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Abstract

The utility maximization assumption, a linchpin of many economic models, is often found to be
violated in empirical studies. Revealed preference theory provides a nonparametric test for rationality
but it requires only one violation to reject the null hypothesis, leading to spurious rejection of ratio-
nality in the presence of agent error. I consider a model of rational choice with error, imposing only
the constraints given by GARP and allowing for individual-speci�c behavior. Using a nonparametric
projection technique, I recover the closest rational demand vector to the observed data and I con-
struct the predictive distribution as the expected distribution of choices if these were generated by
a utility maximizer agent plus error. Then, I propose a novel set of easures for the suitability of the
model based on its ability to deliver accurate predictions, providing a meaningful tradeo� between
�t and falsi�ability. These measures account for the e�ect of the number and relaitve distribution of
budget sets and their interaction with observed behavior on the amount of information that can be
extracted from data to produce informative predictions. The empirical performance of these mea-
sures is consistent with the theoretical results and they are shown to outperform popular measures in
the literature while exhibiting �nite sample and asymptotic desirable properties. I show the extension
of the proposed framework to a general class of behavioral models .

1 Introduction

The existence of a utility function that represents preferences is a core assumption in economics,

and revealed preference theory provides an elegant axiomatic approach for the necessary and su�cient

conditions for such assumption to be valid: the Generalized Axiom of Revealed Preference (GARP

henceforth). This axiomatic formulation delivers a sharp test that most data sets violate. In this paper I

extend the deterministic axiomatization to allow for a stochastic component gauging the performance

of the model by its predictive ability, providing a meaningful trade-o� between empirical accuracy and

falsi�ability.

Addressing the sharpness of the rationality test, the literature has proposed a series of goodness

of �t measures for those data sets that do not pass the test, mostly based on an intuitive moment of

the data that is related to the adjustments to income needed to remove the violations by making them
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no longer feasible. For example1, Echenique et al. (2011) proposes the money pump index de�ned as

the total cost of removing inconsistencies as a percentage of total expenditure. These adjustments have

not been justi�ed by a behavioral model that generates the data which encumbers ther interpretation of

the statistical signi�cance of the required adjustments. Providing a statistical foundation, Varian (1985)

and Fleissig and Whitney (2005) among others2, propose test statistics to assess the signi�cance of the

departures from rationality, where the critical values are bootstrapped from a distribution that bounds

above the true distribution under the null of rationality. A problem that plagues all these approaches is

the dependency of the results with respect to observed budget sets; since the distribution of economic

environments may be such that non or very loose constraints are imposed on data for it to be consistent

with GARP. This is known in the literature as the power problem since it relates to the probability of

identifying violations to the model when the data was indeed generated by a non rational process.3

Beatty and Crawford (2011) deals with this problem by proposing a measure of predictive success that

discounts from realized �t the size of the target area. This measure does not incorporate information

about the e�ect of observed choices in the ability to identi�ed deviant behavior. Alternatively, Andreoni

and Harbaugh (2013) proposes a series of power indices exploiting the seemingly panel structure of

data to estimate the power of the rationality test. In this paper I build upon these ideas to propose

a combined measure of �t and power, providing a meaningful tradeo� between these, exploiting the

information contained in data to construct the most precise forecasts without imposing any further

assumptions.

On the other hand, nonparametric econometric approaches have failed to deliver demand estimates

that are consistent with rationality unless strong assumptions are imposed regarding the nature of

the heterogeneity and preferences, see Lewbel (2001). By construction, I allow for individual speci�c

behavior, provinding not only (set) predictions that are consistent with the model in unseen economic

environments, but also predictive distributions that incorporate agent's error.

Gabaix and Laibson (2008) considers predictive precision as one of the seven properties of a good

model being desirable

because they [models with predictive precision] facilitate model evaluation and model testing.

(...) A model with predictive precision may even be useful when it is empirically inaccurate.

A good model for data is one that not only allows the researcher to explain observed behavior (�t) but

also enables the construction of precise predictions for economic environments that have not yet been

observed. In this paper I appraise the performance of the utility maximization model by its ability to

deliver precise forecasts given observed data. The framework proposed relies on the assumption that

choices are the result of decision maker's maximization of her own utility function, given feasible choices,

plus an idiosyncratic error term. This assumption is analogous to Varian (1985) but I impose feasibility

1Other notable examples are Varian (1990) and Afriat (1972b)
2Echenique et al. (2011) also proposes a test statistic based on the money pump index under the assumption that prices are

observed with (gaussian) error.
3See Andreoni and Harbaugh (2013) for an extensive analysis of the power problem.
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constraints explicitly. Feasibility is implicitly prescribed by the nature of observed choices and the model,

and imposing it results in demand estimates that could have actually been observed. I recover the closest

rational behavior to observed choices in the economic environments on which decisions were made, by

applying the nonparametric projection technique proposed by Kocoska (2012). Then, I construct the

predictive distribution as the expected distribution of choices given the model and the recovered error

process. Finally, I assess the performance of the model by sizing the tightness of the predictive distribution.

The predictive distribution is constructed based on the information that can be inferred from

data by imposing the model. First, I project the data onto the set of rational choices. The projection

technique adopted identi�es, from the economic environments in which decisions were made, the rational

vector that is the closest to the data. Then, I de�ne the predicted set as the subset of feasible choices

that would be consistent with the recovered demand if they were to be observed in the budget set for

which the forecast is constructed. Finally, the predictive distribution is de�ned as the distribution of

expected choices under the assumption that choices are given by a rational component and an additive

error process. The distribution of the former is given by the distribution of choices over the predicted

set, while the distribution for the latter is estimated from observed data. I measure the predictive

accuracy of the model by: (i) the size of the shortest α− level credible set for predicted choices to be

consistent with the model and (ii) information content of the predictive distribution. These measures

can be constructed for all data sets, those that satisfy rationality or not, which permits not only the

construction of consistent predictions even when the subjects are observed to fail rationality, but also the

comparison of the performance of the model among rational subjects and of these with non rational ones.

The proposed measures based on the predictive distribution provide a meaningful trade o� for

empirical accuracy (�t) and falsi�ability (power); as lower is the �t, higher the variance and therefore

lower the informational content of the predictive distribution. Additionally, as more observations are

revealed from demanding economic environments, the predicted set shrinks, reducing the entropy of the

predictive distribution, i.e. the uncertainty to predict outcomes from the predictive distribution. Finally,

I show that the proposed framework can be extended to a general class of behavioral models and be

used as a tool for model comparison.

The empirical performance of the predictive measures is studied in its application to the experimental

data set from Choi et al. (2007a) and Monte Carlo simulations. I show that the predictive ability measures

re�ect �t and power and that, conditional on �t, standard goodness of �t measures proposed in the liter-

ature have no, or slightly negative, e�ect on the capacity of the model to generate informative predictions

given observed data. The simulations studies show that the predictive accuracy deteriorates as noisier

is the data and improves when more observations are considered due to the shrinkage of the predicted set.

This paper advances the literature in several directions. First, by extending the model allowing

for a idiosyncratic error process I provide a statistical and behavioral model for the assessment of �t

and the construction of the predictive distribution; even for those data sets that do not meet GARP

3



constraints. Second, by considering the predictive accuracy of the model, the proposed measures

account for the goodness of �t and power problem; therefore are correlated to other measures of

�t proposed in the literature but provide further information in terms of power. Also, considering

the predictive accuracy provides a meaningful trade o� for �t and power in terms of the ability to

generate precise predictions. Third, the proposed measures account for the power of the test as in

Beatty and Crawford (2011) but also exploits the interaction between observed choices and the relative

distribution of budget sets similar to Andreoni and Harbaugh (2013), therefore does not provide the

same ordinal results as other measures that combine �t and power. Fourth, I explicitly account for

feasibility constraints which a�ects the distribution of the e�ective error process and evidence the

endogeneity of the error process. In doing so, I formally de�ne the DGP which provides the basis

for inference and show that, asymptotically, the predictive distribution converges to the distribution

of the e�ective error process -that accounts for feasibility constraints-; therefore the distribution of

a suitable test statistic can be bootstrapped accordingly. Fifth, I present a series of computationally

feasible algorithms to recover the distribution of the underlying error process even in small samples.

Sixth, I present the extension of the proposed methodology for a general class of axiomatic models that

allows for the comparison across data sets and across nested and non-nested models of economic behavior.

The outline of the paper is as follows. Section 2 presents the main results of revealed preference

theory and its testable implications. Section 3 provides the theoretical framework. First, I present the

extension of the model to allow for a stochastic component and its implications in terms of identi�cation.

Second, I present the projection technique. Then, I construct the predictive distribution and predictive

accuracy measures. Finally I discussed their asymptotic and �nite sample properties. Section 4 shows

the comparison of the proposed measures with existing measures in the literature. Section 5 shows the

empirical performance in the experimental data from Choi et al. (2007a) and Monte Carlo simulations.

In section 6 I extend of the proposed framework to general models of economic behavior. Section 8 o�ers

a review of the literature concerning rationality testing and how the approach followed in this paper

compares to it. Finally, section 9 concludes.

2 Rationality model

Revealed preference theory provides a nonparametric condition on consumer's choices that is

necessary and su�cient for observed behavior to be consistent with utility maximization: GARP,

connection that follows from Afriat (1967). The axiomatization provided by GARP is appealing since

it does not rely on any assumption on the functional form for the utility function and does not require

any homogeneity assumption on preferences across individuals; therefore it can be applied to individual's

data even in small samples.

Theorem 1 (Afriat's theorem) Given data for choices and prices (pj , xj) for j = 1, . . . , J the following

conditions are equivalent
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1. There exists a non-satiated utility function u(x) that rationalizes the data, that is,

∀j u
(
xj
)
≥ u(x) ∀x such that pjxj ≥ pjx

2. The data satis�es GARP

3. There exists a positive solution
(
uj , λj

)
to the set of linear inequalities

uj ≤ ui + λipi
(
xj − xi

)
∀i, j = 1, . . . , J

4. There exists a non-satiated, continuous, monotone and concave utility function u(x) that rational-

izes the data

Proof. Fostel et al. (2004)

The concept of (directly) revealed preference theory was �rst introduced by Samuelson (1938),

Samuelson (1948). Basically, an alternative being chosen from a set reveals information about deci-

sion maker's own preference relation, the chosen alternative is revealed to be better to the non-chosen

ones. Houthakker (1950) extends the work by Samuelson by imposing transitivity on the direct revealed

preferred relation. Formally,

De�nition 1 (Directly Revealed Preferred) xj is directly revealed preferred to x if pTj xj ≥ pTj x, and
it is strictly revealed preferred if pTj xj > pTj x

De�nition 2 (Revealed Preferred) xj is revealed preferred to x if there is a chain of directly revealed

preferred bundles linking xj to x

The generalized axiom of revealed preference (GARP) proposed by Varian (1982) is equivalent to

the "cyclical condition" stated in the original version of Afriat's theorem. Formally,

De�nition 3 (Generalized Axiom of Revealed Preference (GARP)) If xj is revealed preferred to

x, then x is not strictly revealed preferred to xj

From de�nitions 1 and 2, GARP can be restated as follows,

De�nition 4 (GARP - A) Given a data set
{

(pj , xj)
}
j∈J de�ne the matrix AJ×J as the revealed

preference matrix, where ajk ≡ 〈pk, xj−xk〉. A data set satis�es GARP if for every chain {i, j, k, . . . , r} ⊂
J , aij ≤ 0, ajk ≤ 0, . . . , ari ≤ 04 implies that all terms are zero.

A necessary and almost su�cient condition for GARP is given by the following proposition,

4Note that ajk ≤ 0 (ajk < 0) implies that xj is (strictly) directly revealed preferred to xk
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(a) Data consistent with GARP (b) Data inconsistent with GARP

Figure 1: Sharpness of GARP test. One violation and the data would be declared as inconsistent

Proposition 1 If GARP is satis�ed then there exists a permutation A′ of A such that a′kj ≥ 0 for all

j < k ≤ J .

Proof. See Appendix A.

The above condition only provides a necessary condition but, it turns out, that a su�cient condition

can be obtained by strengthening the inequality condition.

Proposition 2 (Su�cient condition) If there exists a matrix A′ obtained from the revealed preference

matrix A de�ned by ajk = 〈pj , xk − xj〉 by symmetric column/row swaps such that a′jk > 0 for all

k < j ≤ J then GARP is satis�ed.

Proof. See Appendix A.

Proposition 3 The condition of proposition 1 is necessary but not su�cient. The condition of proposi-

tion 2 is su�cient but not necessary.

Proof. See Appendix A.

Rationality tests based on GARP deliver a sharp pass/fail result, where in real life most data sets

violate the deterministic axiomatization. One violation to rationality and the data would be declared as

inconsistent. Consider �gure 1, both panels consist in 14 observations, the data in panel (a) is consistent

with GARP, while the data in panel (b) is not, even when only one of the observations di�ers from panel

(a) to panel (b). The literature has dealt with this problem by proposing measures of �t based on the

extent of the income adjustment to budget sets required to remove inconsistencies by making them no
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longer feasible. In a more natural exercise, one may think on the minimal perturbation to data required

for perturbed choices to be consistent with GARP in the economic environments in which decision maker

chooses. In particular, consider the problem of �nding a perturbation εj to choices xj such that xj + εj

satis�es proposition 1 and remains feasible, i.e., xj + εj ≥ 0 and (pj)T
(
xj + εj

)
= (pj)Txj , that

minimizes some positive function of the norm of ε. In the following section I present the statistical

framework that extends GARP to allow for a stochastic component and the projection technique that

permits the recovery of such perturbation.

3 Framework

3.1 Set up

The axiomatization provided by GARP delivers a deterministic test for the utility maximization

model. In order to understand the statistical validity of the model, the economic model should be

embedded in a statistical model. Therefore, I expand the axiomatic model by incorporating an additive

stochastic component to observed choices. Hence, the data is assumed to be generated as the result of

decision maker's maximization of her own utility function and an additive error process. This assumption

is consistent with the aim of this paper5, i.e. judge the empirical performance of the utility maximization

model by its predictive ability. In section 6 I extend the methodology proposed in this paper for the

comparison of a broader class of behavioral model. I impose that observed and rational choices are

feasible given observed prices, therefore I do not consider stochasticity on prices, but the framework

can be adapted to this case. The chosen speci�cation is consistent with GARP without adding further

structure and provides a natural de�nition for prediction.6

Formally, the econometrician observes choices made by an individual that faces J decision prob-

lems. The observed data consists of choices
{
xj
}J
j=1

and prices
{
pj
}J
j=1

with xj ∈ X ⊆ RL+ and

pj ∈ P ⊆ RL++ for all j = 1, . . . , J . Assuming local non satiation7, observed prices de�ne uniquely, up

to a proportionality factor, the economic environment realized. Let B : P ×X → X be the feasible con-

sumption bundle correspondence (set of choices that satisfy the budget constraint) de�ned by imposing

the budget and non-negativity constraints, that is

B
(
pj , xj

)
≡ {x ∈ RL+ : (pj)Tx ≤ (pj)Txj}

I adopt the following notation: y ≡
(
y1, . . . , yJ

)
and Y(·) ≡

∏J
j=1 Y (·). Then B(p, x) =∏J

j=1B(pj , xj) is the set of feasible consumption bundles vectors.

5Alternative speci�cations for the error process that add further structure have consequences about the testing exercise considered.
For example, if I were to allow for stochasticity on preference orders it would imply that the model in mind is some variation of RUM.

6If we further impose smooth assumptions on demand (notice that this is stronger than continuous di�erentiability on the utility
function) there correspondent RUM approach.

7De�nition (Local Non Satiation) For any x ∈ X and every ε > 0 there exists a y ∈ X such that ‖x − y‖ ≤ ε such that y is
preferred to x.
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B(p)

m(p)

(a) Feasibility constraints - "interior" demand

x1, e1

F (ε ≤ −m) =

F

(
ε ≥ pT x−m

p1

)

B(p)e = ε = 0
x = m(p)

(b) Distribution of errors/observed choices - "interior" demand

B(p)

m(p)

(c) Feasibility constraints - "corner" demand

x1, e1

F (ε ≤ −m)

F

(
ε ≥ pT x−m

p1

)

B(p)e = ε = 0
x = m(p)

(d) Distribution of errors/observed choices - "corner" demand

Figure 2: Distributional assumptions: The latent error process is assumed to be independent of the
systematic demand process but, the imposition of feasibility constraints on observed demand result on a
truncation in the e�ective distribution of the error process that depends on underlying demand.

The model is assumed to be a correspondence M : B(p, x) → B(p, x) that maps from the set of

feasible choices to the subset of feasible choices that is consistent with GARP, that is

M (B(p, x)) ≡ {m ∈ B(p, x) : m satis�es GARP}

Latent choices are generated by a rational component, m ∈M (B(p, x)), and an additive idiosyn-

cratic component, ε ∈ RL×J , orthogonal to the model, i.e. εqM (B(p, x)). Notice that, by de�nition,

observed and rational choices are feasible, i.e. x ∈ B(p, x), and m(p) ∈M (B(p, x)) ⊆ B(p, x). These

two conditions imply that the domain for the e�ective error process, e, is restricted to the set such that

perturbed choices, m+ e, are feasible. Formally, let e be the e�ective error process then,

dom (e|m(p)) ≡
{
e ∈ RL×J : (m(p) + e) ∈ B(p, x) and m(p) ∈M (B(p, x))

}
≡

J∏
j=1

(
B
(
pj , xj

)
−mj (p)

)
The feasibility condition imposes two set of constraints: a�ordability/income neutrality and nonnega-

tivity constraints. First, the perturbed demand should be a�ordable. By local non satiation, imposing

a�ordability implies that the e�ective error process should be income neutral, i.e. p′e ≡ 0, that is,
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distribution of the error process is constrained to the hyperplane orthogonal to the price vector. On

the other hand, nonnegativity constraints truncate the distribution of the error process to be such that

the observed demand lies in the positive orthant. I assume that, the truncation operates as a standard

censored model, where the distribution of the error process is given by the latent process in the interior

of the feasible set, and mass probability in the closure of the feasible set. This approach is consistent

with the utility maximization hypothesis, by continuity guaranteed by Afriat's Theorem, ?. These two

set of constraints imply that the e�ective error process cannot be assumed to be independent from the

underlying rational demand, since, because of the feasibility constraints, m(p) de�nes the truncation of

the error process. Figure 2 shows the e�ect of the underlying error process on the e�ective distribution

of the error process.

Formally, consider the following assumptions.

Assumption 1 (DGP) Data is generated by a latent process given by

x∗(p) = m(p) + ε

where m(p) ∈M (B(p, x)) and p′ε = 0. Then, observed data is given by

x(p) =

x∗(p) if x∗(p) ≥ 0

argmina∈B(p,x)‖x∗(p)− a‖ if ∃j ∈ {1, . . . , J} and l ∈ {1, . . . , L} s.t. x∗jl < 0
(1)

where x(p) ∈ B(p, x) and e ∼ Fε|m(p),p′ε=0 is the e�ective error process given equation (1), i.e

e is such that x(p) = m̃(p) + e for some m̃(p) ∈M (B(p))

Assumption 2 (Unconstrained Error Process) The unconstrained process ε ∈ RL is assumed to be

i.i.d. with continuous and symmetric p.d.f. such that E(ε) = F−1ε

(
1
2

)
= 0, ∂f(ε)∂ε εj < 0 for all εj 6= 0

and εqm, for some m ∈M (M(p, x)).

Assumption 1 and 2 jointly de�ne the distribution of the observed error process, Fe = Fε|m(p),p′ε=0

that is given by the constraint of Fε to the set of a�ordability and nonnegativity constraints, i.e.,

fe = fε|m(p),p′ε=0 =


fε|pε=0 if ε ∈ int (Aε)´
a dFε|pε=0 if ε ∈ cl (Aε) and a = argminx∈Aε‖a− x‖

0 otherwise

(2)

where Aε,m(p) =
{
ε ∈ RL×J |m(p) + ε ∈ RL×J+ and p′ε = 0

}
This approach is agnostic in terms of the (rational) theory of underlying behavior, imposing just

the minimal set of restrictions on choices that ensures a rationalizable data set. The additive structure
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of the error process resembles the assumption made in Varian (1985), Fleissig and Whitney (2005),

Hjertstrand (2013), Blundell et al. (2008) among others; but I further impose feasibility conditions,

that, as discussed above, naturally follow from the de�nition of the model. These constraints imply that

underlying behavior is feasible and, therefore, consistent with the model; but induce dependecy between

the error process and systematic component.

3.2 Identi�cation of rational demands

The proposed framework remains agnostic about the speci�c demand process that generated the

data, identifying the set of demand vectors that are consistent with the model. For any sample of size

J , the constraints imposed by GARP identify the set of demand vectors that can be rationalized as

the utility maximizers for some well-behaved utility function, as follows from theorem 1. For any �nite

sample, M(B(p)) is a correspondence and not a function. If the data is consistent with GARP, as

new information arrives from budget sets that impose binding constraints in data, the set of all possible

well-behaved preference relations that are consistent with the data shrinks.

Assumption 3 (Density data) Let B̃n ≡
{

(xi, pi)
}n
i=1
∈ X × P be an increasing sequence of sets,

i.e.
(
B̃n ⊂ B̃n+1 ⊂ . . .

)
such that limn→∞

⋃
n B̃

n is dense in X × P .

Theorem 2 (Preference - Convergence) Let m
(
B̃n
)
∈ M (B(p)) be a consistent demand vector

given data
{
xi, pi

}n
j=1

. Let R{xi,pi}nj=1
be the set of m

(
B̃n
)
-equivalent preference orders, i.e. the

set of preference orders that rationalizes m
(
B̃n
)
. Let B̃n ≡

{
(xi, pi)

}n
i=1
∈ X × P be an increasing

sequence of sets, i.e.
(
B̃n ⊂ B̃n+1 ⊂ . . .

)
then R{xi,pi}nj=1

⊇ R{xi,pi}n+1
j=1
⊇ . . . .

Proof. See Appendix B

In �nite samples, non-uniqueness is unavoidable, but the set of consistent underlying preferences

shrinks as the sample size increases. Mas-Colell (1978) shows that under a boundary condition, if the

preference generating the data are strictly convex and monotone, and demands income Lipschitzian, the

sequence of preferences constructed from a �nite sample by imposing GARP have a unique limit as data

gets dense.

Theorem 3 (Mas-Colell (1978) ) Let m
(
B̃n
)
be consistent with SARP and a boundary condition8

Let B̃n ≡
{

(xi, pi)
}n
i=1
∈ X × P be an increasing sequence of sets, i.e.

(
B̃n ⊂ B̃n+1 ⊂ . . .

)
such that satis�es assumption 3. Suppose that for every n, R{xi,pi}nj=1

is a continuous, con-

vex, monotone preference relation with the property that for every (x, p) ∈ B̃n, m
(
B̃n
)
⊂

8De�nition (SARP)If xj is revealed preferred to x, and xj 6= x, then x is not revealed preferred to xj

De�nition (Boundary Condition) A demand function h satis�es the boundary condition if {xn, pn} → {x, p} /∈ B(p, x), pT x >
0, {xn, pn} ∈ B(p, x) implies that ‖h(xn, pn)‖ → ∞
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{
y ∈ B(p, x) : pT y ≤ pTx and if pT v ≤ pTx⇒ yR{xi,pi}nj=1

v
}

then if demand is income Lipschitzian,

R{xi,pi}nj=1
→ R where R is the unique, continuous, monotone, strictly convex preference relation

generating the demand.

Proof. Refer to Mas-Colell (1978).

Given a consistent demand vector, the class of equivalent preference relations that rationalizes

demand is well de�ned by GARP. Under conditions on the relative distribution of budget sets and some

regularity conditions it is expected that this sets narrows down. Moreover, the set of vectors that, given

observed data, are consistent with the model i.e. M(B(p, x)) shrinks as the number of observations

increases, provided that the newly observed budget sets impose binding constraints in data to satisfy the

model.

Theorem 4 (Convergence of M(B(p, x))) Let B̃n be an increasing sequence of sets that satis�es

assumption 3. Then, for any n ∈ N there exists a m > n and a xn ∈ M(B̃n) such that {xn, y} /∈
M(B̃n ∪ {xm, pm}).

Proof. See Appendix B

3.3 Projection technique

Extending the model to allow for an error process implies that it needs not to be the case that

observed data is consistent with GARP. As it was established in the previous section, relying solely on

the restrictions imposed by GARP delivers bounds for the estimation of the underlying demand. Blundell

et al. (2008) discussed the nature of this problem and proposed a semiparametric estimator for demands

based on a minimum distance criterion, and, relying on the partial identi�cation literature, showed

the relevance of such distance to inference. Blundell et al. (2014) identi�es nonparametric bounds for

demand constructed from revealed preference restrictions and shows their asymptotic properties.

Relying uniquely on the constraints proposed by GARP, I propose to recover a rational demand

process by projecting observed data onto the set of consistent demand vectors. In particular, de�ne the

projection as the exercise of recovering the vector of consistent choices that is the closest to the observed

data, as displayed in the �gure 3.

De�nition 5 (Projection of observed choices onto the model) The problem is to �nd the projec-

tion x̂(p) of x(p) onto M(B(p)) as the solution of

x̂(p) ≡ arg inf
m

J∑
j=1

‖xj(p)−mj‖

s.t m ∈M(B(p))
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X: goods space

B(p): Feasible set

x(p): data

x̂(p): projection

M(B(p))

Figure 3: Projection: x̂ is de�ned as the closest vector to the data that is consistent with GARP

The projection is performed following Kocoska (2012). The author proposes a series of derivative-free

algorithms to minimize the perturbation needed to make the perturbed demand consistent with

proposition 1. Appendix C provides a theoretical foundation and details for such optimization process.

One may argue that distance in the consumption space is not the relevant metric. The modeler may

care about some policy implications and therefore the utility or the budget space may be the relevant

one; or may consider that errors in the consumption space may not seem relevant for consumers as the

monetary or utilitarian cost of them. Let ρ : RL → RM be any positive monotone transformation of

the absolute value of the error process that re�ects the relevant metric for the modeler, the employed

technique is �exible to any such ρ.

3.4 Predictive distribution

A good model does not only allow the researcher to explain observed behavior but enables the

construction of informative predictions in economic environments that have not yet been observed.

Gabaix and Laibson (2008) recognizes that

"predictive precision is infrequently emphasized in economics research (...) Models that

make weak predictions (or no predictions) are limited in their ability to advance economic

understanding of the world (...) Models with predictive precision are easy to empirically test

and when such models are approximately empirical accurate they are likely to be useful".

I consider the predictive accuracy of the model to assess the performance of the model measured by

the informational content of the predictive distribution. By construction it also provides a meaningful

trade o� between empirical congruence and falsi�ability, in the understanding than even when empirical

inaccurate, models that deliver strong predictions are desirable.

The predictive distribution is constructed as the expected distribution of choices on a new economic

environment, given assumptions 1, 2 and observed data. First, I construct the set of alternatives that

12



are consistent with rationality given projected data, called supporting set. For each alternative in the

supporting set, s, I compute the expected distribution of observed choices conditional on s being the

rational underlying demand. This distribution is constructed by �rst estimating the distribution of ε

from the projection residuals, imposing assumptions 1 and 2; and then, imposing the structure given

by equation 2 in the new economic environment, centered in s. Finally, I construct the unconditional

distribution of choices by integrating the above distributions with respect to some prior distribution

over choices conditional on choices lying on the supporting set. This distribution is provided by the

econometrician and it is interpreted as the assumed distribution of choices in the space of alternatives

if no further information is provided. By default, I consider a uniform distribution, that can be

conceptualized as an uninformative prior in the Bayesian sense, and consistent with Becker's de�nition

of irrational behavior Becker (1962).

Given a rational demand, GARP restrictions prescribe the set of alternatives that are consistent with

the model in the new economic environment, set that is known as the Varian's supporting set, Varian

(1982). The projection exercise delivers a demand estimate that is consistent with the model based on

observed data, that can be used to construct the Varian supporting set in a new economic environment.

De�nition 6 (Varian's supporting set) Let m ≡
(
m1, . . . ,mJ

)
be a vector of choices consistent with

rationality, that is, m ∈ M(B(p, x)). Given a new economic environment B
(
p0, x0

)
, the Varian's

supporting set is de�ned as

V
(
p0, x0|m

)
=
{
x ∈ B(p0, x0)| (m,x) ∈M

(
B
(
{(p, p0), (m,x0)}

))}
(3)

Consider �gure 4a. Data is given by the two solid lines and the dots as display in the �gure and

consider the case of predicting choices in the dashed budget set. In this new budget set, the set of

feasible alternatives (assuming local non satiation) that are consistent with the previously observed

choices are the ones lying on the bold segment. The relative size of the predicted area depends on

the number of observations, the relative distribution of observed and new budget sets and consistent

demand vector used for the projection, as shown in panels 4a-4b and 4c-4d. In particular, the supporting

set is expected to be smaller as bigger (and more demanding) the data set is.

Proposition 4 (Properties Supporting set) Let {x0, p0} be the economic environment for which the

supporting set is constructed. Let B̃n be an increasing sequence of budget sets as in assumption 3, and

let mn ∈ B̃n then

1. V
(
p0, x0|mn

)
6= ∅ if and only if mn ∈M(B(B̃n))

2. V
(
p0, x0|mn

)
is a convex set

3. There exists some k > n such that V
(
p0, x0|mk

)
⊂ V

(
p0, x0|mn

)
13



V
(
pJ+1, xJ+1|m

)

(a) Predicted choices (b) Observed choices matters

(c) New B(p,x) matters (d) Observed B(p,x) matters

Figure 4: Forecasting consumer's behavior
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Proof. Follows from theorem 4 and Blundell et al. (2008).

Behavior in a new economic environment is expected to be consistent with the assumed DGP

process, i.e. given a rational component plus an idiosyncratic error process. The distribution of this error

process can be estimated from the projection residual, provided that the structure implied by equation 2

is incorporated. The projection error is de�ned as the residuals from the projection, i.e.

ê = x(p, x)− x̂ (4)

where x̂ solves the problem de�ned in 5. Given a parametric assumption on Fε, the relevant parameters

can be estimated by maximum likelihood from equation 2; for small samples I provide a more accurate

method to recover the parameters in section 3.6.

Finally, I de�ne the predictive distribution as the distribution of a random variable Y ≡ X + µ

where X ∼ FX |x∈V (p0,x0|m) for some assumed distribution of choices FX , and µ ∼ Fe|x,m the e�ective

distribution of the residuals in the new economic environment estimated from the residuals recovered in

the projection. Formally, let {p0, x0} be the new economic environment then,

De�nition 7 (F p
0,x0

X |m,x) Let FX be an assumed distribution of choices provided by the econometri-

cian.9 Then, the distribution of choices over the Varian Supporting set is given by

fp
0,x0

X |m(x) ≡
I
(
x ∈ V

(
p0, x0|m

))
fp

0,x0

X (x)´
V (p0,x0|m) f

p0,x0

X

where supp
(
F p

0,x0

X

)
= B(p0, x0)

De�nition 8 (F p
0,x0

e |m,x, v0) Let Fê be an estimation from recovered residuals 11 of the distribution

given by equation 2, and let v0 ∈ V
(
p0, x0|m

)
be a demand vector in the supporting set. Then, the

e�ective distribution of the error process in the new economic environment conditional on v0 is given by

F p
0,x0

ê |m,x, v0 consistent with equation 2, i.e.,

fp
0,x0

ê |m,x, v0 =


fê|p0ê=0 if ê ∈ int

(
Aê,v0

)
´
a dFê|p0ê=0 if ê ∈ cl

(
Aê,v0

)
and a = argminx∈Aê,v0‖a− x‖

0 otherwise

(5)

where Aê,v0 =
{
e|v0 + e ∈ RL×J+ and (p0)′e = 0

}
De�nition 9 (Predictive distribution) Given a data set

{
xi, pi

}J
i=1

the predictive distribution of

choices y0 for a new economic environment {x0, p0}, F 0|m,x,p(y0), is de�ned as the distribution of a ran-

9This distribution is provided by the researcher, by default it is set to be Uniform.
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dom variable Y 0 where Y 0 ≡ X0 +µ with X0 ∼ F p
0,x0

X as in de�nition 7 and µ ∼ F p
0,x0

e |m,x,X0 = v0

as in de�nition 8.

Under assumptions 1 and 2 and consistency of the behavioral estimator, the predictive distribution

in B(x0, p0) is the expected distribution of choices. The predictive distribution conveys information over

noise and �t of the model, choices and design. Intuitively, to accurately and precisely predict behavior in

a new environment, the forecast should be made based on an estimated model that accurately describes

the observed data (high goodness of �t) and that embeds information about underlying behavior.

Theorem 5 (Properties of the Predictive distribution) Let assumption 1 and 2 hold. Then

1. ∂V ar(Y 0)
∂σ2
ε
≥ 0

2. ∂V ar(Y 0)
∂J ≤ 0

3. ∂V ar(Y 0)
∂q0i

≤ 0 where q0 =
[´
x∈B(p0)\B(pi) dF

p0,x0

X

]
×
[´
x∈B(pi)\B(p0) dF

pi,xi

X

]
4. If observed data is consistent with GARP, then F 0|m,x,p = F p

0,x0

X |m,x

5. Under the conditions in theorem 3, as F 0|m,x,p → F p
0,x0

e |m,x, v0 where m, v0 is the limiting

demand.

where Y 0 ∼ F 0|m,x,p

Proof. See Appendix D.1

The dispersion of the predictive distribution provides information on the noise of the underlying

error process -1- and the amount of information that can be inferred from observed data to generate

forecasts in the chosen economic environment. As more information is considered, these predictions

become more precise, since tighter is the identi�cation of the underlying rational component which

implies that the supporting set shrinks -2-. If the relative distribution of budget sets is such that

GARP imposes more demanding constraints involving B(x0, p0), then the smaller the supporting set is

expected and the less disperse the predictions are -3-. Finally, -5- provides an input to construct an

asymptotically valid test statistic for the null of rationality from the residuals of the distribution. Notice

that, even in the limit, the distribution any statistic based on the e�ective residuals does not have a

standard distribution due to feasibility constraints.

Figure 5 shows the e�ect of the size of the supporting set and σε on the predictive distribution.

Panel 5a shows the supporting set for a sequence of budget sets that impose demanding constraints

on data from B(p0, x0) to be rational, while panel 5c shows the case for a looser set of constraints.

The relative size of the supporting set with respect to B(p0, x0) is providing information about the

falsi�ability of the model given observed data, but does not provide information about the empirical
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(a) Supporting set: demanding (b) Predictive distribution for di�erent σ given �gure 5a

(c) Supporting set: not demanding (d) Predictive distribution for di�erent σ given �gure 5c

Figure 5: The predictive distribution conveys information about �t and power
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accuracy. When constructing the predictive distribution I incorporate the error process needed for

observed data to consistent with the model. Panels 5b and 5d show the resultant predictive distribution

once the error process is included, for di�erent assumptions over the variance of the error process, where

σε ∈ {0.1, 0.5, 1, 2, 5}. It can be seen that, as the variance of the underlying error process increases the

predictive distribution �attens out providing less information to predict choices in {x0, p0}.

I propose to measure the predictive accuracy by the information contained in the predictive distribu-

tion in the understanding that a better model delivers more precise/informative estimates. As measures

of the tightness of the predictions I propose: (i) to measure the size of the smallest α− level credible

set for predicted choices; and (ii) to measure the informational content of the predictive distribution as

a measure of the information that can be inferred from data by imposing the model. The latter also

allows for the construction of statistics to test whether the predictive distribution conveys signi�cant

more information than an uninformative prior.

3.5 Predictive ability measures

3.5.1 "Size" of the HPD α−level credible set

A better model is one that delivers smaller credible sets for predictions, that are the result of more

informative predictive distributions, that is, less disperse estimates. As shown is theorem 5, more precise

forecasts are the result of higher �t and more demanding constraints imposed on data. Therefore I

propose to gauge the performance of the model by the "size" of the smallest α-level credible set, the

smaller the credible set the higher the predictive accuracy.

De�ne Cp
0,x0
α as the 100(1−α)% highest posterior density (HPD) interval (set) given the predictive

distribution de�ned by 16. I size this set by the ex-ante probability of feasible choices to be such

that x ∈ Cp
0,x0
α , that is with respect to the distribution given by FX |{x ∈ B(p0, x0)}. The proposed

measure of the performance of the model is given by its complementary probability, that is ,the ex-ante

probability that choices are not in the credible set, the higher this probability the smaller the credible

set. The rationale for this "metric" for the size of the credible set is two fold: (i) it provides a well

de�ned measure for the relative size of the con�dence set since it is a well de�ned probability and (ii) if

the researcher has prior information to assume that, before imposing the model, some alternatives are

more likely to be chosen, this information should be accounted for when measuring informativeness of

the predictions. Alternatively, one can measure the relative size of the complement of the credible set

by the relative size of its euclidean norm with respect to the norm of the feasible set. If FX is assumed

to be uniform then the proposed measure can be understood as the relative size of the complement to

the con�dence set in the standard sense, i.e these two approaches are equivalent.

De�nition 10 (Predictive Accuracy - Credible Interval) Let Cp
0,x0
α be the 100(1−α)% highest pos-
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terior density (HPD) credible interval (set)10 for the predictive distribution de�ned in 16, F 0|m,x,p , then
predictive accuracy measure based on the α−level credible interval is de�ned as

PAp
0,x0

α |m,x,p ≡ 1− PX
(
x ∈ Cp0,x0α |x ∈ B(p0, x0)

)
(6)

Note that from proposition 4 the supporting set is convex, and from assumptions 1 and 2 the

distribution of the error process in the interior of the positive quadrant is assumed to be continuous

and unimodal, which implies that, unless V
(
p0, x0|m

)
= B(p0, x0), the α-level con�dence set is a

meaningful construction to measure predictive accuracy.

Proposition 5 (Properties of Predictive accuracy index PAp
0,x0
α |m,x,p) Assume 1 and 2 hold.

Consider the predictive accuracy measure given by de�nition 10. Then,

1. PAp
0,x0
α |m,x,p ∈ [0, 1]

2. If m = x then PAp
0,x0
α |m,x,p = 1− (1− α)PX

(
x ∈ V

(
p0, x0|m

)
|x ∈ B(p0, x0)

)
.

3.
∂PAp

0,x0

α |m,x,p
∂σε

< 0

4.
∂PAp

0,x0

α |m,x,p
∂PX(x∈V (p0,x0|m)|x∈B(p0,x0))

< 0

5. Given σε, under the conditions in theorem 3, as data becomes dense (J → ∞)

limJ→∞ PA
p0,x0
α |m,x,p = PA∗, where PA∗ ≡ maxPAp

0,x0
α |m,x,p

Proof. See Appendix 3.5

The proposed measure is interpreted as a measure of the size of the set of feasible choices that are

not in the credible set. The more informative the predictive distribution, the smaller the credible set,

the higher the proposed measure. If the measure is signi�cantly higher than α then the model conveys

more information than FX |x ∈ B(p0, x0). The latter is relevant when considering FX as an uniform

distribution since most of the goodness of �t and power literature relies, as an alternative hypothesis

to rationality, on the de�nition of irrational behavior by Becker (1962) that translates into a uniform

distribution over the feasible set. Proposition 5 shows that the proposed measure has the desirable

properties, combining an assessment of �t and power as it is shown by (3) and (4). More precise

10The highest posterior density interval is an interval which has a probability of coverage 1−α and has the minimal length. Formally,

De�nition 11 (Highest posterior density(HPD) interval) A 100(1− α)% HPD interval is a region that satis�es two conditions

1. The probability of content is 100(1− α)%

2. The minimum density of any point within the region is equal to or larger than the density of any point outside the region
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estimates result in higher predictive accuracy -(3)- as well as more stringent economic environments

result in higher measures through the e�ect on the size of the Varian supporting set -(4)-.

3.5.2 Information theory based measures

A model with high predictive accuracy is expected to deliver more informative predictive distribu-

tions. Then the performance of the model can be appraised by the gain in information to predict choices

when considering the predictive distribution constructed from the model and observed data, with respect

to the prior that does not incorporate any information from choices nor the structure prescribed by the

model.

Let F 1 ≡ F 0|m,x,p be the predictive distribution constructed as in de�nition 16 and let

F 2 ≡ FX |x ∈ B(p0, x0) be the prior distribution of choices over the new budget set. Consider the

distance between these two distributions, if these two are close, then there is no gain in certainty by

predicting using the model; on the other hand, if these two distributions are considerably di�erent, then

the model is providing signi�cant information to construct predictions. More demanding constraints

imposed on data result on predictive distributions that are more informative due to smaller supporting

sets. Similarly, as higher the �t of the data to the model, the lower the variance of the estimated error

process and the more informative the predictive distribution is and the higher the distance between the

predictive and prior distribution of choices on B(p0, x0).

Divergence measures provide a measure of the di�erential information embed in the predictive

distribution with respect to the prior. Consider �gure 6, panels 6a and 6b. The di�erential information

measures are given by the distance between the two distribution functions in the �gure, where the

assumed prior is a uniform distribution over the feasible set. Then, as more informative the predictive

distribution of choices is, bigger would be the di�erence between the two distributions and bigger the

gain in information from the data by imposing the model. Obviously, this measure depends on the

assumed prior distribution of choices, as it shown from the comparison between panels 6a-6b and 6c-6d.

The considered divergence measures are: (i) Relative entropy divergence measures; (ii) Hellinger

distance; and (iii) total variation distance. These are de�ned in section 3.5. The connection between

these measures have been established in the literature, see results in section 3.5.

De�nition 12 (Predictive accuracy index - Information theory) Let F 1 ≡ F 0|m,x,p be the pre-

dicted distribution of choices based on the model and observed data as given by de�nition 16 and

F 2 ≡ FX |x ∈ B(p0, x0) be the prior (assumed) distribution of choices. Then,

PAp
0,x0

info−i|m,x,p ≡ Di

(
F 1||F 2

)
(7)
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x

F 0|m,x,p

FX |x ∈ B(p0, x0)

Supp_Varian

(a) Informative case

x
Supp_Varian

F 0|m,x,p

FX |x ∈ B(p0, x0)

(b) Less informative case

x

F 0|m,x,p

FX |x ∈ B(p0, x0)

Supp_Varian

(c) Informative case - Informative prior

x
Supp_Varian

F 0|m,x,p

FX |x ∈ B(p0, x0)

(d) Less informative case - Informative prior

Figure 6: Predictive distribution of choices vs. prior distribution

where i ∈ {Kullback − Leibler,Hellinger, TV }11

It has been well established the connection between Kullback-Leibler and Shannon entropy,

PAp
0,x0

info−KL|m,x,p = DKL

(
F 1||F 2

)
= −H(f1)− Ef1

(
ln f2

)
where H(·) is the Shannon entropy. The

entropy of a distribution can be understood as the uncertainty in terms of predicting an outcome from

the distribution. Moreover, if FX |x ∈ B(p0, x0) ∼ UB(p0,x0), then Ef1
(
ln f2

)
= ln 1

n = − lnn where

n =
´
B(p0,x0) dx, therefore PA

p0,x0

info−KL|m,x,p = lnn −H(f1), that is, when the prior is uninformative

maximizing PAp
0,x0

info−KL|m,x,p is equivalent to minimizing the entropy of the predictive distribution, i.e.

the uncertainty to predict outcomes from the predictive distribution.

Proposition 6 (Properties of Predictive accuracy - Information theory ) Let assumptions 1 and

2. Consider the Predictive Ability measures as given by de�nition 12. Then,

1. PAp
0,x0

info−i|m,x,p ∈ [0, 1] for i ∈ {Hellinger, TV }, PAp
0,x0

info−KL|m,x,p ≥ 0. Moreover,

PAp
0,x0

info−i|m,x,p = 0 if and only if F 1 = F 2 for i ∈ {KL,Hellinger, TV }

2. If x̂ = x (ε̂j = 0 for all j), then Dom(F 1) = V
(
p0, x0

)
|m. Furthermore, if the prior FX is

uniform then

(a) PAp
0,x0

info−KL|m,x,p = − ln γ

(b) PAp
0,x0

info−Hell|m,x,p =
√

2
(
1−√γ

)
(c) PAp

0,x0

info−TV |m,x,p = 1− γ

11The formal de�nitions are provided in Appendix 3.5
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where γ =
´
V (p0,x0|m) f

2(x)dx

3.
∂PAp

0,x0

info−i|m,x,p
∂σε̂

< 0, for i ∈ {KL,Hellinger, TV }

4.
∂PAp

0,x0

info−i|m,x,p
∂PX(x∈V (p0,x0|m)|x∈B(p0,x0))

< 0 for i ∈ {KL,Hellinger, TV }

Proof. See Appendix D

Proposition 6 summarizes some of the desirable properties of a predictive accuracy index. These

indices are zero if the data conveys no distinct information than the prior distribution of choices,

and increases as the information extracted from data by imposing the model results on a predictive

distribution that is more and more di�erent from the prior distribution of choices -(1)-. If the observed

data is perfectly rational, the predictive distribution is given by the truncation of the prior distribution

to the Varian supporting set, re�ecting the relative size of this set with respect to the feasible set, γ as

de�ned above, -(2)-. Moreover, these measures worsen as worse is the �t of the model -(3)-, or weaker

are the constraints imposed by the model-(4)-.

Constructing the predictive distribution not only allows the researcher to construct measures of

the quality of the model as in the previous section, but also to test whether this distribution conveys

statistically di�erent information than an uninformative prior. Consider the following hypothesis testing

problem

H0 : F 1 = F 2 vs. H1 : F 1 6= F 2 (8)

If H0 is not rejected, then the prior and predictive distribution do not convey signi�cantly di�erent

information, thus the model does not provide any additional information about behavior. The above

hypothesis can be tested by implementing a two-sample Kolmogorov-Smirnov test. Di�erent test statistics

have been proposed in the literature to test, nonparametrically, for the equality between two distributions;

refer to Pardo (2005) for the details.

3.5.3 Relevance of B(p0, x0)

Notice that the de�nition of the set of predicted choices depends crucially on the economic

environment in which the prediction is performed, as shown in theorem 5. This is not relevant if the

prediction is realized over budget sets that are relevant for the researcher; but if the aim is to assess the

performance of the utility maximization model it needs to be noticed that the size of the supporting set

is negatively and strongly correlated to the probability of �nding GARP violations on the new budget

set. This is particularly important when the comparison is made across individuals that faced di�erent

B(p, x). For example consider the case of �gure 7, where only B(p0, x0) has changed from panel 7a

to 7b. A more suitable assessment for the quality of the model is the expected value of the proposed

measures across di�erent realizations of
{
p0, x0

}
. Unless the comparison is made across a su�ciently

dense sequence of budget sets, this dependency will encumber the interpretation of the results when
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(a) B(p0, x0) demanding for prediction (b) B(p0, x0) not demanding

Figure 7: Predicting consumer's behavior - B(p0, x0) matters

comparing individuals that faced di�erent economic environments.

Alternatively, consider a predictive accuracy index where the forecast is performed on the observed

economic environments. Consider a leave-one-out prediction, that is, for each j, consider the set of

observations J \ j to construct the predictive distribution for B(pj , xj); and then these measures are

summarized across observations. This type of measure would have similar properties to the ones estab-

lished above, but overcoming the dependency with respect to B(p0, x0) by relying exclusively on the

data; reinforcing the concept that the quality of the model is a feature not only of the model itself but

of the data which behavior aspires to replicate.

3.6 Finite sample properties

In �nite samples, GARP identi�es the set of demand vectors that are rational conditional on

observed economic environments. As new observations are revealed from budget sets that impose

demanding constraints on data to be rational, the set of consistent demands shrinks, as shown in

Theorem 4. Figure 14 in Appendix 5.2 shows how for a perfectly well-behaved decision maker, the

set of choices from B(p0, x0) that are consistent with m ∈ M (B(p, x)) shrinks as the number of

observations increases, for all m ∈M (B(p, x)). This phenomenon does not only depend on the number

of observations but also on the particular distribution of {B(xi, pi)}Ji=1 and sequence of choices.

Assumptions 1 and 2 imply that the error process is partially identify since

ε̂ = x− arg min
m̃∈M(B(p,x))

‖x− m̃‖

≤ x−m ≡ ε

where the last inequality is strict in the case where arg minm̃∈M(B(p,x)) ‖x− m̃‖ 6= m. In particular, as
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Figure 8: Histogram of Projected−SSR
Generated−SSR for J = 10, 25, 50, 100, and 100 repetitions. Choices where

generated from a Cobb-Douglas utility function u(x, y) =
√
xy plus ε given assumptions 1 and 2, where

ε ∼ N(0, 5). B(p, x) was generated such that p1 ∼ U [5, 10], p2p1 ∼ U [.5, 2] and w ∼ U [80, 120].

the number of observations increases, M(B(p, x)) shrinks, and therefore ε̂→ ε.

The relevance of this e�ect is that the underestimation of the error for any �nite sample size prevents

the econometrician from recovering a suitable distribution for the error process to construct the predictive

distribution. The identi�ed error is still the object of interesting when measuring the distance of the data

to the model. Consider �gure 8, where ε ∼ N(0, 5) and J = 10, 25, 50, 100. The underestimation of

the residual process is signi�cant for all considered sample sizes and he gap between ‖ε‖ and ‖ε̂‖ is

jointly de�ned by the error process and the sample size, given a DGP for {(pi, xi)}Ji=1. These features

are consistent across DGP, see �gures 15 and 16 in Appendix 5.2.

Given some parametric assumption on the underlying distribution of the error process, F θε , I

propose to recover the su�cient statistics of such distribution (for θ) by simulating the error process

given assumptions 1, 2 and F θε for di�erent values of θ in the observed economic environments,

recovering ε̂(θ) and comparing its distribution to the distribution of ε̂ recovered from data. I choose

θ to be the one that generates a distribution that is the closest to the empirical distribution of ε̂, i.e.,

θ̂ = arg min d
(
F θε , Fε

)
.

Estimating θ̂ as above implies computing the projection for each of the repetitions in the simulation

which is computationally really expensive. Alternatively, I propose a series of algorithms to generate F θε

without computing the projection in each iteration but relying on the structure of the problem and the
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Algorithms - σ2ε
σ 1 2 3

0.5 0.8662 0.9098 0.5348
1 0.5910 0.6544 0.1320
2 0.5034 0.5294 0.5574
5 0.9312 0.9406 0.8928
10 0.9448 0.9448 0.9190

Table 1: Kolmogorov-Smirnov two tailed test statistics with respect to measure constructed based on
the projection for σ = 3 for two alternative distributions over a CD utility function.

performed projection to simulate the set M(B(x, p)).

Algorithm 1 is based on the assumption that x̂ = m. Given the discussion in the previous section,

for small samples one may argue this is a particularly strong assumption. Alternative, algorithm 2

constructs the consistent set M(B(p, x)) by intersecting, in a sequential manner, the Supporting set;

that is pick i at random and construct V (pi, xi|x̂−i), then k 6= i and construct V (pk, xk|x̂−{i,k}) and

do so until the set J = {1, . . . , J} is exhausted. Algorithm 3 does not rely on the projected demand

vector but simulates M(B(p, x)) sequentially. The details for the construction of these algorithms are

presented in Appendix E. In table 1 the results are presented under the assumption that Fε = σΦ(ε),

where Φ is a standard normal distribution. The results show that the proposed algorithms produce good

estimates for σ2, algorithm 1 and 3 underestimate the variance while algorithms 2 produce unbiased

estimates.

4 Comparison to other measures in the literature

4.1 Comparison to goodness of �t measures

The proposed measures re�ect the dispersion of the predictive distribution that depends on the �t

of the model (distribution of ε̂) and the number and relative distribution of budget sets through their

e�ect on the supporting set; as shown in theorem 5. Naturally, these measures are positively correlated

to measures of �t previously proposed in the literature, but they do not produce the same ordinal result

in the comparison across data sets. In particular,

∂PAi|B(x, p)

∂‖ε̂‖
< 0

but

‖ε̂1‖ > ‖ε̂2‖; PA1
i |ε̂1 < PA2

i |ε̂2

where ‖ε̂‖ measures the distance from the data to the model. The last inequality does not hold

since, even if noisier, the economic environments faced by individual 1 may have exposed her to more
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demanding constraints what, even if behavior seems to be further from the set of consistent choices,

more information is extracted from observed behavior which further constraints the supporting set.

To show that this is the case, consider again �gure 4, panels 4a and 4b. In this case ε̂ = 0 for

both panels, but panel 4a is more informative to predict behavior than panel 4b; similar in the case of

panels 4c-4d. That is, the size of the supporting set plays a signi�cant role in the predictive distribution,

independently of the recovered residuals. The result is stronger, it can be the case that, models with

worse �t deliver stronger predictions. Consider now �gure 5 and compare the predictive distribution in

panels 5b and 5d. Even when σε = 2 in panel 5b, this predictive distribution is more informative than

the predictive distributions in panel 5d for all σε < 2. The proposed measures of predictive ability are

correlated to the measures proposed in the literature but do not provide the same information and need

not generate the same ordinal results when comparing across data sets.

4.2 Comparison to power approaches

The standard approach in the literature is to compare the results for the goodness of �t measures

to the results that would be obtained if data were generated randomly from a uniform distribution

under the assumption of Becker (1962) irrational behavior12. Beatty and Crawford (2011) proposes to

adjust a measure of success, or �t, with a measure of the target area to account for power. The target

area is de�ned as the probability of choices being rational if they were to be generated by a random

subject, that is, it is an ex-ante measure of stringentness of the model. The predictive ability measures

proposed in this paper account for power though the e�ect of the relative distribution of B(p, x) on

the size of the supporting set. As discussed in section 6.2, the size of the supporting set does not only

depend on the relative distribution of budget sets, but also in the interaction between such distribution

and observed choices; that is the stringentness that observed budget sets imposed in observed choices,

not in an average expected choice if choices were to be generated at random. Consider again

�gure 4, Beatty and Crawford (2011) type of measure account for the e�ect of B(p, x) on power for

the case of the comparison between 4c and 4d but would not discern between the cases in �gure 4a and 4b.

The proposed measures account for �t and power but do not deliver the same qualitative results

as other measures that proposed to do so, since the tradeo� proposed here is conditional on observed

choices. Andreoni and Harbaugh (2013) proposes a conditional approach for power measures but do not

provide a meaningful way to combined with �t, that is, their interpretation should be made conditional

on �t.

12Andreoni and Harbaugh (2013) proposes a series of power indices that account for information about observed choices to de�ne
power. They do not deal on the particular manner to combine �t and power.

26



5 Empirical Performance

The results from section 3 state that is expected that as the number of observations increases the

size of the supporting set reduces (proposition 4) as well as the variance of the predictive distribution

(theorem 5) and consequently the predictive accuracy measures improve. Also, under certain conditions

on the distribution of the budget sets, it is expected that the predictive distribution converges to the

distribution of the e�ective residual process. For a given sample size and B(p, x) it is expected that

the variance of the predictive distribution increases with σ2ε , and therefore the predictive ability worsen.

Finally, if the relative distribution of budget sets imposes less stringent constraints in data, the predictive

ability measure are expected to be worse.

5.1 Experimental Data

5.1.1 Data

In this section I use data from Choi et al. (2007a). This data set was obtained from a series

of experiments designed to study decisions under uncertainty. The 93 subjects in the experiment are

presented with a graphical interface displaying standard, two dimensional, budget constraints on the

screen. The experiment was conducted at the Experimental Social Science Laboratory at UC Berkeley

and each session consisted of 50 independent decision rounds.

Table 6 shows the summary statistics for the proposed measures and other standard measures of �t

that are standard in the literature.13 The predictive accuracy measures are computed for the observed

economic environments in the regime of leave-one-out prediction, as explained in section 3.5.3. Table 7

shows the correlations among these measures, standard measures in the literature, other alternative

measures of �t constructed from the residuals of the projection14 and a measure of the ex-ante mean

probability of observing violations to the model given observed economic environments as a proxy for

the stringentness of the constraints imposed by the model. Almost 20% of the subjects are rational,

and standard measures of �t (raw R2, Afriat and Varian measures) are high, consistent with the fact

that, given observed budget sets, the ex-ante probability of detecting violations to the model is low.

Moreover, the correlation between these measures and an estimation of this ex-ante probability is negative.

5.1.2 Empirical performance PA measures and comparison with other measures

Tables 8-12 show the impact of measures of �t and ex-ante power on the proposed measures.

Table 8 presents the results for the predictive accuracy measure given by de�nition 10. The results

are as expected given proposition 5, i.e. the proposed measure responds positively to changes in the

raw �t of the model (a measure of −‖ε̂‖) and therefore negatively to changes in σε. Moreover, when

13The consider measures of �t are the proposed by Afriat (1972a), Varian (1990), Houtman and Maks (1985) as well as the number
of violations to WARP and GARP.

14The considered measures are raw R2, adjusted R2 and weighted R2. Refer to appendix F.1 for the formal de�nition of these
measures.

27



considering designs with an ex-ante probability of detecting violations above 2.5% this measure also

improves as the design becomes more stringent. Table 9 shows that, when controlling for the R2 of the

projection exercise, standard measures proposed in the literature do not have a signi�cant e�ect on the

predictive accuracy of the model.

Tables 10-12 present the analysis for the measures given by de�nition 12. The predictive accuracy

measure based on the Kullback-Leibler discrepancy measure shows a quadratic dependency with respect

to the measure of raw �t (R2) while the ex-ante probability of detecting violations has a positive but

insigni�cant e�ect on the predictive ability. The Hellinger and the Total Variation measures show similar

dynamics, consistent with the results from proposition 6, tables 11 and 12 respectively in Appendix F.

Notice that, the Hellinger measure is more sensitive to �t, while the total variation measure shows

more sensitivity to changes in power, measured as the ex-ante probability of detecting violations to the

model given the observed economic environments. In all cases, once I control for �t, standard measures

proposed by the literature show negative15 e�ect on the ability to produce accurate predictions, which is

consistent with the negative correlation between these measures and how demanding are the observed

designs as it is shown in table 7.

As discussed in section 4.1, the predictive accuracy measures not only account for �t but also for the

e�ect of the distribution of
{
pj , xj

}J
j=1

on the ex-ante power of the revealed preference test. Consider

subjects 209 and 606 whose choices are displayed in �gure 11 in Appendix F. Common measures used

in the literature imply that subject 209, in panel 11a seems to be closer to the rationality benchmark. A

closer analysis of the data suggests that subject 606 has been exposed to more demanding constraints

given the budgets sets that were presented to her, where the mean probability of �nding a violation is

13.49% by comparison to 1.79% for subject 209. The forecasting ability measures proposed in this paper

account for this e�ect showing that, in e�ect, despite of more noise, more information can be inferred

from choices for subject 606 than for 209, as shown in table 2.

Other measures that combine �t and power have been proposed in the literature, refer to section 8.

The proposed methodology provides a meaningful trade o� for these two components and also incorpo-

rates the information contained in observed choices, as discussed in section 4.2. It is standard use in the

literature to adjust by power computed as the performance of choices if they were to be generated by

uniformly random behavior, but Andreoni and Harbaugh (2013) and Dean and Martin (2013) propose

alternatives that exploit further information from observed data to compute the power of the test. Con-

sider subjects 209 and 603 in table 3, even when standard goodness of �t measures and adjusted ones

(Adjusted R2 BC) would indicate that the performance of the model is better for subject 209, subject

603 generates a more informative predictive distribution.

15Only signi�cant for the KL measure.
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Subject 209 Subject 606
R2 0.9740 0.9306
Adj R2 0.0009 0.1878
FA CI (95%) 0.4557 0.5175
FA KL 0.3537 0.5280
FA Hellinger 0.2076 0.2910
FA TV 0.3372 0.4173
WARP 15 18
GARP 94 241
Afriat 0.9290 0.8390
Varian 0.8250 0.4700
HM 46 44

P (viol) 0.0179 0.1349

Table 2: Data for subjects 209 and 606, Choi et al. (2007a)

Subject 603 Subject 209
R2 0.8597 0.9740
Adjusted R2 BC -0.1217 -0.0251
Afriat 0.6860 0.9290
FA CI (95%) 0.5782 0.4556
FA KL 1.1049 0.3537
FA Hellinger 0.5841 0.2076
FA TV 0.5916 0.3372

Table 3: Data for subjects 209 and 603, Choi et al. (2007a)
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Mean - Full Mean - Half |Test-statistic| df ≈ P-value
R2 0.9906 0.9989 2.0747** 154 0.0397
Adj R2 0.1072 0.1100 0.2417 155 0.8093
Weighted R2 0.9906 0.9969 2.1119** 156 0.0363
Mean ex-ante prob 0.1142 0.0788 3.6568*** 153 0.0004
FA CI (95%) 0.4935 0.3989 9.1299*** 143 0.0000
FA KL 0.3072 0.1915 6.3379*** 91 0.0000
FA Hellinger 0.2962 0.2162 5.2035*** 149 0.0000
FA TV 0.3940 0.3040 8.0911*** 147 0.0000

Table 4: Data for 81 subjects, Choi et al. (2007a), test for di�erent in means Welch's t-test.

5.1.3 E�ect of the number of observations

To analyze the e�ect of the number of observations in the amount of information that can be

extracted from data to generate predictions I compare the results when considering the �rst 25 obser-

vations and the full sample. Assuming that individual preferences are stable along the experiment, the

comparison is made between data set that were generated by the same DGP. The results are presented in

table 4. The number of rational individuals jumps from almost 20% to 50%. When comparing the results

for half and full sample, the �t of the model is signi�cantly higher when considering 25 observations,

but these results do not imply changes in behavior but the fact that, with fewer observations, observed

behavior is more likely to satisfy the constraints imposed by the model, regardless of the true underlying

behavior. In particular the ex-ante mean probability of detecting violations is 7.88% when considering 25

observations, while the model is signi�cantly more stringent when considering the full sample, 11.42%.

Consistent with the results from propositions 5 and 6, the ability to produce accurate predictions

increases. This is due to the amount of extra information that can be inferred from underlying behavior

when more choices are observed, even when more noise increases (R2 of .9906 with respect to .9989).

Table 13 in Appendix F displays the e�ect of changes in �t and power on changes in the performance

of the model measured by its predictive accuracy, when the sample size is increased from 25 to 50

observations. For the measure based on the relative size of the con�dence interval, columns (1)-(2),

changes in �t and power are signi�cant to explain the observed changes in predictive accuracy. For the

measures based on the relative information contained in the predictive distribution, changes in �t have a

negative or insigni�cant e�ect on the performance change.

5.1.4 Comparison to Parametric Recoverability

The proposed methodology allows the researcher to impose the minimal constraints needed to

ensure the existence of a well behaved utility function, avoiding any type misspeci�cation error induced

by additional assumptions. If we were to assume a parametric speci�cation for demand, the recovered

residuals can be decomposed into a inconsistency and a misspeci�cation component. Table 5 shows the

e�ect of various parametric assumptions on the sum of square residuals for the whole sample and divided

into rational and irrational subjects, where the considered parametric assumptions are: Cobb-Douglas,
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GARP min{CD,Leont, Lin} GARP
min{CD,Leont,Lin}

All subjects 357.54 18226.46 0.0289
(1119.23) (20018.90) (0.1069)

Rational 0.00 17623.28 0.0370
(0.00) (25569.78) (0.1889)

No Rational 491.62 18452.65 0.0258
(1287.05) (17483.49) (0.0479)

Table 5: E�ect of various parametric speci�cations on the mean of the sum of squared residuals, standard
deviation in (). The estimation for the parametric speci�cations was performed by nonlinear least squares
on the individual basis, by assuming behavior consistent with Cobb-Douglas, Leontief and Linear utility
functions, considering the best �t per subject.

Leontief and linear16, allowing for heterogeneous behavior across individuals.

5.2 Monte Carlo Results

Unless otherwise stated, the economic environments were generated such that px ∼ U [5, 10], py =

px × a where a ∼ U [.5, 2] and w ∼ U [80, 120]; this implies a mean probability of detecting a WARP

violation of 7%, and that the probability of detecting at least one violation converges rapidly to 1.17.

5.2.1 Convergence results

The consider DGP is consistent with assumptions 1 and 2, where the rational component was

generated as the result of the maximization of u(x, y) =
√
xy and Fε ∼ N(0, 1). A total of 200 samples

were created of (nested) 10,25,50 and 100 observations each.

Consistent with the discussion in section 3.6, the recovered residuals are expected to converge to

the e�ective underlying error process as in equation 2 as the number of observations increases. Figure 9

shows that such convergence occurs in the data and it is slow, even when considering 100 observations

it is far from full convergence.

When the number of observation increases, more information can be extracted from data resulting in

higher predictive ability measures. Table 14 and �gure 18 in Appendix F show that the proposed measures

16The correspondent assumptions are

CD u(x, y) = xαy1−α therefore x∗ =
αw

px
and y∗ =

(1− α)w
py

Leontief u(x, y) = min {βx, y} therefore x∗ =
w

px + βpy
and y∗ =

βw

px + βpy

Linear u(x, y) = γx+ y therefore x∗ =
w

px
and y∗ = 0 if γ

px

py
and x∗ = 0 and y∗ =

w

py
if γ <

px

py

17P[at least one violation to WARP given n obs] = 1− (1− Pavg [violation to WARP])

(
n
2

)
≈ 1 when n ≥ 12
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Figure 9: Histogram of SSRrecovered
SSRgenerated

are consistent with the results from propositions 5 and 6 as the number of observations increases.

5.2.2 The e�ect of changes in the DGP

The DGP considered in this section is similar the one in section 5.2.1, but J = 40 and the possible

values of sigma are given by σ ∈ Σ = {.5, 1, 2, 5}.

As expected, when the ratio of signal to noise increases, controlling for the economic environment,

fewer subjects result to be rational, and we observed an signi�cant increase in the computational cost.

Table 15 in Appendix F shows the result for all the convergent simulations for each particular assumption

over σ. The simulations results con�rm the theoretical results stated in propositions 5 and 6, i.e. the

measures deteriorate as σ increases, as well as the results become more disperse. Figure 19 in Appendix F

shows the e�ect of changes in σ over the predictive ability de�ned in 10.

6 General Models of Economic Behavior

6.1 Set up

The proposed framework can be easily extended to a general class of economic models. Consider the

case where the objective is to assess the quality of a given model M . Assume that the econometrician

observes the behavior of an agent in J di�erent economic environments. The features of the particular

economic model(s) considered de�ned the characteristics of the economic environments, feasible

behavior and consistent behavior with the model. Let X be the space of alternatives, then the economic

environment realized de�nes the set of feasible alternatives for a decision maker in this context. Let
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Z(θj) be the set of feasible alternatives in economic environment θj ∈ Θ j = 1, . . . , J , and let

Z : Θ → X be the feasible correspondence. I adopt the following notation: y ≡
(
y1, . . . , yJ

)
and

Y(·) ≡
∏J
j=1 Y (·), it follows that Z(θ) =

∏J
j=1 Z(θj) is the set of feasible alternatives vectors.

The model is assumed to be given by a correspondence M : Z(θ) → Z(θ) that maps from the set

of feasible choices to the subset of feasible choices that is consistent with the axiomatic model, that is

M(Z(θ)) ≡ {m ∈ Z(θ) : m satis�es model M}

Observed choices, x(θ), are assumed to be generated by the model M and an additive idiosyncratic

error process ε; that is x(θ) = m(θ) + ε, where m(θ) ∈ M (Z(θ)) and x(θ) ∈ Z(θ), i.e. observed

choices must be feasible. Imposing feasibility may constrain the domain of the e�ective error process

to be such that choices generated by the model and observed choices lie on Z(θ). Without imposing

any assumption on the nature of the feasible correspondence, I assume that latent choices are generated

by the model and a well behaved error process, but observed choices are given by the closest feasible

alternative. Formally, let e be the e�ective error process then,

dom (e|m(θ)) ≡ {e : (m(θ) + e) ∈ Z(θ) and m(θ) ∈M (Z(θ))} ≡
J∏
j=1

(
Z
(
θj
)
−mj (θ)

)
Consider the following assumptions,

Assumption 4 (DGP) Data is generated by a latent process given by

x∗(θ) = m(θ) + ε

where m(θ) ∈M (Z(θ)). Then, observed data is given by

x(θ) =

x∗(θ) if x∗(θ) ∈ Z(θ)

argmina∈Z(θ)‖x∗(θ)− a‖ otherwise
(9)

where x(p) ∈ B(p, x) and e ∼ Fε|m(θ),Z(θ) is the e�ective error process given equation (9), i.e

e is such that x(θ) = m̃(θ) + e for some m̃(θ) ∈M (Z(θ))

Assumption 5 (Unconstrained Error Process) The unconstrained process ε is assumed to be i.i.d.

with continuous and symmetric p.d.f. such that E(ε) = F−1ε

(
1
2

)
= 0, ∂f(ε)

∂ε εj < 0 for all εj 6= 0 and

εqm, for some m ∈M (Z(θ)).

Assumptions 4 and 5 jointly de�ne the distribution of the observed error process. These assump-

tions are agnostic in terms of the particular process that generated the data, since it relies uniquely on

the conditions imposed by the axiomatization provided by the theory, preventing overrejection due to
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misspeci�cation error. Moreover, the error process is assumed to be additive and, prior to the imposition

of feasibility constraints, independent of the model, avoiding the imposition of any further structure to

the problem.

6.2 Predictive Distribution

The predictive distribution is constructed as the expected distribution of choices on a new economic

environment, given assumptions 4, 5 and observed data. I start by assuming the availability of an

estimator of the behavior function, i.e. m̂(θ) given observed θ and x(θ).

Given a vector of consistent behavior, the axiomatic model prescribes the set of alternatives that

are consistent with the model in the new economic environment, the supporting set, which is inherit

from GARP. The estimation exercise delivers a behavior estimate that is consistent with the model

based on observed data, that can be used to construct the supporting set in a new economic environment.

De�nition 13 (Supporting set) Let m ≡
(
m1, . . . ,mJ

)
be a vector of choices consistent with the

model, i.e. m ∈M(Z(θ)). Given a new economic environment Z
(
θ0
)
, the supporting set is de�ned as

S
(
θ0|m

)
=
{
x0 ∈ Z(θ0)|

{
m,x0

}
∈M

(
Z
(
{θ, θ0}

))}
(10)

Generally, new economic environments reduces the cardinality of the set of consistent behavioral

functions, the relative size of the predicted area depends on the number of observations. If this is

the case the relative distribution of observed and newly considered economic environments and the

estimated behavioral functions. In particular, the supporting set is expected to be smaller as bigger (and

more demanding) the data set is.

The distribution of this error process can be estimated from the residuals from the estimation of the

consistent behavioral function, provided that feasibility conditions are incorporated. The error is de�ned

as the residual from the estimation procedure, i.e.

ê = x(θ)− x̂ (11)

where x̂ is an estimator for m(θ). Given a parametric assumption on Fε, the relevant parameters can be

estimated by maximum likelihood by imposing the structure induced by assumptions 4 and 5; for small

samples one can modify accordingly the algorithms proposed in section 3.6

Finally, I de�ne the predictive distribution as the distribution of a random variable Y ≡ X+µ where

X ∼ FX |x∈S(θ0|m) for some assumed distribution of choices FX , and µ ∼ Fe|x,m the e�ective distribution

of the residuals in the new economic environment estimated from the residuals in the estimation of the

behavioral function. Formally, let {θ0} be the new economic environment then,
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De�nition 14 (F θ
0

X |m,x) Let FX be an assumed distribution of choices provided by the econometri-

cian.18 Then, the distribution of choices over the Supporting set is given by

F θ
0

X |m ≡ FX
(
x|x ∈ Z(θ0) ∩ S

(
θ0|m

))

De�nition 15 (F θ
0

e |m,x, s0) Let Fê be an estimation from recovered residuals 11 of the distribution

given assumptions 4 and 5, and let s0 ∈ S
(
θ0|m

)
be a vector of behavior in the supporting set. Then,

the e�ective distribution of the error process in the new economic environment conditional on s0 is given

by F θ
0

ê |m,x, s
0 consistent with assumptions 4 and 5.

De�nition 16 (Predictive distribution) Given a data set
{
xi, θi

}J
i=1

the predictive distribution of

choices y0 for a new economic environment θ0 is de�ned as F 0|m,x,θ(y0) = P (Y 0 ≤ y0) where

Y 0 ≡ X0 + µ with X0 ∼ F θ
0

X as in de�nition 14 and µ ∼ F θ
0

e |m,x, s0 = X0 as in de�nition 15.

Theorem 6 (Properties of the Predictive distribution) Let assumption 4 and 5 hold. Then

1. ∂V ar(Y 0)
∂σ2
ε
≥ 0

2. ∂V ar(Y 0)
∂J ≤ 0

3. ∂V ar(Y 0)
∂q0i

≤ 0 where q0 =
[´
x∈Z(θ0)\Z(θi) dF

θ0

X

]
×
[´
x∈Z(θi)\Z(θ0) dF

θi

X

]
4. If observed data is consistent with the model, then F 0|m,x,θ = F θ

0

X |m,x

5. If the considered model is such that uniquely identi�es behavior when {θi}ni=1 becomes dense in

Θ as n→∞, then F 0|m,x,θ → F θ
0

e |m,x, s0 where {m, s0} is the limiting behavior.

where Y 0 ∼ F 0|m,x,p

Proof. It naturally extends from Theorem 5

The interpretation of these properties is analogous to the ones presented in theorem 5. The measures

proposed in section 3.5 naturally extend for the general case.

7 Optimality of Predictive Accuracy as a Measure of the Quality of

the Model

Consider the case of a decision maker that must choose a plan of action a to maximize a payo�

function g19 that also depends on a behavioral variable x. Behavior x will be determined after the

18This distribution is provided by the researcher, by default it is set to be Uniform.
19This function g can be understood as a negative loss function in the Bayesian sense.
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choice by the decision maker a, and it may depend on a. For example, a producer may need to set

prices to maximize expected pro�ts, but the optimal price depends on the demand function. Given an

expected distribution for x, Fx, I assume that the decision maker chooses a to maximize her expected

payo�, i.e. a∗ ≡ arg maxa
´
g(a, x)dFx. The decision maker is given with K models of behavior

M1,M2, . . . ,MK and believes that behavior is generated by a model i plus some idiosyncratic error

process, i.e. x = mi + ε with mi ∈ M i and data about past behavior. The decision maker selects

one of these models to predict behavior in the relevant economic environment given her optimization

problem, she can always opt out of this decision and assume that all feasible alternatives are equally

likely. Finally, assume that the decision maker has the technology to infer a predictive distribution,

F ix̂, from a given model, M i, and past data on behavior, for the moment I abstract of the process to

construct such distribution. In this circumstances, what is the model the decision maker prefers? As

it would be expected, the decision maker favors, under mild assumptions, unbiased models that deliver

more informative predictive distributions.

A predictive distribution being more informative than other depends on the objective func-

tion, that is, the particular functional form of g(·) de�nes the features that make a predictive

distribution more informative than other for the considered decision problem. Nevertheless, under

weak assumptions, it is possible to identify basic conditions about the �rst and second moments of

the distribution that imply a strict preference order among models. This partial order needs not complete.

Theorem 7 (Optimal model) LetM1,M2, . . . ,MK beK competing models that, given observed data

deliver predictive distributions F 1
x̂ , F

2
x̂ , . . . , F

K
x̂ respectively. Let �DM be the preference relation of the

decision maker over models, such that M i �DM M j ⇔ Ex̂
(
g
(
a∗|F ix̂, x

0
))

> Ex̂

(
g
(
a∗|F jx̂ , x

0
))

,

where a∗|F kx̂ ≡ arg maxa
´
g (a, x̂) dF kx̂ for all k = 1, . . . ,K and x0 is the true behavior in the new eco-

nomic environment. Moreover, assume that g is twice continuous di�erentiable and strictly quasiconcave.

Then,

1. If V arF i
x̂

(x̂) = V ar
F j
x̂

(x̂),

∣∣∣EF i
x̂
(x̂− x0)

∣∣∣ ≤ ∣∣∣EF j
x̂
(x̂− x0)

∣∣∣⇒M i �DM M j

2. If
∣∣∣EF j

x̂
(x̂− x0)

∣∣∣ =
∣∣∣EF i

x̂
(x̂− x0)

∣∣∣,
V arF i

x̂
(x̂) ≤ V ar

F j
x̂

(x̂)⇒M i �DM M j

3. Let I(M i) ≡ −
∣∣∣∣AEF ix̂(x̂− x0) +B

[(
EF i

x̂
(x̂− x0)

)2
+ V ar

F j
x̂

(x̂)

]∣∣∣∣, then if limn→∞ V arF i
x̂

=

0, where n is the number of observations I(·) represents �DM , that is

M i �M j ⇔ I(M i) ≥ I(M j)
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with A ≡ ∂2g
∂x∂a

(
a∗0, x

0
)
, B ≡ 1

2
∂3g

(∂x)2∂a

(
a∗0, x

0
)
, and a∗0 ≡ arg maxa g(a, x0).

Proof. See Appendix ??

8 Previous literature

This paper proposes the use of the predictive distribution to measure the success of a nonparametric

model of utility maximization while allowing for error. To my knowledge, the construction of such

distribution is novel in the literature. Varian (1982) uses the nonparametric demand approach to

construct forecasts, but considers only the case of data that is perfectly consistent with the model,

identifying the set of choices that if they were to be observed in a new budget set would be consistent

with the observed (rational) data. My approach extends this analysis by allowing for error in choices

and incorporating them in the construction of the predictive distribution. It can be applied to any

choice data set, not only those that satisfy GARP. Adams (2013) allows for error, but identi�es only a

point forecast estimate by applying the "minimum discrimination information principle". The approach

developed in this paper identi�es instead a predictive distribution, which is both more informative and

can be used to measure the quality of the model.

Microeconomic theory has approached the problem of assessing the quality of the model when

observed choices are not perfectly rational by proposing goodness of �t measures based on some

intuitively appealing moment of the data associated to the monetary cost of the departures from the

model. For example, Echenique et al. (2011) proposes the money pump index, that considers the total

cost of removing violations as a percentage of total expenditure, by adjusting budget sets in a way that

violations are not longer feasible. Afriat (1972a) and Varian (1990) propose similar measures. These

measures follow the intuition that the severity of the departures from rationality can be measured by the

size of the perturbation to income required to make violations infeasible; providing an easily interpretable

measure of the �t of the model, but that cannot be interpreted in terms of the behavior that generates

the observed data; which prevents the researcher to construct predictions based on such adjustments.

The utility maximization model prescribes that choices are the result of decision maker's maximization

of her own utility function over the set of feasible choices de�ned by the observed budgets sets, then

adjusting income to remove violations makes impossible to infer any information about behavior or

to establish what these adjustments imply in terms of the primitives of the model. Moreover, these

adjustments are not the result of a statistical model for choice which impedes the interpretation of

di�erent results in terms of their statistical signi�cance. The approach presented in this paper is based

on the assumption that behavior is consistent with the model but choices are observed with error, and

proposes to assess the quality of the model by the informativeness of the predictive distribution. These

measures are easily interpretable and allow for the assessment of the statistical signi�cance of the results.

A common problem that plagues the literature of goodness of �t is the e�ect of the relative
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distribution of budget sets in the ability to detect departures from rationality. A data set may pass

the rationality test because it was indeed generated by a rational subject or because the distribution

of budget sets is such that it is nearly impossible to observe violations. By construction, measures

of �t worsen as the number of observations increases even when data was generated by the same

individual facing budget regimes that impose equally demanding constraints on data. Moreover, given a

same data generating process, these measures punish designs that impose more demanding constraints

on data. The literature has approached the problem by studying the "power" of the rationality

test; understood as the probability of �nding violations given observed economic environments for

some alternative behavioral process. For example, Beatty and Crawford (2011) proposes a measure

of predictive success that combines �t and power following the axiomatization provided by Selten

(1991). This measure consists in assessing the di�erence between the passing rate and the relative

target area where the latter is de�ned as the relative size of the set of consistent choices with respect

to the set of feasible alternatives. In a similar vein, Hoderlein and Stoye (2009) and Andreoni and

Harbaugh (2013) tackle this problem by proposing alternative measures of power. The predicting

accuracy measures proposed in this paper combine �t and power by sizing the informational content

of the predictive distribution; noisier data increases the entropy of the distribution while as the

number of observations increases or the constraints imposed by the model become more demanding,

the predictive distribution becomes more informative due to the shrinkage of the set of choices that

is consistent with previously observed data. In this way, �t and power are not only accounted for,

but the quality of the model is assessed by its usefulness to predict behavior, not just explain observed one.

This paper uses a projection technique to identify the systematic component and the error process

from data. Others have proposed the use of similar techniques as Varian (1985) and Fleissig and

Whitney (2005), but I further impose feasibility constraints. Under the behavioral assumption that

choices are rational but observed with error it naturally follows that the rational component must lie in

the set of feasible choices; and by de�nition observed choices are feasible as well. Halevy et al. (2014)

proposes a projection technique that considers the feasibility constraints but it is based on a parametric

assumption over the utility function, that is the data is projected onto the subset of feasible choices

that are consistent with the assumed parametric form, inducing misspeci�cation error. The projection

technique employed in this paper only relies on the nonparametric constraints imposed by GARP.

Addressing the concerns of interpretation and signi�cance of the results in terms of �t, or combined

�t and power, a series of test statistics have been proposed in the literature. Varian (1985), Fleissig and

Whitney (2005) and Hjertstrand (2013) propose test statistics for the null of rationality based on the

perturbation needed to satisfy the Afriat (1967) set of inequalities that can be equivalently interpreted

as additive/multiplicative error in choices. As explained in section 3 I follow a closely related behavioral

assumption but I further impose feasibility constraints explicity, the imposition of such constraints natu-

rally follows from the model, and failing on recognizing them alters the e�ective distribution of any test

statistic by omitting the truncation due to nonnegativity constraints on the rational component. In all

these cases, the authors argue that under the null the distribution of the proposed test statistics can be
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bounded by known distributions.

9 Conclusion

Rationality is one of the most prevalent assumptions in economics but empirically is almost surely

violated. GARP provides an elegant nonparametric test for rationality, but only one violation and the

data would be declared as inconsistent. The aim of this paper is to assess the quality of the model when

the data may not pass the deterministic test relying solely on the necessary and su�cient conditions

given by GARP. In this paper I develop a framework that combining �t and power gauges the quality of

the model by estimating the predictive ability of the model given observed data. The tradeo� between

these two features of the model is made conditional on observed data, therefore outperforming other

measures of �t prevalent in the literature by considering �t; and other combined measures of �t and

power by providing a meaningful tradeo� between these two.

The proposed predictive accuracy measures exhibit, theoretically and empirically, the desired

dynamics. Noisier data performs worse and more demanding environments deliver more informative

predictive distributions. Moreover, increasing the number of observations allows the researcher to extract

more information from data, which results in more accurate predictions.

By combining �t and power forecasting ability measures, are more informative than standard

measures in the literature. By relying solely on the axiomatization provided by GARP, without any

further parametric/nonparametric assumption on behavior and allowing for individual speci�c behavior,

I avoid misspeci�cation biases common in the recoverability/demand estimation literature. By imposing

the constraints implied by the model when projecting the data, I overcome the concerns raised by Lewbel

(2001) with respect to the common econometric approaches. Furthermore, I develop intuitive measures

based on the information that can be extracted from data given the observed economic environments by

imposing the model, which also allows me to develop a simple test statistics based on the signi�cance

of this information with respect to an uninformative prior.

Finally, the framework proposed in this paper can be extended to a general class of economic

problems, where the model de�nes a subset of feasible alternatives that are consistent with the constraints

imposed by the model, provided that a projection onto the set of consistent choices exists.
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A Proofs of Section 2

.

Claim 1 If GARP is satis�ed then there exists an index i ∈ J with aij ≥ 0 for all j ∈ J

Proof of Claim 1. (From Fostel et al. (2004)) If this were not so, then every row would have an

strictly negative entry. Let i be such that aij < 0. Now consider row j and identify a negative entry,

say ajk < 0. In this fashion construct the sequence i, j, k, . . . until an index is repeated. This sequence

yields a contradiction to GARP.

Proof of Proposition 1. If GARP is satis�ed then for every chain {i, j, k, . . . , r} ⊂ J , aij ≤ 0,

ajk ≤ 0, ...,ari ≤ 0 implies that all terms are zero.

From claim 1 we can prove that if GARP is satis�ed then there exists a permutation such that

a′kj ≥ 0 for all j = 1, . . . ,m. First, de�ne a bijective function f : J → J where f(i) corresponds at

the row/columns assigned in matrix A′ to the row/column i in matrix A. From claim 1 there exists

a i ∈ J such that aij ≥ 0 for all j ∈ J . Set f(i) = J . Consider now the matrix A(J−1)×(J−1) from

the matrix A eliminating column and row i. Since the data set that contains all the observations but i,

also satis�es GARP it must be the case, by claim 1 that there exists a i′ ∈ J−i such that ai′j ≥ 0 for

all j ∈ J−i. Repeat this until the matrix has been reduced to a 1 × 1 matrix. Finally construct A′ by

a′ij = af−1(i),f−1(j).

Proof of Proposition 2. Let a′jk > 0 for all k < j ≤ J , then there is no chain of preferences such

that {i, j, k, . . . , r} ⊂ J , a′ij ≤ 0, a′jk ≤ 0, ...,a′ri ≤ 0; since a′ij ≤ 0 implies that i < j, a′jk ≤ 0 implies

that j < k,....,a′ri ≤ 0 implies that r < i, that is i < j < k < · · · < r < i which is a contradiction.

Proof of Proposition 3. The condition of lemma 1 is necessary but not su�cient

Example 1 Consider p1 = (1, 1, 2), x1 = (1, 0, 0), p2 = (2, 1, 1), x2 = (0, 1, 0), p3 = (1, 2, 1.5) and

x3 = (0, 0, 1), then it is the case that x1RPx2, x2RPx3 and x3RSPx1, therefore the data is not

consistent with GARP.

The matrix A′ is given by

A′ =

 0 .5 −.5
0 0 1

1 0 0


which satis�es the conditions in lemma 1 but the data set generating it is not consistent with GARP.

The condition of lemma 2 is su�cient but not necessary
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Condition A

GARP

Condition B

Figure 10: Relationship between GARP and su�cient and necessary conditions

Example 2 Consider p1 = (1, 1, 2), x1 = (1, 0, 0), p2 = (1, 1, 1), x2 = (0, 1, 0), p3 = (1, 3, 1) and

x3 = (0, 0, 2). This data is consistent with GARP, observation 1 and 2 constitutes a violation of WARP

[x1(p1)T = x2(p2)T = 2 and x1(p2)T = 1 and x2(p1)T = 1 ]

The matrix A′ is given by

A′ =

 0 1 −1

1 0 0

3 0 0


Therefore satisfy the entries in the lower triangle are all positive (not strictly, and therefore not consistent

with lemma 2), this data indeed satis�es GARP.

The relationship between these conditions is shown in �gure 10. From the conditions it is easily seen

that the distance between these three sets it is actually zero since cl(condB) = condA and condB ⊂
GARP ⊂ condA.

Remark 1 Condition A can be seen as the closure of condition B, and therefore the distance between the

set of choices that satis�es condition B and the set of choices that satis�es condition A is in�nitesimally

small.

B Proof of Section 3.1

Proof of Theorem 2. Let R ∈ R{xi,pi}n+1
j=1

, then since the data is consistent with GARP there exists

a preference order that rationalizes the data, that is, there exists a bijective function, f : In+1 → In+1

that de�ned the order, where In+1 = {1, . . . , n + 1} and such that f(i) > f(k) ⇔ xiRxk. Consider

now the preference order de�ned by the injective function g : In → In where In = {1, . . . , n} given by

g(i) =

{
f(i) if f(i) < f(n+ 1)

f(i)− 1 if f(i) > f(n+ 1)
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then, given that f de�nes a complete and transitive preference order so does g, then

R \ {(a, b)|a = xn+1 or b = xn+1}, then R{xi,pi}nj=1
⊇ R{xi,pi}n+1

j=1

Proof of Theorem 4. For any n ∈ N, there exists i ∈ {1, . . . n}, and y, z ∈ B(xi, pi) such that

y, z /∈ B(xj , pj) for all j ∈ {1, . . . , n} \ {i} with y 6= z. Consider any M ∈ M
(
B̃n \ {pi, xi}

)
then {M,y}, {M, z} ∈ M

(
B̃n
)
. Now, under assumption 3, there exists a m > n such that

B(xi, pi) \ B(xm, pm) 6= ∅, B(xm, pm) \ B(xi, pi) 6= ∅ and pmy < pmz = Pmxm. Then

{M,y, x̃m} /∈ B̃n ∩ {xm, pm} while {M, z, x̃m} ∈ B̃n ∪ {xm, pm} for any x̃m ∈ B(xm, pm) such

that {M, x̃m} ∈M
([
B̃n ∪ {xm, pm}

]
\ {pi, xi}

)
.

C Projection Procedure

The projection procedure de�ned in section 3.3 is based on �nding the minimal perturbations nec-

essary for the perturbed choices satis�ed the condition from lemma ??. Then the objective is to �nd a

matrix Aε such that aεkj = 〈p∗k, (x∗j + εj) − (x∗k + εk)〉, k, j ∈ {1, 2, ..., J}, where ε is the residual and

Aε is reordered according to the matrix A∗ where the demand vector includes the residual vector. The

constraints placed in the problem are the following

〈p∗k, ε+j − ε
−
j 〉 − 〈p

∗
k, ε

+
k − ε

−
k 〉 ≥ −aεkj (12)

〈p∗k, ε+k − ε
−
k 〉 = 0 (13)

ε+k − ε
−
k ≥ −x∗k (14)

ε+k , ε
−
k ≥ 0 (15)

∀ k = 1, ...., J, and j = 1, ..., k − 1 (16)

Where εi = ε+i −ε
−
i , and ε

+
i −ε

−
i are the positive and negative parts of εi. Equation 12 constrains the ele-

ments in the lower triangle to be positive, consistent with Lemma 1; equation 13 constrains the perturbed

consumption bundle to remain in the budget; while equations 14 and 15 impose non negativity constrains.

The problem, as de�ned above, depends on the particular order and perturbation, therefore the

optimization should be done with respect to �nding the optimal ε for each particular re-order and

�nding the optimal re-order given the minimal residuals that can be achieved for each particular

order. Kocoska (2012) proposes the implementation of a process that automates the re-ordering of

the data sets while still minimizing the chosen objective value. The pattern search method that is

introduced is an adapted version of Nelder and Mead (1965) simplex method which evaluates a function

value at a �nite number of points and chooses a descendent direction at each step according to this

function value; but it has been modi�ed to ensure convergence on the based of a "�exible pattern search".

The Nelder-Mead algorithm has been broadly used because it does not require the knowledge of

derivatives and it is easy to use. McKinnon (1998) shows that this method can fail to converge or

45



converge to non-stationary solutions on certain classes of problems. Some limited convergence results

have been introduced in the literature, see Lagarias et al. (1998) in low dimensions. Price et al. (2002)

present a convergent variant of the Nelder-Mead algorithm, following Kelley (1999) de�nition of a

su�cient descendent condition. The variant of the Nelder-Mead algorithm followed by Kocoska (2012)

is based in Price et al. (2002) variant imposing a "�exible pattern search" extending the convergence

proof to the case where di�erentiability nor a Lipschitz property are assumed.

Convergence results and proof can be found in Kocoska (2012), convergence is ensured for a con-

tinuously di�erentiable objective functions that are bounded below and therefore consistent with the

maintained assumptions in this paper. There is convergence to a non-zero residual and then convergence

to a stationary point follows from strict di�erentiability of the convex objective functions at non zero

points. See theorem 3.4.4 in Kocoska (2012).

D Proofs

D.1 Section 6.2

Proof of Theorem 5. [Proof this theorem properly] Property 1 follows from ∂F p
0,x0

e |m,x,v0
∂σ2
ε

> 0 from

assumption 1 and 2 and from equation 2.

Property 2 follows from proposition 4

Property 3 follows from the the fact that the supporting set weakly shrinks as q0 increases. (prove

this)

Property 4 follows from de�nition 16.

Property 5 follows from theorem 3 and de�nition 16.

D.2 Section 3.5

Proof of Lemma 5. (1) Follows from the properties of probability

(2) If x̂ = x by de�nition of the residuals of the projection ε̂ = 0, then F 0|m,x,p = FX |x ∈ B(p0, x0).

An the result follows from the de�nition of PAp
0,x0
α |m,x,p

(3)Follows from ∂σx̂
∂σε

> 0 and the fact that
∂(F 0|m,x,p)

(−1)
(α2 )

∂σx̂
< 0 and

∂(F 0|m,x,p)
(−1)

(1−α2 )
∂σx̂

> 0

and the properties of the process for ε given by assumption 1.

(4) Follows directly from de�nition 16.
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(5) Follows from theorem 5 and assumptions 1 and 2.

D.2.1 Information theoretical measures

Let F 1 ≡ F 0|m,x,p be the predicted distribution of choices based on the model and observed data

as given by de�nition 16 and F 2 ≡ FX |x ∈ B(p0, x0) be the prior (assumed) distribution of choices.

Let f1 and f2 be their density functions, and p1, p2 their discretized version respectively20. Then, the

divergence measures considered are de�ned as follows

De�nition 17 (Kullback-Leibler divergence measure) The Kullback-Leibler divergence measure is

de�ned as,

PAp
0,x0

info−KL|m,x,p = DKL(F 1||F 2)

=
∑

zi∈B(p0,x0) ln

(
p1zi
p2zi

)
p1zi

(17)

De�nition 18 (Hellinger divergence measure) The Hellinger divergence measure is given by

PAp
0,x0

info−Hell|m,x,p = 1√
2

∥∥∥√F 1 −
√
F 2
∥∥∥
2

= 1√
2

∑
zi∈B(p0,x0)

(√
p1zi −

√
p2zi

)2 (18)

De�nition 19 (Total variation measure) The total variation divergence measure is given by,

PAp
0,x0

info−TV |m,x,p = 1
2‖F

1 − F 2‖1

= 1
2

∑
zi∈B(p0,x0

∣∣p1zi − p2zi∣∣
(19)

Proposition 7 (Connections from information theory among the measures given by de�nition 12 )

Let F 1, F 2, PAp
0,x0

info−i|m,x,p be given as in de�nition 12 then,

1. PAp
0,x0

info−KL|m,x,p = −H(f1) − Ef1
(
ln(f2)

)
where H(·) is the Shannon entropy measure. Fur-

thermore, if the prior is uniform, PAp
0,x0

info−KL|m,x,p = lnn − H(F 1) where n corresponds to the

number possible values that x may take on B(p0, x0).

2. PAp
0,x0

info−Hell|m,x,p =
√

1−BC (F 1, F 2) where BC
(
F 1, F 2

)
=
∑

x∈X
√
p1(x)p2(x) is the Bat-

tacharyya coe�cient

3.
(
PAp

0,x0

info−Hell|m,x,p
)2
≤ PAp

0,x0

info−TV |m,x,p =
√

2PAp
0,x0

info−Hell|m,x,p

20Consider a partition P = {zi}i=1,...,n of the set of feasible choices Z(θJ+1) in n intervals. Let p1 =
(
p11, . . . , p

1
n

)
and

p2 =
(
p21, . . . , p

2
n

)
be the probabilities of the predicted and prior distribution respectively of the intervals zi, in such a way that

pji =
´
zi
dF j for i = 1, . . . , n and j = 1, 2
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4. PAp
0,x0

info−TV |m,x,p ≤ PA
p0,x0

info−KL|m,x,p

Proof of lemma 7. (1) It follows from the de�nition of Kullback-Leibler discrepancy measure and

Shannon entropy.

(2) Follows from the de�nitions.

(3) Follows from the de�nition of the 1-norm and 2-norm and the de�nitions.

(4) Follows from Pinsker's inequality.

Maximizing the Kullback-Leibler measure is equivalent to minimizing Shannon entropy, that is the

uncertainty in terms of predicting an outcome using the estimated distribution of choices -(1)-. Hellinger

discrepancy measure is related with the Battacharyya coe�cient as in -(2)-. This coe�cient provides a

measure of overlapping of the two distributions, where 0 ≤ BC ≤ 1 and BC = 0 if there is no overlap

at all between the two distributions and BC = 1 if there is perfect overlap. Finally -(3)- and -(4)-

establishes bounds for the total variation measure in terms of the Hellinger and the Kullback-Leibler

discrepancy measures.

Proof of Lemma 6. (1) Follows from the properties of these measures.

(2) If x̂ = x (ε̂j = 0 for all j), then Dom(F 1) = V
(
p0, x0|m

)
, follows from de�nition 16.

Assume now that FX is uniform. Then F 1 = F 2|V
(
p0, x0|m

)
. Let γ ≡

´
V (p0,x0|m) f

2(x)dx, then

p1zi =

{
p2zi
γ for zi ∈ V

(
p0, x0|m

)
0 for z ∈ B(p0, x0)/V

(
p0, x0|m

)
Then

PAp
0,x0

info−KL|m,x,p =
∑

zi∈V (p0,x0|m)

ln

(
p1zi
p2zi

)
p1zi =

∑
zi∈V (p0,x0|m)

ln

 p2zi
γ

p2zi

 p2zi
γ

=
∑

zi∈V (p0,x0|m)

ln

(
1

γ

)
p2zi
γ

= ln

(
1

γ

)
= − ln γ
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PAp
0,x0

info−Hell|m,x,p =
1√
2

∑
zi∈V (p0,x0|m)

(√
p1zi −

√
p2zi

)2

=
1√
2

∑
zi∈V (p0,x0|m)

√p2zi
γ
−
√
p2zi

2

+
1√
2

∑
zi∈B(p0,x0))/V (p0,x0|m)

(
−
√
p2zi

)2

=
1√
2

 ∑
zi∈V (p0,x0|m)

p2zi

(
1−√γ
√
γ

)2

+ (1− γ)


=

1√
2

[
γ

(
1−√γ

)2
γ

+ (1− γ)

]
=

1√
2

[
(1−√γ)2 + (1− γ)

]
=
√

2 [1−√γ]

PAp
0,x0

info−TV |m,x,p =
1

2

∑
zi∈B(po,x0)

∣∣p1zi − p2zi∣∣
=

1

2

 ∑
zi∈V (p0,x0|m)

∣∣∣∣∣p2ziγ − p2zi
∣∣∣∣∣+

∑
zi∈Z(θJ+1)/V (p0,x0|m)

∣∣−p2zi∣∣


=
1

2

 ∑
zi∈V (p0,x0|m)

∣∣∣∣p2zi (1

γ
− 1

)∣∣∣∣+
∑

zi∈Z(θJ+1)/V (p0,x0|m)

p2zi


=

1

2

(1

γ
− 1

) ∑
zi∈V (p0,x0|m)

p2zi + (1− γ)


=

1

2

[
1− γ
γ

γ + (1− γ)

]
=

1

2
[(1− γ) + (1− γ)] = 1− γ

(3) Follows from properties of the process for ε given by assumption 1 and the de�nition of the

predicted distribution 16

(4) Follows directly from de�nition 16.

E Algorithms

Algorithm 1 (Computation of σ2ε assuming x̂ = m) Input: choice data x, observed economic

environments
{
pi, xi

}J
i=1

, projection x̂ and σ2

Output: vector S1 ∈ RM+ where M is the number of repetitions for the simulation.

1. Choose M and set, m = 1

2. Draw emj from N
(
0, σ2

)
for j = 1, . . . , J , and compute ym = x̂+ em
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3. If ym ∈ B(p, x), set xm = ym and go to 4. Otherwise compute xm from ym consistently with

assumptions 1 and 2

4. If xm ∈M(B(p, x)) then set S1
m = 0 and m = m+ 1. Otherwise compute ee = xm − x̂, and set

S1
m = 1

J ee
′ee.

5. Repeat steps 2-4 M times

Algorithm 2 (Computation of σ2ε by simulating M(B(p, x)) sequentially) Input: data on choices

x, observed economic environments
{
pi, xi

}J
i=1

, projection x̂ and σ2

Output: vector S2 ∈ RM where M is the number of repetitions for the simulation.

1. Choose M and set, m = 1

2. Find a randomize order Im and set i = 1

3. take Im(i) and draw zm
Im(i) ∼ U

[
V arian_Supp (θIm(i)) |x̂−Im(i)

]
4. Draw emj from N

(
0, σ2

)
for j = 1, . . . , J , and compute ym = zmj + em

5. If ym ∈ B(p, x), set xm = ym and go to 6. Otherwise compute xm from ym consistently with

assumptions 1 and 2

6. If xm ∈ M(B(p, x)) then set S2
m = 0 and m = m + 1. Otherwise compute ee =

min {xm − x̂, xm − zm}, and set S2
m = 1

J ee
′ee.

7. Repeat steps 3-6 M times

Algorithm 3 (Computation of σ2ε by simulating M(B(p, x))) Input: data on choices x, observed

economic environments
{
pi, xi

}J
i=1

, projection x̂ and σ2

Output: vector S3 ∈ RM where M is the number of repetitions for the simulation.

1. Simulate the rational choice set

(a) Choose N , and set n = 1 i = 1, and set JN = ∅

(b) Choose j at random from the set JJ = {1, . . . , J} \ JN and set In(i) = j

(c) Draw zn
In(j)

∼ U [V arian_Supp (B(p, x)In(i)) |x̂JJ ]

(d) Set JN = JN ∪ In(i) and repeat steps 1b-1c until JJ = ∅

(e) Set Mn
sim (B(p, x)) = zn

2. Simulate the distribution of the Q statistic

(a) Choose M and set, m = 1
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(b) Choose zm at random from the set Msim (B(p, x))

(c) Draw emj from N
(
0, σ2

)
for j = 1, . . . , J , and compute ym = zmj + em

(d) If ym ∈ B(p, x), set xm = ym and go to 2e. Otherwise compute xm from ym consistently

with assumptions 1 and 2

(e) If xm ∈ M(B(p, x)) then set S3
m = 0 and m = m + 1. Otherwise compute ee = xm − x̂,

and set S3
m = 1

J ee
′ee.

(f) Repeat steps 2b-2e M times

F Tables and Figures: Experimental data from Choi et al. (2007a)

F.1 Alternative Goodness of Fit Measures

Blundell et al. (2008) proposed that when allowing for a stochastic component when conciliating

the data with the revealed preference conditions for utility maximization, the measure of the distance

between data and restricted estimators of demand provide a natural formulation for a test statistic for the

null of rationality. Alternative, one can construct goodness of �t measures as a measure of the distance

of data from the models. I propose to construct: (1) a raw goodness of �t, (2)an adjusted goodness of �t

and (3) a weighted goodness of �t. The raw goodness of �t is de�ned as the coe�cient of determination

constructed from the residuals of the projection. Formally,

De�nition 20 (Raw R2) Let ε̂ be de�ned as the residuals from the projection exercise then

R2
l = 1−

∑J
j=1

(
ε̂lj − ε̂

l
)2

∑J
j=1

(
xlj − xl

)2 (20)

As other measures of �t proposed in the literature, the empirical �t of the rationality model is tightly

related to the ex-ante probability of detecting violations to the model given the observed economic

environments and not only noisy, and the former is particularly signi�cant in small samples. Them I

propose to adjust the measure of �t the ex ante probability of detecting violations to the model given

observed economic environments. These measure is closely related to Beatty and Crawford (2011),

though the considered measure here is the product of the two factors instead of the di�erence. Formally,

De�nition 21 (Adjusted measure of goodness of �t) De�ne the adjusted measure of goodness of

�t as

R
2 ≡ Adjusted Goodness of �t ≡ Goodness of �t× Pr[Violation model] (21)

where Goodness of �t is de�ned as in 21 and Pr[Violation model] is de�ned as the mean of the ex-ante

probability of detecting a violation to the model given observed economic environments.
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Finally, the weighted measure of �t is a measure of �t where each of observation is weighted by how

unlikely (ex-ante) is to observed such behavior given observed economic environments; that is,

De�nition 22 (Adjusted measure of goodness of �t - Weighted R2) If there exists a j such that

pj 6= 0, then the weighted measure of goodness of �t is given by

R2
l,weighted = 1−

∑J
j=1wj

(
ε̂lj − ε̂

l
)2

∑J
j=1wj

(
xlj − xl

)2 (22)

otherwise it is equal to zero.

The weights are given by

De�nition 23 (Weights) Consider the weight function wj such that

w̃j =

{
pj if ε̂j = 0

1− pj if ε̂j 6= 0
(23)

and wj =
w̃j∑J
j w̃

with pj ≡ Pr
(
violationj|−j |x1, . . . , xj−1, xj+1, . . . , xJ

)
F.2 Data

Table 6: Summary statistics for the proposed measures and other standard measures from the literature
applied to the experimental data from Choi et al. (2007a).

Measure Mean Median Std. dev. Min Max
Rational? 0.1975 0.0000 0.4006 0.0000 1
Afriat 0.9568 0.9810 0.0642 0.6860 1.0000
Varian 0.8898 0.9440 0.1568 0.2290 1.0000
HM index 47.1235 48 3.2418 29 50
# violations WARP 4.8889 4.0000 5.3852 0 27
# violations GARP 43.2099 6.0000 104.2718 0 559
Mean ex-ante prob viol 0.1142 0.1077 0.0670 0.0059 0.3449
Raw R2 0.9906 0.9994 0.0214 0.8597 1.0000
Adjusted R2 0.1072 0.1023 0.0640 0.0009 0.2806
Weighted R2 0.9906 0.9994 0.0207 0.8720 1.0000

Considering all the observed Budget set
PA CI (95%) 0.4935 0.4918 0.0546 0.3607 0.6199
PA KL 0.3072 0.2603 0.1590 0.1729 1.1049
PA Hellinger 0.2962 0.2879 0.0866 0.1654 0.6006
PA TV 0.3940 0.3834 0.0615 0.2775 0.5916

Raw R2, adjusted R2 and weighted R2 are de�ned as in 20, 21 and 22 respectively
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F.3 Performance Predictive Ability Measures and Comparison to the Literature

Table 8: Predictive Ability CI

Forecasting Ability: Con�dence Interval (95%)
(1) (2) (3) (4) (5) (6) (7)

R2 1.390*** 1.458*** 1.434*** 1.358** 1.411*** 1.339**
(0.503) (0.508) (0.523) (0.533) (0.521) (0.531)

Ex ante mean P 0.041 0.095 0.131* 0.140* 0.127 0.136*
(0.093) (0.068) (0.075) (0.074) (0.077) (0.076)

rational 0.014 0.013
(0.017) (0.017)

Adj. R2 0.062 0.057
(0.091) (0.092)

Constant -0.886* 0.488*** -0.965* -0.947* -0.875 -0.930* -0.863
(0.500) (0.011) (0.504) (0.519) (0.529) (0.515) (0.525)

R-squared 0.150 -0.010 0.154 0.160 0.158 0.153 0.151
N 80 80 80 73 73 73 73

Raw R2 and adjusted R2 are de�ned as in 20 and 21. Signi�cance * p<0.10, ** p<0.05, *** p<0.01. The
sample has been restricted to those observations that show an Afriat index>.7, Varian index>.3 and raw R2>.85,
which results in drops subject 105 (603 in Choi's nomination). Columns (4)-(7) are restricted to those observations
for what the mean ex ante probability of detecting a violation to rationality is above 0.025.

Table 9: Predictive Ability CI Comparison Afriat

Predictive Ability: Con�dence Interval (95%)
(1) (2) (3) (4)

Afriat 0.299* -0.074 0.306* -0.093
(0.130) (0.200) (0.129) (0.203)

R2 1.615 1.745
(0.858) (0.889)

Ex ante mean P 0.064 0.099
(0.073) (0.073)

Constant 0.205 -1.039 0.191 -1.161
(0.126) (0.706) (0.122) (0.733)

R-squared 0.087 0.141 0.082 0.145
N 80 80 80 80

Raw R2 and adjusted R2 are de�ned as in 20 and 21. Signi�cance * p<0.10, ** p<0.05, *** p<0.01. The
sample has been restricted to those observations that show an Afriat index>.7, Varian index>.3 and raw R2>.85,
which results in drops subject 105 (603 in Choi's nomination).
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Table 10: Predictive Ability KL

Predictive Ability: Kullback Liebler
(1) (2) (3) (4) (5) (6) (7)

R2 -4.830*** 259.107* -4.731*** 257.991* 304.715** 300.567** 299.538**
(1.084) (135.140) (1.081) (134.291) (151.421) (146.653) (146.512)

(R2)2 -135.812* -135.191* -159.384** -155.888** -155.222**
(69.716) (69.261) (78.149) (75.369) (75.215)

Ex ante mean P 0.137 0.124 0.114 0.194
(0.155) (0.145) (0.149) (0.178)

Adj R2 0.277
(0.228)

Afriat -0.850** -0.900**
(0.376) (0.389)

Constant 5.089*** -123.055* 4.976*** -122.572* -145.139* -143.606** -143.217**
(1.084) (65.431) (1.080) (65.044) (73.304) (71.132) (71.121)

R-squared 0.317 0.402 0.313 0.399 0.416 0.445 0.445
N 80 80 80 80 73 73 73

Raw R2 and adjusted R2 are de�ned as in 20 and 21. Signi�cance * p<0.10, ** p<0.05, *** p<0.01. The
sample has been restricted to those observations that show an Afriat index>.7, Varian index>.3 and raw R2>.85,
which results in drops subject 105 (603 in Choi's nomination). Columns (5)-(7) are restricted to those observations
for what the mean ex ante probability of detecting a violation to rationality is above 0.025.

Table 11: Predictive Ability Hellinger

Predictive Ability: Hellinger
(1) (2) (3) (4) (5) (6)

R2 1.179** 1.149** 1.081** 1.645* 1.972**
(0.508) (0.532) (0.513) (0.829) (0.858)

Ex ante mean P 0.179 0.221* 0.208 0.238*
(0.129) (0.130) (0.126) (0.133)

Adj R2 0.184
(0.183)

Afriat -0.203 -0.264
(0.229) (0.219)

Constant -0.877* 0.268*** -0.877 -0.828 -1.148* -1.442**
(0.504) (0.015) (0.532) (0.516) (0.663) (0.708)

R-squared 0.040 0.008 0.051 0.060 0.025 0.049
N 80 73 73 73 73 73

Raw R2 and adjusted R2 are de�ned as in 20 and 21. Signi�cance * p<0.10, ** p<0.05, *** p<0.01. The
sample has been restricted to those observations that show an Afriat index>.7, Varian index>.3 and raw R2>.85,
which results in drops subject 105 (603 in Choi's nomination). Columns (2)-(6) are restricted to those observations
for what the mean ex ante probability of detecting a violation to rationality is above 0.025.

55



Table 12: Predictive Ability Total Variation

Predictive Ability: Total Variation
(1) (2) (3) (4) (5) (6)

R22 0.355 0.358 0.331 0.983 1.242*
(0.400) (0.417) (0.415) (0.679) (0.692)

Ex ante mean P 0.158* 0.171* 0.166* 0.190**
(0.086) (0.090) (0.089) (0.092)

Adj R2 0.072
(0.117)

Afriat -0.235 -0.284
(0.183) (0.174)

Constant 0.040 0.371*** 0.014 0.034 -0.359 -0.593
(0.397) (0.012) (0.417) (0.416) (0.541) (0.568)

R-squared -0.004 0.018 0.014 0.007 -0.005 0.026
N 80 73 73 73 73 73

Raw R2 and adjusted R2 are de�ned as in 20 and 21. Signi�cance * p<0.10, ** p<0.05, *** p<0.01. The
sample has been restricted to those observations that show an Afriat index>.7, Varian index>.3 and raw R2>.85,
which results in drops subject 105 (603 in Choi's nomination). Columns (2)-(6) are restricted to those observations
for what the mean ex ante probability of detecting a violation to rationality is above 0.025.

Figure 11: Comparison of measures for two irrational subjects

(a) Subject 209 (b) Subject 606

F.4 Changes in the number of Observations
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F.5 The e�ect of parametric assumptions on demand

(a) Cobb-Douglas preferences

(b) Leontief preferences

Figure 12: Data, projection based solely on GARP constraints and parametric projection for subject 606.
Labels: ◦ data, (*) GARP, 4 Cobb-Douglas preferences, and � Leontief preferences.
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(a) Assumption Cobb Douglas Preferences

(b) Assumption Leontief Preferences

(c) Assumption Linear Preferences

Figure 13: The e�ect of parametric assumption on the SSR, with respect to the necessary assumptions
for GARP

59



G Monte Carlo Simulations

5.2

G.1 Changes in the number of observations

J = 10 J = 25 J = 50 J = 100
Rational? 0.9192 0.4596 0.0303 0.0000

(0.2732) (0.4996) (0.1719) (0.0000)
R2 0.9999 0.9990 0.9966 0.9852

(0.0005) (0.0057) (0.0065) (0.0123)
Adj R2 0.0720 0.0725 0.0745 0.0732

(0.0567) (0.0539) (0.0503) (0.0436)
Adj R2 BC 0.0820 0.0812 0.0805 0.0588

(0.0738) (0.0708) (0.0638) (0.0543)
Weighted R2 0.9999 0.9990 0.9966 0.9853

(0.0005) (0.0057) (0.0065) (0.0122)
PA CI (95%) 0.2071 0.3353 0.4385 0.5542

(0.1720) (0.2082) (0.2157) (0.2061)
PA KL 0.0669 0.1155 0.1886 0.4042

(0.0654) (0.0824) (0.1307) (0.2542)
PA Hellinger 0.0934 0.1951 0.2863 0.3893

(0.1298) (0.1833) (0.2235) (0.2210)
PA TV 0.1493 0.2724 0.37296 0.4892

(0.1620) (0.2019) (0.2145) (0.2036)

Table 14: Data for 198 simulations, where choices where generated as x = m+ε, where m is the optimal
demand from a utility function of the form u(x, y) =

√
xy and ε ∼ N(0, 1). Four di�erent sample sizes

are considered, J ∈ {10, 25, 50, 100}.
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(a) 10 choices (b) 25 choices

(c) 50 choices (d) 100 choices

(e) 200 choices (f) 1000 choices

Figure 14: Convergence of Identi�ed set as the number of observations increases. The considered choices
were generated from a DM with a CD with α = 1

2 and without noise. In particular, 100%, 91.60%,
61.00%, 35.80% and 16.80% of the feasible alternatives in the reference budget sets are consistent with
the DM's choices for the �rst 10,25,50,100 and 200 budget sets.
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Figure 15: Histogram of ratio of generated to projected SSR for simulated process with σ = 3, 15 and
baseline CD vs uniform alternative

Figure 16: Histogram of generated and projected SSR for simulated process with σ = 3 and baseline CD
vs uniform alternative
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(a) Unadjusted GOF measure

(b) Adjusted GOF measure
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(a) PA based on "size" con�dence intervals

(b) PA based on KL divergence measures

Figure 18: Empirical distribution of the data for GOF and Predictive accuracy measures for di�erent
sample sizes.
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G.2 Changes in the DGP

σ1 = .5 σ2 = 1 σ3 = 2 σ4 = 5 σ5 = 10
Rational? 0.6350 0.1350 0.0051 0.0000 0.0000

(0.4826) (0.3426) (0.0712) (0.0000) (0.0000)
R2 0.9999 0.9977 0.9697 0.8793 0.7988

(0.0014) (0.0072) (0.0326) (0.0768) (0.1171)
Adj R2 0.0742 0.0719 0.0629 0.0590 0.0600

(0.0546) (0.0538) (0.0418) (0.0406) (0.0371)
Adj R2 BC 0.0742 0.0698 0.0346 -0.0531 -0.1247

(0.0545) (0.0540) (0.0544) (0.0842) (0.1172)
Weighted R2 0.9999 0.9976 0.9698 0.8800 0.8023

(0.0015) (0.0072) (0.0328) (0.0756) (0.1117)
PA CI (95%) 0.3992 0.4060 0.4123 0.2440 0.2263

(0.1966) (0.1913) (0.2150) (0.1994) (0.1950)
PA KL 0.1327 0.1528 0.2863 0.3810 0.6134

(0.0610) (0.0765) (0.2390) (0.4004) (0.5661)
PA Hellinger 0.2440 0.2479 0.2574 0.1989 0.2639

(0.1879) (0.1769) (0.2082) (0.2003) (0.2347)
PA TV 0.3315 0.3389 0.3613 0.3381 0.4380

(0.1917) (0.1858) (0.2157) (0.2124) (0.2023)
Convergent Observations 200 200 197 98 37

Table 15: Data for 200 simulations, where choices where generated as x = m+ε, where m is the optimal
demand from a utility function of the form u(x, y) =

√
xy and ε ∼ N(0, σ2i ), where the �ve di�erent

assumptions correspond to σi ∈ Σ = {.5, 1, 2, 5, 10}. Standard deviation in ().Results shown for all the
convergent simulations in each case
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σ1 = .5 σ2 = 1 σ3 = 2 σ4 = 5
Rational? 0.6350 0.1350 0.0051 0.0000

(0.4826) (0.3426) (0.0712) (0.0000)
R2 0.9999 0.9977 0.9697 0.8793

(0.0014) (0.0072) (0.0326) (0.0768)
Adj R2 0.0742 0.0719 0.0629 0.0590

(0.0546) (0.0538) (0.0418) (0.0406)
Adj R2 BC 0.0742 0.0698 0.0346 -0.0531

(0.0545) (0.0540) (0.0544) (0.0842)
Weighted R2 0.9999 0.9976 0.9698 0.8800

(0.0015) (0.0072) (0.0328) (0.0756)
PA CI (95%) 0.4043 0.4099 0.4033 0.2440

(0.2026) (0.2003) (0.2634) (0.1994)
PA KL 0.1347 0.1530 0.2836 0.3810

(0.0629) (0.0736) (0.2897) (0.4004)
PA Hellinger 0.2498 0.2525 0.2547 0.1989

(0.1981) (0.1877) (0.2553) (0.2003)
PA TV 0.3363 0.3418 0.3539 0.3381

(0.1980) (0.1946) (0.2636) (0.2124)

Table 16: Data for 200 simulations, where choices where generated as x = m+ε, where m is the optimal
demand from a utility function of the form u(x, y) =

√
xy and ε ∼ N(0, σ2i ), where the �ve di�erent

assumptions correspond to σi ∈ Σ = {.5, 1, 2, 5, 10}. Standard deviation in ().Results shown for all the
simulations that are convergent in all four assumptions over σ ∈ {σ1, σ2, σ3, σ4}

H Proofs of Section ??

Proof of Theorem 7. Proof of 1 De�ne a∗|F ix̂ ≡ arg maxa
´
g (a, x̂) dF ix̂ and a∗ (x̂) ≡

arg maxa g (a, x̂). Consider now a Taylor expansion of g (a, x̂) around x̂ = x0

g (a, x̂) = g
(
a, x0

)
+
(
x̂− x0

) ∂g
∂x

(
a, x0

)
+

1

2

(
x̂− x0

)2 ∂2g

(∂x)2
(
a, x0

)
+ o

(
|x̂− x0|2

)

a∗|F ix̂ ≡ arg max
a

ˆ
g (a, x̂) dF ix̂

= arg max
a

ˆ [
g
(
a, x0

)
+
(
x̂− x0

) ∂g
∂x

(
a, x0

)
+

1

2

(
x̂− x0

)2 ∂2g

(∂x)2
(
a, x0

)
+ o

(
|x̂− x0|2

)]
dF ix̂

∼= arg max
a

[
g
(
a, x0

)
+
∂g

∂x

(
a, x0

) ˆ (
x̂− x0

)
dF ix̂ +

1

2

∂2g

(∂x)2
(
a, x0

) ˆ (
x̂− x0

)2
dF ix̂

]
Then the �rst order condition is given by

∂g

∂a

(
a, x0

)
+

∂2g

∂x∂a

(
a, x0

) ˆ (
x̂− x0

)
dF ix̂ +

1

2

∂3g

(∂x)2∂a

(
a, x0

) ˆ (
x̂− x0

)2
dF ix̂ = 0
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(a) Histogram PA for σ = .5 (b) Histogram PA for σ = 1

(c) Histogram PA for σ = 2 (d) Histogram PA for σ = 5

Figure 19: Histogram for the Predictive accuracy measure as σ changes, 98 simulations with J = 40

Which di�ers from the �rst order condition for the case of certainty a∗ (x̂) ≡ arg maxa g (a, x̂) by

∆FOCx0−F i
x̂

= −
[
∂2g

∂x∂a

(
a, x0

) ˆ (
x̂− x0

)
dF ix̂ +

1

2

∂3g

(∂x)2∂a

(
a, x0

) ˆ (
x̂− x0

)2
dF ix̂

]
Then given V arF i

x̂
(x̂) = V ar

F j
x̂

(x̂)

∆FOCx0−F i
x̂

= − ∂2g

∂x∂a

(
a, x0

) ˆ (
x̂− x0

)
dF ix̂ = − ∂2g

∂x∂a

(
a, x0

)
EF i

x̂

(
x̂− x0

)
Since ∂2g

∂x∂a

(
a, x0

)
6= 0 and does not depend on x̂, as bigger the biased on the prediction, the bigger the

perturbation to the FOC and, given the strict concavity assumptions on g, the lower the realized payo�.

Proof of 2 It follows from strict concavity and Jensen's inequality.

Proof of 3 From 1 and given assumptions about the partial derivatives of g(·, ·), preferences among

models of behavior can be established in terms of
∣∣a∗ (x0)− a∗|F ix̂∣∣, that is, a lower is the gap between

optimal choices given the model and the optimal given the best model (certainty about behavior).

Moreover, given the features of g, deviations on the �rst order condition directly translate on changes in
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the optimal a and therefore on the ex-post utility,

M i �DM M j ⇔
∣∣a∗ (x0)− a∗|F ix̂∣∣ ≤ ∣∣∣a∗ (x0)− a∗|F jx̂ ∣∣∣⇔ ∣∣∣∆FOCx0−F i

x̂

∣∣∣ ≤ ∣∣∣∆FOCx0−F j
x̂

∣∣∣
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