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Abstract

When large firms represent a disproportionate share of the economy, business cycles may

be governed by idiosyncratic shocks to these large firms. We show – theoretically - in a

standard firm dynamics setting (Hopenhayn, 1992) with a finite number of firms, each

subject to persistent idiosyncratic productivity shocks, that this “granular hypothesis”

(Gabaix 2011) leads to substantial aggregate fluctuations. A fat-tailed distribution of

firm size arises because of large entrants and persistent shocks.

The model, calibrated to the US economy with a large number of firms, generates fluctu-

ations of aggregate TFP (respectively output) of 1.1% (respectively 2.3%). The structure

of the model allows us to study the micro and macro impact of a shock on the largest

firm. Such a shock is contractionary at the aggregate level and expansionary at the id-

iosyncratic level. The conditional prediction of the model on firms’ co-movement shows

that the differential growth between large and small firms is pro-cyclical as it is in the

data.
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1 Introduction

When large firms represent a disproportionate share of the economy, aggregate fluctu-

ations may be governed by idiosyncratic shocks to these large firms. This hypothesis

– to which we refer as the “granular hypothesis” as proposed in Gabaix 2011 - opens

the possibility of doing away with aggregate shocks, instead tracing back the origins

of aggregate fluctuations to micro shocks hitting a small number of large firms. While

this hypothesis has proven influential in the literature, it remains largely an accounting

result - concerning the aggregation of firm level variability in static environments –

whose relation to the extant theory of firm dynamics is left unspecified. Partly as a

result, the granular hypothesis remains a possibility result whose quantitative relevance

has not yet been established.

In this paper we cast the granular hypothesis in a standard firm dynamics setting.

Building on the the setup of Hopenhayn 1992, we develop a quantitative theory of ag-

gregate fluctuations arising only from idiosyncratic shocks to firm level productivity.

This allows us to generalize the theoretical results in Gabaix 2011 to account for persis-

tent micro-level shocks as well as endogenous firm entry and exit. Further, we provide

a quantitative evaluation of this hypothesis and find that it yields aggregate fluctua-

tions of the same order of magnitude as a standard representative-firm real business

cycle model. A calibration of our model to the US economy with a large number of

firms leads to sizable aggregate fluctuations: the standard deviation of aggregate TFP

(respectively output) is 1.1% (respectively 2.3%).

Our model features a finite number of firms. Furthermore we do not rely on any

“law of large number” arguments. Instead, we show how the dynamics of each firm

affects the aggregate state of the economy. This can be summarized by a “reshuffling”

shock on the firm size distribution - a shock that affect the whole distribution. The

stochastic properties of this shock and the law of motion of the firm size distribution

are governed by the idiosyncratic productivity process, the distribution of entrants and

the endogenous exit decision.

We show theoretically that, as the number of firms increases, the aggregate volatility

rate of convergence is smaller than what a simple central limit argument would predict.

This result relies on the fat-tailedness of the firm size distribution as in Gabaix 2011.

We generalize the latter by taking into account the persistence of the idiosyncratic

shock process, firm entry and exit. In particular, we show that a low persistence of the
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idiosyncratic productivity process increases the rate of convergence of the aggregate

volatility.

Our framework allows us to study the macro and micro dynamic effects of a negative

productivity shock on the largest firm. Such a shock is contractionary at the aggregate

level. By construction, the decrease in the productivity of the largest firm induces

a smaller aggregate productivity, since the latter is shown to be an average of the

idiosyncratic productivities. However, this shock induces the largest firm to reduce

its size and to cut its labor demand. The latter pushes the wage down. Other firms

benefit from this reduction of their cost. Their productivity remains the same while

their cost decreases, so they expand. Overall, a negative shock on the largest firm is

contractionary at the aggregate level but expansionary at the firm level. Our mechanism

goes through the competition in the input market.

The upshot of this theory is that the business cycle, in our setting, is led by the large

firms dynamics. In particular, if a small number of large firms face higher productivity

than usual, this will lead to an aggregate expansion. To the econometrician, it would

thus seem as if large firms are more cyclically sensitive, in that they co-move more with

the aggregate echoing the recent findings in Moscarini and Postel-Vinay 2012. The

latter find that the correlation between the differential net growth rate of large versus

small firms is negatively correlated with the unemployment rate. We find a similar

result on a simulated representative panel drawn from our calibrated model. Though

our results are consistent with Moscarini and Postel-Vinay 2012 findings, causality is

reversed : in our setting, it is not that large firms are more cyclically sensitive. Rather

it is the business cycle itself that reflects large firms dynamics.

The paper relates to two distinct literatures: an emerging literature on the micro-origins

of aggregate fluctuations and the more established firm dynamics literature. Gabaix

2011 describes the “granular hypothesis” and shows the possibility result that we extend

to our framework. Other papers studying the micro-origins of aggregate fluctuations are

Acemoglu et al. 2012, di Giovanni and Levchenko 2012, Carvalho 2010 and Carvalho

and Gabaix 20131. Relative to this literature, we contribute by grounding the granular

hypothesis in a standard firm dynamics setting, extending the existing theoretical results

to this setting and providing a first attempt at quantification.

1Some empirical evidence can be found in di Giovanni, Levchenko and Mejean 2012.
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This paper is also related to the firm dynamics literature: Hopenhayn 1992, Camp-

bell 1998, Veracierto 2002, Khan and Thomas 2003, 2008, Bachman and Bayer 2009.

Some papers have studied aggregate fluctuations in an entry/exit framework as Lee

and Mukoyama 2008, Clementi and Palazzo 2010 and Bilbiie et al. 2012. However they

restrict their analysis to common, aggregate, shocks. Relative to this literature, we

show that its standard workhorse model – once the assumption regarding a continuum

of firms is dropped and the firm size distribution is fat tailed – already contains in it a

theory of the business cycle. We show this both theoretically and quantitatively.

The paper is organized as follows. Section 2 derives the model. Section 3 shows our

theoretical results on the rate of decay of aggregate fluctuations. Section 4 explains the

numerical algorithm used to solve our framework. Section 5 explains the calibration,

the origin of fat-tailed firm size distribution and exposes our first quantitative results.

Section 6 displays the impulse response to a negative shock on the biggest firm. Section

7 looks at the cyclicality of large versus small firm in our model. Finally, section 8

concludes.

2 Model

We extend the Hopenhyan 1992 economy to allow for a finite (but large) number of

firms. Consistent with this new feature we do not rely on any ”law of large number”

assumption, which implies that the firm size distribution becomes stochastic. Because

of this crucial property, our model is able to generate aggregate fluctuations with only

idiosyncratic shock of this crucial property.

Firms differ in their productivity level, which follows a discrete Markovian process.

Incumbents have access to a decreasing return to scale technology using labor as the

only input. They produce a unique good in a perfectly competitive market. They face

an operating cost at each period, which generates endogenous exit. There is a large but

finite number of potential entrants that differ in their productivity. To operate next

period, potential entrants have to pay an entry cost. The economy is closed in a partial

equilibrium fashion by specifying a labor supply that increases with the wage. One can

think of this economy as one where households do not have access to savings and have

a linear utility in consumption.
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In this section, we describe the productivity process, the incumbents’ problem and the

entrants’ problem. We then study the law of motion of the productivity distribution,

the market clearing and aggregation. Finally, we define the stationary equilibrium.

2.1 Productivity Process

As stated above, the level of idiosyncratic productivity is discrete on a grid and follows

a Markov chain with a transition matrix P. The productivity space is thus described

by a ns-uple Φ := {ϕ1, . . . , ϕns
} such that ϕ1 < . . . < ϕns

. A firm is in state (or

productivity state) k when its idiosyncratic productivity is equal to ϕk. We denote

F (.|ϕ) the conditional distribution of the next period idiosyncratic productivity ϕ′

given the current period idiosyncratic productivity ϕ.2

Although the productivity process is discrete, the number of states is large (123 in the

baseline calibration) and is a discretization of an AR(1) process. So, to keep it simple,

one can think of the idiosyncratic (log) productivity process as beeing:

ϕi
t+1 = ρϕi

t + eit, e
i
t  N (0, σe)

To discretize this AR(1) process we follow the method described in Rouwenhorst 1995.

We choose this method because the first-order autocorrelation, ρ, and the conditional

variance, σe, are well defined and constant over the state space as shown in Kopecky and

Suen 2010. For more details on this discretization method one can refer to appendix A.

2.2 Incumbents’ problem

The only aggregate state variable of this model is the distribution of firms on the set Φ3.

This distribution is represented by a vector µt which gives for each level of productivity

the number of firms that have this productivity at a given period t. Given an aggregate

state µ, and an idiosyncratic productivity level ϕ, the incumbent solves the following

intra period problem:

π∗(µ, ϕ) = Max {exp(ϕ)nα − wn− cf}
2Given a productivity level ϕs the distribution F (.|ϕs) is given by the sth-row vector of the matrix

P .
3This will be shown at the end of this section.
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where n is the labor input, w is the wage, which depends on the current aggregate state,

and cf is the operating cost that a firm should pay every period to operate. One can

see that π∗ is increasing in ϕ and decreasing in w for a given aggregate state µ. The

output level is then y(µ, ϕ) = exp(ϕ)
1

1−α

(
α
w

) α
1−α

. In what follows the size of a firm will

refer to its output if not otherwise specified.

The incumbent timing is the following: she draws its idiosyncratic productivity ϕ at

the beginning of the period, pays the operating cost cf then hires labor, produces and

decides to exit or not next period. It is worth emphasizing that once a firm decides to

stay in operation it has to pay the operating cost next period, which starts by drawing a

new idiosyncratic productivity. We denote the value of being an incumbent for a given

aggregate state µ and idiosyncratic productivity level ϕ by V (µ, ϕ). Let us define the

expected value of being an incumbent next period by

E(µ, ϕ) =
∫

µ′∈Λ

∑

ϕ′∈Φ

V (µ′, ϕ′)F (dϕ′|ϕ)Γ(dµ′|µ)

where Γ(.|µ) is the conditional distribution of µ′, the tomorrow’s aggregate state given

today’s aggregate state and where F (.|ϕ) is the conditional distribution of ϕ′, the to-

morrow’s idiosyncratic productivity given today’s productivity.

For each aggregate state µ, since the instantaneous profit is increasing in the idiosyn-

cratic productivity level and F (.|ϕ) is decreasing in ϕ, there is a unique index s∗(µ)

such that:

E(ϕs∗(µ), µ) ≥ 0 > E(ϕs∗(µ)−1, µ)

Thus for ϕ ≥ ϕs∗(µ) the firm continues to operate next period and for ϕ < ϕs∗(µ) the

firm exits4. When ϕ = ϕs∗(µ)−1, we assume that the firm has a probability ω(µ) =
E(µ,ϕs∗(µ))

E(µ,ϕs∗(µ))−E(µ,ϕs∗(µ)−1)
to stay in operation. In this case, the probability of staying in

operation, ω(µ), is greater when E(ϕs∗(µ)−1, µ) is closer to zero. This assumption allows

the entry rate to be continuous with respect to the aggregate state.

The Bellman equation associated with the incumbent’s problem is then:

V (µ, ϕ) = π∗(µ, ϕ) + β





E(µ, ϕ) for ϕ ≥ ϕs∗(µ)

ω(µ)E(µ, ϕs∗(µ)−1) for ϕs∗(µ)−1 = ϕ

0 for ϕs∗(µ)−1 > ϕ

4Given the state, the increasing instantaneous profit implies an increasing value function in ϕ and

then an exit threshold. This result is shown in Hopenhyan 1992 and Clementi and Palazzo 2010.
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After studying the incumbents’ problem, we now turn to the problem of potential

entrants.

2.3 Entrants’ Problem

There is a constant and finite number of prospective entrants M . A share M.Gq of

them is of type ϕq, where ϕq lies within the idiosyncratic productivity level set Φ. It

is a signal about their tomorrow’s productivity. The number of entrants of type ϕq is

deterministic.

If potential entrants decide to pay the entry cost ce, then they produce next period with

a productivity level drawn from F (.|ϕq). The gross value of a successful entrant with a

type ϕq given the aggregate state µ is thus:

Max

{
0, β

∫

µ′∈Λ

∑

ϕ′∈Φ

V (µ′, ϕ′)F (dϕ′|ϕq)Γ(dµ
′|µ)
}

= Max {0, βE(ϕq, µ)}

A prospective entrant will enter if this value is greater or equal to the entry cost ce.

Since E(ϕq, µ) is increasing in the signal ϕq, for any aggregate state µ there is a unique

index e∗(µ) such that:

E(ϕe∗(µ), µ) ≥
ce
β

> E(ϕe∗(µ)−1, µ)

Thus for ϕq < ϕe∗(µ)−1, the ϕq-potential entrant does not enter. Conversely, for

ϕq ≥ ϕe∗(µ), the q-potential entrant enters. As for the exit rule, when ϕq = ϕe∗(µ)−1,

we assume that the ϕe∗(µ)−1-potential entrant has a positive probability, ωe(µ) :=
E(µ,ϕe∗(µ))−

ce
β

E(µ,ϕe∗(µ))−E(µ,ϕe∗(µ)−1)
, of staying in operation next period.

Given an aggregate state µ and a type ϕq, the value of an entrant, V e(µ, ϕq), is then

V e(µ, ϕ) =





βE(µ, ϕ)− ce for ϕ ≥ ϕe∗(µ)

ωe(µ)
(
βE(µ, ϕe∗(µ)−1)− ce

)
for ϕe∗(µ)−1 = ϕ

0 for ϕe∗(µ)−1 > ϕ

To keep the mathematic as simple as possible, we will assume that the entry cost is

normalized to zero: ce = 0 which implies that ϕe∗(µ) = ϕs∗(µ) and ωe(µ) = ω(µ).
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2.4 Law of motion of the productivity distribution

In this section, we find the conditional distribution of the aggregate state tomorrow

given the current aggregate state, i.e. what would be the next productivity distribution

µt+1 given the current one µt. It was denoted Γ(.|µ) in the previous section.

The distribution of firms µt across the discrete state space Φ = {ϕ1, . . . , ϕns
} is a (ns×1)

vector equal to (µ1
t , . . . , µ

ns
t ) such that µs

t is equal to the number of operating firms in

state s at date t. The next period distribution is the sum of the evolution of incumbents

and successful entrants.

In the following, we define two types of conditional distributions depending on firms’

idiosyncrasy. The distribution of incumbent firms at date t+ 1 conditional on the fact

that incumbents were in state s at date t is noted f .,s
t+1. This (ns × 1) vector is such

that for each state k in {1, . . . , ns}:

fk,s
t+1 = the kth element of f .,s

t+1

:= number of incumbents in state k at t+ 1 which were in state ϕs at t

In the same way, let us define g.,st+1 the distribution of successful entrants at date t + 1

given that they received the signal ϕs at date t. This vector is a (ns × 1) vector such

that for each state k in {1, . . . , ns}:

gk,st+1 = the kth element of gk,st+1

:= number of entrants in state k at t+ 1 which received a signal ϕs at t

The period t+1 firms distribution is the sum of all these conditional distributions and

thus the vector µt+1 satisfies:

µt+1 =
ns∑

s=s∗(µt)−1

f .,s
t+1 +

ns∑

s=s∗(µt)−1

g.,st+1 (1)

It is important to emphasize the fact that f .,s
t+1 and g.,st+1 are multivariate random vectors

which implies that µt+1 also is a random vector.

At date t+1 for s ≥ s∗(µt), f
.,s
t+1 follows a multinomial distribution with two parameters:

the integer µs
t and the (ns × 1) vector P ′

s,. where Ps,. is the sth row vector of the

matrix P (denoted Multi(µs
t , P

′
s,.)). For s < s∗(µ) − 1, f .,s

t+1 is equal to zero. For s =

8



Figure 1: Why the vector f .,s
t+1 follows a multinomial distribution.

s∗(µ)− 1, f
.,s∗(µ)−1
t+1 follows a multinomial distribution with two parameters: the integer

ω(µt)µ
s∗(µ)−1
t and the (ns × 1) vector P ′

s∗(µ)−1,., i.e. Multi
(
ω(µt)µ

s∗(µ)−1
t , P ′

s∗(µ)−1,.

)
.

Similarly, at date t+ 1 for s > s∗(µt), g
.,s
t+1 follows a multinomial distribution with two

parameters: the integer MGq and the (ns × 1) vector P ′
q,., i.e. Multi(MGq , P ′

q,.). For

s = s∗(µt)− 1, g
.,s∗(µt)−1
t+1 follows Multi

(
ω(µt)MGs∗(µt)−1, P ′

s∗(µt)−1,.

)
.

To make clear the above statement, let us assume that there are only three levels of

productivity (ns = 3) and 4 firms. These firms are distributed according to the top

panel of figure 1. Let us assume that the firms have a probability to go up (respectively

down) on the productivity ladder of 1/2 and a probability to stay in the middle level of

1/4. If instead of 4 firms we had a continuum, the law of large number would hold and

next period there would be exactly 1/4 of the firms at the first level, 1/2 at the middle

level and 1/4 at the top level. This is not the case here, since the number of firms in

each node is finite. For instance, a distribution of firms such as the one presented in

the bottom panel of figure 1 is possible with a positive probability. In this particular

case, the vector (f 1,2
t+1, f

2,2
t+1, f

3,2
t+1)

′ follows a multinomial distribution with a number of

trials of 4 and an event probability vector (1/2, 1/4, 1/2)′.

9



The mean and variance-covariance matrix of a multinomial distribution Multi(n, h) is

respectively the (ns × 1) vector nh and the (ns × ns) matrix H = diag(h) − h′h. So

let us define Ws = diag(Ps,.) − Ps,.P
′

s,.. The right hand side of equation 1 has a mean

m(µt) and a variance-covariance matrix Σ(µt) with

m(µt) = (P ∗
t )

′(µt +MG)

Σ(µt) =
ns∑

s=s∗(µt)

(MGs + µs
t ).Ws + ω(µt)Ws∗(µt)−1

(
µ
s∗(µt)−1
t +MGs∗(µt)−1

)

where P ∗
t is the transition matrix P with the first (s∗(µt) − 2) rows replaced by zeros

and the (s∗(µt)− 1)-th row multiplied by ω(µt).

Equation 1 can be rewritten in a simple way as the sum of its mean and a zero-mean

shock:

µt+1 = m(µt) + ǫt+1 (2)

where ǫt+1 follows a multivariate distribution with mean zero and a covariance-variance

matrix Σ(µt).

After taking into account all the dynamics of each incumbent firms and potential en-

trants, the law of motion of the aggregate state -the firm distribution- is quite simple:

each period the distribution of firms is hit by a stochastic reshuffling shock and the

persistence of this shock is governed by the transition matrix P ∗
t .

Equation 2 shows the crucial difference of our model with a pure discretized Hopenhayn

economy. In our setting, we make no use of any“law of large number”argument whereas

it is largely used in this literature. Such argument would be equivalent to imposing

the variance-covariance matrix to be zero, and so, the aggregate state µt would be

non-stochastic, the model would not generate aggregate fluctuations. The ”reshuffling”

shock, ǫt+1, would be absent. Instead, in our framework, all the aggregate uncertainty

comes from this new term, which is the main contribution of our model.

The importance of this ”reshuffling” term relies on the deep parameters of the model,

namely the first-order autocorrelation ρ, the conditional variance σ2
e , the potential en-

trant distribution G and their number M . The first three combined determine the

tail of the firm distribution that will govern the volatility of the aggregate variables as

shown in following sections. As the number of potential entrants M goes to infinity

(and thus so does the number of firms), the aggregate uncertainty becomes null but the

rate of decay of this volatility is determined by this tail.
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2.5 Market Clearing and Aggregation

If Yt is the aggregate output, i.e. the sum of all individual firms’ output, then Yt =

At(L
d
t )

α where Ld
t is the aggregate labor demand and At the aggregate total factor

productivity, which is equal to:

At =

(
Nt∑

i=1

exp(ϕi
t)

1
1−α

)1−α

where ϕi
t is the productivity level at date t of the ith firm among the Nt operating

firms at date t. This can be rewritten by aggregating all firms that have the same

productivity level:

At =

(
ns∑

s=1

µs
t exp(ϕs)

1
1−α

)1−α

= (B′.µt)
1−α

where B is the (ns × 1) vector of parameters (exp(ϕ1)
1

1−α , . . . , exp(ϕns
)

1
1−α ) and where

. is the matrix product.

The labor demand is Ld(wt) =
(

αAt

wt

) 1
1−α

, the model behaves as a one factor model

with aggregate TFP At. By Walras’ law, only the labor market needs to be cleared.

In a partial equilibrium fashion, we assume that the supply of labor at a given wage

w is Ls(w) = Lwγ with γ > 0. The market clearing condition then writes that labor

supply equals labor demand, i.e. Ls(wt) = Ld
t . Solving for the wage given the date t

productivity distribution µt yields:

wt =

(
α

1
1−α

B′.µt

L

) 1−α
γ(1−α)+1

From this expression, one can see that the wage is fully pinned down by the distribution

µt. Also, the distribution of productivity at t+1 depends only on the current distribution

µt. It follows that the aggregate state at date t is µt.
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2.6 Stationary Equilibrium

In this section we define a deterministic stationary equilibrium, which is similar to

a deterministic steady state equilibrium. We define a stationary equilibrium as an

equilibrium without aggregate uncertainty and thus where all variables are constant,

that is to say with a deterministic aggregate state µ. The only source of uncertainty

of µ is due to the fact that the f .,s and g.,s are random vectors. In a stationary

equilibrium, we will assume that these variables are equal to their means µsP ′
s,. and

MGqP ′
q,. respectively. This equilibrium is as if instead of considering a finite number

of firms, we considered a continuum of firms. In the latter case, all the f .,s and g.,q are

not stochastic and are equal to their mean.

Let us define the matrix P ∗ as the matrix P where the first (s∗ − 2) rows are replaced

by zeros, and the (s∗ − 1)-th row is multiplied by ω. The law of motion of µ implies

that µ = P ∗′.µ+MP ∗′G. Solving for this matrix equation yields:

µ = M(I − P ∗′)−1P ∗′G (3)

We assume that this stationary distribution is fat-tailed, like is the case in the data as

shown by Gabaix 2011. In the rest of the paper, we calibrate this distribution to be

fat-tailed. From this, all other variables follow.

3 Aggregate Fluctuations

In this section we show analytically that the rate of decay of aggregate volatility de-

pends on the tail of the stationary firm size distribution, and, on the persistence of the

idiosyncratic productivity process. The dependence of aggregate volatility on the latter

is one of the main contributions of our paper since it was absent from Gabaix 2011

analysis. A low persistence increases the aggregate volatility’s rate of decay.

Results similar to Gabaix 2011 applies because µt is not too far from the stationary

distribution µ∗ as shown in Lemma 1. Thus µt can be considered as fat-tailed. The

aggregate variable that pins down all other aggregate variables is

Tt =
Nt∑

i=1

exp(
1

1− α
ϕi
t)

12



The rate of decay at which Tt converges to its mean will be lower than
√
Nt as shown

in theorem 1.

We first need a lemma that shows that the tail of the firm size distribution at each date

t is similar to the tail of the stationary distribution µ.

Lemma 1 Assuming that the economy starts at date t = 0 with the stationary firm size

distribution µ. Then at each period t the tail of the firm size distribution µt converges

in probability to the tail of the stationary distribution µ as M , the number of potential

entrants, goes to infinity.

Proof See appendix B. �

The theorem 1 describes the rate of decay of the aggregate volatility in our setting. It

generalizes the result in Gabaix 2011 to the case of entry, exit and persistence of shocks.

Theorem 1 Let ξ be the tail parameter of the firms size distribution and ζ ′ = ζ(1−α)

the tail parameter of the entrants’ size distribution. Assuming that ξ/ρ < 2 and ζ ′/ρ < 2

then

σ(
∆Yt

Yt
) =

(
1− α

γ(1− α) + 1

)
σ(

∆Tt

Tt
)

σ(
∆Tt

Tt
) ∼ σ

N
1−ρ/ξ
t

(
N l

t

Nt

)ρ/ξ
u1/2

Īt
if ζ ′ > ξ

σ(
∆Tt

Tt
) ∼ σ

N
1−ρ/ζ′

t

(
NE

t

Nt

)ρ/ζ′
w1/2

Īt
if ζ ′ < ξ

where Īt is a time dependent constant proportional to the incumbent average size at

t, u and w are random variables with finite variance, σ is the standard deviation of

exp(eti/(1 − α)) and Nt, N
l
t , N

E
t are respectively the number of incumbents, successful

incumbents and successful entrants in period t.
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Proof See appendix B. �

In this theorem, the parameters ρ and σ are well defined by the Markovian productivity

process. We use the Rouwenhorst method (Rouwenhorst 1995) to define the latter

process as the discretization of an AR(1). The process, as shown in Kopechy and

Suen 2010, is characterized by a first order autocorrelation ρ and a conditional variance

σe constant over the state space Φ. Thus, the parameters ρ and σ in theorem 1 are

well-defined objects characterizing the productivity process.

This theorem states that the persistence of the productivity process affects the rate of

decay of the aggregate volatility. Low persistence implies that large firms are getting

back to the average size faster than in a high persistence case. So in the low persis-

tence case, a given large firm would be smaller on average next period than in a high

persistence case. Its impact on the aggregate is then smaller, its contribution to the

aggregate volatility is smaller than in the high persistence case. This effect is absent in

Gabaix 2011 since only transient shocks are considered.

4 Numerical Solution Algorithm

This section describes the algorithm used to solve numerically the full model.

The state variable of this model is only the distribution of productivity µ ∈ R
ns
+ . Since ns

is large, following the evolution of the distribution µ across time is not computationally

feasible. To solve this model we use an algorithm similar to Krusell and Smith 1998,

where we follow the evolution of the factor that matters for all the aggregate variables,

namely Tt defined as:

Tt =
ns∑

s=1

µs
t exp(ϕs)

1
1−α = B′.µt

where B is the (ns × 1) vector (exp(ϕ1)
1

1−α , . . . , exp(ϕns
)

1
1−α ).

The true evolution of Tt is:

Tt+1 = B′.m(µt) +B′.ǫt+1

or

Tt+1 = B′.m(µt) +
√

B′.Σ(µt).Bεt+1
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where εt+1 is drawn from a standard univariate normal distribution. At the first order,

the process followed by log(Tt) is:

log(Tt+1) = log(B′.m(µt)) +

√
B′.Σ(µt).B

B′.m(µt)
.εt+1

Assuming the following approximations:

log(B′.m(µt)) = α0 + α1 log(Tt) + wt√
B′.Σ(µt).B

B′.m(µt)
= β0 + β1 log(Tt) + vt

leads to the following approximate law of motion of Tt:

log(Tt+1) = α0 + α1 log(Tt) + β0.ǫt+1 + β1.ǫt+1 log(Tt) + ut (4)

where ut,vt and wt are error terms.

This approximate law of motion is used to compute expectations as in Krusell and Smith

1998. The coefficients are updated using estimation of this equation for a simulated

series. We iterate until convergence. The algorithm is formally described bellow:

1. Guess some parameters α0
0, α

0
1, α

0
2, β

0
0 and β0

1 .

2. Solve jointly for the value function of an individual firm and the exit rule for all

(ϕ, T ) using the approximation law of motion 4 to compute the expectation.

3. Simulate a series of {Tt, ǫt}t=0...T as follows:

(a) Given a µ0, compute s∗(T0) and ω(T0) from the solution of step 2

(b) Draw a ǫ1 vector from its true distribution and use it to compute µ1, and

T1, and using the law of motion of the productivity distribution described in

equation (2).

(c) Iterate from step 3a

4. Using the above simulated series, estimate the approximating rule 4.

5. Iterate from step 2 until convergence.
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5 Simulations

The model is solved using the algorithm described in section 4. This section first

describes the calibration procedure. Then, it assesses the quality of the numerical

solution. A discussion of the source of the fat-tailedness of the firm size distribution

follows. Finally, we compute some business cycle statistics.

5.1 Calibration

The (log of) productivity of incumbent firms follows a discretization of an AR(1) pro-

cess as in Rouwenhorst 1995. This method is briefly described in appendix A. This

discretization is convenient because the first order autocorrelation and the conditional

variance are constant over the state space. On top of that, this method has been shown

to be more accurate with highly persistent processes (Kopechy and Suen 2010). This is

key to make sure that ρ and σ are well defined in theorem 1. This is not the case with

other discretization methods such as the one proposed by Tauchen 1986.

To calibrate the model to the US economy, we first set the value of some deep param-

eters. The span of control parameter α is set at 0.8. This value is chosen to be on the

lower end of recent estimates, such as Basu and Fernald 1997 and Lee 2005. The dis-

count factor β is set at 0.95 so that the implied annual gross interest rate is 4%, a value

in line with the business cycle literature. The entry cost is normalized to be zero to

keep the mathematics as simple as possible. Finally, the potential entrant distribution

is such that the distribution potential entrant on {exp(ϕi)}i∈[|1,ns|] is Pareto with tail

parameter ζ . The economy scales with the number of potential entrants, M , and the

parameter of the labor supply function, L. By increasing M and keeping the ratio M/L

unchanged the number of firms in equilibrium is increased as one can see in equation

3. So we choose the number of potential entrants such that the number of firms in

equilibrium is 5e+ 03. The labor supply elasticity parameter, γ, is chosen to be 2.

We jointly calibrate the operating cost cf , the first order autocorrelation ρ and variance

σe of the productivity process, and, the tail parameter ζ of the potential entrant distri-

bution to match four moments: the entry rate, the entrant relative size, the maximum

size of firms and the tail of the firm size distribution. Table 1 summarizes the result

of this calibration procedure and the reference for each target. The first two targets

are taken from Lee and Mukoyama 2008 where they use manufacturing firm level data
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Statistic Model Data References

Entry Rate 0.049 0.062 Lee and Mukoyama 2008

Entrants’ relative size 0.60 0.60 Lee and Mukoyama 2008

Maximum size 2.1× 106 2.1× 106 Size of Wal-mart in 2010

Tail index of Firm size dist. 1.03 1.03 Gabaix 2011

Table 1: Targets for the calibration of parameters {cf , ρ, σe, ζ}

to compute these moments. The maximum size of a firm is the one of Wal-mart in

2010, which was the biggest firm in terms of employees. The tail index of the firm size

distribution is estimated by Gabaix 2011. The corresponding moments in the model are

computed for the stationary deterministic equilibrium. All the calibrated parameters

are described in table 2.

The model is able to match most moments, except the entry rate, which is too low in our

baseline calibration. There are not enough entrants in our baseline model although the

difference is quite small. The first order autocorrelation and the conditional standard

deviation of the productivity process are in line with previous estimates as in Lee and

Mukoyama 2008 or in Castro et al 2013.

5.2 Numerical Solution

This section describes the numerical solution of the model by using the algorithm pre-

sented in section 4 for the calibration in table 2. At the last stage of the algorithm, the

approximate law of motion for the state Tt is estimated to be:

log(Tt+1) = 1.8649 + 0.8383 log(Tt) + 1.4849ǫt+1 + ut (5)

The R2 of the last step of the algorithm for this approximate law of motion is 0.99.

However, it has been shown in Den Haan 2010 that this is not enough to assert the

quality of the approximate law of motion. Figure 2 reproduces both the simulated

path of log Tt and the path of the approximate law of motion (5). Despite some minor

differences, one can see that the two paths coincide.
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Parameters Value Description

ρ 0.9637 Autocorrelation of firms’ level shocks

σe 0.1053 Std of idio shocks

ns 123 Number of productivity levels

[ϕ1, .., ϕns
] [−4.35, .., 4.35] Productivity ladder

γ 2 Labor Elasticity

α 0.8 Production function

cf 0.0033 Operating cost

ce 0 Entry cost

β 0.95 Discount rate

M 1.45× 1012 Number of potential entrants

L 5.33 Parameters of the labor supply function

G Pareto(ζ ) Entrant’s distr. of exp(ϕ)

ζ 4.2064 Parameter of the distr. G

ζ(1− α) 0.8413 Tail parameter of the entrants size distr.

Table 2: Baseline calibration
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T
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Figure 2: Simulated paths of the true and approximate evolution of Tt
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Figure 3: The tail of the stationary firm size distribution as a function of ρ (left) and

ζ(1− α), the tail of the potential entrant distribution G (right)

5.3 The tail of the firm size distribution

The calibration strategy is such that the model matches the fat tail of firm size distri-

bution documented in Gabaix 2011. However the reason why the model is able to do

so is different from the usual explanation provided in the firm dynamics literature. In

this section, we show that the fat tail comes from the high persistence and the fat tail

of the potential entrants distribution rather than Gibrat’s law or imitation.

Power law distribution can come from proportional random growth also called Gibrat’s

law, as described in Gabaix 2009. The literature initiated by Luttmer (2007, 2010,

2012) build models that can generate fat-tailed distribution along a balanced growth

path based on technology diffusion and spillover of technology by entrants. The flow

of ideas literature (Lucas 2009, Lucas and Moll 2011 and Alvarez et al. 2008) also

experiments growth and fat-tailed distribution along a balanced growth path.

In our framework, the fat-tailed distribution comes from a high persistence and large

entrants. The persistence of the productivity process has an effect on the tail because

with high persistence, firms benefit longer from a good shock and remain larger for a

longer time than in a low persistence case. At the stationary equilibrium, there are

more large firms and thus the tail is fatter. This can be seen in the left panel of figure
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Figure 4: The tail of the stationary firm size distribution as a function of both ρ and

ζ(1− α), the tail of the potential entrant distribution G

3: as the persistence ρ increases, the tail parameter decreases which means that the tail

becomes fatter.

The fatter the distribution (i.e the smaller the tail index) of potential entrants, the

fatter the stationary firm size distribution as one can see on the right panel of figure 3.

This is pretty intuitive, since bigger entrants also implies bigger firms and thus a fatter

tail of the firm size distribution.

A high persistence and a fat-tailed distribution are both necessary to get fat-tailed firm

size distribution at the stationary equilibrium. This can be seen in figure 4 which plots

the tail of the stationary firm size distribution as a function of both the persistence of

the productivity process and the tail of the potential entrant distribution. The tail of

the firm size distribution gets close to one only for high persistence and fat tail of the

potential entrants distribution.
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Model Data

σ(x) σ(x)
σ(y)

ρ(x, y) σ(x) σ(x)
σ(y)

ρ(x, y)

Output 2.3 1.0 1.0 2.2 1.0 -

Hours 1.5 0.67 1.0 1.8 0.83 0.85

Agg. Productivity 1.1 0.46 1.0 na na na

Table 3: Business Cycle Statistics

Note: These statistics are computed for the baseline calibration (cf. Table 2) for an economy simulated

during 20,000 periods.

5.4 Business Cycle Statistics

After solving the model using the algorithm described in section 4, we compute the busi-

ness cycle statistics. We simulate time series for output, hours and aggregate TFP using

the law of motion (2) of the productivity distribution. These statistics are presented in

table 3.

First, the standard deviation of output is 2.3%, which is in line with a real business cycle

framework. To assess the performance of the model in producing aggregate fluctuations

without any aggregate shock, a better statistic is the volatility of aggregate TFP. For the

baseline calibration, the standard deviation of aggregate productivity is 1.1%, which

is non-negligible. We are able to generate the same aggregate fluctuations as in the

standard representative firm real business cycle (RBC) model with only idiosyncratic

shocks and no aggregate shocks. The table 3 shows that a model with only idiosyncratic

shocks can account for a large share of aggregate fluctuations.

The firm level dynamics of the baseline model is different from the one of a standard

RBC model. In the latter all firms, or the representative firm, face similar productivity

and have the same dynamics. In the baseline model, it is the aggregation of idiosyncratic

shocks that gives rise to the aggregate fluctuations and thus each firm has its own

dynamic.

The standard deviation of hours is 67% of the one of output whereas the same number

is 83% in the data. Our model fails to match this number as it is the case in standard

RBC model. It is the case because our model, without any aggregate shocks, evolves

as a one-factor model. One could choose a higher value of the labor supply elasticity
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to match the relative volatility of hours but we choose to stay closer as possible to the

RBC literature.

6 Shock on the biggest firm

In this section, we will describe the micro and macro consequences of a shock on the

biggest firm. First, we will describe the methodology and then the impulse response to

such shock.

6.1 Methodology

We assume that the biggest firm suffers a one standard deviation negative shock on its

productivity. The standard deviation is σe and its calibrated value is 0.1053. The initial

“reshuffling” shock on the firm size distribution ǫ0 is only a vector of zero where at the

highest level we subtract one and add one to the level of productivity corresponding

to a one standard deviation on the left. Figure 5 shows on the left panel the initial

distribution (blue) and the shocked distribution (dashed red). The difference between

the two distributions can hardly be seen on the graph. The right panel of figure 5

gives a closer view at the right end of the difference between the shock and the initial

distribution. In this figure, one can see that a mass of firms has been moved from the

highest level to the left by a one standard deviation. This figure displays the initial

shock ǫ0.

From the structure of the model, computing the impulse response is straightforward.

As one can see in equation 2, the transition between date t and date t + 1 firm size

distribution is a linear operator. So after computing the initial “reshuffling” shock ǫ0,

we do not need to simulate a large number of paths and to take the average. Instead,

we assume ǫt to be zero for t ≥ 1 and thanks to the linearity of transition described by

equation 2 the result is exactly the same.
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6.2 Impulse Responses

The top left panel of figure 6 shows the responses of aggregate productivity and aggre-

gate output to this shock. Since our model behaves as a one-factor model, the dynamics

of output follows closely the one of aggregate productivity. After this negative shock on

the biggest firm, aggregate productivity decreases by 0.5% which is non negligible. This

decrease in aggregate productivity has a non-negligible effect on the aggregate output.

This decrease in output in turn decreases the aggregate labor demand and thus pushes

the equilibrium wage down as can be seen in the top right panel of figure 6.

The intuition is as follows. Since the biggest firm becomes less productive, its optimal

size becomes smaller. Since there is no frictions in adjustment of labor, the biggest

firm shrinks by cutting its labor demand. The aggregate productivity, which is only

an average of the productivity of each firm, decreases because one firm, the biggest,

becomes less productive. Due to the decrease in the wage, the second biggest firm

increases its size in response to the negative shock on the biggest firm. Since the wage

that this second biggest firm is now facing is smaller and since its productivity remains

the same, its optimal size is now bigger. The output of the second biggest firms increases

as one can see on the bottom left panel of figure 6. Other firms benefit from the shrink

of the biggest firm through competition in the labor market. This latter effect reduces

the impact on aggregate output, since others firms produce more. However, this effect

is not strong enough to mitigate the decrease in aggregate output because labor is

reallocated towards less productive firms. The overall effect of a negative shock on the

biggest firm is contractionary at the aggregate level.

In this setting firms that are subject to exit are the smallest firms. Because of the

decrease in their cost, the wage, small firms can suffer bigger negative shocks while

keeping their profitability positive. There are fewer exiters, so on impact the number

of exiters decreases. In the meantime, entry becomes more profitable as the wage

is smaller. The number of entrants becomes larger. However, there are more small

entrants. Some potential entrants start producing whereas it would have not been the

case if the wage had not decreased. The bottom right panel of figure 6 describes the

dynamics of the number of incumbents, exiters and entrants. As the wage returns to

its stationary value, the profitability of these entrants and the small firms that have

survived, thanks to this decrease in the wage, shrinks. The number of small firms that
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Figure 6: Impulse response to a one standard deviation negative productivity shock on

the biggest firm
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are subject to exit is thus larger. Overall the number of exiters exibits a hump-shaped

response to this negative shock on the biggest firm.

The number of exiters hump-shaped pattern implies an hump-shaped response of the

number of incumbents. Even if the maximum number of incumbents is somehow small

- it becomes only bigger of about 0.14% of the its stationary value - it implies a small

hump-shaped responses of aggregate variables.

Overall, we find that such a negative event on the biggest firm productivity is contrac-

tionary at the macro level and expansionary at the micro level with a small hump-shaped

pattern.

7 Co-movement

In this section, we study the relative co-movement of large and small firms and their

link with the cycle. We analyse the correlation between the differential growth rate of

large versus small firms ∆ĝt−1,t with aggregate conditions.

We follow the method of Moscarini and Postel-Vinay 2012 to define large and small

firms. In their paper, small firms are defined as firms with less than 50 employees and

large firms with more than 1000 employees. The differential net growth rate between

large and small firms is defined as the difference between the employment growth rate

of large firms minus the employment growth rate of small firms. Moscarini and Postel-

Vinay 2012 finds that the correlation between this differential growth rate and the

deviation of unemployment from an HP trend is negative and equal to -0.52. During

“good” times, when unemployment is low, the differential growth rate is higher i.e. big

firms create more employment than small firms.

To compute the corresponding number in our baseline model, we extract a representative

sample of firms and follow a balanced panel. From this balanced panel we compute

the same statistics as in Moscarini and Postel-Vinay 2012. The closest variable to

unemployment in our setting is the hours Lt. We compute then the correlation between

our differential growth rate and the hours. The correlation is positive and equal to 0.24.

The correlation is then of the same sign as in the data. During “good” times, when the

number of hours is high, large firms create more employment than small firms.
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Moscarini and Postel-Vinay 2012 Baseline model

US BDS data Simulated data

∆ĝt−1,t ∆ĝt−1,t

Correlation with ût Correlation with Lt

−0.52
(0.003)

0.24
(0.03)

Table 4: Correlation of the differential growth rate between large and small firms and

the cycle indicator (p-value in parenthesis)

Moscarini and Postel-Vinay 2012 argues that this correlation supports the existence

of labor adjustment cost. In their approach the causality is that aggregate conditions

determine the faster growth of big firms relatively to small firms because of these labor

adjustment costs. In our model, the causality is reversed: the fast growth of large

firms determines the aggregate condition, and so these large firms are naturally more

cyclicality sensitive than small firms.

8 Conclusion

We build a quantitative firm dynamics model in which we cast“the granular hypothesis”.

It features a finite number of firms and we do not rely on any “law of large” number

assumption. Our model is able to generate aggregate fluctuations from idiosyncratic

shocks only. We show analytically that aggregate fluctuations do not die out as the

number of firms increases. A calibrated version of our framework to the US economy

implies sizable aggregate volatility. We also look at the macro and micro effect of a

negative shock on the biggest firm. Finally, we show that our model can reproduce the

relative cyclicality of large firms compared to small firms’.

In our framework, a firm does not internalize its own effect on the aggregate wage. In

others models of firms dynamics, the assumption that the “law of large” numbers holds

justifies thinking about firms as price takers. However, we are showing in a standard

firm dynamics framework that large firms actually have an effect on the aggregate and

thus the price taker assumption should be taken carefully. Our work is a first step

toward this objective.
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A Discretization of AR(1) by the Rouwenhorst method

Consider the AR(1) process ϕ̃t+1 = ρϕ̃t+ et where e
i
t  N (0, σe). We approximate this

process by a discrete process {ϕt} over the evenly distributed state space {ϕ1, . . . , ϕns
}.

For p, q ∈ (0, 1) and each ns, we can defined recursively the matrix:

P2 =

(
p 1− p

1− q q

)
if ns = 2

Pns
= p

(
Pns−1 0

0′ 0

)
+ (1− p)

(
0 Pns−1

0 0

)
+ (1− q)

(
0 0

Pns−1 0

)

+ q

(
0 0

0 Pns−1

)
if ns > 2

and normalizing all but the first and last rows in order that they sum to one. These

matrix is a transition matrix for a discrete Markovian process. Rouwenhorst 1995 and

Kopecky and Suen 2010 show that for p = q = 1+ρ
2

and ϕns
=

√
ns − 1 σe√

1−ρ2
we have:

E(ϕt+1|ϕt = ϕs) = ρϕs

Var(ϕt+1|ϕt = ϕs) = σ2
e

Thus the Markovian process associated with the transition matrix Pns
have a first order

autocorrelation and a conditional variance equal to ρ and σ2
e respectively. Kopecky

and Suen 2010 also shows that this discretization of an AR(1) is preferable for highly

persistent process.

B Proof

B.1 Proof of the lemma 1

The law of motion of the firm size distribution as stated by equation 2 is µt+1 =

m(µt) + ǫt or

µt+1 = (P ∗
t )

′(µt +MG) + ǫt
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The stationary distribution is defined as the solution of the following equation:

µ = (P ∗)′µ+M(P ∗)′G

Let us assume that s∗t = s∗ and ωt = ω and thus that P ∗
t = P ∗ at each date. This

assumption does not affect the results5 and is just made for sake of simplicity of the

proof.

Subtracting the two previous equations yields:

µt+1 − µ = (P ∗)′(µt − µ) + ǫt+1

Recall that at t = 0 the µ0 = µ, let us iterate recursively on the above equation:

µt+1 − µ = (P ∗)′(µt − µ) + ǫt+1

= (P ∗′)2(µt−1 − µ) + P ∗′ǫt + ǫt+1

= . . .

= (P ∗′)t+1(µ0 − µ) +
t∑

j=0

(P ∗′)jǫt+1−j

µt+1 − µ =
t∑

j=0

(P ∗′)jǫt+1−j since µ0 = µ (6)

We need to define the quantity that we interested in, the tail. The tail of the distribution

is just the behavior of the counter cumulative mass function. By showing that two

counter cumulative mass functions are similar, we show formally that the associated

distribution have the same tail.

Let us define µ̂t =
µt

M
. The economy scale with M (assuming that the labor supply also

increases6). When M goes to infinity so does µs
t for all s and t, but µ̂s

t does not. The

counter cumulative mass function that we are interested in is thus:

∀k ∈ [|1, ns|]
∣∣∣∣∣

ns∑

i=k+1

µ̂i
t+1 −

ns∑

i=k+1

µ̂i

∣∣∣∣∣ =
∣∣∣∣∣

ns∑

i=k+1

µi
t+1

M
−

ns∑

i=k+1

µi

M

∣∣∣∣∣

The left term in the left hand side equation is the counter cumulative mass function of

µ̂t+1, the right term is the same function for µ̂.

5This assumption only affects the left-end of the firm size distribution and thus not the right tail.
6The wage is kept constant by increasing L as M increases: the ratio M/L is constant.
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∀k ∈ [|1, ns|]
∣∣∣∣∣

ns∑

i=k+1

µ̂i
t+1 −

ns∑

i=k+1

µ̂i

∣∣∣∣∣ =
∣∣∣∣∣

ns∑

i=k+1

µi
t+1

M
−

ns∑

i=k+1

µi

M

∣∣∣∣∣

=

∣∣∣∣∣

ns∑

i=k+1

t∑

j=0

[(P ∗′)jǫt+1−j

M

]
i

∣∣∣∣∣

=

∣∣∣∣∣

ns∑

i=k+1

t∑

j=0

ns∑

s=s∗

[(P ∗′)jf .,s
t+1−j

M
+

(P ∗′)jg.,st+1−j

M

−E

[
(P ∗′)jf .,s

t+1−j

M
+

(P ∗′)jg.,st+1−j

M

]
]
i

∣∣∣∣∣

Soit ε > 0,

P

(∣∣∣∣∣

ns∑

i=k+1

µ̂i
t+1 −

ns∑

i=k+1

µ̂i

∣∣∣∣∣ ≥ ε

)

= P

(∣∣∣∣∣

ns∑

i=k+1

t∑

j=0

ns∑

s=s∗

[(P ∗′)jf .,s
t+1−j

M
+

(P ∗′)jg.,st+1−j

M
− E

[
(P ∗′)jf .,s

t+1−j

M
+

(P ∗′)jg.,st+1−j

M

]
]
i

∣∣∣∣∣ ≥ ε

)

≤ P

(
t∑

j=0

ns∑

s=s∗

∣∣∣∣∣

ns∑

i=k+1

[(P ∗′)jf .,s
t+1−j

M
+

(P ∗′)jg.,st+1−j

M
− E

[
(P ∗′)jf .,s

t+1−j

M
+

(P ∗′)jg.,st+1−j

M

]
]
i

∣∣∣∣∣ ≥ ε

)

≤
t∑

j=0

ns∑

s=s∗

P

(∣∣∣∣∣

ns∑

i=k+1

[(P ∗′)jf .,s
t+1−j

M
+

(P ∗′)jg.,st+1−j

M
− E

[
(P ∗′)jf .,s

t+1−j

M
+

(P ∗′)jg.,st+1−j

M

]
]
i

∣∣∣∣∣ ≥ ε

)

≤
t∑

j=0

ns∑

s=s∗

1

ε2
Var

[
ns∑

i=k+1

[(P ∗′)jf .,s
t+1−j

M
+

(P ∗′)jg.,st+1−j

M

]
i

]
by the Bienaymé-Chebyshev inequality

≤
t∑

j=0

ns∑

s=s∗

1

ε2
Var

[
ns∑

i=k+1

[(P ∗′)jf .,s
t+1−j

M

]
i

]
+ Var

[
ns∑

i=k+1

[(P ∗′)jg.,st+1−j

M

]
i

]
(7)

since the f i,s
t and gi,st are independent

Recall that f i,s
t+1−j  Multi

(
µs
t−j , Ps,.

)
and gi,st+1−j  Multi

(
MGs, Ps,.

)
.
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It follows that:

Var

[
ns∑

i=k+1

[(P ∗′)jf .,s
t+1−j

M

]
i

]
= Var

[
(ek)

′(P ∗′)jf .,s
t+1−j

M

]

= µs
t+1−j

(ek)
′(P ∗′)jWs(P

∗)j(ek)

M2

= µ̂s
t+1−j

(ek)
′(P ∗′)jWs(P

∗)j(ek)

M
−→ 0

this last term goes to zero when M goes to infinity. Here, ek is a (ns) vector with the

first k elements equal to zero.

Since all the sums in equation 7 are finite, we can conclude that

∀k ∈ [|1, ns|], ∀ε > 0,P

(∣∣∣∣∣

ns∑

i=k+1

µ̂i
t+1 −

ns∑

i=k+1

µ̂i

∣∣∣∣∣ ≥ ε

)
−→ 0 as M → ∞

This just means that the counter cumulative mass function, the tail, of µt+1 converge

in probability toward the tail of µ as M goes to infinity. �

B.2 Proof of the theorem 1

Let us first compute the aggregate output Yt as a function of only Tt:

Yt =

Nt∑

i=1

yit =

Nt∑

i=1

exp(ϕi
t)

1
1−α

( α

wt

) α
1−α

=
( α

wt

) α
1−α

Tt

Recall that:

wt =
(
α

1
1−αTt

) 1−α
γ(1−α)+1

Substituting this expression of the wage in the latter equation and taking the growth

rate yields:

Yt = α
αγ

γ(1−α)+1 (Tt)
1− α

γ(1−α)+1

∆Yt

Yt
=

(
1− α

γ(1− α) + 1

)
∆Tt

Tt

This shows the growth rate of the output is proportional to the growth rate of Tt.
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Let us evaluate the standard deviation of the growth rate of Tt. To do so, let us have

a close look at this growth rate. Note that

Tt+1 =
∑

l successful incumbent at t

exp(
ϕl
t+1

1− α
) +

∑

e successful entrant at t

exp(
ϕe
t+1

1− α
)

and

Tt =
∑

l successful incumbent at t

exp(
ϕl
t

1− α
) +

∑

x exiters at t

exp(
ϕx
t

1− α
)

Let us define Z l
t = exp(

ϕl
t

1−α
) for l-successful incumbent at t, Ee

t+1 = exp(
ϕe
t+1

1−α
) for e

successful entrant at t and Xx
t = exp(

ϕx
t

1−α
) for x exiters at t.

The growth rate of Tt is:

∆Tt

Tt
=

1

Tt

(
∑

l

∆Z l
t +
∑

e

Ee
t+1 −

∑

x

Xx
t

)

The variance of the Z l
t follows from the productivity process. For a firm i, we have

ϕi
t+1 = ρϕi

t+ eit+1, where e
i
t is random variable with mean zero and variance σ2

e . This is

true since the first order autocorrelation and condition volatility is well defined and con-

stant across the idiosyncratic state space. By taking the exponential and subtracting,

this yields:

exp(
ϕi
t+1

1− α
)− exp(

ϕi
t

1− α
) = exp(

ϕi
t

1− α
)ρ exp(

eit
1− α

)− exp(
ϕi
t

1− α
)

Furthermore the eit are i.i.d. across firms and time. Let us define σ =

√
Var

(
exp(

eit
1−α

)
)
.

It follows that:

Vart
(
∆Z l

t

)
= (Z l

t)
2ρσ2

and, by the same argument,

Vart
(
Ee

t+1

)
= (Ee

t )
2ρσ2

where Ee
t = exp(

ϕe
t

1−α
) with ϕe

t the signal at t of the successful entrant e.

This leads to

Vart
∆Tt

Tt
=

σ2

(Tt)2

(
∑

l

(Z l
t)

2ρ +
∑

e

(Ee
t )

2ρ

)

since the variance conditional on date t of Xx
t is equal to zero.
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Denoting N l
t , N

E
t and NX

t the number of successful incumbents, successful entrants and

exiters at date t respectively. According to the law of large number, we have:

(N l)−1
∑

l

Z l
t → EZ l

t := Z̄t

(NX)−1
∑

l

Xx
t → EXx

t := X̄t

It is straightforward that

N−1Tt ∼
N l

t

Nt

Z̄t +
NX

t

Nt

X̄t := Īt

the average of incumbent size at date t (both successful and exiters).

The distribution of the random variable Z l
t has a power law tail with parameters ξ, the

tail parameter of firm size distribution (since only small firms exit). The distribution

of the random variable Z l
t has a power law tail with parameters ζ ′ = ζ(1− α) the tail

parameter of entrant size distribution (since only big entrants are successful).

Since ξ/ρ < 2 and ζ ′/ρ < 2 and using the Lévy theorem of the appendix of Gabaix

2011, we have

(N l
t )

−2ρ/ξ
∑

l

(Z l
t)

2ρ →d u

(NX
t )−2ρ/ζ′

∑

x

(Xx
t )

2ρ →d w

where u and w are standard Lévy distribution with parameters ξ/2ρ and ζ ′/2ρ respec-

tively.

Computing the two above results yields

Vart
∆Tt

Tt

∼ N−2

∑
l(Z

l
t)

2ρ +
∑

x(X
x
t )

2ρ

(Īt)2

Note the numerator of the right hand side is equivalent to

N−2+2ρ/ξ

((
N l

t

Nt

)2ρ/ξ

u

)
if ζ ′ > ξ

since N2ρ(1/ζ−1/ξ) → 0 in this case.
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Similarly:

N−2+2ρ/ζ′

((
NE

t

Nt

)2ρ/ζ′

u

)
if ζ ′ < ξ

This gives the results:

σ(
∆Tt

Tt

) ∼ σ

N
1−ρ/ξ
t

(
N l

t

Nt

)ρ/ξ
u1/2

Īt
if ζ ′ > ξ

σ(
∆Tt

Tt
) ∼ σ

N
1−ρ/ζ′

t

(
NE

t

Nt

)ρ/ζ′
w1/2

Īt
if ζ ′ < ξ

�
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