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Abstract

In this paper | investigate the empirical relationship between agens' responses
to future technological improvements and the level of uncertainty n the economy.
| show that the economic responses to news shocks change substantyadiver time,
and that this dynamic couples with periods of high and low uncertainty. Periods
of high uncertainty are characterized by higher positive economic e ets of news
shocks on output, consumption, investment and real personal income. fese results
indicate that the continuous updating of agents' expectations about the wrrent and
future economic situation operates as a transmission channel for news etks, am-
plifying its positive outcomes.
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1 Introduction

How do economic agents react to new information about futureethnological improve-
ments? Although much has been done by the literature on busse cycles driven by
agents' beliefs to answer this questioh,the results are not conclusive. Conventional
wisdom is that the expectation of technological progress @aduces positive economic out-
comes, but the empirical research still disagrees on the esiand direction of this e ect.
In this paper, | show that a plausible reason for these di ereces is that agents react
di erently over time to news about technology. More importantly, these changes are
intrinsically related to the degree of uncertainty about tle economy.

The idea behind business cycles driven by "'news shocks' {mhas in the future total
factor productivity (TFP) that are foreseen by the economic gents (Beaudry and Portier,
2006) { is that technological innovations take time to have @ impact in the economy.
Part of this technological impact is foreseen by the economagents, who react to it in
the present. A new oil discovery is an example of a news shdck.

On an aggregate level, the literature on technological newkocks shows that positive
news generates long-term co-movement among GDP, consuroptiand investment, and
it is de ationary in the medium-term.® However, there is still an ongoing discussion,
both theoretical and empirical, about (i) the extent to whid this shock explains business
cycles, (ii) how quickly one would observe an e ect on prodtigity, and (iii) the e ect
on other important macroeconomic variables. For examplehére is contradictory em-
pirical evidence about the e ect of a news shock on hours wadt. While Beaudry and
Portier (2006) show that a news shock generates a positivedasigni cant e ect on hours
(consistent with the results from Christiano, Eichenbaumand Vigfusson, 2003), Barsky

and Sims (2011) present a negative e ect of news on hours (ind with the technological

1See, for example, Beaudry and Portier (2006), Jaimovich and Rebelo (2009), Bsky and Sims (2011),
Kurmann and Otrok (2013), Schmitt-Grohe and Uribe (2012), Blanchard, L'Huillier, and Lorenzoni
(2013), Forni, Gambetti, and Sala (2014), Beaudry and Portier (2014), Levchenko andP?andalai-Nayar
(2015), Vukott (2017) and Cascaldi-Garcia and Galvao (2017).

2Although it will take years to be e ectively explored, the expectati on of future higher oil production
induces the companies to invest now. Arezki, Ramey, and Sheng (2017) gore the news shock properties
related to oil discoveries.

3As demonstrated by Beaudry and Portier (2006), Barsky and Sims (2011) and Beaudrand Portier
(2014).



shock from Gal, 1999).

In fact, both results can be empirically observed just by chming the time-span of
the estimation. Figure 1 presents the deciles of the impulsesponses after a news shock
identi ed over dierent periods in time, with a 20-year rolling window from 1975Q1
to 2012Q3. On average, the e ect of a news shock on hours watkis positive in the
medium-term, and negative in the long-term. However, dependj on the identi cation
period considered, the e ect on hours can be positive in theadium-term and converging

to zero, or zero in the medium-term and negative in the longetm.

Figure 1 Percentiles of responses to news shocks over di éreme periods

Consumption _ GDP

8 2 1% 20 24 28 32 36 40 4 8 12 6 20 24 28 32 36 40
quarters quarters

Investment Hours worked

percent

12 16 20 24 28 32 36 40 2
quarters quarters

Note: Impulse responses of a news shock computed over a rolling window of 20
years, with quarterly data ranging from 1975Q1 to 2012Q3. The rst window is
from 1975Q1 to 1994Q4, while the last one is from 1992Q4 to 2012Q3. Each
line corresponds to the deciles of the impulse responses calculated at the poste-
rior mean from the 71 rolling window estimations, while the red line is the me-
dian. The identication follows the Barsky and Sims (2011) methodology, in a
large Bayesian VAR consisting of the variables described in tables G.1 and G.2.

While the e ect on hours worked changes both quantitatively ad qualitatively, there
are still di erences in the size of the responses of real maeconomic variables. Figure 1
shows that, on average, a news shock leads to a long-term gigsie ect on consumption,
GDP and investment. However, depending on the time-span codered, this e ect may
be substantially stronger or converge to zero, with no longrm e ects.

The economic e ects of a news shock are far from robust to timeéhanges. More

broadly, these discrepancies show that the agents react tdormation about future tech-
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nological improvements in di erent ways over time, and raiss the question of whether
such behavior is random or systemic. This question can be addsed by studying how
the economic agents acquire information about future prodtivity, for example through
the nancial market.

Shen (2015) argues that agents are more responsive to infatran when signals are
su ciently precise. Uncertainty plays a role in how information is assimilated by the
agents: information can be interpreted in di erent ways in griods of high or low un-
certainty, indicating a potential amplifying e ect of news shocks through an uncertainty
transmission channel.

The rolling window identi cation exercise supports this réationship between news
about future productivity and uncertainty. Figure 2 presens the long-term e ects of a
news shock on consumption identi ed in a 20-year rolling widow, and compares it with a
measure of macroeconomic uncertainfyThere is a clear period of high long-term e ects
until 2001, followed by a period of low long-term e ects, ineasing again after 2007.
This behavior is systematic, and matches with periods of Higand low macroeconomic
uncertainty.

In this paper, | propose a model and identi cation procedur¢o investigate whether
agents change the way they respond to news about future prottivity over time, and if
this behavior depends on economic uncertainty. Investigag for heterogeneous responses
over time means that the news shock identi cation should aw for nonlinear and time-
varying models. Investigating for the interaction between ncertainty and news shocks
means that such a model should be exible enough to capturestgmic changes in the
economic responses to a news shock based on the level of uaicey.

The premise of the model is that uncertainty measures the agis' expectations about
current and future economic conditions. It is reasonable tinink that these expectations
should also be updated when the agents receive news aboutfethigher productivity. In
other words, the level of uncertaintyendogenouslyesponds to exogenous news shocks. To

meet these requirements, | employ a stochastic volatility adel that treats macroeconomic

4Macroeconomic uncertainty measure calculated by Ludvigson, Ma, and Ng (2016).



Figure 2 Long-term e ects of a news shock on consumption and graeconomic uncer-
tainty
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Note: In red: Mean of a macroeconomic uncertainty measure calculated by Lud-
vigson et al. (2016). In blue: Long-term e ects of a news shock on consump-
tion. Long-term de ned as 40 quarters ahead of the news shock. The news
shock is computed over a rolling window of 20 years, with quarterly data rang-
ing from 1975Q1 to 2012Q3. The rst window is from 1975Q1 to 1994Q4, while

the last one is from 19920Q4 to 2012Q3. The x-axis shows the mid-point of the
window. The identi cation follows the Barsky and Sims (2011) methodology, in

a large Bayesian VAR consisting of the variables described in tables G.1 and G.2.
and nancial uncertainties as latent variables.

The baseline model builds upon Carriero, Clark, and Marcélo (2016a), as a nonlin-
ear stochastic volatility Bayesian vector autoregressiv@/AR) model for large datasets.
With this structure, it is possible to identify rst moment shocks, as news shocks, allowing
for unrestricted interrelationship between the rst and seond moments of the data. The
estimated volatilities are divided into two components: andiosyncratic and a common
component. The common component is either a latent factor |xss all macroeconomic
variables included in the VAR, or across all nancial varialds. These common factors
are the proxies for macroeconomic and nancial uncertainties. The commonolatility
factors are included in the VAR, contemporaneously a ectinghte conditional mean of
the variables. Finally, the common volatility factors also épend on the lagged variables,

creating a complete nonlinear feedback e ect between rstral second moments of the

variables.



| also propose an identi cation method for news shocks thatxéends the current
standard procedure for nonlinear and time-varying cases. h& identi cation method is
a generalization of the Barsky and Sims (2011) procedure ofarimizing the variance
decomposition of utilization-adjusted TFP over a prede nedorecast period. Instead of
assuming a constant variance, the identi cation procedur@roposed here explicitly ac-
counts for potential changes of the total forecast error veance at each point in time.
Moreover, | modify the identi cation strategy such that it t akes into account the nonlin-
ear relationship between variables and their volatilitiegvolatility in mean) through the
construction of generalized impulse response functions.

| bring two contributions to the empirical literature on measuring the economic e ects
of news shocks. First, | evaluate whether the impact of a newsack changes over
time and whether the theoretical assumption of positive corovemen? holds in di erent
periods. The evidence provided here of heterogeneous resas over time indicates that
news shock identi cations based on processes with time imant covariances may not be
appropriate.

Second, | show that news shocks interact with uncertainty. Ae results indicate that
there is a close link between the arrival of information abaduture productivity and how
this information is absorbed by the agents. This informatio is interpreted in di erent
ways in periods of high or low uncertainty, in uencing the inpact of the news. The
positive economic e ects led by technology news are systetmgally higher in periods
of high uncertainty, depending on the initial degree of unceinty (level e ect) and
on how agents update their expectations about macroeconanand nancial conditions
(transmission e ect).

These results are consistent with Bloom (2009)'s interpration of an overshooting of
productivity in the medium-term after a period of high uncetainty. Productivity grows
as rms address their pent-up demand for investments, and bstitute less exible for
more exible capital (Comin, 2000). Cascaldi-Garcia and Qa@ao (2017) show that high

uncertainty increases the likelihood of news shocks, cre®} a 'good uncertainty' e ect.

5Beaudry and Portier (2006).



This paper is aligned with literature about the relationshp between news shocks
and nancial markets. Beaudry and Portier (2006) and Barskyand Sims (2011), for
example, show how the stock market reacts to news shocks. Kann and Otrok (2013),
Cascaldi-Garcia (2017) and Kurmann and Sims (2017) debatket e ect of a news shock
on short and long-term interest rates. Gertz, Tsoukalas, red Zanetti (2016) present the
role of news shocks in light of propagation through frictiamin nancial intermediation.
This paper also relates to an extensive literature on stocktic volatility VAR models.
Mumtaz and Zanetti (2013), for example, allow for a lagged éelback of the volatilities to
the mean. Alessandri and Mumtaz (2014), Shin and Zhong (2018hd Carriero, Clark,
and Marcellino (2016b) propose models with a contemporaneofeedback of a common
volatility factor to the mean.

The outline of the paper is as follows. | present the underlyg model that allows
for stochastic volatility in mean and the estimation procedre in Section 2. Section 3
introduces an identi cation procedure for the news shock #t takes into account nonlinear
and time-varying models, and a procedure for identifying wertainty shocks. Section
4 presents the estimated latent macro and nancial uncertaty measures. Section 5
summarizes the results for a news shock and its relations Wwitincertainty measures,
while Section 6 describes the results of macroeconomic anttertainty shocks. Section

7 concludes this paper.

2 A stochastic volatility in mean model

The empirical model aims at allowing a full interaction betwen uncertainty and macroe-
conomic variables so that orthogonal shifters of rst and mnd moments can be identi-
ed. The proposed model setup is a large heteroskedastic VARIii upon Carriero et al.

(2016a), in which the individual volatilities are a combin&on of a common uncertainty
factor and an idiosyncratic volatility component. | modifyits baseline framework to han-
dle variables in levels. The choice of two common factorslfaws the recent literature on

unobserved uncertainty components as a way of separating oneeconomic and nancial



sources of uncertainty (Jurado, Ludvigson, and Ng, 2015 and @i@ro et al., 2016a).
The non-observed macroeconomic and nancial factorproxies for macro and nan-

cial uncertainties) are included in the conditional mean othe VAR, which allows for a

contemporaneous e ect on the variables. In addition, the tdors are dependent on the

lagged variables, permitting a nonlinear feedback of the nables on their volatilities.

2.1 Model description

The model is estimated as a structural nonlinear VAR, withy; representing a @ 1)
vector that stacks then,, macroeconomic endogenous variablgs: and thens = n np
nancial endogenous variablegs. , in levels, as iny; = (Ym+t:Yst)- G isa (2 1) vector
that stacks the non-observed macroeconomic and nancial oertainty factors, denoted
asg = (In mg;Inf,). Here renamed as "Main VAR' for notation purposes, the modes i

represented under the reduced form
Vo= Aty 1+ i+ ApYe pt BoG + i+ B o+ W 1)

whereA; are (h n) matrices that collect the coe cients of the lags ofy; from 1 to p, B;
are (N 2) matrices that collect the coe cients of the lags ofg, from 0 to |. This setup
is similar to a VAR-X con guration, where g, is modeled as an exogenous component.

The reduced form shocks; are modeled as
vi= At P ¢ iidN(O;1); (2)

whereAg is a lower n) triangular matrix with ones in the main diagonal, and ; is
the time-varying (n  n) diagonal matrix that collects the variance of each varialel. Each
element of  is composed of an idiosyncratic component and a common urtemty
factor, which may be macroeconomic or nancial depending dhe chosen variable. The

rst n,, variables form the macroeconomic factor measure, while the = n n,, variables



form the nancial factor measure. The elements of ; (in logs) are de ned as

8

2 mj Inme +1n hyy ifj =1;:50m
n = : 3)
tj Infe+1n hyy ifj =nn+1;:5n

where n; and ; are the individual loadings to the common macroeconomic andan-
cial factors, respectively. For identi cation purposes, ket i =1and ¢n,+1 = 1.

The common macroeconomic factor is part of the volatility ofll macroeconomic
variables, and the nancial factor is part of the volatility of the nancial variables. The

idiosyncratic component Inh;; follows anAR (1) process of the form
Inhjy = o+ jalnhy 1+ 65 J =100 (4)

where g = (eyy;::;e)0is jointly and independently distributed asiid N (0; ), and
e=diag( 1;::5 n)-

| de ne the common macroeconomic and nancial volatility fators as proxies for

macroeconomic and nancial uncertainty measures, respaaly. These uncertainty mea-

suresg = (In my;Inf;) also follow a VAR structure, and is referred to as "Uncertaigt

VAR' for notation purposes. The Uncertainty VAR is modeled as
G =D1g 1+ i+ Dkl k+ Ve 1t U (5)

whereD; are (2 2) matrices that collect the coe cients of the lags of the unertainty
factorsg from 1 to k. is a (2 n) matrix that collects the coe cients of the lagged
variablesy; (in di erences). The shocks to the uncertainty factorsu; = (Un:; Uz ) are
independent frome; and , with mean O and full covariance matrix de ned as

2 3
uzg n+1 n+3g: (6)

n+3 n+2

The covariance matrix of the uncertainty measures is purpely constructed as full,



to allow for co-movement between macroeconomic and nanciahcertainty measures. |
adapt the model structure by using lagged; variables in di erences and not in levels.
Carriero et al. (2016a) present a rich discussion on the saifility of this structure for
identifying macroeconomic and nancial uncertainties, ath how this setup relates to the
stochastic volatility literature.

The model embeds the assumption that uncertainty measureseaa ected by feedback
from the lagged variables, and that uncertainty measures W a contemporaneous e ect
on the mean of the variables. It is not possible to have contgraraneous feedback to
and from uncertainty simultaneously, for identi cation reasons. The choice of contempo-
raneous (and not lagged) feedback from uncertainty to the raa follows the assumption
that the economic variables rapidly react to uncertainty sbcks, and uncertainty causes
short-term economic uctuations (Bloom, 2009).

This setup imposes the limitation that shocks to the mean ofrie variables can only
in uence the level of uncertainty with, at least, one lag. Or obvious alternative would be
to assume that uncertainty measures are a ected contemparaously by the variables, and
that uncertainty measures have a lagged e ect on the mean ofi¢ variables. However,
under such an assumption, economic variables would only o¢do uncertainty shocks
after one lag. This seems implausible in a quarterly data iofmation set, especially with
respect to nancial variables such as stock prices.

The non-observed idiosyncratic volatilitiesh;; are estimated by the standard algo-
rithm proposed by Kim, Shephard, and Chib (1998), using a 1€tate mixture of normals
approximation from Omori, Chib, Shephard, and Nakajima (200). The estimation of
the non-observed macroeconomic and nancial uncertainges substantially more com-
plex, presenting a multi-variate nonlinear state-space peesentation. | follow Mumtaz
and Theodoridis (2015) and employ a particle Gibbs step totamate In m; and Inf,. The
particle Gibbs construction is based on Andrieu, Doucet, andolenstein (2010) and the
ancestor sampling improvements proposed by Lindsten, Jomaand Schen (2014), with
100 particles.

| estimate the full model with p=4 lags, | = 1 lag of the macro and nancial factors



in the Main VAR (equation 1), and k = 1 lag of the macro and nancial factors in the
Uncertainty VAR (equation 5). The full estimation procedure § described in detail in

the Appendices?

2.2 Data

The dataset comprises both macroeconomic and nancial vables in levels. The vari-
ables are measured quarterly, which allows the use of maatoromic variables such as
utilization-adjusted TFP (necessary for the news shock idércation) and gross domestic
product (GDP). For variables which are available at a highefrequency, | construct the
time-series by taking the quarterly average. The period isdm 1975Q1 to 2012Q3.

The dataset contains 14 macroeconomic variables, namelilization-adjusted TFP,
personal consumption per capita, GDP per capita, private uestment per capita, hours
worked, GDP de ator, Federal funds rate, total nonfarm payoll, industrial production
index, help wanted to unemployment ratio, real personal imene, real manufacturing
and trade sales, average of hourly earnings (goods produgiagd producer price index
(nished goods). These are the macroeconomic variables thare usually considered in
the news shock literature.

The 14 nancial variables are the spread between the 10-yegield and the Federal
funds rate, S&P500 stock prices index, S&P dividend yieldsxcess bond premium, CRSP
excess returns, small-minus-big risk factor, high-mindsw risk factor, momentum, small
stock value spread (R15-R11), and ve industry sector-leleeturns (consumer, manufac-
turing, high technology, health and other). The nancial vaiables mostly matches those
used by Jurado et al. (2015) and Carriero et al. (2016a) to cdnsct their measures of
nancial uncertainty.

A full description of the sources and construction of the 28aviables can be found in

Appendix G.

6Appendix A describes the triangularization procedure for drawing the coe cients in large VARs
proposed by Carriero, Clark, and Marcellino (2016c). This procedure is tatistically equivalent to a
conventional Bayesian stochastic volatility Monte Carlo Markov Chain (MCMC) estimation, but has
the advantage of being less computationally intensive. Appendix B presnts the steps of the MCMC
algorithm. Appendix C describes the particle Gibbs with ancestor sanpling.
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3 Identi cation procedure for news and uncertainty
shocks

In this Section | present the strategy for identifying news ad uncertainty shocks. These
procedures can be considered as two separate computationtmels, one time-varying
and the other is time-invariant. The rst is an innovative identi cation procedure for

news shocks that takes into account nonlinear and time-vang models, in which the
news shock presents di erent economic responses in eachnpan time. The second
is a standard generalized impulse response procedure forcneeconomic and nancial
uncertainty shocks. Since the latent macro and nancial fdaors have time invariant

covariances, the identi cation procedure is also invaridgrover time.

3.1 News shocks identi cation for nonlinear and time-varying

models

The identi cation for the news shock is constructed upon therocedure proposed by
Barsky and Sims (2011). This approach is based on the assuioptthat a technology
news shock is the structural shock that best explains the umgdictable movements of
utilization-adjusted TFP over a xed long-term horizon,” with the imposition of no e ect
on impact (t = 0). It is constructed following the maximum forecast errorvariance
approach presented in Uhlig (2005) and Francis, Owyang, Rdysand DiCecio (2014).

The identi cation procedure presented by Barsky and Sims (1) is broadly adopted
in the news shock literaturé® However, this identi cation method is only applicable
to time invariant covariance cases. A more exible identi @ation method is needed to
investigate the idea of an underlying transmission mecham relating the technology
news (a shock to the mean of the variables) and the variablesglatilities.

| start from the model presented in equation 1. Considering model with a fully

7] follow Barsky and Sims (2011) by xing the horizon at 40 quarters ahead.

8For example, Coibion and Gorodnichenko (2012), Kurmann and Otrok (2013), Forni ¢ al. (2014),
Ben Zeev and Khan (2015), Gertz et al. (2016) and Cascaldi-Garcia and Galvao (2017). $eBeaudry
and Portier (2014) for an extensive discussion about identi cation method for news shocks.
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exogenous uncertainty measurg, | rewrite equation 1 as a function of the lag operator

L, leading to a VAR-X representation of the form

ye= A(L)yi+ B(L)g + At {74 (7)

whereA(L) = AL+ A,L2+ o+ ApLP andB(L) = Bo+ BjL + i+ B,L'. A moving
average representation of this modelis de ned as the in nite polynomial of the lag

operatorL asC(L)= Co+ C4L + ::=[l, A(L)] ! whereCqo=I,, as
yi = C(L)B(L)g + C(L)AT ™ ¢ (8)

Suppose that there is a linear mapping of the innovations () and the structural

shocks ;) as in

Psi; 9

H
I

which implies

o
-
T
N
-
I

Aot PPs: (10)

The innovations ; and the structural shockss; are i.i.d. N(0;I,). To ensure that

00 1=20

EA, 22,0 ¥2A Y= E[A,L PPPssiP’ FPA, = . itsucesthat PP°= I,

0
t

P can take the form of any of the in nite alternatives that satsfy this condition. Under

this structure, the moving average representation can beweitten as
yi = C(L)B(L)g + C(L)A,* Ps; (11)

wheres, = P 1.

Now, the Barsky and Sims (2011) identi cation procedure forlte news shock relies on
nding one of the in nite alternatives of P that maximizes the variance decompaosition
of the utilization-adjusted TFP over a prede ned forecast hazon, and has no e ect

on impact (t = 0). It is derived from the assumption that technology is a stchastic

9See Ocampo and Rodrguez (2012) for a comprehensive description of theaving average represen-
tation of VAR-X models.
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process driven by two shocks: a surprise (or unanticipatet@chnological shock, and an
anticipated news shock. The total unexplained variance otilization-adjusted TFP can

be decomposed as

1;1(k)surprise +  1;2(K)news = 18h; (12)

where j; (h) is the share of the forecast error variance of variabieof the structural shock
j at horizon k, i = 1 refers to utilization-adjusted TFP (where this variable s ordered
rst in the VAR), | =1 is the unexpected TFP shock, and = 2 is the news shock.

While the K -step ahead forecast error in this model is given by

X _
Visk  Elisk]=  (CkBiGuk + CkAot HaPStk k) (13)
k=0

the share of the forecast error variance of the news shock is

P _ _
G ko (CkBiGek+ CkApt (TkP®)(CiBiGk + ClAt [iP®)’
1.2(K )tnews = P S =
h k=0 Ck kCy @
Ko (C1kB1xGuk + (31;|§,'°‘01 iy NCukBixGuk + CuxApt % )

P

K 0
k=0 Cl;k t+ kCl;k

(14)

where @, is a selection vector with 1 in the position = 1 and zeros elsewherep, is a
selection vector with 1 in the positioni = 2 and zeros elsewhere, an@y is the matrix of
moving average coe cients measured at each point in time uittperiod k. The combi-
nation of selection vectors with the proper column oP can be written as , which is an
orthonormal vector that makesA ,* {7 the impact of a news shock over the variables.
One additional complication that arises is that the share ahe forecast error variance
of the news shock depends ap, tlzz and . In other words, the variance decomposition
depends on the time in which it is measured. The news shock is identi ed by pickin
that maximizes the share described in equation 14, but the pendence of this share on

can lead to a dierent in each point in time. This characteristic forms the basis ahe

identi cation procedure for the news shock proposed here.h€& news shock is identi ed

13



by solving the optimization problem

X
tnews = argmax 1;2(k)t;news; (15)
k=0

subject to

Ao(1;j)=0;8> 1

t(1;1)=0 (16)

whereK is an truncation period, and the restrictions imposed implyhat the news shock
does not have an e ect on impact = 0) and that the . vector is orthonormal.

In practice, two elements introduce additional nonlineaty to the forecast error de-
scribed in equation 13: the contemporaneous feedback e ebat the uncertainty factors
o have on the variablesy; (because of the stochastic volatility in mean), and the depe
dence of the time-varying volatility tlzz on the uncertainty factorsg. | deal with this
nonlinearity by employing a generalized impulse responsgusture® in substitution for
the forecast error described by equation 13. Since genezall impulse response struc-
tures do not depend on the model functional form, this substition makes the procedure
even more broad by allowing the identi cation of news shocksnder di erent forms of
nonlinear and time-varying relationships.

The generalized impulse responses are constructed by cregitsimulated shocked and
baseline paths. The di erence between these two paths capés the e ect of the desired
shock, conditional on a random simulated innovatiotj; , wherej identi es the variable.
The overall e ect of the identi ed shock is the average of thali erence between the
baseline and shocked paths across a signi cant number of com innovations! ;.

The full identi cation procedure and steps for the generatied impulse responses are
described in Appendix F. To summarize, it is possible to show &, conditional on the

draw r of the random innovation'! |, , on the information set containing all the known

10 Adapting the procedure proposed by Koop, Pesaran, and Potter (1996) and Pesan and Shin (1998).
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history up to time t dened as Z; = (y: p; 5y G pr i @), and on the coe cient
matrices =[A;;Bi;Di; j; j; ] the generalized impulse response at tinkeof a generic
utilization-adjusted TFP shock is given by

Glrep(Ki 1rpi! s 2t ) = ENVerrr s Getrrl Trps tektrrs ! oo 2t ] (17)

E[Vis kbases G+ kbasel  t+kbases | jt s Zt3 s
where 1gp is a vector with 1 in the rst position (where utilization-adjusted TFP is
ordered rst in the VAR) and zeros elsewhere.
With this setup, it is possible to substitute the TFP impulse responsesC B 1.k G+« +
CrAg?t fflz( ) in equation 14 forGltep. (K; 1ep;!ji:Ze;; ), or simply Gliep, (K) for
notation purposes.

A news shock for a drawr of the random innovation! |, can be identi ed in each

periodt as P, Sl (K )G (k)
tr;news = arg max k=0 F',]'FKP;t ' TFOP;t ' : (18)
k=0 Ci1 kCy
subject to
Aot(L;))=0; 8> 1
(1;1) = 0; (19)

0 =1:

After obtaining the identi cation vector for the news shock (., for the draw r of
the random innovations! |, , it is possible to construct the generalized impulse respses
for the news shock at each point in time. Conditional on the @w r of the random
innovation iy, on the information setZ;, and on the coe cients , the generalized
impulse response at timé of the technology news shock is given by

r .or pr . . — r . o R LT .
Glt;news(k1 t;news’!j;t’zt’ )_ E[yt+k;news7gt+k;newsj t;news t+k;news’!j;t ’Zt’ ]

(20)
E[ytr+ k;base; gtr+ k;basej {+ k;base; ! jr;t WA ]:

Ywhere g = (In my;Infy).
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Taking the averages of each path across a su ciently large mber of draws of the
random innovations! i, the overall generalized impulse response at tine of a news

shock, conditional on the information set at timet, is given by

GI t;news (kl t;news ’ Zt1 ) = [ yt+ k;news (k1 t;news l Zt’ )1 gt+ k;news (k! t;news l Ztl )]

[yt+ k;base(k; Zt; ); O+ k;base(k; Zt; )]

(21)

Note that this identi cation procedure is a generalization dthe standard homoskedas-
tic Barsky and Sims (2011) identi cation. With a time invariant covariance model and
no exogenous variables, the Barsky and Sims (2011) proceslwan be nested by the
structure presented here. Consider, for example, equati@n If there are no time-varying

volatility or exogenous variables, this equation is redudeto
ye = A(L)y: + Agt Py (22)
and its moving average representation is simply
ye= C(L)AT (23)

Now, considering the same linear mapping between the innowats ( ;) and the struc-
tural shocks ;) as in equation 9, the share of the forecast error variance thfe news
shock de ned in equation 14 becomes

0 P — — 0
G ||<<=o(CkA0l “2P,)(CkA,t ¥?Pq,) Oa_

1;2(k)news = 5

'_l K 0 e
5 @ k0CkC ik & (24)
_ ko(CuAot 2 )(CuApt )

MK 0
k=0 C1;k C 1;k

and 1.2(K)news does not depend ort anymore. The procedure of nding that maxi-
mizes the share of the forecast error variance of equation @dder the same restrictions

described in equation 16 is equivalent to the Barsky and Sing2011) procedure.
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3.2 Measuring the uncertainty transmission e ect

The nonlinear model proposed here is exible enough to integate whether the e ects of
news about future productivity depend on the level of unceainty in the economy. First
moment shocks can in uence (and be in uenced by) the level aincertainty through two
nonlinear feedback devices: a contemporaneous feedbackifertainty to the mean of
the variables, and the lagged feedback e ect of the varialdeo uncertainty. These devices
allow expectations on macro and nancial conditions to be wugated based on the arrival
of information about future technology developments. If tis update is negligible, or is
just noise around the news shock e ect, the impulse respossef a news shock under this
identi cation should be similar to the traditional covariance-stationary procedure.

| propose here two counterfactuals to evaluate the relatiobetween news shocks and
the level of uncertainty. The purpose of the rst counterfatual is to check whether the
initial uncertainty condition matters for the e ect of the news shock, and the second
check whether there is a transmission e ect of the news shottkkough uncertainty.

For the rst counterfactual, | x the macroeconomic and nancial uncertainties to
their means, to verify whether the news shock e ects change @@mparison to the identi -
cation with time-varying uncertainty. The procedure congsts of calculating the di erence
between the generalized impulse responses from the timeyiag procedure described by
equation 21, and an arti cial generalized impulse responge which the initial condition
is changed.

Formally, de ne the arti cial information set containing all the known history up to
time t and the means of the macro and nancial uncertainties a&; = (Y: ;Y 0),

P

whereg = ( thl Inmy; = tT:l Inf,). Following the steps described in section 3.1, the

1
T
arti cial generalized impulse responses with xed initialuncertainty conditions can be

constructed as

Gl t;news (k; t;news ; Zt ; ) = E[yt+ K gt+ kj t;news ; t+ k;news ; Zt ;
(25)

EVir ks Gkl t+10Zes I
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The nal e ect of the initial uncertainty condition on the ne ws shock can be calculated
as the di erence between the generalized impulse respon$esn equation 21 and from

equation 25, as in

c':‘It;level = Glt;news(k; t;news;zt; ) Glt;news(k; t;news;zt; ): (26)

The second counterfactual aims to check whether there is a fimear feedback between
uncertainty and the news shock. It involves shutting down te contemporaneous feedback
of uncertainty to the mean of the variables, and the laggedddback e ect of the variables
to uncertainty. Recalling the Main and Uncertainty VARs (equdions 1 and 5), the
contemporaneous feedback of uncertainty to the mean of thanables is captured by the
coe cients B; in equation 1, and the lagged feedback e ect of the variablés uncertainty
by the coe cients in equation 5. Shutting down the nonlinear feedback (to anddm)
uncertainty means restricting to zero the coe cient matrieesB; and . Following these

restrictions, the Main and Uncertainty VARs would be respectiely written as

Ve = Agyr 1+ i+ Ay pt Vi (27)

and

O = DG 1+ i+ DiQ k + Ui (28)

The procedure for the second counterfactual consists of callating the di erence
between the generalized impulse responses from the timeymag procedure described
by equation 21, and an arti cial generalized impulse respse in which the coe cients
matricesB; and are restricted to zero. Formally, de ne a restricted set ofae cients
as Y=[Ai;Bi =0;Dj; j; j; = 0]. Following the steps described in section 3.1, the
arti cial generalized impulse responses with no uncertay feedback can be constructed
as

Gl t);/news (k; gnews ; Zt; y) = E[yt+ ks gt+ kj t);/news , ¥+ k;news ; Zt; y] (29)

ElVeei; Gkl 1eis 2 T
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The nal e ect of the transmission (to and from) uncertainty on the news shock can
be calculated as the di erence between the generalized inpe responses from equation

21 and from equation 29, as in
Glt;feedback = C':‘It;news (k; t;news;zt; ) Glg;/news (k; t);/news;zt; y): (30)

3.3 Identi cation procedure for macroeconomic and nancial

uncertainty shocks

The uncertainty shocks are modeled as a shock to the commoncertainty factors that
compose the volatilities of each variable. Since these fart are also included in the Main
VAR, the uncertainty shock can a ect both the mean and the vamance of the variables
of interesty;.

In this model, there are two uncertainty factors (macro and nancial), which share a

full variance-covariance matrix de ned as
2 3

L= 2 n+1 n+3g: (31)

n+3 n+2

This setup demands imposing an orthogonalization structerto achieve the structural
macro and nancial shocks. Employing a Cholesky structuresads to two possible or-
thogonalizations: macro uncertainty ordered rst with nancial uncertainty ordered last,
and the inverse.

As a benchmark, | de ne nancial variables as \fast" variables, while macro variables
are \slow" variables. It means that nancial uncertainty can react contemporaneously
to macroeconomic uncertainty shocks, but macroeconomic aertainty can only react to
nancial uncertainty shocks with one lag. This ordering is guivalent to modeling macro
uncertainty rst and nancial uncertainty last in the Chole sky identi cation structure.

In contrast to the news shock, the variance-covariance matrof the uncertainties

does not change across time. | identify both shocks at the tasbservation T, so the
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information set here isZt = (yr p; 5 Y700 p; 5 0r). 1
The full identi cation procedure is described in Appendix F, lut the general idea is to
produce a baseline and a shocked path fgy, g. and ; based on each of the uncertainty

shocks (macro and nancial). The shocks are identi ed as

(32)

where ~ is the lower triangular Cholesky decomposition of , r is the index of the set
of randomly drawn'! {; innovations, " is a 2 1 vector with 1 in the rst position
and zero in the second, and™” is a2 1 vector with zero in the rst position and 1 in
the second. ForT + 1, | construct a one standard deviation shock on macro undainty
by substituting (um:; Ur¢ )°in equation D.6 for [ .... | then construct by simulation a
macro shocked path fromT +1to T + K for i 1acr0 » %macro @NA  fmacro USING €quation
D.6. | repeat the process for the nancial uncertainty by usig ¢, to construct paths
for Yisin » Oisin @Nd gy -

By employing the generalized impulse response structuresgebed in Appendix F,

the nal economic e ect of the uncertainty shock is measureds

Glmacro(k; macro;ZT; ): E[YT+k;gT+kj macro » T+k;macro;ZT; ]
Elyr+i: Orend e Z15 5
(33)
Glfin (K; fin;Z71: )= Elyr+k; Ore] fin i Tekifin 271 ]

Elyr+k: Or+kl T+k:Z7: It
4 Latent uncertainty measures

In this Section | present the estimated macro and nancial ucertainties from the stochas-
tic volatility in mean model presented in Section 2. The (eshated) stochastic volatility
of each variable is composed of a common factor, which can baaroeconomic or nancial

depending on the underlying variable, and an idiosyncraticomponent. The common fac-

2Where gr = (In my;Infy).
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tors across the volatilities are the estimations of aggregamacroeconomic and nancial
uncertainties.

Figure 3 displays the estimated aggregate macroeconomic artainty, and Figure 4
shows the estimated nancial uncertainty. The stochastic ®atilities of the macroeco-
nomic and nancial variables are presented in Appendix H. Thecenomic assumption
that macro and nancial uncertainty may be related to each dter is captured by the inter-
action between the two uncertainty measures included in thdncertainty VAR (equation
5) and the full variance-covariance matrix between the twaattors (equation 6). Figures
3 and 4 show that some periods in time share high macro and neial uncertainties, but
some are marked by either a hike mainly in macro or nancial wertainty. Comparing
these series with the recessions identi ed by the National Beau of Economic Research
(NBER), it is possible to match each recession with a macroewmmic uncertainty hike,

a nancial uncertainty hike, or both.

Figure 3 Aggregate macroeconomic uncertainty

Note: Macroeconomic uncertainty measured as the common factor on macroe-
conomic volatilities.  The dotted lines de ne the 68% condence bands com-
puted with 200 posterior draws. The VAR model includes all variables in Tables
G.1 and G.2. Shaded areas are the recession periods calculated by the NBER.

The Great Moderation period (mid-1980s) for example, chacterized by a decline
in the business cycle volatility of aggregate macroeconarwvariables, is captured by a

hike in the macroeconomic uncertainty. During the dot-comresis (1999-2001), which
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Figure 4 Aggregate nancial uncertainty

¥
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|— Median = 18% == 84%

Note: Financial uncertainty measured as the common factor on nancial
volatilities. The dotted lines dene the 68% condence bands computed with
200 posterior draws. The VAR model includes all variables in Tables G.1
and G.2. Shaded areas are the recession periods calculated by the NBER.
was mainly a speculative nancial bubble in the stock marketthere is a higher nancial
uncertainty. The 2008 crisis shows high macro and nancial wertainties.

While the uncertainty measures match crisis periods, they s follow closely the
monthly macro and nancial uncertainties estimated by Ludvgson et al. (2016), which
| take here as a benchmark for comparison purposes. The masronomic uncertainty
presented in Figure 3 and the 1-month ahead macroeconomic aertainty from Ludvigson
et al. (2016) share a correlation of 0.76 over the period 1995 and 2012Q32 with 0.77
for both the 3-months ahead and 12-months ahead versions. d&ltorrelation of the
nancial uncertainty presented in Figure 4 and the 1-month abad nancial uncertainty
from Ludvigson et al. (2016) is 0.68, with same coe cient whetaking into consideration
the 3-months or 12-months ahead versions of the nancial uadainty.

The two series estimated here are also correlated with eactiner, a direct result of
the possibility of transmission of macro-to- nancial unceainty, and vice versa. The

correlation coe cient of the two series is 0.36. The unceriaty measures from Ludvigson

13] transform the uncertainty measures calculated by Ludvigson et al. (2016)fom monthly to quarterly
by averaging across the quarter.
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et al. (2016) present a higher correlation with each other. dhsidering the 1-month
ahead macro and nancial uncertainty, the correlation coecient is 0.53 over the period
1975Q1 and 2012Q3. The correlation coe cients of the 3-mams and 12-months ahead
uncertainty versions are, respectively, 0.52 and 0.45.

It is important to notice that the estimation procedure for the measures presented
here is substantially di erent from the Ludvigson et al. (2@6) methodology. First, Lud-
vigson et al. (2016) use of the FRED-MD databas&with stationary monthly data, while
| use quarterly data in levels. Second, Ludvigson et al. (26)Lconstruct uncertainty mea-
sures by averaging the conditional volatility of unforecdaable components of the future
value of the macroeconomic or nancial series. Here, | estiteathe uncertainty mea-
sures with a particle Iter, where these uncertainties dep®l on the (lagged) dependent
variables, and the dependent variables can react contempoeously to the uncertainties
(stochastic volatility in mean). Lastly, Ludvigson et al. 2016) and this paper use di er-
ent variables. While Ludvigson et al. (2016) employ 132 macseries and 147 nancial

series'® | construct the uncertainty measures using only 14 macro aridt nancial series.

5 Time-varying Impulse responses to a news shock

In this Section | present the results of the news shock idertation. For every point in
time the news shock economic responses are di erent, conalital on the estimated time-
varying volatility. This procedure makes it possible to undestand the di erent e ects of
a news shock on periods of high and low macro and nancial umtanty.

Figures 5 and 6 present the economic responses of selectedab#es after a news
shock, identi ed and calculated for each point in time as garalized impulse responseés.
The graphs in Figure 5 show impulse responses in three dimems: period in time of
identi cation (x-axis), size of impact (y-axis) and the e ect h quarters ahead (each line).

Figure 6 presents these same impulse responses \sliced" dested forecast horizons.

4McCracken and Ng (2015).

15please refer to the On-line Appendix of Jurado et al. (2015) for a detailedlescription of the database
employed by the authors.

16 As described in Appendix F. The generalized impulse responses forlahe variables included in the
VAR can be found in Appendix J.
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Figure 5 Time-varying e ects of news shocks
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Note: The news shock is identied for each period in time under the procedure
proposed in Section 3.1. The generalized impulse responses for each period are
the average of 1,000 simulated random innovations, as described in Appendix F.

Figure 6 Time-varying e ects of news shocks over di erent f@cast horizons
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Note: The news shock is identied for each period in time under the pro-
cedure proposed in Section 3.1. The generalized impulse responses for each
period are the average of 1,000 simulated random innovations, as described
in Appendix F. Each line corresponds to the eect of the news shodhk-
guarters ahead from the point in time, as \slices" of the graphs from Figure 5.

The top-left graph of Figure 6 shows the e ect of a technologyaws shock over the

utilization-adjusted TFP. The identi cation procedure of the news shock maximizes the
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variance decomposition of this variable over a xed forectborizon of 40 quarters ahead,
imposing a zero e ect on impact f = 0). This graph provides evidence for how di erent
the e ects of a news shock can be over time when a time-varyinglatility is taken into
account. The long-term e ect of a news shock identi ed in thgperiod 1980-1983 or during
the 2008 crisis is about twice the e ect in more stable perisd as for example, the early
1990s.

These di erences over time are also found in the impulse rempses for consumption,
GDP, investment and real personal income. The positive e €®of a news shock on
consumption and personal income peaks after about 12 quase This new higher level
of consumption and real personal income is sustained in thenb-term, while GDP and
investment peak at about 12 quarters and decay in the long#ia. Nevertheless, the
positive e ects on consumption, personal income, GDP andvastment are more intense
during periods in which the e ect of a news shock on utilizatin-adjusted TFP is stronger.

The responses of hours worked are positive in the medium4teth = 12), and negative
in the long-term (h = 36). These e ects are substantially more intense in pericdof higher
volatility (early 1980s and 2008). There is a de ationary eect in the medium-term after
a news shock, as evidenced by the literatuté. By employing a covariance-stationary
identi cation procedure, Barsky et al. (2014) point out tha the peak of the negative
e ect on in ation is about 10 quarters after the news shock. Fjure 6 shows that, after
12 quarters, there is indeed a de ationary e ect, but this ismuch more intense in periods
of high volatility.

The e ect on stock prices is positive, as initially indicate by Beaudry and Portier
(2006). These e ects peak on impacth(= 0) and converge to zero in the long-term. It
is worth noting, however, that the e ect on stock prices is leyely unrelated to the size of
the e ect of the news shock on utilization-adjusted TFP. The psitive news about future
technology is interpreted by the stock market in similar wayacross time, with positive

e ects on impact.

17See, for example, Christiano, llut, Motto, and Rostagno (2010), Barsky and Sira (2011) and Barsky,
Basu, and Lee (2014).
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5.1 News shocks and the relationship to uncertainty

As shown, the e ects of a news shock are substantially di erémcross time. In this Sec-
tion | investigate if these di erences come from a potentiadonnection between technology
news shocks and uncertainty.

Bloom (2009) shows that uncertainty® creates an “inaction zone' in investment, due
to rms becoming more cautious. With rms close to the investnent threshold, small
positive volatility shocks generate an investment respoaswhile small negative shocks
generate no response. The idea is that, after the initial ressive e ect of uncertainty,
rms would want to scale up their investment plans to address gnt-up demand. The
result is a medium-term overshoot in productivity growth. Rriods of high uncertainty
are also related to a higher potential return on investmenincreasing the range of growth
options (Segal, Shaliastovich, and Yaron, 2015).

Cascaldi-Garcia and Galvao (2017) suggest that uncertajnshocks generate two ef-
fects on total factor productivity: a short-term negative eduction on utilization factors,
and a medium-term positive e ect on the utilization-adjused productivity. This medium-
term positive e ect relates to the overshoot in productiviy growth idea presented by
Bloom (2009). It follows that uncertainty foresees future déchnology improvements, as
a ‘good uncertainty' e ect. From this literature, one wouldexpect a positive relation-
ship between high uncertainty periods and the positive ecomic outcomes from a higher
expected future technology growth, as in a news shock.

| rst evaluate this proposition by calculating the correlaion between a series of
uncertainty measures and the mediumh( = 12) and long-term (h = 36) e ects of a
news shock on utilization-adjusted TFP, consumption and GDPTable 1 presents these
correlations, while the description and availability of tlke uncertainty measures can be
found in Table G.3 in Appendix G.

Table 1 shows that the responses to a news shock are (poslityecorrelated with
both macro and nancial uncertainties. Generally speakingthe correlation is higher

with macroeconomic uncertainty measures, and is higher ihé medium-term than in the

18Bloom (2009) de nes uncertainty as an increase in the volatility of total factor productivity shocks
that have a temporary negative e ect on output growth.
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Table 1 Correlations between news shock economic resporsed uncertainty measures

Medium-term
TFP

Consumption GDP
Macro uncertainty measures
Macro uncertainty 0.96 [0.000] 0.92 [0.000] 0.93 [0.000]
LMN-macro-1 0.79 [0.000] 0.73 [0.000] 0.76 [0.000]
LMN-macro-3 0.80 [0.000] 0.74 [0.000] 0.77 [0.000]
LMN-macro-12 0.80 [0.000] 0.74 [0.000] 0.78 [0.000]
Policy uncertainty 0.01 [0.949] -0.02 [0.772] 0.02 [0.860]
Business uncertainty -0.01 [0.936] -0.02 [0.791] -0.08 3[B]
SPF disagreement 0.53 [0.000] 0.50 [0.000] 0.55 [0.000]
Financial uncertainty measures
Financial uncertainty 0.52 [0.000] 0.27 [0.000] 0.39 [0.000]
LMN- n-1 0.45 [0.000] 0.32 [0.000] 0.39 [0.000]
LMN- n-3 0.45 [0.000] 0.31 [0.000] 0.39 [0.000]
LMN- n-12 0.45 [0.000] 0.30 [0.000] 0.39 [0.000]
Realized volatility 0.47 [0.000] 0.39 [0.000] 0.43 [0.000]
VXO 0.65 [0.000] 0.49 [0.000] 0.64 [0.000]
Long-term
TFP Consumption GDP
Macro uncertainty measures
Macro uncertainty 0.95 [0.000] 0.87 [0.000] 0.85 1[0.000]
LMN-macro-1 0.76 [0.000] 0.67 [0.000] 0.67 [0.000]
LMN-macro-3 0.77 [0.000] 0.68 [0.000] 0.68 [0.000]
LMN-macro-12 0.76 [0.000] 0.69 [0.000] 0.68 [0.000]
Policy uncertainty 0.00 [0.973] -0.03 [0.750] 0.03 [0.757]
Business uncertainty -0.02 [0.831] -0.10 [0.231] -0.08 3fh]
SPF disagreement 0.51 [0.000] 0.48 [0.000] 0.46 [0.000]
Financial uncertainty measures
Financial uncertainty 0.45 [0.000] 0.28 [0.000] 0.27 [0.001]
LMN- n-1 0.41 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN- n-3 0.40 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN- n-12 0.40 [0.000] 0.29 [0.000] 0.26 [0.001]
Realized volatility 0.44 [0.000] 0.34 [0.000] 0.35 [0.000]
VXO 0.60 [0.000] 0.52 [0.000] 0.48 [0.000]

Note:

The Macro uncertainty and Financial uncertainty in bold are the mea-
sures calculated in this paper, and presented in Figures 3 and 4.

Medium-

term and long-term responses are calculated 12 and 40 quarters ahead, respec-

tively.
sis are in brackets.

The p-values for the test with zero correlation ura}d
The statistic is calculated a$

— T 2
= 0 ﬁ'

er the null hypothe-

For details

on the uncertainty measures and availability, see Table G.3 in Appendix G.
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long-term. There is a high correlation with the aggregated atroeconomic uncertainty
estimated here and with the macro uncertainties from Ludvigpn et al. (2016):° The cor-

relation is also positive and signi cant with the disagreemnt measure from the Survey of
Professional Forecasters (SPF), ranging from 0.50 to 0.55tlee medium-term, and from

0.46 to 0.51 in the long-term. There is no correlation of theesponses with the policy
uncertainty calculated by Baker, Bloom, and Davis (2016) ahwith the business uncer-
tainty from Bachmann, Elstner, and Sims (2013). Although smiker, all the correlations

between nancial uncertainties and the e ects on utilizaton-adjusted TFP, consumption

and GDP are statistically signi cant.

It is important to note that the news shocks identi ed acrosstime are normalized,
with the same size. The high correlation of the medium and Igaterm e ects presented
in Table 1 is a result of the transmission mechanism of the uextainty measures to the
mean of the variables presented in equations 1 and 5. This tremission mechanism makes
the news shock stronger in periods of higher macroeconomianancial uncertainty, as
suggested by the data when viewed through the stochastic atlity in mean VAR model.

Figure 7 presents a clearer image of the di erences betweeretle ects of a news
shock during high and low macroeconomic uncertainty period3he red lines correspond
to the average of generalized impulse responses on perioidsigh uncertainty, while the
blue lines correspond to the average of generalized imputesponses on periods of low
uncertainty. | de ne high uncertainty as the periods with the highest 10% of values for
macroeconomic uncertainty, and low uncertainty with the lwvest 10% of values.

In the high uncertainty period, the positive e ects of a newsshock on utilization-
adjusted TFP, consumption, investment and real personal ilmene are substantially higher.
The path of utilization-adjusted TFP (top-left graph of Figure 7) is atter in the low un-
certainty period, while it has a positive peak about 20 quarts ahead in the high uncer-
tainty period. Cascaldi-Garcia and Galvao (2017) show thagfter an uncertainty shock,
utilization-adjusted TFP rises in the medium-term, converig to zero in the long-term.

This hump-shaped path of utilization-adjusted TFP observedn the high uncertainty

19Between 0.78 and 0.96 in the medium-term across TFP, consumption and GDPand between 0.68
and 0.95 in the long-term.
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Figure 7 Impulse responses to news shocks in periods of higlkl &aw macro uncertainty
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Note: The news shock is identi ed for each period in time under the procedure proposed
in Section 3.1. Red and blue lines correspond to the average of generalized impulse re-
sponses on periods of high and low uncertainty, respectively. High and low uncertainty
are the periods with the higher and lower 10% values for the macroeconomic uncertainty,
respectively. Each impulse response is evaluated at the posterior mean. Dashed lines
correspond to 68% distribution of the impulse responses in the high and low periods.

period is in line with the view that uncertainty predicts a ma&lium-term positive e ect

on technology.

The positive e ect on consumption is higher in the high macreconomic uncertainty
period over the entire forecast horizon of 40 quarters, folwing same pattern as real
personal income. With respect to GDP, the biggest di erence diween the high and
low uncertainty periods is in the medium-term. This divergece is a direct result of the
economic response of investment, which peaks about two tor¢e years after the news
shock occurred. In the long-term, the path of investment inite high uncertainty period

converges to the path of the low uncertainty period.

The de ationary e ect of the news shock is more pronounced ithe high macroeco-
nomic uncertainty period. In the low uncertainty period theresponse of the GDP de ator

is atter, and close to zero. The e ect of the news shock on thieours worked is positive in

the medium-term and negative in the long-term under the highincertainty period, while

it is closer to zero under the low uncertainty period. There igo perceptible di erence
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between the responses of the stock prices in the high or lowcentainty macroeconomic
periods. It is positive on impact, converging to zero in theohg-term in both cases.

In summary, these results provide evidence that news shodkave quantitatively dif-
ferent e ects in periods of high and low uncertainty. In pewds of high uncertainty the
positive e ects of news shocks are boosted, in line with theotion of a transmission

mechanism of technology news through uncertainty.

5.2 The uncertainty transmission mechanism of news shocks

How important is uncertainty for the e ect of news shocks on te economy? Does it
depend only on the level of uncertainty at the time of the shég or is there an uncertainty
transmission mechanism that in uences the e ect of a news skk throughout time? |
investigate these questions by providing two counterfacéls: what would happen to a
news shock (i) if uncertainty would remain unchanged acro$isne, or (i) if there was no
feedback e ect from uncertainty. Section 3.2 provides theaufi description of the procedure
for these two counterfactuals.

The rst counterfactual checks if the initial uncertainty condition matters for the e ect
of the news shock. Figure 8 presents the impulse responses ofeas shock identi ed
with a xed uncertainty. Dierently from Figure 6, the e ects of the news shock do
not change over time when the initial uncertainty conditionis xed. Figure 9 outlines
the importance of the initial uncertainty condition, by shaving the di erences between
the impulse responses with time-varying uncertainty and wh xed uncertainty. This is
constructed by taking the responses from Figure 6 and subttaty the responses from
Figure 8. The e ects of a news shock are more substantial in peds of high uncertainty,
con rming the level e ect that the initial uncertainty condi tion generates in the responses
to a news shock.

The second counterfactual checks if there is nonlinear fdeatk between uncertainty
and the news shock. Figure 10 presents the generalized impulesponses of a news
shock without feedback e ect from uncertainty. The patternof these responses is quite

similar to the responses from the full model, in which theresia feedback e ect from
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Figure 8 Time-varying e ects of news shocks over di erent facast horizons with xed
uncertainty

Note: The news shock is identi ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e ect of the news shodkquarters ahead from the point in time.

Figure 9 Dierences between responses to a news shock comgutath time-varying
uncertainty and with xed uncertainty

Note: The news shock is identi ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e ect of the news shodikquarters ahead from the point in time.
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uncertainty (Figure 6). However, these e ects di er in magniude. Figure 11 depicts the
di erences between the impulse responses with and withoutddback from uncertainty.
This is constructed by taking the responses of Figure 6 and duficting the responses
from Figure 10.

Figure 10 Time-varying e ects of news shocks over di erent fecast horizons with no
feedback e ect from uncertainty

Note: The news shock is identi ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e ect of the news shodikquarters ahead from the point in time.

Overall, the presence of an uncertainty feedback creates asitive bias in the e ect
of a news shock on consumption, GDP and investment. This care keasily observed by
averaging these time-varying impulse responses, as in Figur2. This Figure summarizes
the nonlinear feedback e ect of uncertainty over the news sick. On average, the feedback
e ect generates a positive medium-term e ect on utilizatio-adjusted TFP, investment
and GDP. Interestingly, the positive bias on investment pde after about 10 quarters, a
period in which there is still no positive bias on utilizatim-adjusted TFP. This is evidence
that investment is anticipating future expected productivty, in line with the ndings of
Beaudry and Portier (2006). In the long-term, this positivebias on utilization-adjusted
TFP, investment and GDP tends to die out. With regard to consumpon and real

personal income, there is a positive bias that tends to pessiin the long-term.
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Figure 11 Dierences between responses to a news shock comeputvith and without
feedback e ect from uncertainty

Note: The news shock is identi ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e ect of the news shodkquarters ahead from the point in time.

Figure 12 Percentiles of the di erences between responsesatoews shock computed with
and without feedback e ect from uncertainty

Note: The news shock is identi ed for each period in time under the procedure proposed
in Section 3.2. Each line corresponds to the deciles of the di erences between the news
shock impulse responses with and without feedback e ect from uncertainty, identi ed in
each point in time and calculated at the posterior mean. The red line is the median.
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In summary, the counterfactuals presented here indicate &h uncertainty and news
shocks are linked through two mechanisms: an initial condin e ect and a transmission
e ect. The initial condition e ect means that, if the initia | level of uncertainty in the
economy is high, the e ects of the news shock will also be higiihis evidence is in line
with the "good uncertainty' shock literature, described bere.

The transmission e ect is more complex. The empirical restsl from the second coun-
terfactual show that when macro and nancial uncertaintiesare allowed to react to news
shocks, the positive e ects of such news are ampli ed. Thesesults are in line with a new
stream in the literature on news and uncertainty shocks, wbi explores the dynamics
of uncertainty updating based on the arrival of news. ForniGambetti, and Sala (2017)
propose a model in which uncertainty is generated by news aliduture developments in
economic conditions. Uncertainty arises from the fact thathtese conditions are not per-
fectly predicted by the economic agents. Berger, Dew-Beckand Giglio (2017) de ne an
uncertainty shock as a second-moment news, or changes in éxpected future volatility
of aggregate stock returns. The authors argue that news alidhe squared growth rates
are changes in the conditional variance, which is equivaleto an uncertainty shock.

In summary, the results from the second counterfactual sugst that the arrival of
information about future technology makes the economic ages update not only their
expectations about future productivity, as in the news shdcliterature, but also their
expectations about macroeconomic and nancial conditionproxiesto uncertainty. This
process is continuous, with consecutive updates as the ete®f this new information
materialize. More broadly, the level of uncertainty react$o information about the state

of the economy, and the state of the economy reacts to the Iéw# uncertainty.
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6 Responses to macroeconomic and nancial uncer-
tainty shocks

In this Section | present generalized impulse responses ohgroeconomic and nancial
uncertainty shocks?® These responses help to better understand the link between-u
certainty and news shocks. The uncertainty shocks are dishances to the common
macroeconomic and uncertainty volatility factors, or a semd-moment shock to the vari-
ables. The benchmark results presented here consider theamauncertainty as the rst
orthogonalization position, and the nancial uncertainty as the last?!

Figure 13 shows the generalized impulse responses of a nahancertainty shock for
selected variables. The full generalized impulse resposis=n be found in Appendix J.
The most interesting result here is the e ect on utilizatioradjusted TFP. After the nan-
cial uncertainty shock, utilization-adjusted TFP increass in the medium-term, starting
from a zero e ect on impact ¢ = 0), and converging to zero in the long-term. This path
resembles the expected result of a news shock on this var@abr'his result is in line with
Cascaldi-Garcia and Galvao (2017), who show that a nancialncertainty shock foresees
a medium-term positive hike in utilization-adjusted TFP??

The similarity of the responses on utilization-adjusted TFPpresented here and in
Cascaldi-Garcia and Galvao (2017) are noteworthy, in the sge that the identi cation
method for the nancial shock is substantially dierent. While Cascaldi-Garcia and
Galvao (2017) identify the nancial uncertainty shock as tie orthogonalization that max-
imizes the variance decomposition of an observaljjeoxy of nancial uncertainty in the
short-term, here the nancial uncertainty shock is a second ament shock to a latent es-
timated nancial uncertainty measure from a stochastic vdatility process. Nevertheless,
the impact of nancial uncertainty on technology follows tre evidence from Cascaldi-

Garcia and Galvao (2017).

20Appendix F presents the procedure of identi cation of the macro and nancial uncertainty shocks
and the calculation of the generalized impulse responses.

21The alternative impulse responses considering the inverted ording ( rst nancial and second macro
uncertainty) are presented in Appendix I.

2]t is also robust to the alternative identi cation with nancial unce rtainty ordered rst, as presented
in Figure 1.1 in Appendix I.
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Figure 13 Impulse responses to a nancial uncertainty shock

Note: The uncertainty shocks are identied through Cholesky decomposition with
macroeconomic uncertainty ordered rst, and nancial uncertainty ordered last, as de-
scribed in Section 3.3. The generalized impulse responses of the uncertainty shock
are the average of 1,000 simulated random innovations, as described in Appendix F.
The shaded areas de ne the 68% con dence bands computed with 200 posterior draws.

The e ect of the nancial shock on other variables is distint from the utilization-
adjusted TFP. There is no signi cant e ect on consumption. GOP falls after the shock,
driven by a reduction on investment. Both GDP and investmentpaths converge to
zero in the medium-term, con rming the short-lived characgristic of uncertainty shocks.
There is a de ationary e ect, and the Federal funds rate goeslown to counteract the
recessionary impact.

Figure 14 presents the generalized impulse responses of anm@conomic uncertainty
shock on selected variables. The full generalized impulsesponses can be found in
Appendix J. Although smaller, the e ect on utilization-adjusted TFP is similar to that
observed in the nancial uncertainty shock, with a medium-rm positive e ect?® The

e ect on consumption, GDP and investment are virtually zero There is a negative impact

on hours worked, and a de ationary e ect in the medium-term.

23Similar results can be found in the alternative identi cation with  nancial uncertainty ordered rst,
as presented in Figure 1.2 in Appendix I.
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Figure 14 Impulse responses to a macroeconomic uncertainkosk

Note: The uncertainty shocks are identied through Cholesky decomposition with
macroeconomic uncertainty ordered rst, and nancial uncertainty ordered last, as de-
scribed in Section 3.3. The generalized impulse responses of the uncertainty shock are
the average of 1,000 simulated random innovations, as described in Appendix F. The
shaded areas de ne the 68% con dence bands computed with 200 posterior draws.

7 Conclusion

This paper shows that the positive economic e ects of news dhe future increase in
technology di er depending on the level of uncertainty of te economy. It contributes to
the literature on shocks driven by agents' beliefs in two way

First, | propose an innovative method of checking whether the ects of technology
news shocks change depending on the point in time at which & identied. By em-
ploying this identi cation strategy, | show that economic responses to a news shock vary
guantitatively across time. While the conventional Barsky ad Sims (2011) identi cation
is not robust to changes in the estimation period the results from this paper indicate
that processes with time invariant covariances may not be gpopriate for a news shock
identi cation. Moreover, the fact that the responses to new shocks vary signi cantly

over time helps to explain why there is still no consensus imé news shock literature

24See an empirical evaluation in the Introduction Section of this paper.
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about the e ects on macroeconomic variable?.

The second contribution is new evidence supporting a dynamielationship between
technology news and uncertainty. | propose a nonlinear mddeat allows a feedback
e ect between the level of uncertainty and the macroeconomiand nancial variables.
The e ects of news on consumption, GDP, investment and realgpsonal income are
ampli ed when the news shock hits the economy in periods ofdh uncertainty. The
results from two counterfactuals suggest that the size of ése e ects depends on the
initial degree of uncertainty (initial condition e ect) and on how expectations about
macroeconomic and nancial conditions are updated (transission e ect).

The initial condition e ect is in line with the idea of a ‘gooduncertainty’ shock, that
is, high uncertainty increases the likelihood of news shackCascaldi-Garcia and Galvao,
2017). Periods of high uncertainty are related to a higher pential return on investment,
increasing the range of growth options (Segal et al., 2015)Vhile uncertainty reduces
the utilization of production factors, it also creates an inentive to substitute less exible
for more exible capital (Comin, 2000, Bloom, 2009, Cascaldarcia and Galvao, 2017).

The transmission e ect relates to how uncertainty is updatedvith the arrival of posi-
tive technological news (Forni et al., 2017, Berger et al.p27). The second counterfactual
shows that the positive e ects of a news shock are even highehen allowing for a feed-
back to (and from) uncertainty. From the perspective of the aws shock literature, this
evidence implies that neglecting the uncertainty transmgon e ect leads to the conclu-
sion that the positive e ects of news shocks are weaker thahey really are. From the
perspective of the uncertainty literature, it raises the gestion of how the arrival of news,
and the realization of its economic e ects, in uences the waeconomic agents update

their expectations about macroeconomic and nancial contibns.

25See Beaudry and Portier (2014) for a review of the empirical evidence of mes shocks under di erent
assumptions and identi cation methods.
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A Appendix: Triangular estimation

In this Appendix | describe the triangular estimation procedre proposed by Carriero
et al. (2016c¢). Consider the model presented by the equatidnbut rewriting the reduced
form residuals ; from equation 2 as

2 3 2 3

2
1t 1 o 0]
w0
1
1

nit 8y1 Gy g

32 3
1;=2 0 "

0
. .., 1
2 21 ; (A1)

0

1=2
n;t n;t

w0
0 ;:tz 0 2t
0 0

where a,; are the elements of the matrixA , . Under this structure, it is possible to

rewrite each equation of the main VAR described in 1 and varidédj as

1=2 1=2

Yo (@1 1p 1ty 4 10 1)

X oe X (A.2)
= Aj;cyi:t ct Bc;jgt ct it it

i=1 c=1 c=0

where A!}) represents the coe cients of the matricesA;, and B; represents the coe -
cients of the matricesB;. The VAR can be estimated equation-by-equation following tls
structure by taking into account that, for equationj, the left-hand side is knowra priori :
it is the di erence betweeny;; and the residuals from the previousj( 1) equations. By
rescalingy;; as

1=2

Yei = VYo (&1 1f et it g j1:21;t L) (A.3)

it is possible to estimate equation A.2 as a standard genewmdd least squares (GLS)

model.

B Appendix: Steps of the MCMC algorithm

The MCMC algorithm for this estimation follows the steps andnotation proposed by

Carriero et al. (2016a), which | describe here. The condital posterior distributions for
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the draws described in this Section are detailed in Appendix.E
Step 1: Draw of the idiosyncratic volatilities.
Rescaling ; as v+ = A t, combined with the linear factor model for the log-volatilies

described by equation 3, it is possible to de ne the observah equations

8
5In(~ft +0  myInmg=inhy +In 7 ifj=21;:50,
; (B.1)

Nm+1;:5nNn

-Sln(j%t +¢) g Infi=Inhy +In § if

where n; and ¢; are the loadings drawn from the previous MCMC iterationg is a

small constant in order to avoid near-zero values, a1 is the states from the 10-state
mixture of normals draw from the previous iteration of the M®AC. Since j; is Gaussian
with unit variance, it is possible to produce an approximaté&aussian system conditional
onS;t .

| rst produce a draw for the j statesh;.r as
hitj 3 Serimar;for; (B.2)

using the Kim et al. (1998) algorithm, where collects the coe cients from the matrices

Ai, Bi, , Dj, the coe cients in the conditional mean of the idiosyncratc components

=( jo; j1), the elements of the matrixA o, and the elements of the volatility matrices
and ,asin

=(AiBiiiDii s Ag o) (B.3)

Step 2: Draw of the factor loadings.

Next, | produce a draw for the factor loadings ,; and ¢;, as
mis ti) s Phers Serimoer;for: (B.4)

The loadings can be drawn through a generalized least squaferm, conditional on
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the draws ofh,.r and S;.1, by transforming the observation equations as

8
, g mj Inmg+1In % ifj =21;:0m
In(~% + ¢ Inhy = (B.5)
g Infe+in % ifj=nn,+1;:5n
Step 3: Draw of the model coe cients and volatilities.
The posterior coe cients and volatilities collected in  are drawn as
Jomjs ot et Serymyr; fore (B.6)
Step 4: Draw of the macroeconomic and nancial states.
Next, the macroeconomic and nancial statesn;.+ and f .t are drawn as
Myt fir] 5 mys DT St (B.7)

by employing the particle Gibbs with ancestor sampling propsed by Andrieu et al. (2010)
and Lindsten et al. (2014) described in Appendix C.
Step 5: Draw of the 10-state mixture approximation.

Finally, | draw the 10-state mixture or normals from Omori et & (2007) as

Sit) b omys g horymer;foge (B.8)

C Appendix: Particle Gibbs with ancestor sampling

Consider a state space model as in

In(¥?+ ¢ Inhy=Inm¢+In % In?  20;sr) (C.1)

Inmy=Dylnmg 1+ m Ye 1+ Unes U IW(O; ) (C.2)

where In(# + ¢) is a rescaled combination of the residuals from the VAR basexh the

loadings j, Inh; is a rescaled combination of the idiosyncratic volatilitie Inhj,; , and In 2
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has a variance which is a rescaled combination of the 10-&ahixture of states drawS;.1.
Step 1: Draw of from the IW distribution.
Compute the error between Inm; from the previous iteration (1) and the predicted
Inmy, as in

Une =INmy * Dylnmy T+ o yi1 (C.3)

Draw ~ as following

!
X .

W d _+ ujp;d+T (C.4)

t=1

Step 2. Compute importance weights fot = 1.
De ne a matrix X (N; T), which collects theN particles. De ne the rst observation

of the Nth particle as the rst observation ofm! %, and zero for the other particles, as in
Xm(N; 1) =Inmi %1;1); Xm@:(N 1);1)=0: (C.5)
Compute In<Y) for each of thej =1 : N particles, as in
<9 =(n(v2+ ¢ Inhy) Xm(; 1): (C.6)

Compute importance weights by comparing the variance of th particles and the

S,.7 state draw, as in 0 1

() 2

In-%
w(j; 1) = exp % %ﬁg ; (C.7)

and normalizing

. w(j; 1
w(ii )= Pyt c#)
=1 W(; 1)
Step 3: Compute importance weights fot=2: T.
Compute N predicted m; based on the previous particles, as in
Inm(j;t) = (D Xm(it D+ yro): (C.9)
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Draw an index vectorind(N) that samples the particles fromP (ind(j) = j)/ w(1:
j;t 1), and ranging on the interval [IN] { these are the ancestor indexes. This index
will point out which particles will be collected in the curreat t-step for theN 1 rst

particles. Store the particles as in
Xn(;t) =In m(ind(j);t) + 2 randn(1;1); (C.10)
and set theNth particle as the previous iteration { 1) value for m;
Xm(N;t) =In mi (1;1): (C.11)
Compute In %(” for each of thej =1 : N particles as before, following
N0 =(n(v?+ ¢ Inh) Xm(;t); (C.12)

the importance weights as

0 1
In 20 2
) % 1 N _
W(J,t) = exp éT(t) X (C13)
and normalizing
. w(j;t)
w(j;t) = —! (C.14)

The last part of this step is de ning theNth ancestor index. In a conventional Particle
Gibbs, this is done by simply assigningnd(N) = N, ensuring that m! (1;t) from the
previous iteration is one of the particles. With the ancestosampling, a new value for
ind(N) is sampled to arti cially assign a history to this partial path, by connecting

m} %(1;t) to one of the particles. Formally, this sample is done by copaiting

|
i 17q. . 2°
Wos 1) = Wit ) exp S _MED (C.15)
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normalizing
Wind (Ja t )
J'N=1 Wind (J: t )

Wing (j;1) = P (C.16)

and drawingind(N) from P(ind(N) = j) / wing (j;t). Finally, store the ancestor indexes
ina matrix a(N;T) asa(l:N;t)=ind(1:N).

Step 4: Compute the nal Itered mi.

RearrangeX (j; t) in order to generate the trajectories of théN particles based on the
ancestor indexes stored ia(N; T) following the last orderinga(j; T ). Draw an indicator

J fromP(J =j)/ w(j;1:T), and set Inmi = X,,(J;1:T).

D Appendix: State-space representation

The model described by equations 1 and 5 can be combined andmiden in a state-
space representation. This transformation makes it easigr check the stationarity of the
system and to compute impulse responses.

Consider a model in which the macroeconomic and nancial fexs only depend on

their previous values D; lag order isk =1) and on y; ;. Equation 5 becomes
& =D1g 1+ Y1t U (D.1)

or simply

O =D1g 1+ Y1 Y2+t U (D.2)

Consider now that the main VAR (equation 1) has lag order oy, of p, | = 1 lag of

the macro and nancial factorsg,, and v; = Aol tlzz t. Rewrite equation 1 as
Vo= Ay 1+ i+ Ay p+ BoGi+ Big 1+ Apt 2y (D.3)
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substituting g; from equation D.2 in equation D.3, results in

Ye= A1yt 1+ it Ayt p+ Bo(D1G 1+ Ye 1 Ve 2+ U+

(D.4)
i+ Big 1+ At s
which can be rearranged as
Ye=(A1+ Bo )yt 1+(A2 Bo )yt 2+ 1+ Apyy p+ 1
(D.5)
i+ (Bp+ BoDy)g 1+ Boug + At Py
Now, this equation can be conveniently written in a state-sga form as in
2 3 2 32 3 2 - 32 3
Yi Fi Fo @t Fs Fa, . Vi1 Ayt 7 0 2 0 Bo, .t
Yo 1 ln, O @ 0 O Yt 2 O 0 O 0 o04p0
Sy A - S SR o7t ::: S A - S A
Yt p 0O O = In O0LOBY:ipa 0 0 0O 0O 07Zg0
O o 0 Dy O 1 0 0O 0 0 I, U
I {z
F
(D.6)
where
Fi1=(A1+ By );
F=(A2 Bo);
(D.7)
F3: Ap,
Fs=(B1+ BoDy):
The matrix ; takes the form
2 3
1w 0 =0
tzg 0 2t Oz (D.8)
0O O nit
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where each of its coe cients are a combination of an idiosynatic shock h;; and either

a macroeconomic factom; or a nancial factor f;, as in

8

2 m,™ hi; ifj =1;:5n,
it = S : (D.9)
Zf, 1 hy ifj =nmn+1;:5n

where the log of the idiosyncratic shocks In; follow an AR(1) process as in

Inhjy = o+ jalnhy 1+ e j=1;05n (D.10)

E Appendix: Priors and conditional posteriors

Here | present the prior and conditional posterior distribuions for the parameters and
coe cients for the MCMC steps explained in Appendix B. | follov the proposed priors

and notation from Carriero et al. (2016a), with priors de nel as

vedAi;Bi)  N(ved ,)i_,) i=1;u5p; (E.1)
g  N(_ o) 1=2:00m (E.2)

i NC 5 ) J =200 0m Nmag s 215 M; (E.3)
i NC5) T=1mm (E.4)

N(C ;) (E.5)

p 1G(d ;d); j =15 (E.6)

o W, _d,): (E.7)

Under these priors, the posterior conditional distributios follow

vedAi;Bi)jAo; ;m o1 forihiriyir N(ved a); a); i=1;:5p; (E.8)
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A B imoriforiheriyir NC s o) ] =25050 (E.9)

1jAiAe B s imaerfer;Seriyer NC ) J =200 Dy Nz s 250,
(E.10)
iAGAGB s mapriforheryar N(C ) J =10 (E.11)
JAAGBG s m o farhoriyar N(C ) (E.12)
(A Ae B m rfuriheryer 1G(d 5d); =150 (E.13)
uAiA B im arfrriheriyr IW( ,_5d ): (E.14)

The posterior 4 is drawn equation-by-equation through the triangularizabn method
described in Section A. The posteriors,j, and follow the results from the standard
linear regression model. The factor loadings are drawn following a GLS-based form
depending on the mixture states drawn for the volatilitiesas in Carriero et al. (2016a).

With regard to the priors, | adopt a Minnesota-type structurefor the VAR coe -
cients in A;. This model contains stationary and non-stationary variales, so the prior
coe cients of the stationary variables are set to 0, while tle prior coe cients of the non-
stationary variables are set to 1. The variance-covarianaeatrix _ , is diagonal, with

standard Minnesota shrinkage form, as in

8
2
% = ifi=j;
) ,
a = var[Ag]= % LIS (E.15)
(o0 )% if intercept or g:

wherel is the lag. The overall prior tightness ; is set here as 0.05, the cross-shrinkage
parameter , is set to 0.5 and the intercept shrinkage parameter, is set to 1,000. |
follow Carriero et al. (2016a) by also setting a prior variare for the uncertainty factors
Inm; and Inf, equal to the intercept. The variance parameters; come from the residual
variances of anAR (p) process for each variable.

The prior means and variances for the remainder of the coe ents are presented in
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Table E.1.

Table E.1 Mean and variance priors

Mean Variance Degree of freedom
a 0 10 -
(ios i) (In %0) (2;0:4%) -
i, forj =2;:50m, 1 022 i

andj = Nps2;:in
0:8, for rst own lag,

-2
Di 0 otherwise 0:2 )
0 012 -
i 0:03 - 10
u 0:01 10
Inmg and Inf 0 - -
In hi;O In |2 2 -

There is discussion in the literature on the impact of the par on the componentsa;
of matrix Ao. The model may be dependent on the ordering of the variableslong with
the priors imposed ong;. This is an issue primarily in using this model for forecasty
purposes. | address these questions by following Carrieroa¢ (2016a) and Cogley and
Sargent (2005) and imposing a prior fairly uninformative fog;, with mean of 0 and
variances of 10. In addition, the identi cation procedure b maximizing the variance
decomposition over a prede ned forecast period is orderveriant, avoiding the problem
of choosing the wrong order of variables.

Finally, the dependence of the uncertainty factors on laggedhlues ofy; creates an
(indirect) extra dependency of current values of; to lagged values not captured by the
main VAR. This dependency is clearly noticed when the main VARSI rewritten in a
state-space model, as in equation D.6, where the coe cientsare also part ofF; and
F,. | follow strategy similar to Mumtaz and Theodoridis (2015)y imposing additional

shrinkage to the variance of , which | set to I—E .
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F Appendix: Generalized impulse responses proce-
dure

In this Appendix | present the procedure of estimating the gearalized impulse responses
for the news shock and the uncertainty shocks.

Due to the non-linearity that the time-varying volatilitie s bring to the model, the
feedback e ect that the variables cause to the volatility tmough the uncertainty factors,
and the feedback of the uncertainty factors on the mean of thariables, it is not possible
to employ a conventional impulse response setting in this®a The strategy here is to
use an adaptation of the procedure proposed by Koop et al. @® and Pesaran and
Shin (1998), taking into account that the shocksy, = A,*! % . are orthogonal by
construction.

The idea is to create two distinct forecast paths for the vaablesy;, a baseline and a
shocked containing the shock of interest (namely,). The generalized impulse responses
are the di erence between these two paths. To accomplish #jiit is necessary to construct

a set of random shocks ;; over the forecast period that mimic the behavior of;. The

generalized impulse response (Gl) ofraset of randomly drawn! |, is given by
GI'(ki 3':Ze )= Elyed i3V 0 Ze 1 ENVGd! s Ze 1 (F.1)

wherek is the forecast point in time,Z; is the information set containing all the known
history up to time t de ned asZ; = (Y p;5 Y6 pri@),2°  collects the coe cient
matrices as = [A;;Bi;Di; 5 ji I, EViaid 3! j5Zt] is the shocked path ofy; and
ElYVi+ ! 1 ; Zt] is the baseline path of the baseline path of.

Repeat the procedure of equation F.R times, and take the averages oveR of these
paths. Koop et al. (1996) show that alR ! 1 , by the Law of Large Numbers these

averages will converge the conditional expectatiortS[y:.yj j;Z:; ] and E[yw«jZe; |,

26Where g = (In mg;Infy).
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and the generalized impulse response can be constructed as

Gl(k; j;Zt; )= ElVirw 525 1 EliewiZes | (F.2)

F.1 Generalized impulse responses for a news shock

For the news shock case, | start with the state-space procedupresented in equations
D.6 and D.9 (Appendix D). The news shock is identi ed as the ohogonalization of
the shocks on the mean of the variables that maximize the vance decomposition of one
objective variable over a prede ned forecast period. It fidws that the identi cation relies
on an orthogonalization of the innovations,. By construction, ; is independent from
the idiosyncratic innovationse;; and the uncertainty innovationsuy: and us; . Since |
am only interested in ; for the news shock identi cation, | setg; = 0, un; = 0 and
urt = 0 in this procedure.

With this simpli cation, it is possible to rewrite equations D.6 and D.9, respectively,

as

(F.3)

and

|nhj;t = j;0+ j;llnhj;t 1) j:]_;:::;n: (F4)

Now that the model has only a single set of innovations, the generalized impulse
responses for the news shock can be constructed with the doling steps. The identi -
cation of the news shock is dependent on the total variancenc the variance changes

over time, so the following procedure is executed at each pbin time. This allows the
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construction of a time-varying identi cation, with di ere nt impulse responses at every
point in the time span considered.

Step 1: Construct a baseline path.

Considering one drawr of the random innovations! {; and K being the forecast
period, construct by simulation a baseline path front + 1 to t + K for the idiosyncratic
innovations Inh{; using equation F.4, and fory{p.c., Gipase’’ @Nd  {p.ee USING equation
F.3.

Step 2: Construct a shocked path for a utilization-adjusted TFP shock.

Take the same draw from Step 1, and the idiosyncratic innovations I, . For t+1,
construct a one standard deviation shock on utilization-gdsted TFP by adding to! |,
the shock 1rp, which is a vector with 1 in the rst position (where utilization-adjusted
TFP ordered rst in the VAR) and zeros elsewhere. Construct by ismulation a TFP
shocked path fromt + 1 to t+ K for yfep., Ofep?® and  Gpp, Using equation F.3.

Step 3. Construct the impulse responses for a TFP shock.

Following equation F.1, construct the impulse responses far utilization-adjusted
TFP shock as the di erences between the shocked and the baselipaths for the drawr
as

Glrepe (K tepi! 2t ) = ENekrrr s Gewtrrd Trps tektrrs ! jes 2o ] (F.5)

E[Yt+ kbases G kebase) {+k;base;!jr;t;zt; I

Step 4: ldentify the news shock.

Identify the news shock for the draw as the orthogonalization on ; that maximizes
the variance decomposition of utilization-adjusted TFP ovwea prede ned K forecast
period?® The idea of identifying the news shock for every draw is in line with the
discussion about the di erence between structural and motielenti cation from Fry and
Pagan (2011). Every draw is a realization of a di erent model among in nite alterrative

models, leading to unique identi cation of the news shock. e best approximation of

2"Where Otbase = (IN Mepase ; IN fipase ).
BWhere gerrp = (IN Myrep ;Infirep ).
29For this paper, | follow Barsky and Sims (2011) and setK = 40 quarters ahead.
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the structural identi cation will be the average across allr impulse responses after the
news shock is properly identi ed for each di erent model.
Following the identi cation procedure proposed in Sectior3.1, the news shock

t;news

can be identi ed as

K 0

0 Gl (K 1rpi! i Zes 5 )Glrepa (K Tepi! 325 5 )

tlznews = arg max = e P KTFP . 1 t1:2 IFF;iz = 0 e ;

k=0 B.A t+kTFP (A t+k;TFP)q31
(F.6)
subject to
A Y(1;))=0; 8> 1,

(1;1)=0; (F.7)

0 —

where B, is the line correspondent to the utilization-adjusted TFP ce cients in the
state-space representation described in equation D.6 (Appéx D).

Step 5: Construct a shocked path for the news shock.

Take the same drawr from Step 1, and the idiosyncratic innovations I, . For
t + 1, construct a TFP news shock by adding the shock,,s t0 ! ;.;. Construct by
simulation a news shocked path fromi+1to t+ K for y{,cws, Ginews > and  {ews USING
equation F.3.

Step 6: Construct the impulse responses for the news shock.

Following equation F.1, construct the impulse responses ftine news shock as the
di erences between the shocked news path and the baselinettpdrom Step 1 for the
draw r as

r .or ar o . — r . ior .or aqr o .
Glt;news(k' t;news 1 ! jit 1Zt1 ) - E[yt+ k;news » gt+ k;newsJ t;news  t+k;news? ! jit 1Zt’ ]

(F.8)
E[ytr+ k:base’ gtr+ k;basej {+ k;base’ ! jit s Zy; ]:

Step 7: Construct the average impulse responses for the news shock.

Repeat Steps 1 to 6 foR number of times and form the averages of the shocked news

3OWwhere Otnews = (IN Menews 3 IN T rnews )-
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and baseline paths across aR draws of! j;+ as

1 R
Yi+ kenews (K tnews: Zt; ) = § y{_'_ k;news( tr;news; {_'_ Kinews 1 ! jr;t Zy, ),
r=1
. 7. _ 1 X r r .o o7 .
G+ k;news(k, tnews ; Zt; ) = ﬁ G+ k;news( tnews '  t+k;news’ ! jit 2 )
”l (F.9)
1
Yerkbase(K; Zt; ) = R Yirkpasel i+ kpase: ! jr;t Zy )
r=1
.7 . _1 r r r o7 .
G+ k;base(k, Ziy; )= ﬁ O+ k;base( t+k;baser * jit 2ty )
r=1

Lastly, construct the nal generalized impulse response®if the news shock as the

di erences between these averages, as in

Glinews (K; tnews:Zt; ) = [ Vit knews (Ki tnews:Zt; ) G+ knews (Ko tnews: Zt; )]
(F.10)

[Ver kbase(Ks Zt; ); Qv kebase(K; Ze; )]:
After testing di erent R sizes, | seR = 1;000 for this paper. Since changing froiR =
1,000 to R = 5;000 did not present any noticeable di erenceR = 1;000 is su ciently

large to achieve the di erence between conditional expedians expressed in equation

F.2.

F.2 Generalized impulse responses for uncertainty shocks

Here | describe the procedure for constructing the generai impulse responses to macro
and nancial uncertainty shocks.

Step 1: Construct a baseline path.

Considering one drawr of the random innovations! {; and K being the forecast
period, construct by simulation a baseline path fronT +1 to T + K for the idiosyncratic
innovations Inhj, using equation F.4, and fol{y,ce, Gipase @Nd  {pase USING €quation F.3.

Step 2: Construct a shocked path for each of the uncertainty shocks.

Take the same draw from Step 1, and the idiosyncratic innovations I, . Construct
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the macro and nancial shocks through a lower triangular Chesky decomposition as

macro = chol( y; lower’) qm;
_ (F.11)

L =chol( y;'lower) " ;
whereq™™ jsa 2 1 vector with 1 in the rst position and zero in the second, and{" is
a 2 1 vector with zero in the rst position and 1 in the second. Foil +1, construct a one
standard deviation shock on macro uncertainty by substitibg (Unm:; Ur )° in equation
D.6 for | Construct by simulation a macro shocked path fronT +1to T + K for

macro *

and ¢ using equation D.6. Repeat the process for the nancial

r r
yt;macro ' gt;macro t;macro

uncertainty by using ;,, to construct paths foryi, , giqi, and i, -
Step 3: Construct the impulse responses for the uncertainty shocks.
Following equation F.1, construct the impulse responses ftre macro and nancial

shocks as the di erences between the shocked and the baselpaths for the drawr as

Gl rrnacro (k; rfnacro; ! jr;t ;ZT; ) = E[y'r|'+ k;macro , ng+ k;macroj rrnacro; _r|_+ k;macro , ! jr;t ;ZT; ]
E[YT+kbaser Or+ kibasel T+ kibases | jr;t A M
Gl (K5 fin ;!jr;t v Z1y )= EVtetin i Orektin d fin s T+kifin ;!jr;t Z7; ]
E[y%+ k;base; ng+ k;basd. [I'+ k;base; ! jr;t 2T, ]:

(F.12)

Step 4. Construct the average impulse responses for the uncertainty shocks.

Repeat Steps 1 to 3 foR number of times and form the averages of the shocked and
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baseline paths across alR draws of! ;+ as

1 R
Yt+ k;macro (k; t;macro WA ) = ﬁ ytr+ k;macro( tlzmacro : tr+ k;macro - ! jr;t AY );
r=1
1
Vit kein (Ko efin 52 ) = R Yesketin Ctfin + teketin o' jr 26 )
r=1
(k Z )_l r r . r .|I’.Z. .
G+ k;macro (K5 tmacro 3 £t; - R O+ k;macro( t;macro * t+k;macro* jit <t )1
r=1 (F.13)
1
O+ kifin (K; tfin 32 ) = R O iefin (ofin 5 teketin oL jo 26 )
r=1
kZ . —_ i r r - r Z . .
yt+k;base( y &ty )_ R yt+k;base( t+k;baser * jit 1+ &t )’
r=1
kZ . —_ 1 r r | I’ Z . .
gt+k;base( y &ty )_ R gt+k;base( t+k;baser = jit 1 &1 )
r=1

Lastly, construct the nal generalized impulse responsesifthe macro and nancial

shocks as the di erences between these averages, as in

Glimacro (Ki tmacro s Zt; ) = [ Yer kimacro (K tmacro s Zts )i G+ kimacro (K; tmacro s Zt5 )]
[Vi+ kbase(K; Zt; ); G+ kibase(K; Zes )]
Glisin (K win 3 Z6 ) = [Yerwstin (K tfin s Zes )i Grietin (K efin 3 Zes )]
[Vi+ kbase(K; Zt; ); G+ kibase(K; Zes )]
(F.14)

As it is the case for the news shock, | seR = 1;000 for the uncertainty shocks,
which is enough to achieve the di erence between conditiohaxpectations expressed in

equation F.2.
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G Appendix: Data description

Table G.1 Description of macroeconomic variables

Name Description Source
1 Utilization- Utilization-adjusted TFP in log levels. Computed by Fernald's website
adjusted TFP  Fernald (2014). (Nov/2015)

2 Consumption

Real per capita consumption in log levels. Cquted Fred
using PCE (nondurable goods + services), price de ator
and population.

3 Output

Real per capita GDP in log levels. Computed using the Fred
real GDP (business, nonfarm) and population.

4 Investment

Real per capita investment in log levels. Comped using Fred
PCE durable goods + gross private domestic investment,
price de ator and population.

5 Hours Per capita hours in log levels. Computed with Total Fred
hours in nonfarm business sector and population values.

6 Prices Price de ator, computed with the implicit price de ator Fred
for nonfarm business sector.

7 FFR Fed funds rate. Fred

8 Payroll Total nonfarm payroll: All employees in log levels. Fred

9 IP Industrial production index in log levels. Fred

10 Help to unemp. Help wanted to unemployment ratio. Fred

11 Pers. income Real personal income in log levels. Fred

12 M&T sales Real manufacturing and trad sales in log levels. Fred

13 Earnings Average of hourly earnings (goods producing) iod lev- Fred
els.

14 PPI Producer price index ( nished goods) in log levels. ed

Note: All for the 1975Q1-2012Q3 period. Monthly series converted to quarterly by averaging over

the quarter.
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Table G.2 Description of nancial variables

Name Description Source
1 Spread Di erence between the 10-year Treasury rate and theFred
FFR.
2 S&P500 S&P500 stock index in logs levels. Fred
3 S&P dividend S&P dividend yield, in log and annualized. Fred
yield
4 EBP Excess bond premium as computed by Gilchrist and Za-Gilchrist's website
kragek (2012). (Mar/2015)
5 Excess returns CRSP excess returns, in log and annualized. French's  website
(Jul/2016)
6 SMB Small minus big risk factor, in log and annualized. Frem's  website
(Jul/2016)
7 HML High minus low risk factor, in log and annualized. Frencls' website
(Jul/2016)
8 Momentum Momentum, in log and annualized. French's  websit
(Jul/2016)
9 R15-R11 Small stock value spread, in log and annualized. eRch's  website
(Jul/2016)
10 Ind. 1 Consumer industry sector-level return, in log andrmu- French's  website
alized. (Jul/2016)
11 Ind. 2 Manufacturing industry sector-level return, in lg and French's website
annualized. (Jul/2016)
12 Ind. 3 High technology industry sector-level return, in lgp and French's  website
annualized. (Jul/2016)
13 Ind. 4 Health industry sector-level return, in log and anral- French's website
ized. (Jul/2016)
14 Ind. 5 Other industries sector-level return, in log and amal- French's website
ized. (Jul/2016)

Note: All for the 1975Q1-2012Q3. Monthly series converted to quarterly by averaging over the
quarter.
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Table G.3 Macroeconomic and nancial uncertainties

Name Description Source
Financial Uncertainty Measures

1 Realized Realized volatility computed using daily returns using CRPS
Volatility the robust estimator by Rousseeuw and Croux (1993).

2 VXO Option-implied volatility of the SP100 future index. CBOE

Available from 1986Q1.

3 LMN-n-1 Financial forecasting uncertainty computed by Ludvigson's

4 LMN-n-3 Ludvigson et al. (2016). -1 is one-month-ahead, -3 is website

5 LMN-n-12 three-months and -12 is one-year ahead. (Feb/2016)
Macroeconomic Uncertainty Measures

1 Policy Economic Policy Uncertainty Index in logs computed by Bloom's  website
uncertainty Baker et al. (2016). (Mar/2016)

2 Business Business forecasters dispersion computed by BachmanAER website
uncertainty et al. (2013) up to 2011Q4.

3 SPF SPF forecasters dispersion on one-quarter-ahead Q/QPhiladelphia Fed

disagreement  real GDP forecasts computed using the interdecile range.

4 LMN-macro-1  Macro forecasting uncertainty computed by Lwdgson  Ludvigson's
5 LMN-macro-3 et al. (2016). -1 is one-month-ahead, -3 is three-monthswebsite
6 LMN-macro-12 and -12 is one-year ahead. (Feb/2016)

Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly
by averaging over the quarter.
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H Appendix: Volatilities

Figure 15 Volatilities of macroeconomic variables

Note: The estimated volatilities of macroeconomic variables are composed of an id-
iosyncratic component and the common macroeconomic volatility factor weighted by
a loading ;. The dotted lines de ne the 68% con dence bands computed with
200 posterior draws. The macroeconomic variables are described in Table G.1.

Figure 16 Volatilities of nancial variables

Note: The estimated volatilities of nancial variables are composed of an id-
iosyncratic component and the common nancial volatility factor weighted by
a loading ;. The dotted lines dene the 68% condence bands computed
with 200 posterior draws. The nancial variables are described in Table G.2.
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| Appendix: Alternative ordering of uncertainty shocks

Figure 1.1 Impulse responses to a nancial uncertainty shockith nancial uncertainty
ordered rst

The uncertainty shocks with alternative ordering are identied through Cholesky
decomposition with nancial uncertainty ordered rst, and macroeconomic un-

certainty ordered last, as described in Section 3.3. The generalized im-
pulse responses of the uncertainty shock are the average of 1,000 simu-
lated random innovations, as described in Appendix F. The shaded ar-

eas dene the 68% condence bands computed with 200 posterior draws.

Figure 1.2 Impulse responses to a macroeconomic uncertaisfyock with nancial uncer-
tainty ordered rst

Note: The uncertainty shocks with alternative ordering are identied through
Cholesky decomposition with nancial uncertainty ordered rst, and macroeco-
nomic uncertainty ordered last, as described in Section 3.3. The general-
ized impulse responses of the uncertainty shock are the average of 1,000 sim-
ulated random innovations, as described in Appendix F. The shaded ar-
eas dene the 68% condence bands computed with 200 posterior draws.
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