Linear Algebra

FORMULA SHEET

Axioms for a field

$$
\begin{array}{lll}
\text { A1 } & a+(b+c)=(a+b)+c & \text { Associative law for addition } \\
\text { A2 } & a+0=0+a=a & \text { Existence of an additive identity } \\
\text { A3 } & a+(-a)=(-a)+a=0 & \text { Existence of an additive inverse } \\
\text { A4 } & a+b=b+a & \text { Commutative law for addition } \\
\text { M1 } & a \cdot(b \cdot c)=(a \cdot b) \cdot c & \text { Associative law for multiplication } \\
\text { M2 } & a \cdot 1=1 \cdot a=a, a \neq 0 & \text { Existence of a multiplicative identity } \\
\text { M3 } & a \cdot a^{-1}=a^{-1} \cdot a=1, a \neq 0 & \text { Existence of a multiplicative inverse } \\
\text { M4 } & a \cdot b=b \cdot a & \text { Commutative law for multiplication } \\
\text { D1 } & a \cdot(b+c)=a \cdot b+a \cdot c & \text { Distributive law }
\end{array}
$$

Axioms for a vector space

V0 $\mathbf{u}+\mathbf{v} \in V$
V1 $\quad(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
V2 $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
V3 $\quad \mathbf{0}+\mathbf{v}=\mathbf{v}+\mathbf{0}=\mathbf{v}$
V4 $\quad \mathbf{v}+(-\mathbf{v})=(-\mathbf{v})+\mathbf{v}=\mathbf{0}$
S0 $k \mathbf{v} \in V$
S1 $h(k \mathbf{v})=(h k) \mathbf{v}$
S2 $1 \mathbf{v}=\mathbf{v}$
S3 $(h+k) \mathbf{v}=h \mathbf{v}+k \mathbf{v}$
S4 $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$

Closure under vector addition
Associative law for vector addition Commutative law for vector addition Existence of zero vector (additive identity)
Existence of negative vectors (additive inverses)
Closure under scalar multiplication Associative law for scalar multiplication Multiplicative identity for scalar multiplication First distributive law Second distributive law

Properties of matrix operations

$$
\begin{aligned}
\operatorname{tr}(A+B) & =\operatorname{tr}(A)+\operatorname{tr}(B) & \operatorname{tr}(A B) & =\operatorname{tr}(B A) \\
\operatorname{tr}\left(A^{T}\right) & =\operatorname{tr}(A) & \operatorname{tr}(k A) & =k \operatorname{tr}(A) \\
\operatorname{det}(A B) & =\operatorname{det}(A) \operatorname{det}(B) & \operatorname{det}\left(A^{T}\right) & =\operatorname{det}(A) \\
\operatorname{det}\left(A^{-1}\right) & =\operatorname{det}(A)^{-1} & \operatorname{det}(k A) & =k \operatorname{det}(A) \\
(A+B)^{T} & =A^{T}+B^{T} & (A B)^{T} & =B^{T} A^{T}
\end{aligned}
$$

