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Abstract

We structurally identify consumer shopping costs —real or perceived costs of dealing with a store—
using scanner data on grocery purchases of French households. We present a model of demand
for multiple stores and products consisting of an optimal stopping problem in terms of individual
shopping costs. This rule determines whether to visit one or multiple stores at a shopping period.
We then estimate the parameters of the model and recover the distribution of shopping costs.
We quantify the total shopping cost in 18.7 e per store sourced on average. This cost has two
components, namely, the mean fixed shopping cost, 1.53 e and mean total transport cost of
17.1 e per trip. We show that consumers able to source three or more grocery store have zero
shopping costs, which rationalizes the low proportion of three-stop shoppers observed in our data.
Theory predicts that when shopping costs are included in economic analysis, some seemingly pro-
competitive practices can be welfare reducing and motivate policy intervention. Such striking
findings remain empirically untested. This paper is a first step towards filling this gap.
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1 Introduction
Consumers have heterogeneous shopping patterns (see Figure 1 below). This heterogene-
ity might be explained by several factors such as preferences, demographics, geographic
location, information frictions, differentiated retailers, and time availability for shopping
activities. Previous literature has introduced a concept that accounts for some (or most)
determinants: shopping costs (Klemperer, 1992, Klemperer and Padilla, 1997, Armstrong
and Vickers, 2010, and Chen and Rey, 2012, 2013). In line with this literature, we will
call shopping costs all real or perceived costs a consumer incurs when sourcing a grocery
store. Economic theory shows that in a context of multiproduct retailing and consumer
shopping costs, several practices that would otherwise be considered good from a social
welfare perspective can motivate anti competitive behavior among firms. However, there is
not much empirical support for such findings, in part because the introduction of shopping
costs in a structural model of demand is a challenging task. This motivates the following
questions. First, is it possible to quantify shopping costs from observed consumer shopping
behavior? Second, will accounting for shopping costs in a multiproduct demand model
lead to a better understanding of consumer heterogeneity in shopping patterns? Finally,
to what extent the inclusion of shopping costs would be crucial for policy analysis? In this
paper, we develop and estimate a structural model of multiproduct demand for groceries
in which shopping costs play a key role in consumer decision making. This framework
enables us identify the distribution of consumer shopping costs.

We will say that two consumers have heterogeneous shopping patterns when they visit
a different number of stores within the same shopping period. Therefore, a consumer
sourcing a single store within, say, a week will be a one-stop shopper and a consumer
visiting several separate suppliers within the same week will be a multistop shopper.
Consumer shopping costs, which may depend on stores’ characteristics (e.g. transport
costs depend on store location; the opportunity cost of time from shopping depends on
store size) and may as well be informative about consumers’ tastes for shopping, account
for such differences.1

The inclusion of shopping costs in the analysis of multiproduct demand and supply
may change policy conclusions dramatically. Consider, for instance, the case of multiprod-
uct retailers competing head-to-head by selling homogeneous products. In the presence of
shopping costs, customers will stick with a single retailer because the benefit from visiting
an additional supplier need not compensate the shopping cost. As a consequence, com-
petition is reduced and prices are higher. In contrast, if product lines are differentiated,
retailers may be tempted to undercut prices to make one-stop shoppers become multistop
by patronizing several separate suppliers (Klemperer, 1992). Another theory result states
that the presence of shopping costs can lead to the introduction of too many varieties of
products with respect to the social optimum. When a retailer introduces a new product,
the mass of one-stop shoppers increases because more consumers prefer to concentrate
purchases with the retailer supplying a wider product range and save on shopping costs.
As a consequence, rivals’ profits decrease (Klemperer and Padilla, 1997).

The presence of heterogeneous customers might as well be a way to price discriminate
between one-stop and multistop shoppers. Large retailers may adopt loss-leading strategies
when competing with smaller rivals. By doing this, they do not want to push rivals out
of the market but keep them in instead, and exploit multistop customers. Hence, pricing

1Klemperer (1992) distinguishes among consumer costs in the following way: “...consumer’s total costs
include purchase cost and utility losses from substituting products with less-preferred characteristics for
the preferred product(s) not actually purchased [transport costs of the standard models ï¿½ la Hotelling]
(...) Consumers also face shopping costs that are increasing in the number of suppliers used.” p.742.
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below cost is an exploitative device rather than a predatory practice (Chen and Rey, 2012).
Finally, in a setting of competition between large retailers, in which each has a comparative
advantage on some products, cross subsidization strategies may be competitive. Below-
cost pricing is again not predatory and it can be good for consumers. This implies that
banning this practice may hurt consumers and reduce social welfare (Chen and Rey, 2013).

From an empirical point of view, we can readily find support for the idea that shopping
patterns are heterogeneous and that this heterogeneity is explained by differences in shop-
ping costs. Figure 1 displays the distribution of the population by the average number of
different retailers visited within a week. Moreover, we performed reduced form regressions
of the number of different supermarkets visited in a week (which constitutes an indicator
of multistop shopping behavior) on demographic variables that are proxies for shopping
costs (such as income, age, household size, number of children under 16, etc.) and control
for household storage capacity, among others. We found strong empirical evidence show-
ing that multistop shopping depends on how busy the household members could be, i.e.
how costly it might be to spend a lot of time in shopping activities.

Figure 1: Distribution of household by average number of stores visited in a week, 2005

Notes: The observed distribution has a longer tail than displayed by the
graph as we observe households visiting up to 8 separate retailers per week.
However, 99.8% of the observations are concentrated up to 5 stops.

This paper provides a framework to assess the role of shopping costs in explaining
heterogeneous shopping patterns. To do so we develop a structural model in the spirit of
the main theoretical contributions on the topic. Consumer optimal shopping behavior is
given by a threshold strategy where the choice between one- or multistop shopping depends
on the size of the individual’s shopping costs. We are able to take the model to data
through parametric specifications of consumer utility and shopping cost along with some
distributional assumptions on the unobserved shocks. We use scanner data on household
grocery purchases in France in 2005, which is representative of French households and
contains information on a wide product range and household demographics. As for grocery
stores, an additional data set allows us to observe store characteristics and location.

By solving the implied optimal stopping problem of a consumer who needs to decide
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how many stores to source, we are able to recover the distribution of shopping costs. We
quantify the total shopping cost in 18.7 e per store sourced on average. This cost has two
components, namely, the mean fixed shopping cost, 1.53 eand the total transport cost of
17.1 eper trip to a given store. Moreover, we are able to compute the transport and total
costs of shopping by store format. Transport and total costs of shopping are decreasing in
the size of the stores, on average, as smaller formats are closer to downtowns. The largest
total shopping cost, 24.7 e, are incurred by consumers who source big-box stores, because
they are farther away from downtown. Sourcing a supermarket or a hard-discounter implies
total costs of shopping of 14.3 e and 13.4 e per trip, respectively. Finally, the costs of
sourcing a convenience store, 4.8 e per trip, are the lowest provided that they are located
in downtown. We find that individuals who source three or more stores in a week have zero
shopping costs. This might be an indicator that those households actually visiting more
than two separate stores a week should have a strong preference for shopping. In fact,
the predicted proportions of shoppers by number of stops are 90.1% of one-stop shoppers,
9.7% of two-stop shoppers and only 0.26% do three-stop shopping.

Related literature

The literature including or measuring explicitly consumer-related costs from an empirical
point of view, can be summarized in three categories: i) search cost literature,2 ii) switch-
ing costs literature,3 and iii) shopping costs literature. In recent years there has been
a considerable number of contributions developing models and empirical strategies that
allow to identify search costs —these include Hong and Shum (2006), Moraga-Gonzalez
et al. (2011), Hortaçsu and Syverson (2004), Dubois and Perrone (2010) and Wildenbeest
(2011)— and switching costs —these include Dubï¿½ et al. (2010), Handel (2010) and
Honka (2012).

Less attention has been put on shopping costs. To the best of our knowledge, few
empirical papers include explicitly shopping costs when it comes to explain time use or
supermarket choice. Brief (1967) models consumer shopping patterns in a Hotelling frame-
work, and estimates transportation as part of consumers’ shopping costs.4 His identifi-
cation strategy consists of using ‘the shopping costs elasticity of demand’, as he claims
these costs are not directly identifiable. Aguiar and Hurst (2007) evaluate how households
substitute time for money by optimally combining shopping activities with home produc-
tion. They argue that multistop shoppers exist because they want to reduce the price
paid for a good, which requires more time. As opposed to them, one-stop shoppers may
find it optimal to become frequent customers of the same store and benefit from sales and
discounts. All this implies a cost in terms of the time needed to carry out the shopping

2Both shopping and search costs are often referred to as the opportunity cost of time when people
go search (for search costs)/shopping (for shopping costs). The difference stems from the purpose of
the time expended, whether the consumer ends up buying a product she was looking for or not, and
the available information on prices or product characteristics in different locations (sellers). Search costs
appear whenever consumers face search frictions caused by information asymmetries. As for shopping
costs, they account for the opportunity costs of time related to the shopping activity which may include a
previous search if needed.

3As stated by Kemplerer and Padilla (1997), shopping costs differ from switching costs in that the latter
derives from the economies of scale from repeated purchases of a product while the former is associated
with economies of scope from buying related products.

4Brief (1967) claims that the final price paid by a consumer has two components, namely, the “pure”
price of the good and the marginal cost of shopping for it. These shopping costs include both explicit,
such as transportation costs, and implicit, such as the opportunity costs of shopping, which are related to
the “purchaser’s valuation of time and inconvenience associated with the shopping trip.”.
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activity, which is accounted for in their modeling. In a similar setting, Aguiar et al. (2012)
analyze the time use during recessions, including the time spent in shopping.

In the analysis of store choice in the presence of shopping costs, our paper closely
relates to Shciraldi, Seiler and Smith (2011). They evaluate the effects of big-box retailing
on competition, allowing for the fact that customers may do one- or two-stop shopping.
This observed heterogeneity allows them to identify individual shopping costs. However,
our approach differs from theirs in at least an important way. In line with previous theory
literature, we adopt the view that heterogeneous shopping patterns stem from differences
in shopping costs as a modeling feature. In other words, in our model the number of
stops is endogenously determined by a stopping rule involving the extra utility and extra
costs of sourcing an additional store. This fact enables us to empirically identify the
distribution of shopping costs. In this sense, our approach is more closely related to the
empirical literature on search costs previously mentioned. In particular, our setup relates
to Hortaçsu and Syverson (2004), and Dubois and Perrone (2010).

The rest of the paper is organized as follows. Section 2 presents the data and a
preliminary analysis of consumers’ shopping behavior based on descriptive statistics and
reduced form regressions. Section 3 outlines the structural model of multiproduct demand
and consumer shopping behavior in the presence of shopping costs. Section 4 describes our
empirical strategy, discusses identification and presents the estimation procedure. Section
5 describes the results. We examine the robustness of our results in Section 6. Finally,
Section 7 concludes and discusses directions for further research.

2 Grocery retailing, shopping patterns and opportunity cost
of time

This Section aims at giving an overview of the data we use, and a first look at customers’
shopping behavior.

2.1 The data

This paper uses two complementary data sets. Data on household purchases is obtained
from the TNS Worldpanel data base by the TNS-Sofres Institute. It is homescan data on
grocery purchases made by a representative sample of 7,490 households in France during
2005. These data are collected by household members themselves with the help of scanning
devices. Most households integrating the panel were randomly sampled since 1998 (the
TNS Worldpanel is a continuous panel database starting from 1998). Every year, a bunch
of new randomly selected households is added to the panel either as a replacement of
another household rarely reporting data or because sample size is increased.

The data set contains information on 352 different grocery products from around 90
grocery stores including hyper- and supermarkets, convenience stores, hard-discounters
and specialized stores. The data is reported at the purchase level, so we observe product
characteristics such as total quantity, total expenditure, the tore where it was purchased
from, brand, etc. In addition, the data include a range of household demographics such
as household size, number of children, location, income, number of cars, internet access,
storage capacity etc.

On the other hand, data on stores’ characteristics is obtained from the Atlas LSA
2005. It includes information by store category (Hyper-, supermarket, convenience and
hard-discount stores) on store location, surface, no. checkouts, no. parking spots, etc. In
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particular, store location is key to our analysis as it will enable us to identify transport
costs. This will become apparent in Section 4.1.

2.2 Customer profile

Table 1 gives summary statistics for demographic characteristics of french households
observed in the data. The average household in France consists of three members, the
household’s head age5 being 51 years old, with approximately 2,350 euros of income per
month and at least one car. Only half of the households in the sample reported having
internet access at home which may give a clue on why internet purchases are not so
important in our data set. As for storage capacity and home production, 79% of the
households have storage rooms at home and 69% an independent freezer, which may
explain low frequency of shopping for some households or one-stop shopping behavior. In
particular, it is remarkable that about 39% reported to produce vegetables at home, which
along with the fact that less than 30% of the households are located at rural areas, may
be an indicator of less need for shopping or low frequency of shopping as well.

Table 1: Summary statistics for household characteristics

Variable Mean Median Sd Min Max

Demographics
HH size 2.96 3 1.38 1 9
Income (e/month) 2,352 2,100 1,106 150 7,000
Children under 15 (prop. of HH) 0.35 0 0.48 0 1
HH head’s age 50.6 49 14.32 22 76
Lives in city 0.73 1 0.44 0 1
Car 1.55 2 0.80 0 8
Home internet access 0.49 0 0.50 0 1

Storage capacity
Independent freezer 0.69 1 0.46 0 1
Freezer capacity > 150L 0.58 1 0.49 0 1
Storage room at home 0.79 1 0.41 0 1
Vegetables production at home 0.39 0 0.49 0 1

Table 2 displays details on consumer shopping patterns. On average, households tend
to favor multistop shopping. The average french household visits two separate grocery
stores in a week and tend to do a single trip per week to the same store. The average
number of days between shopping occasions is 5 days. Notice there is some heterogeneity
here, which is indicated by a standard deviation of 4.7 days: some households go every
day to a grocery store whereas for some others it takes up to ten days to go back to a
store.

Larger store formats are preferred by consumers: on average, the two most frequently
visited store formats are Supermarkets and Hypermarkets with 48.4% and 40.5% share
on total visits per week. Convenience stores, the small downtown stores supplying a
reduced product range generally at higher prices, get the lowest share of visits, with
1.9%. Although convenience stores have the advantage of being within walking distance
to households location, as opposed to hypermarket that are located outside city centers,
the preference for larger stores may be explained by several factors such as bulk shopping,
lower prices sales and promotions (that may be more intense in larger stores) and a larger

5By household head we mean the person mainly in charge of the household’s grocery shopping.
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product range.

Table 2: Summary statistics for household shopping patterns

Variable Mean Median Sd Min Max

No. Trips to same grocery store/week 1.37 1 0.72 1 7
No. separate grocery stores visited/week 1.65 1 0.83 1 8
Days between visits 5.09 4 4.73 1 232
Visits by format (% of total/week)
Hypermarket 40.48 32.2 34.4 0 100
Supermarket 48.38 47.6 32.6 0 100
Convenience 1.92 0.0 8.7 0 100
Hard discount 9.22 3.7 11.6 0 50

Interestingly, households tend to concentrate purchases of particular product categories
in the same store format. Table 3 gives transition probabilities of visiting a particular store
format this week for dairy products conditional on the store format sourced the previous
week. The probability of keeping the same store format in most cases is larger than the
probability of switching store formats. In particular, the lowest probabilities of switching
are for those households sourcing hyper- and supermarkets in the past, which is in line with
the preference for larger store formats reported in Table 2. Moreover, those households
patronizing specialized and other smaller stores (‘others’) are more likely to switch to a
hyper- or a supermarket next period.

Table 3: Transition matrix for purchases of dairy products by store format

Purchase at t
Hyper Super Convenience Hard discount Other

Hyper 0.68 0.16 0.16 0.27 0.28
At Super 0.17 0.67 0.25 0.31 0.37
t+1 Convenience 0.01 0.01 0.46 0.01 0.02

Hard discount 0.12 0.12 0.09 0.38 0.10
Other 0.03 0.04 0.04 0.02 0.23

Age can be seen as a good indicator of the opportunity cost of time. Aguiar and Hurst
(2007) find that older people often pay lower prices because their frequency of both shop
trips and retailers visited increases, presumably due to a lower cost of time. In our data
we found a similar relationship between shopping frequency indicators and age. Figure 2
shows that both the number of trips per store and the number of different stores visited
a month increase with age. Older people go shopping more frequently performing more
visits to the same retailer as well as more visits to separate retailers than their younger
counterparts. This can be thought of as older people with higher taste for shopping and
quality doing more multistop shopping in order to get the best products. It might as well
be interpreted as a way to search for the best deals, from an information friction viewpoint.
However, the low shopping costs reasoning seems to be more appealing to us because fre-
quent shopping allows people to be better informed about prices and promotional activities
without the need to do a search each time they want to go shopping.
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Figure 2: Frequency of shopping by age ranges, 2005

Notes: Both lines show the results of independent regressions of each variable
(Trips per store and Number of stores visited) on age categories and other
demographic controls (income, hh size, car dummy, storage capacity, etc.).
Results are based on 5 million observations. All estimates are significant at
1% confidence level.

2.3 Reduced-form results

Recall that shopping costs are the costs of dealing with a store. This implies that multistop
shopping, i.e., visiting several separate suppliers in a given shopping period, should be
negatively correlated with the consumers’ physical as well as time costs. Such a correlation
will constitute key empirical evidence of the role of shopping costs on consumer shopping
behavior.

In line with theory, we measure multistop shopping as the number of different suppliers
visited within a week by the consumer. We regress this variable on the distance from
household location to stores and a set of household demographic characteristics which
proxy opportunity cost of time, to study the correlation between shopping costs and
multistop shopping behavior. Dummy variables to control for region fixed-effects are
added in all regressions. Supermarket and time dummies are included gradually in order
to assess their effect on the estimates. Further, we add some controls on household storage
capacity that can determine the frequency of shopping during the week, namely, type of
living place (apartment, farm), storage room, independent freezer, and the size of the
largest freezer at home. Table 4 gives the results. Most coefficients are of the expected
sign and statistically significant at 1% confidence level.

Results provide us with strong empirical evidence on how households’ ability to pa-
tronize multiple stores depends on how costly it will be in terms of time and distance.
Interestingly, we find that bigger households living in urban areas tend to favor multistop
shopping. On the other hand, higher income people as well as households with babies do
less stops on average due, presumably, to a larger opportunity cost of time. Similarly, in-
ternet access reduces the number of stops as people can shop online and use home delivery
services, which might involve savings on transport costs and time. Growing vegetables at
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home also reduces the number of stops people want to make probably due to lesser needs
for staples. People living in an apartment tend to source more stores as compared to those
who live in a house. In contrast, those who live in a larger place, such as a farm, do less
stops as compared to families living in a house. This can be explained by the fact that in
general, people living in apartments are more likely to be located at or closer to downtown
and are more proxy to stores than houses (that are mostly located outside downtown) and
farms. It also could indicate that apartments have lower storage capacity than houses and
farms.

Distance to stores are negatively correlated with the number of stores visited in a week
as expected (see column (1) of Table 4). The longer the trip a consumer needs to make
to join a store the larger the transport costs. Notice that distances were excluded from
specifications displayed in columns (2) and (3) due to the inclusion of store fixed effects
that are capturing location as a store characteristic. Finally, in specification given in
column (1) we find a negative correlation with car ownership, which can be explained by
the fact that people with a car can do bulk shopping at a big-box store, generally located
outside downtown areas. However, this relationship becomes positive and non significant
in specifications two and three as we introduce store and time dummies.

3 Consumer shopping behavior with shopping costs
Our general strategy is to identify all parameters of the model and retrieve shopping costs
cutoffs by setting out a model of demand for multiple grocery products. This way, we can
avoid any difficulties related to unobserved data on costs and structure of the supply side.

Our structural model allows for consumer heterogeneity in two dimensions, namely, in
the valuation for a particular product and in shopping costs. To keep exposition simple,
without loss of generality, we present a model of three grocery stores which will capture
the basic intuition of one- and multistop shopping behavior and the role of shopping costs.

3.1 General set-up

Demand for grocery products is characterized by different consumers indexed by i =
{1, . . . , I} with idiosyncratic valuations for grocery products k = 1, . . . ,K.6 Although
valuations and demands may vary with time, we drop the time subscript t for the sake of
exposition unless it is strictly necessary. A customer i purchasing product k from store
r ∈ {0, . . . , R} derives a net utility vikr.7

Consumers want to purchase bundles of these products. Let B = {1, . . . , RK} be
the set of all possible bundles consisting of combinations of products-stores available in
the market, i.e. our bundles account not only for which product was purchased, but
what supplier it was purchased from as well. A consumer can either concentrate all her
purchases with a single store (one-stop shopping) or buy subsets of products from several
separate suppliers (multistop shopping). At the end of the day, each individual’s shopping
behavior will be determined by her idiosyncratic cost of shopping.

In the formulation of the model, we focus on the fixed component of the total shopping
costs that may account for consumers’ taste for shopping. From now on, we will refer to
this fixed cost as “shopping costs” and denote it si. Physical transport costs, which are an

6All consumers having access to the same product range might seem a strong assumption. However,
this help us reducing dimensionality issues in the estimation part. An extension of the paper would relax
this assumption and allow for heterogeneous choice sets.

7For now, we do not specify a functional form for the utility now as it is not necessary for setting out
the model. We will assume a parametric specification at the empirical implementation stage in Section 4.
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Table 4: Results for number of different stores visited per week

Variable (1) (2) (3)

HH head’s age 0.0025∗∗∗ 0.0032∗∗∗ 0.0032∗∗∗

(0.0000) (0.0000) (0.0000)
Log Income -0.0541∗∗∗ -0.0106∗∗∗ -0.0104∗∗∗

(0.0009) (0.0009) (0.0009)
HH size 0.0781∗∗∗ 0.0691∗∗∗ 0.0692∗∗∗

(0.0004) (0.0004) (0.0004)
Car -0.0177∗∗∗ 0.0030 0.0031

(0.0019) (0.0019) (0.0019)
Lives in city 0.0416∗∗∗ 0.0517∗∗∗ 0.0516∗∗∗

(0.0009) (0.0009) (0.0009)
Lives in an appartment 0.0699∗∗∗ 0.0620∗∗∗ 0.0622∗∗∗

(0.0011) (0.0011) (0.0011)
Lives in a farm -0.1791∗∗∗ -0.1605∗∗∗ -0.1601∗∗∗

(0.0028) (0.0027) (0.0027)
Baby -0.1155∗∗∗ -0.0901∗∗∗ -0.0898∗∗∗

(0.0012) (0.0011) (0.0011)
Home internet access -0.0147∗∗∗ -0.0086∗∗∗ -0.0086∗∗∗

(0.0008) (0.0008) (0.0008)
Grow vegetables home -0.0122∗∗∗ -0.0095∗∗∗ -0.0101∗∗∗

(0.0009) (0.0009) (0.0009)
Distance to store (km) -0.0002∗∗∗

(0.0000)
Constant 1.8866∗∗∗ 1.9142∗∗∗ 1.9153∗∗∗

(0.0073) (0.0075) (0.0080)
HH storage capacity controls Yes Yes Yes
Dummies per region Yes Yes Yes
Store FE Yes Yes
Week FE Yes
R2 0.0249 0.074 0.0764

Notes: Regressions are based on 4.72 million observations. Asymptotically
robust s.e. are reported in parentheses.
∗∗∗ Significant at 0.1%.
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important component of the total cost of shopping, will be accounted for in the empirical
implementation of the model by including distances to stores in the utility specification
(see Section 4).8. Accordingly, shopping costs are assumed to be independent of store
characteristics (size, facilities, location, etc.) and time invariant. Furthermore, we assume
si is a random draw from a continuous distribution function G(·) and positive density g(·)
everywhere.

Finally, we suppose consumers are well informed about prices and product charac-
teristics. Therefore, we assume away information frictions and so consumers’ need for
searching activities to gather information about prices, qualities and the like.9

A consumer i, whose shopping costs of using store r are denoted si, is supposed to
have an optimal shopping behavior. This implies she should optimally make a decision
that involves choosing between being a one-stop or a multistop shopper and where to go
and buy each of the K products of his desired bundle b.

Suppose there are three grocery stores in the market indexed by r ∈ {A,B,C}. A
consumer will favor multistop shopping if her shopping costs are small enough, otherwise
she will optimally concentrate all her purchases with a single store. Roughly speaking, the
choice set of consumer i will be restricted by the number of separate stores she can source
given her shopping costs, so that her choice will consist of picking the mix of products-
stores that maximize the overall value of the desired bundle. In this sense, a three-stop
shopper who can visit all three stores will pick the best product from the three alternatives
in the market within each category. A two-stop shopper will pick the mix of two stores
maximizing the utility of the desired bundle from all the combinations of products-stores
possible. Her final bundle will consist of two sub-bundles each containing the best product
out of two alternatives in each product category. Finally, a one-stop shopper will pick the
store offering the largest overall value of the whole bundle of products.

Formally, let γDir, for allr ∈ {A,B,C} represent consumer’s i transport costs, with
Dir being the distance traveled by a consumer i from his household location to store
r′s location and γ a parameter that captures consumer’s valuation of the physical and
perceived costs of the trip to the store. Define the utility net of transport costs, of a
shopper that can only source one of the three stores in the market as

v1
i = max

{
K∑
k=1

vikA − γDiA,
K∑
k=1

vikB − γDiB,
K∑
k=1

vikC − γDiC

}
. (1)

Similarly, a two-stop shopper has net utility given by

v2
i = max

{
K∑
k=1

max{vikA, vikB} − γ(DiA +DiB) ,

K∑
k=1

max{vikA, vikC} − γ(DiA +DiB),

K∑
k=1

max{vikB, vikC} − γ(DiA +DiB)
}
.

(2)

8Due to some data limitations, we can only compute distances from the zip code of a given household
to the zip code of a given store. Consequently, transport costs will be the same for all individuals living in
the same zip code area. See Section 4.1 for further details

9This might seem a strong assumption, even though we believe frequent grocery shopping make better
informed households and reduce the need to engage in costly search. A more general set up would allow for
positive search costs. However, this is out of the scope of this paper and we leave it for a future extension.
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Finally, a consumer able to source the three stores has net utility given by

v3
i =

K∑
k=1

max {vikA, vikB, vikC} −
∑

r∈{A,B,C}
γDir. (3)

Notice that expressions in (1), (2), and (3) are particular cases of a more general utility
function in which, conditional on shopping costs, a n-stop shopper is picking the subset
of stores that maximize the overall utility of the desired bundle. For a one-stop shopper,
these subsets are singletons, for a two-stop shopper they contain two elements and for
a three-stop shopper each subset of stores contains exactly the number of stores in the
market, which is why she does not need to maximize over mixes of suppliers.10

Suppose v1
i −si > 0 so that all consumers will go shopping at least once. To determine

the number of stops to be made, consumer i will compare the extra utility of doing n-
stop shopping with the extra costs, taking into account that the total cost of shopping
increases with the number of different stores visited. A consumer will optimally decide
to do three-stop shopping only if the net utility of visiting three separate stores is larger
than what she could obtain by doing either one- or two-stop shopping instead. Formally,

v3
i − 3si > max{v2

i − 2si, v1
i − si}

Let δ3
i ≡ v3

i − v2
i be the incremental utility of visiting three stores rather than two, and

∆3
i ≡ v3

i − v1
i be the extra utility of deciding to source either one or three stores. The

optimal shopping rule for a three-stop shopper is

si 6 min
{
δ3
i ,

∆3
i

2

}
(4)

Similarly, a consumer will optimally decide to do two-stop shopping if and only if

v2
i − 2si > max{v1

i − si, v3
i − 3si}

Similarly, let δ2
i ≡ v2

i − v1
i be the incremental utility of sourcing two stores rather than

one. Hence, a consumer i will do two-stop shopping as long as

δ3
i < si 6 δ2

i (5)

Finally, a consumer will optimally decide to do one-stop shopping if and only if

v1
i − si > max{v2

i − 2si, v3
i − 3si}

from which we can derive the optimal shopping rule of a one-stop shopper as

si > max
{
δ2
i ,

∆3
i

2

}
(6)

In general, the optimal shopping rule for consumer i says that she will choose the mix
of suppliers to maximize his utility, conditional on the extra shopping cost being at most
the extra utility obtained from sourcing additional stores.

10The general expression of the utility and choice of a n-stop shopper are described in Appendix A.
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Equations (4), (5) and (6) suggest we can derive critical cutoff points of the distribution
of shopping costs. It is necessary though to determine how are δ2

i , δ
3
i and ∆3

i /2 ordered.
From six possible orderings only one survives,11 namely,

δ3
i <

∆3
i

2 < δ2
i , (7)

Given (7), the highest possible shopping costs of any consumer able to do multistop
shopping at either two or three stores in equilibrium are given respectively by the following
critical cutoff points:

s2
it = δ2

it, for two-stop shopping, and (8)
s3
it = δ3

it, for three-stop shopping.

Notice that cutoff points in (8) depend on the period of purchase —the subscript t was
added— because it depends on utilities that may vary across periods. This contrast with
individual shopping costs which are assumed to be time invariant. Cutoffs in (8) say that
for given shopping costs, consumers only care about marginal extra utility of visiting an
additional store to make their final decision on how many stores they should optimally
source. Moreover, one-, two- and three-stop shopping patterns arise and will be defined
over all the support of G(·) –see Figure 3.12

Assume v1
it−si > 0 for all i = 1, . . . , I so that all consumers will do at least one shopping

trip per week. This is, the outside option is chosen with probability zero implying G(v1
it) =

1. The intuition behind this is as follows: a likely outside alternative to grocery shopping is
home production, which consists of households transforming time and market goods into
consumption products according to a given home production function (see Aguiar and
Hurst, 2007). Yet, even if the household chooses to produce at home most of its preferred
products, there is still a bunch of them that will be too costly to produce compared to
the retail price (e.g. toothpaste, toothbrush, cleaning products, bulbs, medicines, etc.).
Then, we can think of household members going from time to time to a store to get the
set of products they are not able to produce at home (or even the inputs to produce at
home the final products they wish to consume).13

Figure 3: One-, two- and three-stop shopping

s
0 s3

it s2
it v1

it

One-stop
shoppers

Two-stop
shoppers

Three-stop
shoppers

11We explain why this is so in Appendix B.
12Notice that the kind of behavior according to which a shopper evaluates extreme choices such as

visiting all retailers against only one does not appear to be relevant here.
13The outside option might as well be thought of as not shopping on a weekly basis (for instance, going

once a month or every other month). However, in our data the proportion of households not purchasing
on a weekly basis corresponds to 8%.
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3.2 Aggregate demand

Let B2i,B3i ∈ Bi be subsets of bundles involving two- and three-stop shopping, respectively.
Total demand for product k = 1, . . . ,Ki supplied by retailer r from all types of shoppers
is given by

qkrt (pt) =
[
1−G

(
s2
it (pt)

)]
P 1
it(XBi ; θ)

+
[
G
(
s2
it (pt)

)
−G

(
s3
it (pt)

)] ∏
{b∈B2i | kr∈ b}

P 2
it(XBi ; θ)

+G
(
s3
it (pt)

) ∏
{b∈B3i | kr∈ b}

P 3
it(XBi ; θ),

(9)

where P 3
it is the probability that a one-stop shopper decides to stop at r, P 2

it is the prob-
ability that a two-stop shopper chooses to source retailer r as one of the two retailers she
will optimally stop at, and P 3

it is the probability that a three-stop shopper decides to pick
a bundle b including product kr. All these probabilities are known by consumers.

The own- and cross-price elasticities of demand are given by the standard formula
ηkrht = ∂qkrt

∂pkht

pkht
qkrt

. It is important to note that a price change may affect not only the
market shares per type of shopper but also the shopping costs cutoff values provided that
they depend on utilities. As a consequence, the distribution of shoppers between one-,
two- and multistop shopping changes. In fact, an increase in product k’s price at retailer r
reduces the indirect utility of consumer i making a stop at r. She may therefore consider
to make less stops and purchase a substitute for this product from rival retailer, say h, as
the extra gain in utility from sourcing an additional store may not compensate the extra
shopping cost.

4 Empirical implementation
As described in Section 3, consumer choice set consists of bundles of products that can be
purchased from one or several stores. Accordingly, if we consider R stores and K products,
we would have to deal with a choice set of RK alternative bundles for each individual,
which grows exponentially as R or K increases, resulting in a dimensionality problem
which will make estimation challenging and burdensome, whereas it might not change the
results in an important way. We circumvent this problem by restricting attention to a
reduced set of products and grocery stores. We select pre-packaged bread, ready-to-eat
breakfast cereal (hereafter RTEBC) and yogurt as the products to be included in our
analysis, provided that they meet the following conditions. First, they are staples and
so they are frequently purchased and heavily consumed by french households (see Table
5). Second, they belong to different categories of products, which ensures we can observe
enough variation in shopping patterns as people may tend to concentrate purchases of the
same category in a particular store but might want to diversify across categories. Finally,
these products are likely to be of unit demand, i.e., consumers tend to consume one serving
of the product at a time and to not mix varieties (see Table 5 for details on how we define
servings).

Concerning grocery stores, we restrict attention to the two leading supermarket chains
in France selected according to their national market share in 2005. The remaining grocery
stores observed in our data are treated as part of a composite store which sells the three
products we referred to above and constitute an outside option to the two leading chains.
In other words, consumers have three alternative stores in their choice set: two insiders and
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Table 5: Chacteristics of the selected producs

Serving Consumers (% of pop.)a Position among

Product (in grams) Kids Adults 352 productsb

Yogurt 125 90.7 83 2
Pre-packaged bread 28 95.2 98.5 20
Breakfast cereals 34 60.4 16.8 30

Notes: a ï¿½tude Inca (Afssa) 2006-2007 by Agence Française de Securité Sanitaire des Aliments. Yogurt
and pre-packaged bread appear in the Inca study as part of broader categoires including similar products,
namely, "bread and dried bread" and "Ultra-fresh dairy", respectively. Percentages of consumption correspond
to consumption of all products in the categories.
b These are the positions of the considered products in a ranking of the 352 observed products in our data set,
TNS Worldpanel 2005 by frequency of purchase.

an outside option. This will be enough to describe one- and multistop shopping behavior
and to estimate shopping costs cutoffs.

Notice that a bundle can consist partially or fully of products purchased from the
outside retailer. Consider, for example, the case of three stores {A, B, O} supplying three
products k = 1, 2, 3. Let two bundles be b = {1A, 2B, 3O} and b′ = {1O, 2O, 3O}. The
former will be the choice of a three-stop shopper purchasing product 1 from store A,
product 2 from B and product 3 from the outside store O, whereas the latter corresponds
to the choice of a one-stop shopper purchasing all products from the outside store. We
call the latter bundle the outside good or the zero bundle, b = 0.

We empirically specify the utility of consumer i from purchasing good k from store r
at time t as

vikrt =

 −αpkrt +Xkrβ + ξt + εikrt, if r = {A,B}

εikOt, if r = O
(10)

where, pkrt is the price of good k at store r, Xkr are product-store observed characteris-
tics, ξt are time fixed effects, εikrt is an idiosyncratic shock to utility, which rationalizes
all remaining week-to-week individual variation in choices, and α and β are parameters
common to all individuals. For simplicity, we normalize the mean utility of the product
varieties supplied by outside store to zero.

Notice that equations (1) through (3) along with equation (10) fully specify the utilities
of one and multi-stop shoppers as a function of price of the product, product character-
istics, and distance to the stores, among others. Put it that way, our utility accounts for
both vertical and horizontal dimensions of consumers’ valuations for products. The for-
mer is captured by included product-store characteristics. The horizontal differentiation
aspect is captured by distances which vary across postal codes.14

Further, we assume that individual shopping costs are a parametric function of a
common shopping cost across all consumers ς, which can be thought of as the minimum
cost every consumer bears due to the need of going shopping, and an individual deviation
from this mean ηi, which rationalizes the individual heterogeneity in shopping costs, this
yields

14If several goods are purchased at the same retailer, the distance to it will only be counted once; the
distance will be divided evenly across goods purchased from the same retailer.
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si = ς + ηi (11)

we assume ηi ∼ N (0, 1).
Remark that even though the choice set for all consumers is the same (i.e. all products

from all retailers are available for purchase), consumers with large enough shopping costs
visiting an inferior number of retailers than there is in the market, are not able to choose
the first best option from each product category. Therefore, shopping costs limit the set
of alternatives available for one- and two-stop shoppers. Under our setup, this can be
thought of as the result of a constrained maximization processes rather than suboptimal
choices or mistakes.

4.1 Identification

Equation (8) show that we can identify critical cutoff points of the distribution of shop-
ping costs if we are able to both observe the optimal shopping patterns of one-stop and
multistop shoppers and identify the parameters of the per product utilities involved in
the computation of the nth cutoff point. In other words, for each individual we need to
identify the utility of her actual choice, say two-stop shopping, and the utility she would
have derived had she chosen one-stop shopping instead. To do this, we exploit the panel
structure of our data. For most households we observe enough cross-section variation in
choices of products and stores, which allows us to identify the utility parameters. In par-
ticular, the price coefficient, it is separately identified from the mean utility from choice
data alone due to the observed variation in prices per product. The predicted probabilities
will vary due to this variation in prices, which generates enough moments to identify the
price coefficient.

On the other hand, (fixed) shopping costs and shopping costs cutoffs are identified
from the observed week-to-week variation in shopping patterns, i.e. a household making
one-stop shopping this week might be doing multistop shopping next week, meaning that
a given household can be more or less time constrained in different weeks. A key point
in the identification of fixed shopping costs is the inclusion of other sources of shopping
costs that may vary across retailers and periods. An important component in this class
of costs is transport costs. Following Dubois and Jï¿½dar-Rosell (2010), we empirically
identify transport costs by including distances from households’ locations designated by
postal codes. All households located at a same postal code will have the same distance to
retailers nearby.15 The inclusion of distances to stores will be useful for two purposes: they
will capture the horizontal dimension of consumers’ preferences for product characteristics
and, on the other hand, will allow as to identify the disutility of transport. By adding this
information to the model along with the unit demand assumption, the remaining variation
in shopping costs across consumers can be interpreted as a pure idiosyncratic shopping
cost that is constant across stores, consistent with our set up.

Finally, the identification of aggregate demand requires the computation of the mass of
one-, two- and three-stop shoppers, which in equation (9) are defined as the differences of
the distribution of shopping costs G(·) evaluated at two different cutoff values. Given our
setup, we are able to compute those values from the empirical distribution of customers
between one-, two- and three-stop shopping that we observe in our data.

There may be some endogeneity problems, in particular that of the correlation between
prices and the utility shock. In addition, the method of estimation we apply and describe

15Due to data limitations, we do not observe the exact locations of neither households nor retailers but
postal codes only. As a consequence, we are not able to compute exact distances.
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below relies on moment conditions, which requires a set of exogenous instruments. To
account for this, we follow Nevo (2001) and use average regional prices of the product to
be instrumented for as IV’s. These IV’s are standard in the IO literature and are proved
to work well. We provide further details on the validity of instruments in subsection 4.3.

4.2 Estimation

In this section we present details on how we estimate the utility parameters, and the mean
and cutoff values of the distribution of shopping costs. We estimate the parameters of the
model presented in the previous section using the data described in Section 2. Consistent
with this reduced product set and the assumptions of the model described in Section 3,
the final sample we use consist of localities where we observe one-, two- and three-stop
shopping behavior and households purchasing at least one unit of each product considered
here (see Appendix C for further details on how we define units and how we deal with
these three goods in a discrete choice context).

The key point of our estimation strategy is to exploit population moment conditions
and estimate the parameters of the model by the method of moments for reasons that
will become clear below. Therefore, we need to express our discrete choice problem as
moments and match population moments with empirical moments in the data. Recall the
choice problem we are analyzing. A consumer who wish to buy a set of products K, faces
a set B of mutually exclusive and exhaustive alternatives consisting of combinations of
products and retailers available in the market. She will purchase the K products from
n ∈ {1, 2, 3} stores, call it bundle b ∈ B = {1, . . . , 27}, such that she can obtain the highest
utility net of shopping costs. This maximizing behavior defines the set of unobservables
leading to the choice of bundle b as

Aibt(XB; θ) =
{
(εit, ηi)|vnibt − nsi > vmib′t −msi ∀m ∈ {1, 2, 3}, b′ ∈ B

}
where XB is a matrix of characteristics of all alternatives including prices. The response
probability of alternative b as a function of characteristics of products and retailers, given
the parameters, is given by

PB(b|XB; θ) =
∫
Aibt

dF (ε)dF (η) (12)

A natural way to estimate the parameters of the model seem to be the maximization
of the log-likelihood function

L(XB, d, θ) =
∑
i,b,t

1ibt logPB(b|XB; θ) (13)

However, given the functional form of the utilities specified in equations (1) through
(3), maximum likelihood estimation turns out to be extremely difficult to implement as
the likelihood of the problem is very nonlinear in the utility shocks. We overcome this
problem by using the Method of Simulated Moments (MSM) introduced by McFadden
(1989) and Pakes and Pollard (1989).

Let dibt = 1{vnibt − nsi > vmib′t −msi} be the indicator that bundle b ∈ B implying n
number of stops was chosen by consumer i. This information is observed in the data for
each consumer i every week. The expected value of dibt conditional on a set of measured
characteristics XB writes as

E[dibt|XB, θ] = PB(dibt = 1|XB; θ) (14)

To simulate P (·), we proceed as follows:
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1. We build the whole choice set consumers face independently of their shopping costs.
This is, we constructed bundles as all possible combinations of three retailers and
three goods. As a whole, we obtained a choice set of 27 bundles that account for all
possible shopping patterns, for instance, purchasing all three products from retailer
one implies one-stop shopping.

2. We assume the shock to utility εikrt is distributed i.i.d. type one extreme value
take S random draws εsikrt∀s = 1, . . . , S per individual, product, retailer and week.
Similarly, we assume the shopping costs shock ηi is distributed i.i.d. standard normal
and take S random draws ηsi ∀s = 1, . . . , S per individual. Consistent with our
assumption of constant shopping costs, we replicate this draws for all retailers and
periods whenever we observe purchases by consumer i.

3. Using a vector of initial parameter values, θ0 = (α0, β0, γ0, ς0) randomly drawn from
a normal distribution, along with drawn shocks (εsikrt, ηsi ) we are able to compute
utilities for all product-retailer choices and consumers, as well as shopping costs to
simulate the consumer choice problem described in our modeling framework for each
s = 1, . . . , S.

4. From these simulations, we observe what bundle (retailers-products combination)
maximizes the utility net of shopping costs of each individual in a given week and
form an indicator variable for the implied choices, which we denote dsibt∀ b ∈ B, s =
1, . . . , S.

5. Finally, we approximate the choice probability as

P̌B(dibt = 1|XB, θ) = 1
S

S∑
s=1

dsibt (15)

Plugging the simulated statistics into (14), rearranging and introducing instruments
that may be functions of XB (we defer to the next subsection the discussion of the instru-
ments we use), we have the following moment conditions

E


w1i

(
di1t − P̌B(di1t = 1|XB, θ)

)
...

wNi
(
di27t − P̌B(di27t = 1|XB, θ)

)
 = 0

We estimate the parameters of the model by making the sum of the squares of the
residuals inside the expectation above across individuals as close as possible to zero. For-
mally,

min
θ

[
I∑
i=1

Q(wi, XB, dit, θ)
]′ [ I∑

i=1
Q(wi, XB, dit, θ)

]
,

where Q(·) =
[
w1i

(
di1t − P̌s(di1t = 1|XB, θ)

)
, . . . , wNi

(
di27t − P̌s(di27t = 1|XB, θ)

)]′
.

The Method of Simulated Moments (MSM) estimator is then given by

θ̂MSM = argmin
θ

[d− P (θ)]′W ′W [d− P (θ)],

where W = [w1, ..., wI ] is a N × I matrix of instruments.
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Given the way simulated probabilities are computed in (15), they are not continuous in
θ. It implies that the objective function previously described, which is a sum of simulated
probabilities, is not continuous either. As a consequence, analytical methods cannot be
used in the optimization process nor standard optimal instruments (which are derivatives
of the simulated probabilities evaluated at a consistent estimator of the true parameters)
nor the computation of standard errors (which require the use, among other things, the
first derivative of the GMM objective function). These discontinuities do not jeopardize
the consistency of simulation estimators. Pakes and Pollard (1989) derive asymptotic
properties for a broad class of simulation estimators (including McFadden’s MSM) that
cover cases where the objective function is discontinuous in the parameters. In practice,
to circumvent the discontinuity problem we use a numerical search (‘Pattern search’)
method in the optimization process. As for the computation of standard errors, we apply
parametric bootstrap methods.

4.3 Instruments

In order to obtain consistent estimates of the parameters of the model, we require to
deal with the potential correlation of prices with the error term of the model, εikrt. In our
framework, this error term, known by the consumer but unobserved by the econometrician,
is interpreted as a shock to utility that affects demand. If we assume that firms, that may
observe these shocks through the observed demand curves, will react to changes in εikrt
by adjusting prices, it will bias the estimate of price sensitivity, α.

To treat this endogeneity problem we assume for simplicity that marginal costs are
linear and depend on product and store characteristics and cost shifters, and that markets
are competitive so that firms set prices at marginal cost.16 However, as we do not observe
any cost shifters in our data set, we use average regional prices of the same product in
all the 21 French administrative regions (excluding the department to be instrumented
for from the average price of the region it is located in) as proxies for marginal costs
information. Following Nevo (2001), after controlling for product-retailer-specific means,
individual shocks might still be correlated within a city but are uncorrelated with product
valuations of people from other regions. This implies that in case a demand shock happens
in one region, only the local price will be affected. This guarantees the exogeneity condition
of prices. Now, what makes average regional prices good instruments is the fact that prices
from two different locations (cities, departments, etc.) in a country are linked by common
marginal costs as long as they are produced (supplied) by the same manufacturer (retailer)
or under a standardized process.17

5 Results
Table 6 displays MSM estimates of the utility parameters, according to two specifications.
The first column corresponds to the simplest model including the main covariates and
controlling for product and time fixed-effects. The second column shows the results of a
specification including IV’s. Most coefficients are significant, and results are as expected:
demands are downward sloping and the estimate for the distance shows that the value of
a product decreases as the retailer is farther away from customer’s dwelling. The estimate
for mean shopping costs is also positive (as expected) and significant in both regressions.

16In a discrete choice framework, Reynaert and Verboven (2014) examine both perfect and imperfect
competition cases and obtain similar results.

17Although the independence assumption seems reasonable, there may be cases were it cannot hold as,
for example, a national demand shock as pointed out by Nevo (2001).
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After introducing IV’s in the model, we obtain a larger price estimate which may
indicate a downward bias in the estimate without instruments. On the other hand, the
coefficients for distance seemed to be biased upwards, as we obtained a lower estimate.
Finally, the men shopping cost estimate does not differ when we add IV’s.

Table 6: Estimates for the utility parameters and shopping costsa

Variable (1) (2)

Price (e/basketb) −1.43∗∗ −1.91∗∗

(0.72) (0.83)
Distance (km) −9.03∗∗∗ −8.14∗∗∗

(3.18) (1.80)
Mean Utility Bread (28gr) 1.98∗∗ -0.12

(0.91) (1.29)
Mean Utility Cereal (35 gr) -0.22 -0.01

(0.59) (0.53)
Mean Utility Yoghurt (125 gr) 0.20 2.21∗

(0.83) (1.25)
Mean Shopping Costs 2.92∗∗∗ 2.93∗∗∗

(0.15) (0.31)

Time fixed-effects Yes Yes
Instrumentsc Yes

Notes: a Based on 6,192 observations consisting of purchases of the
three considered products made by 2,929 in 2005. Bootstrap standard
errors are in parenthesis.
b A basket contains a serving of each of the considered products: a
slice of bread (28g), a bowl of cereal (35g) and one yogurt (125g).
c Instruments include prices of the same good from other geographic
locations, as well as bundle dummy variables.
*,**,*** are significant at 10, 5 and 1% confidence levels.

Table 7 displays the estimates for the mean shopping cost and the distance in euros. It
also shows the values in euros of the average cutoffs of the distribution of shopping costs
in euros, calculated following equation (8) and using the predicted utilities. In order to
translate these values into euros, we divided each of them by the absolute value of the
estimated price coefficient. The estimate for the distance, obtained in principle as the
disutility of transport, is reinterpreted here as cost. To do this, we took the absolute value
of the original estimate and divide it by the absolute value of the price coefficient.

In line with this, the average fixed cost of shopping is 1.5 e per trip. In addition,
visiting a grocery store implies a cost of 4.26 e per km, for the average consumer. The
distance between the median consumer’s dweling to a store is 4 km, which multiplied by
the transport cost per km gives a total transport cost of 17.1 e. Summing up with the
mean shopping cost per trip, gives an average total cost of shopping of 18.7 e per retailer
sourced (see Table 8).

As for shopping costs cutoffs, our results indicate that consumers should have almost-
zero shopping costs to be able to source more than two retailers in a week. This rationalizes
the small proportion of three-stop shoppers observed in our data. Notice that the threshold
of three-stop shopping, s3, in column (2) of Table 7 is negative. As stated previously,
shopping costs may account for consumer’s taste for shopping. In line with this, a shopper
having a negative shopping cost means that she has a stronger taste for shopping, so that
using multiple suppliers makes her total cost of the shopping experience lower than than
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it would be had she decide to concentrate purchases with a single supplier.
One-stop shoppers are all those having shopping costs beyond 2.12 e per trip. A former

one-stop shopper will find it optimal to source an additional retailer if her shopping costs
were slightly lower than 2.12 e, yet sourcing a third retailer may require a large decrease
in shopping costs, such as having more time available or enjoying a lot multi-stop shopping
in a given week. The estimates allow us to retrieve the predicted proportion of shoppers
by number of stops: 90.1% are one-stop shoppers, 9.7% are two-stop shoppers and only
0.26% do three-stop shopping.

Table 7: Mean shopping costs, mean distance and average shopping costs cutoff (across
periods and consumers) in eurosa

(1) (2)
Total shopping costs
Mean shopping cost 2.04 1.53
Mean transport cost 6.31 4.26

Average shopping costs cutoffs
One-two stops (ŝ2) 2.85 2.12
Two-three stops (ŝ3) 0.02 -0.02

Predicted distribution of shoppers (% of total)
One-stop shoppers 90.07
Two-stop shoppers 9.68
Three-stop shoppers 0.26

Notes: a To transform estimates into euros, we divide each coefficient by the absolute value
of the price coefficient.
b To interpret the coefficient for distance as a transport cost, we take the absolute value of
the original estimate presented in Table 6. It is negative in principle because it enters an
utility function, expressing therefore a disutility of transportation.

Table 8 gives total transport costs and total cost of shopping (transport plus fixed
shopping costs) by store format. The median distance to a big box (or hypermarket) store
is 5.4 km, which multiplied by the transport costs per km gives a total transport cost
of 23.2 e, and by adding the mean shopping cost of 1.53 eper trip to a store, gives a
total cost of shopping of 24.7 e the average consumer bears each time he visits a large
store. Transport and total costs are decreasing in the size of the stores, on average, as
smaller formats are closer to downtowns. Sourcing a supermarket or a hard-discounter
implies transport costs of 12.8 e and 11.9 e per trip, and total costs of shopping of 14.3 e
and 13.4 e per trip, respectively. Finally, the costs of sourcing a convenience store are the
lowest provided that they are located in downtowns: the median distance to a convenience
is 0.8 km, the transport costs are 3.2 e and the total costs of shopping are 4.8 e per trip.

In Table 9, we present own- and cross-price elasticities. Due to the discontinuity of the
predicted choice probabilities described in the estimation section, we cannot compute the
derivatives of the demand functions with respect to price analytically. To overcome this
problem, we simulated a price increase of 20% for one product at a time, recomputed the
utilities for each product for each individuals and retrieved predicted choice probabilities
again, to finally get new demands. We take the difference in the new demand and the
baseline demand and divide the difference by the price change. Following the standard
formula, we then obtained price elasticities of demand as the product of the numerical
derivative and the original price, divided by the baseline quantity.
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Table 8: Transport costs and total shopping costs (fixed plus transport), by store format
(averages across periods and consumers) in eurosa

Store Median Distance Transport Total costs of
format (km)a costs (e)b shopping (e) c

Hypermarket 5.4 23.2 24.7
Supermarket 3.0 12.8 14.3
Hard discounter 2.8 11.9 13.4
Convenience 0.8 3.2 4.8
Overall average 4.0 17.1 18.7

Notes: a We use the median of the distance and not the mean, to avoid the effects of
outliers.
b Computed as the mean transport cost, 4.26 e/km given in column (2) of Table 7, times
the median distance.
c Computed as the sum of Transport costs plus the mean shopping cost of 1.53eper trip,
in column (2) of Table 7.

As expected, we obtain negative own-price elasticities and positive cross-price elas-
ticities for the same product category across retailers. This indicates that, on average,
consumers may switch retailers when the price of the desired product increases in their
patronized retailers. Interestingly, within retailer cross-price elasticities are negative. This
means that a price increase in a particular product causes a drop in demand for all other
products the consumer intends to purchase. This complementarity effect might be driven
by the larger mass of one-stop shoppers. For given prices of the products, a one-stop
shopper should pick the retailer in which she derives the maximum value of the desired
bundle. If the price of a product category raises in the chosen retailer, the shopper would
need to source a competing retailer due to the impossibility of sourcing two or more.

Table 9: Mean elasticities (across periods and consumers)

Changing Retailer 1 Retailer 2 Outisde retailer
price Bread Cereal Yogurt Bread Cereal Yogurt Bread Cereal Yogurt

Retailer 1
Bread -0.0044 -0.0042 -0.0039 0.0040 0.0040 0.0037 0.0061 0.0053 0.0075
Cereal -0.0070 -0.0080 -0.0065 0.0054 0.0059 0.0053 0.0074 0.0084 0.0095
Yogurt -0.0087 -0.0088 -0.0098 0.0069 0.0069 0.0076 0.0072 0.0069 0.0125

Retailer 2
Bread 0.0041 0.0040 0.0038 -0.0046 -0.0043 -0.0040 0.0064 0.0056 0.0079
Cereal 0.0059 0.0062 0.0057 -0.0069 -0.0080 -0.0064 0.0078 0.0090 0.0104
Yogurt 0.0074 0.0074 0.0080 -0.0089 -0.0090 -0.0100 0.0079 0.0076 0.0136

Notes: Elasticities were computed according to the standard formula: ηikrht = ∂qikrt
∂pkht

pkht
qikrt

. Derivatives were
computed numerically due to the discontinuity of predicted choice probabilities. Row titles indicate the product
which price is changing. Column headers indicate the sensitivity of the demand for a particular product to a
20% price change.

6 Robustness checks
A first concern when using simulated methods is whether the results are sensitive to
changes in starting values. To be sure that our estimates were robust to changes in the
vector of initial parameters, θ0, we performed the whole estimation process described in
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Subsection 4.2 using ten different sets of pseudorandom draws from a normal, as starting
values. We obtained similar estimates at each iteration which may as well be interpreted
as an indicator of convergence. The final results, which are shown in Table 6 are those
corresponding to the minimum value of the objective function out of ten available.

We also conducted a sample selection check. The final sample used for the estimates
presented previously was selected by restricting attention to those households purchasing
the three products considered here in a given week, consistent with our assumption of
inelastic demand for a unit of each product. We therefore dropped households not fulfilling
this condition. To find out if our results were robust, we used an alternative sample
with tighter restrictions on the selection of the households, namely, if we observed a zip
code with at least one household not purchasing the three products in a given week, we
dropped the entire local market. We were left with 1,027 observations corresponding to
purchases made by 541 households. We used the same estimation method and instruments
as for our final results. However, due to the few observations in this sample, we could
not include product fixed-effects. Results were similar in the direction and statistical
significance of the estimates, except for the distance that became non significant with
the use of IV’s (see Table 10). In this sense, the results do not seem to be driven by
sample selection. However,concerning the magnitude of estimates we have a remarkable
difference. This might be driven by the fact that there is much less variation in the
new sample and the omission of product dummies (that capture consumers’ valuation for
product characteristics). In particular, the average shopping costs cutoffs, expressed in
euros, are very small as compared to those in Table 6. This is due, in part, to a larger
estimate of the price coefficient. Nevertheless, their relative position remains similar and
lead to the same conclusions as those derived before.

Table 10: Results based on an alternative samplea

Variable (1) (2)

Price (e/basketb) -3.75*** -3.78***
(0.61) (0.25)

Distance (km) -13.48** -5.71
(5.34) (3.88)

Mean Shopping Costs 0.80*** 0.41***
(0.23) (0.08)

Time dummies Yes Yes
Instruments Yes
Av. shopping costs cutoffs (in e)
One-Two stops (ŝ2) 0.26
One-Three stops (∆̂31/2) 0.13
Two-Three stops (ŝ3) 0.01

Notes: aBased on 1,027 observations of purchases made by 541 house-
holds. Bootstrap standard errors are in parenthesis.
b A basket contains a serving of each of the considered products: a slice
of bread (28g), a bowl of cereal (35g) and one yogurt (125g).
*,**,*** are significant at 10, 5 and 1% confidence levels.
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7 Concluding remarks
Theory has shown that in the presence of of shopping costs, the real or perceived costs of
dealing with a supplier, policy conclusions might change dramatically. In particular, some
pro-competitive practices, such as head-to-head competition with homogeneous product
lines (Klemperer, 1992) or the introduction of a new product variety (Klemperer and
Padilla, 1997), can hurt consumers and motivate policy intervention. On the other hand,
some seemingly anti-competitive practices, such as below-cost pricing, can be welfare
enhancing and should not be banned (Chen and Rey, 2013).

From an empirical point of view, this motivates many important questions that remain
unanswered. First, is it possible to quantify shopping costs from consumers’ observed
shopping behavior? Second, will accounting for shopping costs in a multiproduct demand
model lead to a better understanding of consumer heterogeneity in shopping patterns?
Finally, to what extent the inclusion of shopping costs would be crucial for policy analysis?
This paper presents and then estimates a model of multiproduct demand for groceries in
which customers, that differ in shopping costs, can choose between sourcing one or multiple
retailers in the same shopping period. This framework allow us to retrieve the distribution
of shopping costs.

We quantify the total shopping cost in 18.7 e per store sourced on average. This cost
has two components, namely, the mean fixed shopping cost, 1.53 e and the total transport
cost of 17.1 e per trip to a given store. Moreover, we are able to compute the transport
and total costs of shopping by store format. Transport and total costs of shopping are
decreasing in the size of the stores, on average, as smaller formats are closer to downtowns.
The largest total shopping costs, 24.7 e, are incurred by consumers who source big-box
stores, because they are farther away from downtown. Sourcing a supermarket or a hard-
discounter implies total costs of shopping of 14.3 e and 13.4 e per trip, respectively.
Finally, the costs of sourcing a convenience store, 4.8 e per trip, are the lowest provided
that they are located in downtown. We find that individuals who source more than two
suppliers in a week have zero (even negative) shopping costs. This rationalizes the low
proportion of individuals making three and more stops in the same week observed in
the data. This might be an indicator that those households actually visiting more than
two separate stores a week should have a strong preference for shopping. In fact, The
predicted proportions of shoppers by number of stops are 90.1% of one-stop shoppers,
9.7% of two-stop shoppers and only 0.26% do three-stop shopping.

There are several avenues of further research that can be empirically addressed using
our framework. A first avenue is related to below-cost pricing. According to the OECD
(2005), laws preventing resale below-cost (RBC) and claiming to protect high-price, low-
volume stores from large competitors who can afford lower prices might be introducing
unnecessary constraints. Evidence from countries without RBC laws shows that smaller
competitors need not be pushed out of the market if they are not protected. Chen and Rey
(2012,2013) show that in the presence of shopping costs, loss-leading strategies and cross
subsidies are not predatory, and the latter might even be welfare enhancing. Empirical
evidence showing what would happen if RBC laws are eliminated would help in this debate.

A second avenue concerns the implications of product delisting. In recent years, a con-
siderably concentrated retail sector has brought the attention on the possible consequences
of retailer buyer power on upstream firms. A retailer can, for example, stop carrying a
product to punish a particular supplier for not agreeing on her requests. It might as well
use delisting as a threat, so that she can get better terms of trade. How will demand react
to the delisting of a product? Will consumers substitute brands in the same store or will
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decide to source an alternative store? What is the role of shopping costs in this decision?
These are questions to be addressed.

Finally, theoretical and empirical analyses should be done on retailers’ motivations to
raise consumers shopping costs and the consequences of such strategies for competition
and consumer welfare. One-stop shopping make more powerful retailers. Klemprer (1992)
predicts that if consumers are not interested to source multiple retailers, prices will tend
to be high. It might be the case that consumers face such high shopping costs that they
are not able to do multistop shopping even if they would like to. Retailers might use their
market power to raise customers shopping costs by making the shopping experience more
tiring or complicated, so that their share of one-stop shoppers increases.

Appendix

A The utility function of a n-stop shopper
We can give a general expression for the optimal decision rule of a n-stop shopper, n ∈
N = {1, · · · , Ri}, Ri 6 R, being R the total number of grocery stores in the market, as
follows. Assume a n-stop shopper compares bundles of the desired products from all the
possible combinations of n stores. Denote each of these combinations by j ∈ {1, · · · , Jni },
where according to combinatorics theory, the total number of combinations of R elements
taken n at a time is given by Jni = Ri!/n!(Ri − n)! Consumer i will choose the mix j of n
stores such that

Ki∑
k=1

max{vikrt}r∈j >
Ki∑
k=1

max{vikr′t}r′∈l ∀ l = 1, · · · , Ji

For instance, in a context with R = 3 stores, a one-stop shopper n = 1 will pick the best
combination of one store out of J1

i = 3 possible {A},{B},{C}, and pick the best mix such
that it yields the largest overall value of the desired bundle. Similarly, a two-stop shopper,
n = 2, will compare all J2

i = 3 possible combinations of two stores ({A,B},{B,C},{A,C})
and pick the best according to the rule above. For a three-stop shopper, n = 3, the
number of combinations of three stores taken three at a time is J3

i = 1, i.e. {A,B,C}
which explains why he is not maximizing over several subsets of stores in equation (??).

B Cases for extra utilities ordering
As stated in Section 3, we can derive critical cutoff points on the shopping costs distribution
from equations (4), (5) and (6) as functions of δ2

it, δ
3
it and ∆3

it/2. As these numbers
represent utilities for different, say, products, their ordering can vary from a consumer
to another. Therefore, we need to establish what the cutoffs would be in a case by case
analysis.
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From three objects, we can have six possible orderings:

(C1) δ2
it >

∆3
it

2 > δ3
it, (C2) δ3

it >
∆3
it

2 > δ2
it,

(C3) ∆3
it

2 > δ3
it > δ2

it, (C4) ∆3
it

2 > δ2
it > δ3

it,

(C5) δ3
it > δ2

it >
∆3
it

2 , (C6) δ2
it > δ3

it >
∆3
it

2 ,

From the six cases above, only (C1) survives, the remaining are contradictory. To see
why, notice that the incremental utility of sourcing two additional stores, ∆3

it := v3
it − v1

it,
can be written as the sum of the two marginal utilities of going from one to two stores
and from two to three. This is: ∆3

it = δ2
it + δ3

it. Therefore, if we assume, for instance, that
∆3

it
2 > δ3

it as in in (C3), then

v3
it − v2

it

2 + v2
it − v1

it

2 > v2
it − v1

it ≡ δ3
it

which after some manipulations leads to δ2
it > δ3

it, i.e. a contradiction. In a similar fashion,
the proofs for the other cases follow.

C Data manipulation for structural estimation
Three brands are taken into the analysis, ready-to-eat breakfast cereals (RTEBC), yogurt
and bread, which are among the most purchased products in France. It is often the case
that people do not only buy one brand, or even one unit of the same brand at a time,
instead, they can buy several varieties of the same product to have different choices at
home (different flavors, fruit contents, etc.). However, following Nevo (2001), we claim
that an individual normally consumes one yogurt (125 grams per portion), one serving of
cereal (35 grams per portion), and one serving of bread (28 grams per portion) at a time,
so that the choice is discrete in this sense. Of course there could be cases in which some
people consume more than one brand, or serving, at a time. Although we believe this is
not the general case, the assumption can be seen as an approximation to the real demand
problem.

The final sample used for the estimates presented in Section 6 was selected by restrict-
ing attention to those households purchasing the three products considered here in a given
week and excluding all those households not fulfilling this condition. This sample consists
of 6,192 observations of purchases of the three considered products made by 2,929 in 2005.

In our scanner data we do not observe prices but total expenditure and total quantity
purchased for each product and store sourced by each household. Consequently, a price
variable was created in the following way: first, we compute the sum of expenditures
over localities (defined by zip codes), month, and stores and number of servings of each
product purchased by each consumer. Second, we divided the total expenditure on a given
product-store made by all consumers living in the same locality in a month by the the
total number of servings to obtain a common unit price. If the information to compute a
unit price is missing, we replace it with the average across local markets within the same
period. By constructing our price variable in this way, we are assuming that consumers
have rational expectations. Due to data limitations, we do not account for manufacturers’
nor stores’ promotional activities or discounts of any kind.

We follow closely Dubois and Jï¿½dar-Rosell (2010) to compute distances. Data on
stores location was obtained from LSA/Atlas de la Distribution 2005, which contains
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information on most french stores involved in groceries distribution. The information was
merged with the household data using the name of the store, the zip code of the consumer’s
residence and the surface of the outlet. For each store, we found the closest outlet to the
consumer thanks to zip codes and geographical data. Only one outlet per store chain was
included in this set.
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