n

Because ξ(t/n)→ 0 as n→∞ and so h = t/n→ 0, one has

lim
n→∞
{1 +

1

n
it[µ+ ξ(t/n)]}n = lim

n→∞
(1 +

1

n
itµ)n = e itµ = E[e itY ]

where E[e itY ] is the characteristic function
of a degenerate random variable Y
which is equal to µ with probability 1.

Using the Lévy theorem, it follows that the distribution of X̄n

converges to this degenerate distribution,
implying that X̄n converges to µ in probability.
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Sketch Proof of the Classical CLT, I
For each j ∈ N, let Zj denote the standardized value (Xj − µ)/σ
of Xj , defined to have the property that EZj = 0 and EZ 2

j = 1.

Now define Z̄n :=
∑n

j=1
Zj√
n

.

This is called the standardized mean because:

1. linearity implies that EZ̄n = 1√
n

∑n
j=1 EZj = 0;

2. independence implies that EZ̄ 2
n = 1

n

∑n
j=1 EZ 2

j = 1.

Putting µ = 0 and σ2 = 1 in the quadratic approximation

Ee ihX = 1 + iµh − 1
2 [σ2 + µ2 + η(h)]h2

implies Ee ihZ = 1− 1
2 [1 + η(h)]h2 where η(h)→ 0 as h→ 0.

Replacing hX by tZj/
√
n in this quadratic approximation yields

E[e itZj/
√
n] = 1− 1

2

t2

n
[1 + η(t/n)]
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Sketch Proof of the Classical CLT, II
Now independence implies that

E[e itZ̄n ] = E
[

exp

(
it

1√
n

∑n

j=1
Zj

)]
=
∏n

j=1
E[e itZj/

√
n]

Hence, another careful limiting argument shows that

E[e itZ̄n ] =

{
1− 1

2

t2

n
[1 + η(t/n)]

}n

→ e−
1
2 t

2

as n→∞

But we showed that this limit e−
1
2 t

2

is precisely the characteristic function
of a standard normal distribution N(0, 1).

Because t 7→ e−
1
2 t

2

is continuous at t = 0,
the central limit theorem follows from the Lévy continuity theorem,
which confirms that the convergence of characteristic functions
implies convergence in distribution.
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Economic Models with a Continuum of Agents, I
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Economic Models with a Continuum of Agents, II

Truman Bewley (1987) “Stationary Monetary Equilibrium
with a Continuum of Independently Fluctuating Consumers”
in W. Hildenbrand and A. Mas-Colell (eds.)
Contributions to Mathematical Economics
in Honor of Gerard Debreu (North Holland) ch. 5.
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A Continuum of Independent Random Variables

Hotelling had a continuum of ice cream buyers
distributed along a finite beach on a hot day.

Vickrey and Mirrlees considered optimal income taxation
when a population of workers have continuously distributed skills.

Aumann and Hildenbrand modelled
a perfectly competitive market system
with a continuum of traders
who each have negligible individual influence over market prices.

Market clearing in the economy as a whole requires,
for each separate commodity, equality between:
(i) mean demand per trader; and (ii) mean endowment per trader.

Bewley considered a continuum of consumers
with “independently fluctuating” random endowments.

Then, is mean endowment in the population even defined?
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A Process with a Continuum of IID Random Variables

Let L denote the Lebesgue σ-field on R,
and let I denote the unit interval [0, 1].

Definition
A process with a continuum of iid random variables
on the Lebesgue unit interval (I ,L, λ) involves:

I a sample probability space (Ω,F ,P);

I a mapping I × Ω 3 (i , ω) 7→ f (i , ω) ∈ R satisfying

P (∩n∈N{ω ∈ Ω | f (in, ω) ∈ Bn})

=
∏

n∈N
P ({ω ∈ Ω | f (in, ω) ∈ Bn})

for every countable collection (iN,BN)
of pairs (i ,B) ∈ I × B.
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Difficulty Illustrated

In the following graphs, think of the horizontal axis
as the Lebesgue unit interval, indicating something like
a U.S. social security number (SSN) (×10−9).

Think of the vertical axis as the Lebesgue unit interval,
indicating something like an individual’s height,
measured as a percentile.

Assume that SSN gives no information about height.

Then the heights of, approximately, a continuum of individuals
may be regarded as statistically IID random variables.
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Difficulty Illustrated: 25 Random Draws

The points have x ∈
{

(1/25)(n − 1
2 ) | n ∈ {1, . . . , 25}

}
and y pseudo-randomly drawn from a uniform distribution on [0, 1].

Finding the mean of y is becoming messy.
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Difficulty Illustrated: 200 Random Draws

The points have x ∈
{

(1/200)(n − 1
2 ) | n ∈ {1, . . . , 200}

}
and y pseudo-randomly drawn from a uniform distribution on [0, 1].

Finding the mean of y is becoming impossible.
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Essential Supremum and Infimum

Recall that the supremum is the least upper bound,
and the infimum is the greatest lower bound.

Define the essential supremum and infimum
of each random variable ω 7→ f (i , ω) as:

ess sup f (i , ω) := inf {b ∈ R | P({ω ∈ Ω | f (i , ω) ≤ b}) = 1}
ess inf f (i , ω) := sup {a ∈ R | P({ω ∈ Ω | f (i , ω) ≥ a}) = 1}

These differ from the supremum and infimum
by allowing one to disregard an event which has probability zero.
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A Theorem on Non-Measurable Sample Paths

For all the continuum of IID random variables ω 7→ f (i , ω),
let a ∈ R denote the common value of ess inf f (i , ω)
and b ∈ R the common value of ess sup f (i , ω).

Theorem
Whenever a < b,
the sample path I 3 i 7→ f (i , ω) is P-a.s. non measurable.

Of course, when a = b, then P-a.s. one has f (i , ω) = a = b
— i.e., the process (i , ω) 7→ f (i , ω) is essentially constant.

The key idea in the proof is to show that the sample path
has a lower integral a and an upper integral b.
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Monte Carlo Integration
Because of the strong law of large numbers, here is one way
to approximate numerically the integral

∫
K f (x)µ(dx)

of a complicated function of ` variables, where K ⊂ R`
has an `-dimensional Lebesgue measure µ(K ) < +∞.

1. First, choose a large sample 〈xr 〉nr=1 of n points
that are independent and identically distributed random draws
from the set K , with common probability measure π
satisfying π(B) = µ(B)/µ(K ) for all Borel sets B ⊆ K .

2. Second, calculate the sample average function value

Mn(〈xr 〉nr=1) :=
1

n

∑n

r=1
f (xr )

3. Third, observe that, by the strong law of large numbers,
the sample average Mn(〈xr 〉nr=1) converges almost surely
as n→∞ to the theoretical mean

Eπ[f (xk)] =

∫
K
f (x)π(dx) =

1

µ(K )

∫
K
f (x)µ(dx)
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The Monte Carlo Integral: Rescuing Macroeconomics

Definition
Given the process I × Ω 3 (i , ω) 7→ f (i , ω) ∈ R
with a continuum of iid random variables,
define the Monte Carlo integral as the random variable

Ω 3 ω 7→ MC

∫
I
f (i , ω)λ(di) ∈ R

as the almost sure limit as n→∞ of the average 1
n

∑n
k=1 f (ik , ω)

when the n points 〈ik〉nk=1 are independent draws
from the Lebesgue unit interval (I ,L, λ).

Then, even though the Lebesgue integral
∫
I f (i , ω)λ(di)

is almost surely undefined, the strong law of large numbers
implies that the Monte Carlo integral MC

∫
I f (i , ω)λ(di)

is well defined as a degenerate random variable Ω 3 ω 7→ δm(ω)
that attaches probability one
to the common theoretical mean m :=

∫
Ω f (i , ω)P(dω).
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