Linear Algebra

Axioms for a field

FORMULA SHEET

$\begin{array}{ll} {\rm A1} & a+(b+c)=(a+b)+c\\ {\rm A2} & a+0=0+a=a\\ {\rm A3} & a+(-a)=(-a)+a=0\\ {\rm A4} & a+b=b+a\\ {\rm M1} & a\cdot(b\cdot c)=(a\cdot b)\cdot c\\ {\rm M2} & a\cdot 1=1\cdot a=a, a\neq 0\\ {\rm M3} & a\cdot a^{-1}=a^{-1}\cdot a=1, a\neq 0\\ {\rm M4} & a\cdot b=b\cdot a\\ {\rm D1} & a\cdot(b+c)=a\cdot b+a\cdot c\\ \end{array}$

Associative law for addition Existence of an additive identity Existence of an additive inverse Commutative law for addition

Associative law for multiplication Existence of a multiplicative identity Existence of a multiplicative inverse Commutative law for multiplication

Distributive law

Axioms for a vector space

V0	$\mathbf{u} + \mathbf{v} \in V$	Closure under vector addition
V1	$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	Associative law for vector addition
V2	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	Commutative law for vector addition
V3	$0+\mathbf{v}=\mathbf{v}+0=\mathbf{v}$	Existence of zero vector (additive identity)
V4	$\mathbf{v} + (-\mathbf{v}) = (-\mathbf{v}) + \mathbf{v} = 0$	Existence of negative vectors (additive inverses)
S0	$k\mathbf{v} \in V$	Closure under scalar multiplication
S1	$h(k\mathbf{v}) = (hk)\mathbf{v}$	Associative law for scalar multiplication
S2	$1\mathbf{v} = \mathbf{v}$	Multiplicative identity for scalar multiplication
S3	$(h+k)\mathbf{v} = h\mathbf{v} + k\mathbf{v}$	First distributive law
S4	$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$	Second distributive law

Properties of matrix operations

$\operatorname{tr}(A{+}B) = \operatorname{tr}(A) + \operatorname{tr}(B)$	$\operatorname{tr}(AB) = \operatorname{tr}(BA)$
$\operatorname{tr}(A^T) = \operatorname{tr}(A)$	$\operatorname{tr}(kA) = k\operatorname{tr}(A)$
$\det(AB) = \det(A)\det(B)$	$\det(A^T) = \det(A)$
$\det(A^{-1}) = \det(A)^{-1}$	$\det(kA) = k \det(A)$
$(A+B)^T = A^T + B^T$	$(AB)^T = B^T A^T$