Income Distribution and Macroeconomics

Oded Galor and Joseph Zeira
The Galor-Zeira Model

Overlapping-Generations economy

$t = 0, 1, 2, 3, ...$

One good

3 factors:

- K: Physical capital
- L_s: Skilled Labor
- L_u: Unskilled Labor
The Galor-Zeira Model

- Overlapping-Generations economy
The Galor-Zeira Model

- Overlapping-Generations economy
- \(t = 0, 1, 2, 3, \ldots \)
The Galor-Zeira Model

- Overlapping-Generations economy
- $t = 0, 1, 2, 3, \ldots$
- One good
The Galor-Zeira Model

- Overlapping-Generations economy
- \(t = 0, 1, 2, 3, \ldots \)
- One good
- 3 factors:
The Galor-Zeira Model

- Overlapping-Generations economy
- \(t = 0, 1, 2, 3, \ldots \)
- One good

3 factors:

- \(K \equiv \) Physical capital
The Galor-Zeira Model

- Overlapping-Generations economy
- $t = 0, 1, 2, 3, ...$
- One good
- 3 factors:
 - $K \equiv$ Physical capital
 - $L^s \equiv$ Skilled Labor
The Galor-Zeira Model

Overlapping-Generations economy

\(t = 0, 1, 2, 3, \ldots \)

One good

3 factors:

- \(K \equiv \text{Physical capital} \)
- \(L^s \equiv \text{Skilled Labor} \)
- \(L^u \equiv \text{Unskilled Labor} \)
The Galor-Zeira Model

Production

Production in the skilled-intensive sector:

\[Y_{st} = F(K_{st}, L_{st}) \]

\[L_{st} \cdot f(k_{st}) \]

Production in the unskilled-intensive sector:

\[Y_{ut} = aL_{ut} \]
Total output produced

\[Y_t = Y^s_t + Y^u_t \]
Production

Total output produced

\[Y_t = Y_t^s + Y_t^u \]

- Production in the skilled-intensive sector:

\[Y_t^s = F(K_t, L_t^s) \equiv L_t^s f(k_t); \quad k_t \equiv K_t / L_t^s \]
Production

Total output produced

\[Y_t = Y_t^s + Y_t^u \]

- Production in the skilled-intensive sector:

\[Y_t^s = F(K_t, L_t^s) \equiv L_t^s f(k_t); \quad k_t \equiv K_t / L_t^s \]

- Production in the unskilled-intensive sector:

\[Y_t^u = aL_t^u \]
Inverse Demand for Factors

- Capital:

\[r_t = f'(k_t) \equiv r(k_t) \]
Inverse Demand for Factors

- **Capital:**
 \[r_t = f'(k_t) \equiv r(k_t) \]

- **Skilled labor:**
 \[w_t^s = f(k_t) - f'(k_t)k_t \equiv w^s(k_t) \]
The Galor-Zeira Model

Inverse Demand for Factors

- **Capital:**
 \[r_t = f'(k_t) \equiv r(k_t) \]

- **Skilled labor:**
 \[w^s_t = f(k_t) - f'(k_t)k_t \equiv w^s(k_t) \]

- **Unskilled labor:**
 \[w^u_t = a \equiv w^u \]
Factor Prices

- Small open economy
Factor Prices

- Small open economy
- World interest $= r$
Factor Prices

- Small open economy
- World interest \(= r \)

\[r_t = r \]
\[k_t = f^{-1}(r) \equiv k \]
\[w^s_t = w^s(k) \equiv w^s \]
Factor Prices

- Small open economy
- World interest = r

\[r_t = r \]
\[k_t = f'^{-1}(r) \equiv k \]
\[w^s_t = w^s(k) \equiv w^s \]

\[(r_t, w^s_t, w^u_t) = (r, w^s, w^u) \quad \forall t \]
The Galor-Zeira Model

Individuals

Each Individual has 1 parent and 1 child.

Identical in:
- Preferences
- Innate abilities

Different in:
- Parental income
- Invest in HC
Individuals

- Continuum of measure 1
Individuals

- Continuum of measure 1
- Each Individual has 1 parent and 1 child
Individuals

- Continuum of measure 1
- Each Individual has 1 parent and 1 child
- Identical in:
 - Preferences
 - Innate abilities
Individuals

- Continuum of measure 1
- Each Individual has 1 parent and 1 child
- Identical in:
 - Preferences
 - Innate abilities
- Differ in:
 - Parental income \Rightarrow Inv’t in HC
Member of Generation t: Period of Life
Member of Generation t: Period of Life

- First period of life (Period t):
 - [invest in HC] or [work as unskilled]
Member of Generation t: Period of Life

- **First period of life (Period t):**
 - [invest in HC] or [work as unskilled]

- **Second period of life (Period $t + 1$):**
 - [work as unskilled / no inv’t in HC] or [work as skilled / inv’t in HC in 1st period]
Member of Generation t: Endowment and Preferences

Time endowment: 1 units of time in each period

Capital endowment: b_t capital inherited in 1st period

Preferences:

$$u_t = \alpha \ln c_t + 1 + (1 - \alpha) \ln b_t + \alpha^2 (0, 1)$$
Member of Generation t: Endowment and Preferences

- **Time endowment:**
 - 1 units of time in each period
Member of Generation t: Endowment and Preferences

- **Time endowment:**
 - 1 unit of time in each period

- **Capital endowment:**
 - $b_t \equiv \text{capital inherited in } 1^{st} \text{ period}$
Member of Generation t: Endowment and Preferences

- **Time endowment:**
 - 1 units of time in each period

- **Capital endowment:**
 - $b_t \equiv \text{capital inherited in } 1^{st} \text{ period}$

- **Preferences:**

 \[
 u^t = \alpha \ln c_{t+1} + (1 - \alpha) \ln b_{t+1} \quad \alpha \in (0, 1)
 \]
Second period budget constraint:

\[c_{t+1} + b_{t+1} \leq \omega_{t+1} \]
Second period budget constraint:

\[c_{t+1} + b_{t+1} \leq \omega_{t+1} \]

\[c_{t+1} \equiv \text{consumption} \]
Second period budget constraint:

\[c_{t+1} + b_{t+1} \leq \omega_{t+1} \]

- \(c_{t+1} \equiv \) consumption
- \(b_{t+1} \equiv \) transfers to offspring
Member of Generation t: Budget Constraint

Second period budget constraint:

$$c_{t+1} + b_{t+1} \leq \omega_{t+1}$$

$c_{t+1} \equiv$ consumption

$b_{t+1} \equiv$ transfers to offspring

$\omega_{t+1} \equiv$ wealth in period $t + 1$
Member of Generation t: Optimization

\[
\{c_{t+1}, b_{t+1}\} = \arg \max [\alpha \ln c_{t+1} + (1 - \alpha) \ln b_{t+1}]
\]

s.t. \quad c_{t+1} + b_{t+1} \leq \omega_{t+1}
Member of Generation t: Optimization

\[b_{t+1} = (1 - \alpha) \omega_{t+1} \]

\[c_{t+1} = \alpha \omega_{t+1} \]
Member of Generation t: Optimization

\[b_{t+1} = (1 - \alpha) \omega_{t+1} \]
\[c_{t+1} = \alpha \omega_{t+1} \]

Indirect Utility: \[\Rightarrow \]
\[\nu^t = \alpha \ln \alpha \omega_{t+1} + (1 - \alpha) \ln \omega_{t+1} \]
Member of Generation t: Optimization

\[b_{t+1} = (1 - \alpha)\omega_{t+1} \]

\[c_{t+1} = \alpha \omega_{t+1} \]

Indirect Utility:

\[v^t = \alpha \ln \alpha \omega_{t+1} + (1 - \alpha) \ln \omega_{t+1} \]

\[= [\alpha \ln \alpha + (1 - \alpha) \ln(1 - \alpha)] + \ln \omega_{t+1} \]
Member of Generation t: Optimization

\[b_{t+1} = (1 - \alpha)\omega_{t+1} \]
\[c_{t+1} = \alpha\omega_{t+1} \]

Indirect Utility: \[v^t = \alpha \ln \alpha \omega_{t+1} + (1 - \alpha) \ln \omega_{t+1} \]
\[= [\alpha \ln \alpha + (1 - \alpha) \ln(1 - \alpha)] + \ln \omega_{t+1} \]

\[\implies v^t \text{ is monotonic increasing in 2nd period wealth, } \omega_{t+1} \]
Member of Generation t: Optimization

\[b_{t+1} = (1 - \alpha)\omega_{t+1} \]

\[c_{t+1} = \alpha\omega_{t+1} \]

Indirect Utility: \[\nu^t = \alpha \ln \alpha \omega_{t+1} + (1 - \alpha) \ln \omega_{t+1} \]

\[= \left[\alpha \ln \alpha + (1 - \alpha) \ln (1 - \alpha) \right] + \ln \omega_{t+1} \]

\(\Rightarrow \) \(\nu^t \) is monotonic increasing in 2nd period wealth, \(\omega_{t+1} \)

\(\Rightarrow \) maximization of \(\omega_{t+1} \), is the basis of occupational choices
Fundamental Assumptions

- Imperfect Capital Markets:

\[r < i \] \hspace{1cm} (A1)

- \(r \equiv \) interest rate for lender
- \(i \equiv \) interest rate for borrowers (for inv’t in HC)
Fundamental Assumptions

- Imperfect Capital Markets:
 \[r < i \]
 \[r \equiv \text{interest rate for lender} \]
 \[i \equiv \text{interest rate for borrowers (for inv't in HC)} \]

- Fixed cost of education (Indivisibility of inv’t in HC)
 Weighted average of the payments to teachers, administrators, and maintenance workers in the school system (i.e., weighted average of the wages skilled and unskilled workers):
 \[C^H = \theta w^s + (1 - \theta) w^u \equiv h > 0 \]
 \[\theta \in [0, 1] \]
Income: Unskilled Individuals

\[
\omega_{u_t} + 1 = (w_{u_t} + b_t)(1 + r) + w_{u_t} (2 + r) + (1 + r)b_t
\]
Income: Unskilled Individuals

\[\omega_{t+1}^u = (w^u + b_t)(1 + r) + w^u \]
Income: Unskilled Individuals

\[\omega_{t+1}^u = \left(w^u + b_t \right)(1 + r) + w^u \]

\[= w^u(2 + r) + (1 + r)b_t \]
Income: Skilled Individuals

\[
\omega_{t+1}^s = \begin{cases}
 w_s - (h - b_t)(1 + i) & \text{if } b_t \leq h \\
 w_s + (b_t - h)(1 + r) & \text{if } b_t \geq h
\end{cases}
\]
The Galor-Zeira Model

Occupational Choice

Income: Skilled Individuals

\[
\omega_{t+1}^s = \begin{cases}
w^s - (h - b_t)(1 + i) & \text{if } b_t \leq h \\
w^s + (b_t - h)(1 + r) & \text{if } b_t \geq h
\end{cases}
\]

\[
\omega_{t+1}^s = \begin{cases}
w^s - (1 + i)h + (1 + i)b_t & \text{if } b_t \leq h \\
w^s - (1 + r)h + (1 + r)b_t & \text{if } b_t \geq h
\end{cases}
\]
Assumptions

- Investment in human capital is *not* beneficial for individuals who must finance the entire cost of education via borrowing

\[w^s - (1 + i)h < 0 \] (A3)
Assumptions

- Investment in human capital is not beneficial for individuals who must finance the entire cost of education via borrowing
 \[w^s - (1 + i)h < 0 \] \hspace{1cm} (A3)

- Investment in human capital is beneficial for individuals who can finance the entire cost of education without borrowing
 \[w^s - (1 + r)h > w^u(2 + r) \] \hspace{1cm} (A4)
Income from Being Unskilled Worker

\[\omega_{t+1} = w''(2 + r) + (1 + r)b_t \]
The Galor-Zeira Model

Income from Being Unskilled Worker

\[\omega^u_{t+1} = w^u (2 + r) + (1 + r)b_t \]
Income from Being Skilled Worker: Borrowers

\[w^s - (1 + i)h < 0 \quad (A3) \]
Income from Being Skilled Worker: Borrowers

\[\omega_{t+1}^s = w^s - (1+i)h + (1+i)b_t \text{ if } b_t \leq h \]
Income from Being Skilled Worker: Borrowers

\[\omega_{t+1}^s = w^s - (1+i)h + (1+i)b_t \quad \text{if} \quad b_t \leq h \]
Income from Being Skilled Worker: Borrowers

\[w^s - (1+r)h > w^u(2+r) \quad \text{(A4)} \]
Income from Being Skilled Worker: Lenders

\[
\omega_{t+1}^{s} = w^{s} - (1 + r)h + (1 + r)b_{t} \quad \text{if} \quad b_{t} \geq h
\]
Bequest and Occupational Choice

\[\omega^{s}_{t+1} = \omega^{s}(b_t) \]

\[\omega^{u}_{t+1} = \omega^{u}(b_t) \]
Bequest and Occupational Choice

\[\omega_{t+1}^s = \omega^s(b_t) \]

\[\omega_{t+1}^u = \omega^u(b_t) \]
Bequest and Occupational Choice

\[b_t \begin{cases} < f & \rightarrow x_{t+1}^u > x_{t+1}^s \text{ (individual } t \text{ becomes unskilled)} \\ > f & \rightarrow x_{t+1}^u < x_{t+1}^s \text{ (individual } t \text{ becomes skilled)} \end{cases} \]
Bequest and Occupational Choice

\[
b_t \begin{cases} < f & \rightarrow x^u_{t+1} > x^s_{t+1} \text{ (individual } t \text{ becomes unskilled)} \\ > f & \rightarrow x^u_{t+1} < x^s_{t+1} \text{ (individual } t \text{ becomes skilled)} \end{cases}
\]

where

\[
f = \frac{w^u(2 + r) - \left[w^s - (1 + i)h\right]}{i - r} > 0
\]
Bequest Dynamics

\[b_{t+1} = (1 - \alpha)x_{t+1} \]
Bequest Dynamics

\[b_{t+1} = (1 - \alpha)x_{t+1} \]

\[b_{t+1} = \begin{cases}
(1 - \alpha)[w^u(2 + r) + (1 + r)b_t] & b_t \in [0, f] \\
(1 - \alpha)[w^s - (1 + i)h + (1 + i)b_t] & b_t \in [f, h] \\
(1 - \alpha)[w^s - (1 + r)h + (1 + r)b_t] & b_t \in [h, \infty]
\end{cases} \]
Bequest Dynamics: Sufficient Conditions for Multiplicity of Steady-State

\[(1 - \alpha)(1 + r) < 1\] \hspace{1cm} (A5)

\[(1 - \alpha)(1 + i) > 1\]

\[(1 - \alpha)w^s > h\] \hspace{1cm} (A6)
Bequest Dynamics

\[\phi(b_t) \]

\[(1-\alpha)w^s \]

\[(1-\alpha)w^u(2+r) \]

\[b_{t+1} \]

\[b_t \]

\[f \]

\[h \]
Bequest Dynamics: Multiple Steady-State Equilibrium
Bequest Dynamics: Stability of High Bequest Equilibrium

\[\phi(b_t) \]

\[b_{t+1} \]

\[b_t \]

\[b^u \]

\[g \]

\[b^s \]
Bequest Dynamics: Stability of Steady-State Equilibria

\[b_{t+1} = \phi(b_t) \]
The Distribution of the Inheritance in Period t
\(\zeta_t(b_t) \equiv \text{Distribution of inheritance at time } t \)

\[L_t = \int_0^{\infty} \zeta(b_t) \, db_t \equiv 1 \]
The Distribution of the Inheritance in Period t

The distribution is shown with $L_0 \equiv 1$ and $\xi(b_0)$, where b_t represents the inheritance at period t. The graph visualizes the distribution of inheritance values.
Income Distribution of the Long Run Decomposition of the Labor Force

\[
\lim_{t \to \infty} l^u_t = \int_0^g \xi_t(b_t) \, db_t \equiv \bar{l}^u
\]

\[
\lim_{t \to \infty} l^s_t = \int_g^\infty \xi_t(b_t) \, db_t \equiv \bar{l}^s
\]
Income Distribution of the Long Run Decomposition of the Labor Force

\[
\lim_{t \to \infty} l^u_t = \int_0^g \zeta_t(b_t) db_t \equiv \bar{l}^u
\]

\[
\lim_{t \to \infty} l^s_t = \int_g^\infty \zeta_t(b_t) db_t \equiv \bar{l}^s
\]

where

\[
\frac{\partial \bar{l}^s}{\partial g} < 0
\]
Income Distribution of the Long Run Decomposition of the Labor Force

\[
\lim_{t \to \infty} l^u_t = \int_0^g \xi_t(b_t) \, db_t \equiv \bar{l}^u
\]

\[
\lim_{t \to \infty} l^s_t = \int_g^\infty \xi_t(b_t) \, db_t \equiv \bar{l}^s
\]

where

\[
\frac{\partial \bar{l}^s}{\partial g} < 0
\]

and

\[
g = \frac{(1 - \alpha)[(1 + i)h - w^s]}{(1 - \alpha)(1 + i) - 1} > 0
\]
Income Distribution of Skill Composition

\[\phi(b_t) \]

\[b_{t+1} \]

\[g \]

\[\bar{l}^u \]

\[\bar{l}^s \]

\[\xi(b_t) \]

\[b_{p_t} \]
Income Distribution of Skill Composition

\[\xi(b_0) \]

\[b_t \]

\[\bar{l}^u \]

\[\bar{l}^s \]

\[g \]
Income Per Capita in the Long Run

- Income of a skilled individual in the second period of life (wage and capital income)

\[I^s_2 = w^s + (\bar{b}^s - h)r \]
Income Per Capita in the Long Run

- Income of a skilled individual in the second period of life (wage and capital income)
 \[I_2^s = w^s + (\bar{b}^s - h) r \]

- Income of an unskilled individual in the second period of life (wage and capital income)
 \[I_2^u = w^u + (\bar{b}^u + w^u) r \]
Income Per Capita in the Long Run

- Income of a skilled individual in the second period of life (wage and capital income)
 \[I_2^s = w^s + (\bar{b}^s - h)r \]

- Income of an unskilled individual in the second period of life (wage and capital income)
 \[I_2^u = w^u + (\bar{b}^u + w^u)r \]

- Income of an unskilled individual in the first period of life (only wage income)
 \[I_1^u = w^u \]
Income Per Capita in the Long Run

- Aggregate income in the steady-state

\[\bar{Y} = I^s + I^u + \bar{l}^u \]
Income Per Capita in the Long Run

- Aggregate income in the steady-state

\[\bar{Y} = I_2^s \bar{l}^s + I_2^u \bar{l}^u + I_1^u \bar{l}^u \]

- Aggregate income (note: \(\bar{l}^s + \bar{l}^u = 1 \))

\[Y = [w^s - rh + r \bar{b}^s] \bar{l}^s + [w^u (2 + r) + r \bar{b}^u] (1 - \bar{l}^s) \]

\[= w^u (2 + r) + r \bar{b}^u + [(w^s - rh) - w^u (2 + r) + (\bar{b}^s - \bar{b}^u)] \bar{l}^s \]
Income Per Capita in the Long Run

- Aggregate income in the steady-state
 \[\bar{Y} = l_2^s \bar{l}^s + l_2^u \bar{l}^u + l_1^u \bar{l}^u \]

- Aggregate income (note: \(\bar{l}^s + \bar{l}^u = 1 \))
 \[Y = [w^s - rh + r \bar{b}^s] \bar{l}^s + [w^u (2 + r) + r \bar{b}^u] (1 - \bar{l}^s) \]
 \[= w^u (2 + r) + r \bar{b}^u + [(w^s - rh) - w^u (2 + r) + (\bar{b}^s - \bar{b}^u)] \bar{l}^s \]

- Income per capita
 \[\bar{y} = \bar{Y} / 2 \]
Skill Composition and Income Per Capita in the Long Run

- An increase in the fraction of skilled workers increases income per capita in the steady-state

\[\frac{\partial \bar{y}}{\partial \bar{l}_s} = \left[(w^s - rh) - w^u (2 + r) + (\bar{b}^s - \bar{b}^u) \right] / 2 > 0 \]
An increase in the fraction of skilled workers increases income per capita in the steady-state

\[
\frac{\partial \bar{y}}{\partial \bar{l}^s} = \left[(w^s - rh) - w^u(2 + r) + (\bar{b}^s - \bar{b}^u) \right] / 2 > 0
\]

since

\[w^s - (1 + r)h > w^u(2 + r) \]
\[\bar{b}^s > \bar{b}^u \]
Skill Composition and Income Per Capita in the Long Run

- An increase in the fraction of skilled workers increases income per capita in the steady-state

\[
\frac{\partial \bar{y}}{\partial \bar{l}^s} = \left[(w^s - rh) - w^u(2 + r) + (\bar{b}^s - \bar{b}^u) \right] / 2 > 0
\]

since

\[
w^s - (1 + r)h > w^u(2 + r)
\]

\[
\bar{b}^s > \bar{b}^u
\]

- An increase in \(g \) reduces income per capita in the steady-state

\[
\frac{\partial \bar{y}}{\partial g} = \frac{\partial \bar{y}}{\partial \bar{l}^s} \frac{\partial \bar{l}^s}{\partial g} < 0
\]
Inequality and Development: Rich Economies

The figure illustrates the relationship between inequality and economic growth. The graph shows the function $\phi(b_t)$, which represents the growth rate as a function of inequality b_t. The diagram includes a distribution of inequality levels, with g and \bar{b}_t indicating thresholds or characteristics of the inequality distribution.
Rich Economies: Inequality is Harmful for Development

Inequality reduces human capital formation
Rich Economies: Inequality is Harmful for Development
Rich Economies: Inequality is Harmful for Development
Inequality and Development: Poor Economies

\[
\frac{\ddot{b}_{t+1}}{b_t} = \phi(b_t) - \frac{\ddot{b}_t}{b_t}
\]

Galor-Zeira
Inequality and Economic Development

Poor Economies: Inequality may Benefit Development

Inequality stimulates human capital formation
Poor Economies: Inequality may Benefit Development
Robustness

The qualitative results are robust to:

- Education cost that is indexed to wages
Robustness

The qualitative results are robust to:

- Education cost that is indexed to wages
- Labor augmenting technical change
Robustness

The qualitative results are robust to:

- Education cost that is indexed to wages
- Labor augmenting technical change
- Shocks the outcome of investment in human capital, as long as wages are endogenous
Robustness

The qualitative results are robust to:

- **Education cost that is indexed to wages**
- **Labor augmenting technical change**
- **Shocks the outcome of investment in human capital, as long as wages are endogenous**
- **Concave production function of human capital (Moav (EL, 2002), Galor-Moav (RES, 2004))**
Robustness: Technological Progress and Endogenous Education Cost

Labor Augmenting Technological Progress: increases the productivity of workers in both the skilled-intensive and the unskilled intensive sector.

- Production in the skilled-intensive sector

\[
Y^s_t = F(K_t, A_t L^s_t) \equiv A_t L^s_t f(k_t); \quad k_t \equiv K_t / A_t L^s_t
\]
Robustness: Technological Progress and Endogenous Education Cost

Labor Augmenting Technological Progress: increases the productivity of workers in both the skilled-intensive and the unskilled intensive sector.

- Production in the skilled-intensive sector

\[Y_t^s = F(K_t, A_t L_t^s) = A_t L_t^s f(k_t); \quad k_t = K_t / A_t L_t^s \]

- Production in the unskilled-intensive sector

\[Y_t^u = A_t a L_t^u \]
Robustness: Technological Progress and Endogenous Education Cost

Labor Augmenting Technological Progress: increases the productivity of workers in both the skilled-intensive and the unskilled intensive sector.

- Production in the skilled-intensive sector

\[Y_t^s = F(K_t, A_t L_t^s) \equiv A_t L_t^s f(k_t); \quad k_t = K_t / A_t L_t^s \]

- Production in the unskilled-intensive sector

\[Y_t^u = A_t a L_t^u \]

- Technological progress

\[A_{t+1} = (1 + \lambda) A_t \quad \lambda > 0. \]
Robustness: Technological Progress and Endogenous Education Cost

Factor Prices

\[w^s_t = A_t[f(k) - f'(k)k] \equiv A_t w^s \]
\[w^u_t = A_t a \equiv A_t w^u \]
\[r_t = r \]
Cost of Education

- Weighted average of the payments to teachers, administrators, and maintenance workers in the school system
Cost of Education

- Weighted average of the payments to teachers, administrators, and maintenance workers in the school system
- \Rightarrow Weighted average of the wages skilled and unskilled workers
Cost of Education

- Weighted average of the payments to teachers, administrators, and maintenance workers in the school system

\[C_t^H = \theta A_t w^s + (1 - \theta) A_t w^u \equiv A_t h \]
Income: Unskilled Individuals

\[x^u_{t+1} = (A_t w^u + b_t) (1 + r) + A_{t+1} w^u \]
Income: Unskilled Individuals

\[x_{t+1}^u = (A_t w^u + b_t)(1 + r) + A_{t+1} w^u \]

\[= A_t w^u (2 + r + \lambda) + (1 + r) b_t \]
Income: Skilled Individuals

\[x_{t+1}^s = \begin{cases}
 A_{t+1}w^s - (A_t h - b_t)(1 + i) & \text{if } b_t \leq A_t h \\
 A_{t+1}w^s + (b_t - A_t h)(1 + r) & \text{if } b_t \geq A_t h
\end{cases} \]
Income: Skilled Individuals

\[
x_{t+1}^s = \begin{cases}
A_{t+1}w^s - (A_t h - b_t)(1 + i) & \text{if } b_t \leq A_t h \\
A_{t+1}w^s + (b_t - A_t h)(1 + r) & \text{if } b_t \geq A_t h
\end{cases}
\]
Threshold level of Bequest for Becoming Skilled Worker in Period t

$$f = \frac{A_t\{w^u(2 + r) - [w^s - (1 + i)h] - \lambda(w^s - w^u)\}}{(i - r)}$$
Threshold level of Bequest for Becoming Skilled Worker in Period t

$$f = \frac{A_t \{ w^u (2 + r) - [w^s - (1 + i)h] - \lambda (w^s - w^u) \}}{(i - r)}$$

$$\frac{f_t}{A_t} = \frac{A_t \{ w^u (2 + r) - [w^s - (1 + i)h] - \lambda (w^s - w^u) \}}{(i - r)} \equiv \hat{f} > 0$$
Threshold level of Bequest for Becoming Skilled Worker in Period t

\[
f = \frac{A_t \{ w^u (2 + r) - [w^s - (1 + i)h] - \lambda (w^s - w^u) \}}{(i - r)}
\]

\[
\frac{f_t}{A_t} = \frac{A_t \{ w^u (2 + r) - [w^s - (1 + i)h] - \lambda (w^s - w^u) \}}{(i - r)} \equiv \hat{f} > 0
\]

for

\[
w^u (2 + r) > [w^s - (1 + i)h] + \lambda (w^s - w^u)
\]
Bequest Dynamics

\[b_{t+1} = \begin{cases}
(1 - \alpha) \{ A_t w^u (2 + r + \lambda) + (1 + r) b_t \} & b_t \in [0, f] \\
(1 - \alpha) \{ A_t [w^s (1 + \lambda) - (1 + i) h] + (1 + i) b_t \} & b_t \in [f, A_t h] \\
(1 - \alpha) \{ A_t [w^s (1 + \lambda) - (1 + r) h] + (1 + r) b_t \} & b_t \in [A_t h, \infty]
\end{cases} \]
Bequest Dynamics

Let $\hat{b}_{t+1} \equiv b_{t+1} A_{t+1}$

$$\hat{b}_{t+1} = \begin{cases}
\left[\frac{1-\alpha}{1+\lambda} \right] \left\{ w^u (2 + r + \lambda) + (1 + r) \hat{b}_t \right\} & \hat{b}_t \in [0, (\hat{f})] \\
\left[\frac{1-\alpha}{1+\lambda} \right] \left\{ w^s (1 + \lambda) - (1 + i) h + (1 + i) \hat{b}_t \right\} & \hat{b}_t \in [\hat{f}, h] \\
\left[\frac{1-\alpha}{1+\lambda} \right] \left\{ w^s (1 + \lambda) - (1 + r) h + (1 + r) \hat{b}_t \right\} & \hat{b}_t \in [h, \infty]
\end{cases}$$
Let $\hat{b}_{t+1} \equiv b_{t+1} A_{t+1}$

$$\hat{b}_{t+1} = \begin{cases}
\left[\frac{1-\alpha}{1+\lambda} \right] \left\{ w^u (2 + r + \lambda) + (1 + r) \hat{b}_t \right\} & \hat{b}_t \in [0, (\hat{f})] \\
\left[\frac{1-\alpha}{1+\lambda} \right] \left\{ [w^s (1 + \lambda) - (1 + i)h] + (1 + i) \hat{b}_t \right\} & \hat{b}_t \in [(\hat{f}), h] \\
\left[\frac{1-\alpha}{1+\lambda} \right] \left\{ [w^s (1 + \lambda) - (1 + r)h] + (1 + r) \hat{b}_t \right\} & \hat{b}_t \in [h, \infty]
\end{cases}$$

\Rightarrow The dynamical system is unaffected qualitatively by labor-augmenting technological progress
Sufficient Conditions for Multiple Steady-States

\[(1 - \alpha)(1 + r) < (1 + \lambda)\]
\[(1 - \alpha)(1 + i) > (1 + \lambda)\]

\[w^s(1 + \lambda) - (1 + i)h < 0\]

\[\Rightarrow\] The system is characterized by multiple steady-state, where the unstable equilibrium

\[\hat{g} = \frac{(1 - \alpha)[(1 + i)h - w^s(1 + \lambda)]}{[(1 - \alpha)(i + i) - (1 + \lambda)]} > 0\]