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Abstract

In this paper I investigate the empirical relationship between agents' responses
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I show that the economic responses to news shocks change substantially over time,
and that this dynamic couples with periods of high and low uncertainty. Periods
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1 Introduction

How do economic agents react to new information about future technological improve-

ments? Although much has been done by the literature on business cycles driven by

agents' beliefs to answer this question,1 the results are not conclusive. Conventional

wisdom is that the expectation of technological progress produces positive economic out-

comes, but the empirical research still disagrees on the size and direction of this e�ect.

In this paper, I show that a plausible reason for these di�erences is that agents react

di�erently over time to news about technology. More importantly, these changes are

intrinsically related to the degree of uncertainty about the economy.

The idea behind business cycles driven by `news shocks' { changes in the future total

factor productivity (TFP) that are foreseen by the economic agents (Beaudry and Portier,

2006) { is that technological innovations take time to have an impact in the economy.

Part of this technological impact is foreseen by the economic agents, who react to it in

the present. A new oil discovery is an example of a news shock.2

On an aggregate level, the literature on technological newsshocks shows that positive

news generates long-term co-movement among GDP, consumption and investment, and

it is de
ationary in the medium-term. 3 However, there is still an ongoing discussion,

both theoretical and empirical, about (i) the extent to which this shock explains business

cycles, (ii) how quickly one would observe an e�ect on productivity, and (iii) the e�ect

on other important macroeconomic variables. For example, there is contradictory em-

pirical evidence about the e�ect of a news shock on hours worked. While Beaudry and

Portier (2006) show that a news shock generates a positive and signi�cant e�ect on hours

(consistent with the results from Christiano, Eichenbaum,and Vigfusson, 2003), Barsky

and Sims (2011) present a negative e�ect of news on hours (in line with the technological

1See, for example, Beaudry and Portier (2006), Jaimovich and Rebelo (2009), Barsky and Sims (2011),
Kurmann and Otrok (2013), Schmitt-Grohe and Uribe (2012), Blanchard, L'Huillie r, and Lorenzoni
(2013), Forni, Gambetti, and Sala (2014), Beaudry and Portier (2014), Levchenko andPandalai-Nayar
(2015), Vukoti�c (2017) and Cascaldi-Garcia and Galvao (2017).

2Although it will take years to be e�ectively explored, the expectati on of future higher oil production
induces the companies to invest now. Arezki, Ramey, and Sheng (2017) explore the news shock properties
related to oil discoveries.

3As demonstrated by Beaudry and Portier (2006), Barsky and Sims (2011) and Beaudryand Portier
(2014).
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shock from Gal��, 1999).

In fact, both results can be empirically observed just by changing the time-span of

the estimation. Figure 1 presents the deciles of the impulse responses after a news shock

identi�ed over di�erent periods in time, with a 20-year rolling window from 1975Q1

to 2012Q3. On average, the e�ect of a news shock on hours worked is positive in the

medium-term, and negative in the long-term. However, depending on the identi�cation

period considered, the e�ect on hours can be positive in the medium-term and converging

to zero, or zero in the medium-term and negative in the long-term.

Figure 1 Percentiles of responses to news shocks over di�erent time periods

Note: Impulse responses of a news shock computed over a rolling window of 20
years, with quarterly data ranging from 1975Q1 to 2012Q3. The �rst window is
from 1975Q1 to 1994Q4, while the last one is from 1992Q4 to 2012Q3. Each
line corresponds to the deciles of the impulse responses calculated at the poste-
rior mean from the 71 rolling window estimations, while the red line is the me-
dian. The identi�cation follows the Barsky and Sims (2011) methodology, in a
large Bayesian VAR consisting of the variables described in tables G.1 and G.2.

While the e�ect on hours worked changes both quantitatively and qualitatively, there

are still di�erences in the size of the responses of real macroeconomic variables. Figure 1

shows that, on average, a news shock leads to a long-term positive e�ect on consumption,

GDP and investment. However, depending on the time-span considered, this e�ect may

be substantially stronger or converge to zero, with no long-term e�ects.

The economic e�ects of a news shock are far from robust to timechanges. More

broadly, these discrepancies show that the agents react to information about future tech-
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nological improvements in di�erent ways over time, and raises the question of whether

such behavior is random or systemic. This question can be addressed by studying how

the economic agents acquire information about future productivity, for example through

the �nancial market.

Shen (2015) argues that agents are more responsive to information when signals are

su�ciently precise. Uncertainty plays a role in how information is assimilated by the

agents: information can be interpreted in di�erent ways in periods of high or low un-

certainty, indicating a potential amplifying e�ect of news shocks through an uncertainty

transmission channel.

The rolling window identi�cation exercise supports this relationship between news

about future productivity and uncertainty. Figure 2 presents the long-term e�ects of a

news shock on consumption identi�ed in a 20-year rolling window, and compares it with a

measure of macroeconomic uncertainty.4 There is a clear period of high long-term e�ects

until 2001, followed by a period of low long-term e�ects, increasing again after 2007.

This behavior is systematic, and matches with periods of high and low macroeconomic

uncertainty.

In this paper, I propose a model and identi�cation procedureto investigate whether

agents change the way they respond to news about future productivity over time, and if

this behavior depends on economic uncertainty. Investigating for heterogeneous responses

over time means that the news shock identi�cation should allow for nonlinear and time-

varying models. Investigating for the interaction between uncertainty and news shocks

means that such a model should be 
exible enough to capture systemic changes in the

economic responses to a news shock based on the level of uncertainty.

The premise of the model is that uncertainty measures the agents' expectations about

current and future economic conditions. It is reasonable tothink that these expectations

should also be updated when the agents receive news about future higher productivity. In

other words, the level of uncertaintyendogenouslyresponds to exogenous news shocks. To

meet these requirements, I employ a stochastic volatility model that treats macroeconomic

4Macroeconomic uncertainty measure calculated by Ludvigson, Ma, and Ng (2016).
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Figure 2 Long-term e�ects of a news shock on consumption and macroeconomic uncer-
tainty

Note: In red: Mean of a macroeconomic uncertainty measure calculated by Lud-
vigson et al. (2016). In blue: Long-term e�ects of a news shock on consump-
tion. Long-term de�ned as 40 quarters ahead of the news shock. The news
shock is computed over a rolling window of 20 years, with quarterly data rang-
ing from 1975Q1 to 2012Q3. The �rst window is from 1975Q1 to 1994Q4, while
the last one is from 1992Q4 to 2012Q3. The x-axis shows the mid-point of the
window. The identi�cation follows the Barsky and Sims (2011) methodology, in
a large Bayesian VAR consisting of the variables described in tables G.1 and G.2.

and �nancial uncertainties as latent variables.

The baseline model builds upon Carriero, Clark, and Marcellino (2016a), as a nonlin-

ear stochastic volatility Bayesian vector autoregressive(VAR) model for large datasets.

With this structure, it is possible to identify �rst moment shocks, as news shocks, allowing

for unrestricted interrelationship between the �rst and second moments of the data. The

estimated volatilities are divided into two components: anidiosyncratic and a common

component. The common component is either a latent factor across all macroeconomic

variables included in the VAR, or across all �nancial variables. These common factors

are the proxies for macroeconomic and �nancial uncertainties. The common volatility

factors are included in the VAR, contemporaneously a�ecting the conditional mean of

the variables. Finally, the common volatility factors also depend on the lagged variables,

creating a complete nonlinear feedback e�ect between �rst and second moments of the

variables.

4



I also propose an identi�cation method for news shocks that extends the current

standard procedure for nonlinear and time-varying cases. The identi�cation method is

a generalization of the Barsky and Sims (2011) procedure of maximizing the variance

decomposition of utilization-adjusted TFP over a prede�nedforecast period. Instead of

assuming a constant variance, the identi�cation procedureproposed here explicitly ac-

counts for potential changes of the total forecast error variance at each point in time.

Moreover, I modify the identi�cation strategy such that it t akes into account the nonlin-

ear relationship between variables and their volatilities(volatility in mean) through the

construction of generalized impulse response functions.

I bring two contributions to the empirical literature on measuring the economic e�ects

of news shocks. First, I evaluate whether the impact of a news shock changes over

time and whether the theoretical assumption of positive co-movement5 holds in di�erent

periods. The evidence provided here of heterogeneous responses over time indicates that

news shock identi�cations based on processes with time invariant covariances may not be

appropriate.

Second, I show that news shocks interact with uncertainty. The results indicate that

there is a close link between the arrival of information about future productivity and how

this information is absorbed by the agents. This information is interpreted in di�erent

ways in periods of high or low uncertainty, in
uencing the impact of the news. The

positive economic e�ects led by technology news are systematically higher in periods

of high uncertainty, depending on the initial degree of uncertainty (level e�ect) and

on how agents update their expectations about macroeconomic and �nancial conditions

(transmission e�ect).

These results are consistent with Bloom (2009)'s interpretation of an overshooting of

productivity in the medium-term after a period of high uncertainty. Productivity grows

as �rms address their pent-up demand for investments, and substitute less 
exible for

more 
exible capital (Comin, 2000). Cascaldi-Garcia and Galvao (2017) show that high

uncertainty increases the likelihood of news shocks, creating a `good uncertainty' e�ect.

5Beaudry and Portier (2006).
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This paper is aligned with literature about the relationship between news shocks

and �nancial markets. Beaudry and Portier (2006) and Barskyand Sims (2011), for

example, show how the stock market reacts to news shocks. Kurmann and Otrok (2013),

Cascaldi-Garcia (2017) and Kurmann and Sims (2017) debate the e�ect of a news shock

on short and long-term interest rates. G•ortz, Tsoukalas, and Zanetti (2016) present the

role of news shocks in light of propagation through frictions in �nancial intermediation.

This paper also relates to an extensive literature on stochastic volatility VAR models.

Mumtaz and Zanetti (2013), for example, allow for a lagged feedback of the volatilities to

the mean. Alessandri and Mumtaz (2014), Shin and Zhong (2016)and Carriero, Clark,

and Marcellino (2016b) propose models with a contemporaneous feedback of a common

volatility factor to the mean.

The outline of the paper is as follows. I present the underlying model that allows

for stochastic volatility in mean and the estimation procedure in Section 2. Section 3

introduces an identi�cation procedure for the news shock that takes into account nonlinear

and time-varying models, and a procedure for identifying uncertainty shocks. Section

4 presents the estimated latent macro and �nancial uncertainty measures. Section 5

summarizes the results for a news shock and its relations with uncertainty measures,

while Section 6 describes the results of macroeconomic and uncertainty shocks. Section

7 concludes this paper.

2 A stochastic volatility in mean model

The empirical model aims at allowing a full interaction between uncertainty and macroe-

conomic variables so that orthogonal shifters of �rst and second moments can be identi-

�ed. The proposed model setup is a large heteroskedastic VAR built upon Carriero et al.

(2016a), in which the individual volatilities are a combination of a common uncertainty

factor and an idiosyncratic volatility component. I modifyits baseline framework to han-

dle variables in levels. The choice of two common factors follows the recent literature on

unobserved uncertainty components as a way of separating macroeconomic and �nancial
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sources of uncertainty (Jurado, Ludvigson, and Ng, 2015 and Carriero et al., 2016a).

The non-observed macroeconomic and �nancial factors (proxies for macro and �nan-

cial uncertainties) are included in the conditional mean ofthe VAR, which allows for a

contemporaneous e�ect on the variables. In addition, the factors are dependent on the

lagged variables, permitting a nonlinear feedback of the variables on their volatilities.

2.1 Model description

The model is estimated as a structural nonlinear VAR, withyt representing a (n � 1)

vector that stacks thenm macroeconomic endogenous variablesym;t and the nf = n � nm

�nancial endogenous variablesyf;t , in levels, as inyt = ( ym;t ; yf;t ). gt is a (2� 1) vector

that stacks the non-observed macroeconomic and �nancial uncertainty factors, denoted

as gt = (ln mt ; ln f t ). Here renamed as `Main VAR' for notation purposes, the model is

represented under the reduced form

yt = A 1yt � 1 + ::: + A pyt � p + B 0gt + ::: + B lgt � l + vt ; (1)

whereA i are (n � n) matrices that collect the coe�cients of the lags ofyt from 1 to p, B i

are (n � 2) matrices that collect the coe�cients of the lags ofgt from 0 to l. This setup

is similar to a VAR-X con�guration, where gt is modeled as an exogenous component.

The reduced form shocksvt are modeled as

vt = A � 1
0 � 1=2

t � t ; � t � iid N (0; I ); (2)

whereA 0 is a lower (n � n) triangular matrix with ones in the main diagonal, and� t is

the time-varying (n � n) diagonal matrix that collects the variance of each variable. Each

element of � t is composed of an idiosyncratic component and a common uncertainty

factor, which may be macroeconomic or �nancial depending onthe chosen variable. The

�rst nm variables form the macroeconomic factor measure, while thenf = n� nm variables
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form the �nancial factor measure. The elements of� t (in logs) are de�ned as

ln � j;t =

8
>><

>>:

� m;j ln mt + ln hj;t if j = 1; :::; nm

� f;j ln f t + ln hj;t if j = nm + 1; :::; n
; (3)

where� m;j and � f;j are the individual loadings to the common macroeconomic and�nan-

cial factors, respectively. For identi�cation purposes, Iset � m;1 = 1 and � f;n m +1 = 1.

The common macroeconomic factor is part of the volatility ofall macroeconomic

variables, and the �nancial factor is part of the volatility of the �nancial variables. The

idiosyncratic component lnhj;t follows anAR(1) process of the form

ln hj;t = 
 j; 0 + 
 j; 1 ln hj;t � 1 + ej;t ; j = 1; :::; n; (4)

where et = ( e1;t ; :::; en;t )0 is jointly and independently distributed as iid N (0; � e), and

� e = diag(� 1; :::; � n ).

I de�ne the common macroeconomic and �nancial volatility factors as proxies for

macroeconomic and �nancial uncertainty measures, respectively. These uncertainty mea-

suresgt = (ln mt ; ln f t ) also follow a VAR structure, and is referred to as `Uncertainty

VAR' for notation purposes. The Uncertainty VAR is modeled as

gt = D 1gt � 1 + ::: + D kgt � k + � � yt � 1 + ut ; (5)

whereD i are (2� 2) matrices that collect the coe�cients of the lags of the uncertainty

factors gt from 1 to k. � is a (2� n) matrix that collects the coe�cients of the lagged

variables yt (in di�erences). The shocks to the uncertainty factorsut = ( um;t ; uf;t ) are

independent fromet and � t , with mean 0 and full covariance matrix de�ned as

� u =

2

6
4

� n+1 � n+3

� n+3 � n+2

3

7
5 : (6)

The covariance matrix of the uncertainty measures is purposely constructed as full,
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to allow for co-movement between macroeconomic and �nancialuncertainty measures. I

adapt the model structure by using laggedyt variables in di�erences and not in levels.

Carriero et al. (2016a) present a rich discussion on the suitability of this structure for

identifying macroeconomic and �nancial uncertainties, and how this setup relates to the

stochastic volatility literature.

The model embeds the assumption that uncertainty measures are a�ected by feedback

from the lagged variables, and that uncertainty measures have a contemporaneous e�ect

on the mean of the variables. It is not possible to have contemporaneous feedback to

and from uncertainty simultaneously, for identi�cation reasons. The choice of contempo-

raneous (and not lagged) feedback from uncertainty to the mean follows the assumption

that the economic variables rapidly react to uncertainty shocks, and uncertainty causes

short-term economic 
uctuations (Bloom, 2009).

This setup imposes the limitation that shocks to the mean of the variables can only

in
uence the level of uncertainty with, at least, one lag. One obvious alternative would be

to assume that uncertainty measures are a�ected contemporaneously by the variables, and

that uncertainty measures have a lagged e�ect on the mean of the variables. However,

under such an assumption, economic variables would only react to uncertainty shocks

after one lag. This seems implausible in a quarterly data information set, especially with

respect to �nancial variables such as stock prices.

The non-observed idiosyncratic volatilitieshj;t are estimated by the standard algo-

rithm proposed by Kim, Shephard, and Chib (1998), using a 10-state mixture of normals

approximation from Omori, Chib, Shephard, and Nakajima (2007). The estimation of

the non-observed macroeconomic and �nancial uncertainties is substantially more com-

plex, presenting a multi-variate nonlinear state-space representation. I follow Mumtaz

and Theodoridis (2015) and employ a particle Gibbs step to estimate ln mt and lnf t . The

particle Gibbs construction is based on Andrieu, Doucet, andHolenstein (2010) and the

ancestor sampling improvements proposed by Lindsten, Jordan, and Sch•on (2014), with

100 particles.

I estimate the full model with p = 4 lags, l = 1 lag of the macro and �nancial factors
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in the Main VAR (equation 1), and k = 1 lag of the macro and �nancial factors in the

Uncertainty VAR (equation 5). The full estimation procedure is described in detail in

the Appendices.6

2.2 Data

The dataset comprises both macroeconomic and �nancial variables in levels. The vari-

ables are measured quarterly, which allows the use of macroeconomic variables such as

utilization-adjusted TFP (necessary for the news shock identi�cation) and gross domestic

product (GDP). For variables which are available at a higherfrequency, I construct the

time-series by taking the quarterly average. The period is from 1975Q1 to 2012Q3.

The dataset contains 14 macroeconomic variables, namely utilization-adjusted TFP,

personal consumption per capita, GDP per capita, private investment per capita, hours

worked, GDP de
ator, Federal funds rate, total nonfarm payroll, industrial production

index, help wanted to unemployment ratio, real personal income, real manufacturing

and trade sales, average of hourly earnings (goods producing) and producer price index

(�nished goods). These are the macroeconomic variables that are usually considered in

the news shock literature.

The 14 �nancial variables are the spread between the 10-yearyield and the Federal

funds rate, S&P500 stock prices index, S&P dividend yields,excess bond premium, CRSP

excess returns, small-minus-big risk factor, high-minus-low risk factor, momentum, small

stock value spread (R15-R11), and �ve industry sector-level returns (consumer, manufac-

turing, high technology, health and other). The �nancial variables mostly matches those

used by Jurado et al. (2015) and Carriero et al. (2016a) to construct their measures of

�nancial uncertainty.

A full description of the sources and construction of the 28 variables can be found in

Appendix G.

6Appendix A describes the triangularization procedure for drawing the coe�cients in large VARs
proposed by Carriero, Clark, and Marcellino (2016c). This procedure is statistically equivalent to a
conventional Bayesian stochastic volatility Monte Carlo Markov Chain (MCMC) estimation, but has
the advantage of being less computationally intensive. Appendix B presents the steps of the MCMC
algorithm. Appendix C describes the particle Gibbs with ancestor sampling.
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3 Identi�cation procedure for news and uncertainty

shocks

In this Section I present the strategy for identifying news and uncertainty shocks. These

procedures can be considered as two separate computation methods, one time-varying

and the other is time-invariant. The �rst is an innovative identi�cation procedure for

news shocks that takes into account nonlinear and time-varying models, in which the

news shock presents di�erent economic responses in each point in time. The second

is a standard generalized impulse response procedure for macroeconomic and �nancial

uncertainty shocks. Since the latent macro and �nancial factors have time invariant

covariances, the identi�cation procedure is also invariant over time.

3.1 News shocks identi�cation for nonlinear and time-varying

models

The identi�cation for the news shock is constructed upon theprocedure proposed by

Barsky and Sims (2011). This approach is based on the assumption that a technology

news shock is the structural shock that best explains the unpredictable movements of

utilization-adjusted TFP over a �xed long-term horizon,7 with the imposition of no e�ect

on impact (t = 0). It is constructed following the maximum forecast errorvariance

approach presented in Uhlig (2005) and Francis, Owyang, Roush, and DiCecio (2014).

The identi�cation procedure presented by Barsky and Sims (2011) is broadly adopted

in the news shock literature.8 However, this identi�cation method is only applicable

to time invariant covariance cases. A more 
exible identi�cation method is needed to

investigate the idea of an underlying transmission mechanism relating the technology

news (a shock to the mean of the variables) and the variables'volatilities.

I start from the model presented in equation 1. Considering amodel with a fully

7I follow Barsky and Sims (2011) by �xing the horizon at 40 quarters ahead.
8For example, Coibion and Gorodnichenko (2012), Kurmann and Otrok (2013), Forni et al. (2014),

Ben Zeev and Khan (2015), G•ortz et al. (2016) and Cascaldi-Garcia and Galvao (2017). See Beaudry
and Portier (2014) for an extensive discussion about identi�cation methods for news shocks.
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exogenous uncertainty measuregt , I rewrite equation 1 as a function of the lag operator

L, leading to a VAR-X representation of the form

yt = A (L)yt + B(L)gt + A � 1
0 � 1=2

t � t ; (7)

whereA (L) = A 1L + A 2L2 + ::: + A pLp and B(L) = B 0 + B 1L + ::: + B lL l . A moving

average representation of this model9 is de�ned as the in�nite polynomial of the lag

operator L as C(L) = C0 + C1L + ::: = [ I n � A (L)]� 1, whereC0 = I n , as

yt = C(L)B (L)gt + C(L)A � 1
0 � 1=2

t � t : (8)

Suppose that there is a linear mapping of the innovations (� t ) and the structural

shocks (st ) as in

� t = Pst ; (9)

which implies

A � 1
0 � 1=2

t � t = A � 1
0 � 1=2

t Pst : (10)

The innovations � t and the structural shocksst are i.i.d. N (0; I n ). To ensure that

E[A � 1
0 � 1=2

t � t �
0

t �
1=20

t A � 10

0 ] = E[A � 1
0 � 1=2

t Psts
0

tP
0
� 1=20

t A � 10

0 ] = � t , it su�ces that PP
0
= I n .

P can take the form of any of the in�nite alternatives that satisfy this condition. Under

this structure, the moving average representation can be rewritten as

yt = C(L)B (L)gt + C(L)A � 1
0 � 1=2

t Pst ; (11)

wherest = P � 1� t .

Now, the Barsky and Sims (2011) identi�cation procedure for the news shock relies on

�nding one of the in�nite alternatives of P that maximizes the variance decomposition

of the utilization-adjusted TFP over a prede�ned forecast horizon, and has no e�ect

on impact (t = 0). It is derived from the assumption that technology is a stochastic

9See Ocampo and Rodr��guez (2012) for a comprehensive description of the moving average represen-
tation of VAR-X models.
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process driven by two shocks: a surprise (or unanticipated)technological shock, and an

anticipated news shock. The total unexplained variance of utilization-adjusted TFP can

be decomposed as

� 1;1(k)surprise + � 1;2(k)news = 18h; (12)

where � i;j (h) is the share of the forecast error variance of variablei of the structural shock

j at horizon k, i = 1 refers to utilization-adjusted TFP (where this variable is ordered

�rst in the VAR), j = 1 is the unexpected TFP shock, andj = 2 is the news shock.

While the K -step ahead forecast error in this model is given by

yt+ K � E[yt+ K ] =
KX

k=0

(CkB kgt+ k + CkA � 1
0 � 1=2

t+ kPst+ K � k); (13)

the share of the forecast error variance of the news shock is

� 1;2(K )t;news =
q

0

1

� P K
k=0 (CkB kgt+ k + CkA � 1

0 � 1=2
t+ kPq2)(CkB kgt+ k + CkA � 1

0 � 1=2
t+ kPq2)

0
�

q1

q0

1

� P K
k=0 Ck � t+ kC 0

k

�
q1

= :::

=

P K
k=0 (C1;kB 1;kgt+ k + C1;kA � 1

0 � 1=2
t+ k � )(C1;kB 1;kgt+ k + C1;kA � 1

0 � 1=2
t+ k � )

0

P K
k=0 C1;k � t+ kC 0

1;k

;

(14)

where q1 is a selection vector with 1 in the positioni = 1 and zeros elsewhere,q2 is a

selection vector with 1 in the positioni = 2 and zeros elsewhere, andCk is the matrix of

moving average coe�cients measured at each point in time until period k. The combi-

nation of selection vectors with the proper column ofP can be written as� , which is an

orthonormal vector that makesA � 1
0 � 1=2

t � the impact of a news shock over the variables.

One additional complication that arises is that the share ofthe forecast error variance

of the news shock depends ongt , � 1=2
t and � t . In other words, the variance decomposition

depends on the timet in which it is measured. The news shock is identi�ed by picking �

that maximizes the share described in equation 14, but the dependence of this share ont

can lead to a di�erent � in each point in time. This characteristic forms the basis ofthe

identi�cation procedure for the news shock proposed here. The news shock is identi�ed
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by solving the optimization problem

� news
t = argmax

KX

k=0

� 1;2(k)t;news ; (15)

subject to

A 0(1; j ) = 0 ; 8j > 1

� t (1; 1) = 0

�
0

t � t = 1;

(16)

whereK is an truncation period, and the restrictions imposed implythat the news shock

does not have an e�ect on impact (t = 0) and that the � t vector is orthonormal.

In practice, two elements introduce additional nonlinearity to the forecast error de-

scribed in equation 13: the contemporaneous feedback e�ectthat the uncertainty factors

gt have on the variablesyt (because of the stochastic volatility in mean), and the depen-

dence of the time-varying volatility � 1=2
t on the uncertainty factorsgt . I deal with this

nonlinearity by employing a generalized impulse response structure10 in substitution for

the forecast error described by equation 13. Since generalized impulse response struc-

tures do not depend on the model functional form, this substitution makes the procedure

even more broad by allowing the identi�cation of news shocksunder di�erent forms of

nonlinear and time-varying relationships.

The generalized impulse responses are constructed by creating simulated shocked and

baseline paths. The di�erence between these two paths captures the e�ect of the desired

shock, conditional on a random simulated innovation! j;t , wherej identi�es the variable.

The overall e�ect of the identi�ed shock is the average of thedi�erence between the

baseline and shocked paths across a signi�cant number of random innovations! r
j;t .

The full identi�cation procedure and steps for the generalized impulse responses are

described in Appendix F. To summarize, it is possible to show that, conditional on the

draw r of the random innovation ! r
j;t , on the information set containing all the known

10Adapting the procedure proposed by Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998).
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history up to time t de�ned as Z t = ( yt � p; :::; yt ; gt � p; :::; gt ),11 and on the coe�cient

matrices� = [ A i ; B i ; D i ; � j ; 
 j ; � ], the generalized impulse response at timek of a generic

utilization-adjusted TFP shock is given by

GI r
T F P;t (k; � r

T F P ; ! r
j;t ; Z t ; � ) = E[yr

t+ k;T F P ; gr
t+ k;T F P j� r

T F P ; � r
t+ k;T F P ; ! r

j;t ; Z t ; � ]

� E[yr
t+ k;base; gr

t+ k;basej�
r
t+ k;base; ! r

j;t ; Z t ; � ];
(17)

where � r
T F P is a vector with 1 in the �rst position (where utilization-adjusted TFP is

ordered �rst in the VAR) and zeros elsewhere.

With this setup, it is possible to substitute the TFP impulse responses (C1;kB 1;kgt+ k +

C1;kA � 1
0 � 1=2

t+ k � ) in equation 14 forGI r
T F P;t (k; � r

T F P ; ! r
j;t ; Z t ; ; � ), or simply GI r

T F P;t (k) for

notation purposes.

A news shock for a drawr of the random innovation ! r
j;t can be identi�ed in each

period t as

� r
t;news = arg max

P K
k=0 GI r

T F P;t (k; � )GI r
T F P;t (k; � )

0

P K
k=0 C1� t+ kC 0

1

; (18)

subject to

A � 1
0 (1; j ) = 0 ; 8j > 1;

� (1; 1) = 0;

� 0� = 1:

(19)

After obtaining the identi�cation vector for the news shock� r
t;news for the draw r of

the random innovations! r
j;t , it is possible to construct the generalized impulse responses

for the news shock at each point in time. Conditional on the draw r of the random

innovation ! r
j;t , on the information set Z t , and on the coe�cients � , the generalized

impulse response at timek of the technology news shock is given by

GI r
t;news (k; � r

t;news ; ! r
j;t ; Z t ; � ) = E[yr

t+ k;news ; gr
t+ k;news j� r

t;news ; � r
t+ k;news ; ! r

j;t ; Z t ; � ]

� E[yr
t+ k;base; gr

t+ k;basej�
r
t+ k;base; ! r

j;t ; Z t ; � ]:
(20)

11Where gt = (ln mt ; ln f t ).
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Taking the averages of each path across a su�ciently large number of draws of the

random innovations ! r
j;t , the overall generalized impulse response at timek of a news

shock, conditional on the information set at timet, is given by

GI t;news (k; � t;news ; Z t ; � ) = [�yt+ k;news (k; � t;news ; Z t ; � ); �gt+ k;news (k; � t;news ; Z t ; � )]

� [�yt+ k;base(k; Z t ; � ); �gt+ k;base(k; Z t ; � )]:
(21)

Note that this identi�cation procedure is a generalization of the standard homoskedas-

tic Barsky and Sims (2011) identi�cation. With a time invariant covariance model and

no exogenous variables, the Barsky and Sims (2011) procedure can be nested by the

structure presented here. Consider, for example, equation7. If there are no time-varying

volatility or exogenous variables, this equation is reduced to

yt = A (L)yt + A � 1
0 � 1=2� t ; (22)

and its moving average representation is simply

yt = C(L)A � 1
0 � 1=2� t : (23)

Now, considering the same linear mapping between the innovations (� t ) and the struc-

tural shocks (st ) as in equation 9, the share of the forecast error variance ofthe news

shock de�ned in equation 14 becomes

� 1;2(k)news =
q

0

1

� P K
k=0 (CkA � 1

0 � 1=2Pq2)(CkA � 1
0 � 1=2Pq2)

0
�

q1

q0

1

� P K
k=0 Ck �C 0

k

�
q1

= :::

=
P K

k=0 (C1;kA � 1
0 � 1=2� )(C1;kA � 1

0 � 1=2� )
0

P K
k=0 C1;k �C 0

1;k

(24)

and � 1;2(k)news does not depend ont anymore. The procedure of �nding� that maxi-

mizes the share of the forecast error variance of equation 24under the same restrictions

described in equation 16 is equivalent to the Barsky and Sims(2011) procedure.
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3.2 Measuring the uncertainty transmission e�ect

The nonlinear model proposed here is 
exible enough to investigate whether the e�ects of

news about future productivity depend on the level of uncertainty in the economy. First

moment shocks can in
uence (and be in
uenced by) the level ofuncertainty through two

nonlinear feedback devices: a contemporaneous feedback ofuncertainty to the mean of

the variables, and the lagged feedback e�ect of the variables to uncertainty. These devices

allow expectations on macro and �nancial conditions to be updated based on the arrival

of information about future technology developments. If this update is negligible, or is

just noise around the news shock e�ect, the impulse responses of a news shock under this

identi�cation should be similar to the traditional covariance-stationary procedure.

I propose here two counterfactuals to evaluate the relationbetween news shocks and

the level of uncertainty. The purpose of the �rst counterfactual is to check whether the

initial uncertainty condition matters for the e�ect of the news shock, and the second

check whether there is a transmission e�ect of the news shockthrough uncertainty.

For the �rst counterfactual, I �x the macroeconomic and �nancial uncertainties to

their means, to verify whether the news shock e�ects change incomparison to the identi�-

cation with time-varying uncertainty. The procedure consists of calculating the di�erence

between the generalized impulse responses from the time-varying procedure described by

equation 21, and an arti�cial generalized impulse responsein which the initial condition

is changed.

Formally, de�ne the arti�cial information set containing a ll the known history up to

time t and the means of the macro and �nancial uncertainties asZ �
t = ( yt � p; :::; yt ; g),

whereg = ( 1
T

P T
t=1 ln mt ; 1

T

P T
t=1 ln f t ). Following the steps described in section 3.1, the

arti�cial generalized impulse responses with �xed initialuncertainty conditions can be

constructed as

GI �
t;news (k; � �

t;news ; Z �
t ; � ) = E[yt+ k ; gt+ k j� �

t;news ; � �
t+ k;news ; Z �

t ; � ]

� E[yt+ k ; gt+ k j� �
t+ k ; Z �

t ; � ]:
(25)
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The �nal e�ect of the initial uncertainty condition on the ne ws shock can be calculated

as the di�erence between the generalized impulse responsesfrom equation 21 and from

equation 25, as in

GI t;level = GI t;news (k; � t;news ; Z t ; � ) � GI �
t;news (k; � �

t;news ; Z �
t ; � ): (26)

The second counterfactual aims to check whether there is a nonlinear feedback between

uncertainty and the news shock. It involves shutting down the contemporaneous feedback

of uncertainty to the mean of the variables, and the lagged feedback e�ect of the variables

to uncertainty. Recalling the Main and Uncertainty VARs (equations 1 and 5), the

contemporaneous feedback of uncertainty to the mean of the variables is captured by the

coe�cients B i in equation 1, and the lagged feedback e�ect of the variablesto uncertainty

by the coe�cients � in equation 5. Shutting down the nonlinear feedback (to and from)

uncertainty means restricting to zero the coe�cient matricesB i and � . Following these

restrictions, the Main and Uncertainty VARs would be respectively written as

yt = A 1yt � 1 + ::: + A pyt � p + vt ; (27)

and

gt = D 1gt � 1 + ::: + D kgt � k + ut : (28)

The procedure for the second counterfactual consists of calculating the di�erence

between the generalized impulse responses from the time-varying procedure described

by equation 21, and an arti�cial generalized impulse response in which the coe�cients

matrices B i and � are restricted to zero. Formally, de�ne a restricted set of coe�cients

as � y = [ A i ; B i = 0; D i ; � j ; 
 j ; � = 0]. Following the steps described in section 3.1, the

arti�cial generalized impulse responses with no uncertainty feedback can be constructed

as

GI y
t;news (k; � y

t;news ; Z t ; � y) = E[yt+ k ; gt+ k j� y
t;news ; � y

t+ k;news ; Z t ; � y]

� E[yt+ k ; gt+ k j� y
t+ k ; Z t ; � y]:

(29)
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The �nal e�ect of the transmission (to and from) uncertainty on the news shock can

be calculated as the di�erence between the generalized impulse responses from equation

21 and from equation 29, as in

GI t;feedback = GI t;news (k; � t;news ; Z t ; � ) � GI y
t;news (k; � y

t;news ; Z t ; � y): (30)

3.3 Identi�cation procedure for macroeconomic and �nancial

uncertainty shocks

The uncertainty shocks are modeled as a shock to the common uncertainty factors that

compose the volatilities of each variable. Since these factors are also included in the Main

VAR, the uncertainty shock can a�ect both the mean and the variance of the variables

of interest yt .

In this model, there are two uncertainty factors (macro and �nancial), which share a

full variance-covariance matrix de�ned as

� u =

2

6
4

� n+1 � n+3

� n+3 � n+2

3

7
5 : (31)

This setup demands imposing an orthogonalization structure to achieve the structural

macro and �nancial shocks. Employing a Cholesky structure leads to two possible or-

thogonalizations: macro uncertainty ordered �rst with �nancial uncertainty ordered last,

and the inverse.

As a benchmark, I de�ne �nancial variables as \fast" variables, while macro variables

are \slow" variables. It means that �nancial uncertainty can react contemporaneously

to macroeconomic uncertainty shocks, but macroeconomic uncertainty can only react to

�nancial uncertainty shocks with one lag. This ordering is equivalent to modeling macro

uncertainty �rst and �nancial uncertainty last in the Chole sky identi�cation structure.

In contrast to the news shock, the variance-covariance matrix of the uncertainties

does not change across time. I identify both shocks at the last observation T, so the
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information set here isZT = ( yT � p; :::; yT ; gT � p; :::; gT ).12

The full identi�cation procedure is described in Appendix F, but the general idea is to

produce a baseline and a shocked path foryt , gt and � t based on each of the uncertainty

shocks (macro and �nancial). The shocks are identi�ed as

� r
macro = ~� u � qmacro

i ;

� r
f in = ~� u � qf in

i ;
(32)

where ~� u is the lower triangular Cholesky decomposition of� u, r is the index of the set

of randomly drawn ! r
j;t innovations, qmacro

i is a 2� 1 vector with 1 in the �rst position

and zero in the second, andqf in
i is a 2� 1 vector with zero in the �rst position and 1 in

the second. ForT + 1, I construct a one standard deviation shock on macro uncertainty

by substituting (um;t ; uf;t )0 in equation D.6 for � r
macro . I then construct by simulation a

macro shocked path fromT + 1 to T + K for yr
t;macro , gr

t;macro and � r
t;macro using equation

D.6. I repeat the process for the �nancial uncertainty by using � r
f in to construct paths

for yr
t;f in , gr

t;f in and � r
t;f in .

By employing the generalized impulse response structure described in Appendix F,

the �nal economic e�ect of the uncertainty shock is measuredas

GI macro (k; � macro ; ZT ; � ) = E[yT + k ; gT + k j� macro ; � T + k;macro ; ZT ; � ]

� E[yT + k ; gT + k j� T + k ; ZT ; � ];

GI f in (k; � f in ; ZT ; � ) = E[yT + k ; gT + k j� f in ; � T + k;f in ; ZT ; � ]

� E[yT + k ; gT + k j� T + k ; ZT ; � ]:

(33)

4 Latent uncertainty measures

In this Section I present the estimated macro and �nancial uncertainties from the stochas-

tic volatility in mean model presented in Section 2. The (estimated) stochastic volatility

of each variable is composed of a common factor, which can be macroeconomic or �nancial

depending on the underlying variable, and an idiosyncraticcomponent. The common fac-

12Where gT = (ln mT ; ln f T ).
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tors across the volatilities are the estimations of aggregate macroeconomic and �nancial

uncertainties.

Figure 3 displays the estimated aggregate macroeconomic uncertainty, and Figure 4

shows the estimated �nancial uncertainty. The stochastic volatilities of the macroeco-

nomic and �nancial variables are presented in Appendix H. The economic assumption

that macro and �nancial uncertainty may be related to each other is captured by the inter-

action between the two uncertainty measures included in theUncertainty VAR (equation

5) and the full variance-covariance matrix between the two factors (equation 6). Figures

3 and 4 show that some periods in time share high macro and �nancial uncertainties, but

some are marked by either a hike mainly in macro or �nancial uncertainty. Comparing

these series with the recessions identi�ed by the National Bureau of Economic Research

(NBER), it is possible to match each recession with a macroeconomic uncertainty hike,

a �nancial uncertainty hike, or both.

Figure 3 Aggregate macroeconomic uncertainty

Note: Macroeconomic uncertainty measured as the common factor on macroe-
conomic volatilities. The dotted lines de�ne the 68% con�dence bands com-
puted with 200 posterior draws. The VAR model includes all variables in Tables
G.1 and G.2. Shaded areas are the recession periods calculated by the NBER.

The Great Moderation period (mid-1980s) for example, characterized by a decline

in the business cycle volatility of aggregate macroeconomic variables, is captured by a

hike in the macroeconomic uncertainty. During the dot-com crisis (1999-2001), which
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Figure 4 Aggregate �nancial uncertainty

Note: Financial uncertainty measured as the common factor on �nancial
volatilities. The dotted lines de�ne the 68% con�dence bands computed with
200 posterior draws. The VAR model includes all variables in Tables G.1
and G.2. Shaded areas are the recession periods calculated by the NBER.

was mainly a speculative �nancial bubble in the stock market, there is a higher �nancial

uncertainty. The 2008 crisis shows high macro and �nancial uncertainties.

While the uncertainty measures match crisis periods, they also follow closely the

monthly macro and �nancial uncertainties estimated by Ludvigson et al. (2016), which

I take here as a benchmark for comparison purposes. The macroeconomic uncertainty

presented in Figure 3 and the 1-month ahead macroeconomic uncertainty from Ludvigson

et al. (2016) share a correlation of 0.76 over the period 1975Q1 and 2012Q3,13 with 0.77

for both the 3-months ahead and 12-months ahead versions. The correlation of the

�nancial uncertainty presented in Figure 4 and the 1-month ahead �nancial uncertainty

from Ludvigson et al. (2016) is 0.68, with same coe�cient when taking into consideration

the 3-months or 12-months ahead versions of the �nancial uncertainty.

The two series estimated here are also correlated with each other, a direct result of

the possibility of transmission of macro-to-�nancial uncertainty, and vice versa. The

correlation coe�cient of the two series is 0.36. The uncertainty measures from Ludvigson

13I transform the uncertainty measures calculated by Ludvigson et al. (2016) from monthly to quarterly
by averaging across the quarter.
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et al. (2016) present a higher correlation with each other. Considering the 1-month

ahead macro and �nancial uncertainty, the correlation coe�cient is 0.53 over the period

1975Q1 and 2012Q3. The correlation coe�cients of the 3-months and 12-months ahead

uncertainty versions are, respectively, 0.52 and 0.45.

It is important to notice that the estimation procedure for the measures presented

here is substantially di�erent from the Ludvigson et al. (2016) methodology. First, Lud-

vigson et al. (2016) use of the FRED-MD database14 with stationary monthly data, while

I use quarterly data in levels. Second, Ludvigson et al. (2016) construct uncertainty mea-

sures by averaging the conditional volatility of unforecastable components of the future

value of the macroeconomic or �nancial series. Here, I estimate the uncertainty mea-

sures with a particle �lter, where these uncertainties depend on the (lagged) dependent

variables, and the dependent variables can react contemporaneously to the uncertainties

(stochastic volatility in mean). Lastly, Ludvigson et al. (2016) and this paper use di�er-

ent variables. While Ludvigson et al. (2016) employ 132 macroseries and 147 �nancial

series,15 I construct the uncertainty measures using only 14 macro and14 �nancial series.

5 Time-varying Impulse responses to a news shock

In this Section I present the results of the news shock identi�cation. For every point in

time the news shock economic responses are di�erent, conditional on the estimated time-

varying volatility. This procedure makes it possible to understand the di�erent e�ects of

a news shock on periods of high and low macro and �nancial uncertainty.

Figures 5 and 6 present the economic responses of selected variables after a news

shock, identi�ed and calculated for each point in time as generalized impulse responses.16

The graphs in Figure 5 show impulse responses in three dimensions: period in time of

identi�cation (x-axis), size of impact (y-axis) and the e�ect h quarters ahead (each line).

Figure 6 presents these same impulse responses \sliced" at selected forecast horizons.

14McCracken and Ng (2015).
15Please refer to the On-line Appendix of Jurado et al. (2015) for a detaileddescription of the database

employed by the authors.
16As described in Appendix F. The generalized impulse responses for all the variables included in the

VAR can be found in Appendix J.
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Figure 5 Time-varying e�ects of news shocks

Note: The news shock is identi�ed for each period in time under the procedure
proposed in Section 3.1. The generalized impulse responses for each period are
the average of 1,000 simulated random innovations, as described in Appendix F.

Figure 6 Time-varying e�ects of news shocks over di�erent forecast horizons

Note: The news shock is identi�ed for each period in time under the pro-
cedure proposed in Section 3.1. The generalized impulse responses for each
period are the average of 1,000 simulated random innovations, as described
in Appendix F. Each line corresponds to the e�ect of the news shockh-
quarters ahead from the point in time, as \slices" of the graphs from Figure 5.

The top-left graph of Figure 6 shows the e�ect of a technology news shock over the

utilization-adjusted TFP. The identi�cation procedure of the news shock maximizes the
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variance decomposition of this variable over a �xed forecast horizon of 40 quarters ahead,

imposing a zero e�ect on impact (h = 0). This graph provides evidence for how di�erent

the e�ects of a news shock can be over time when a time-varyingvolatility is taken into

account. The long-term e�ect of a news shock identi�ed in theperiod 1980-1983 or during

the 2008 crisis is about twice the e�ect in more stable periods, as for example, the early

1990s.

These di�erences over time are also found in the impulse responses for consumption,

GDP, investment and real personal income. The positive e�ect of a news shock on

consumption and personal income peaks after about 12 quarters. This new higher level

of consumption and real personal income is sustained in the long-term, while GDP and

investment peak at about 12 quarters and decay in the long-term. Nevertheless, the

positive e�ects on consumption, personal income, GDP and investment are more intense

during periods in which the e�ect of a news shock on utilization-adjusted TFP is stronger.

The responses of hours worked are positive in the medium-term (h = 12), and negative

in the long-term (h = 36). These e�ects are substantially more intense in periods of higher

volatility (early 1980s and 2008). There is a de
ationary e�ect in the medium-term after

a news shock, as evidenced by the literature.17 By employing a covariance-stationary

identi�cation procedure, Barsky et al. (2014) point out that the peak of the negative

e�ect on in
ation is about 10 quarters after the news shock. Figure 6 shows that, after

12 quarters, there is indeed a de
ationary e�ect, but this ismuch more intense in periods

of high volatility.

The e�ect on stock prices is positive, as initially indicated by Beaudry and Portier

(2006). These e�ects peak on impact (h = 0) and converge to zero in the long-term. It

is worth noting, however, that the e�ect on stock prices is largely unrelated to the size of

the e�ect of the news shock on utilization-adjusted TFP. The positive news about future

technology is interpreted by the stock market in similar wayacross time, with positive

e�ects on impact.

17See, for example, Christiano, Ilut, Motto, and Rostagno (2010), Barsky and Sims (2011) and Barsky,
Basu, and Lee (2014).
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5.1 News shocks and the relationship to uncertainty

As shown, the e�ects of a news shock are substantially di�erent across time. In this Sec-

tion I investigate if these di�erences come from a potentialconnection between technology

news shocks and uncertainty.

Bloom (2009) shows that uncertainty18 creates an `inaction zone' in investment, due

to �rms becoming more cautious. With �rms close to the investment threshold, small

positive volatility shocks generate an investment response, while small negative shocks

generate no response. The idea is that, after the initial recessive e�ect of uncertainty,

�rms would want to scale up their investment plans to address pent-up demand. The

result is a medium-term overshoot in productivity growth. Periods of high uncertainty

are also related to a higher potential return on investment,increasing the range of growth

options (Segal, Shaliastovich, and Yaron, 2015).

Cascaldi-Garcia and Galvao (2017) suggest that uncertainty shocks generate two ef-

fects on total factor productivity: a short-term negative reduction on utilization factors,

and a medium-term positive e�ect on the utilization-adjusted productivity. This medium-

term positive e�ect relates to the overshoot in productivity growth idea presented by

Bloom (2009). It follows that uncertainty foresees future technology improvements, as

a `good uncertainty' e�ect. From this literature, one wouldexpect a positive relation-

ship between high uncertainty periods and the positive economic outcomes from a higher

expected future technology growth, as in a news shock.

I �rst evaluate this proposition by calculating the correlation between a series of

uncertainty measures and the medium (h = 12) and long-term (h = 36) e�ects of a

news shock on utilization-adjusted TFP, consumption and GDP. Table 1 presents these

correlations, while the description and availability of the uncertainty measures can be

found in Table G.3 in Appendix G.

Table 1 shows that the responses to a news shock are (positively) correlated with

both macro and �nancial uncertainties. Generally speaking, the correlation is higher

with macroeconomic uncertainty measures, and is higher in the medium-term than in the
18Bloom (2009) de�nes uncertainty as an increase in the volatility of total factor productivity shocks

that have a temporary negative e�ect on output growth.
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Table 1 Correlations between news shock economic responsesand uncertainty measures

Medium-term
TFP Consumption GDP

Macro uncertainty measures
Macro uncertainty 0.96 [0.000] 0.92 [0.000] 0.93 [0.000]
LMN-macro-1 0.79 [0.000] 0.73 [0.000] 0.76 [0.000]
LMN-macro-3 0.80 [0.000] 0.74 [0.000] 0.77 [0.000]
LMN-macro-12 0.80 [0.000] 0.74 [0.000] 0.78 [0.000]
Policy uncertainty 0.01 [0.949] -0.02 [0.772] 0.02 [0.860]
Business uncertainty -0.01 [0.936] -0.02 [0.791] -0.08 [0.373]
SPF disagreement 0.53 [0.000] 0.50 [0.000] 0.55 [0.000]

Financial uncertainty measures
Financial uncertainty 0.52 [0.000] 0.27 [0.000] 0.39 [0.000]
LMN-�n-1 0.45 [0.000] 0.32 [0.000] 0.39 [0.000]
LMN-�n-3 0.45 [0.000] 0.31 [0.000] 0.39 [0.000]
LMN-�n-12 0.45 [0.000] 0.30 [0.000] 0.39 [0.000]
Realized volatility 0.47 [0.000] 0.39 [0.000] 0.43 [0.000]
VXO 0.65 [0.000] 0.49 [0.000] 0.64 [0.000]

Long-term
TFP Consumption GDP

Macro uncertainty measures
Macro uncertainty 0.95 [0.000] 0.87 [0.000] 0.85 [0.000]
LMN-macro-1 0.76 [0.000] 0.67 [0.000] 0.67 [0.000]
LMN-macro-3 0.77 [0.000] 0.68 [0.000] 0.68 [0.000]
LMN-macro-12 0.76 [0.000] 0.69 [0.000] 0.68 [0.000]
Policy uncertainty 0.00 [0.973] -0.03 [0.750] 0.03 [0.757]
Business uncertainty -0.02 [0.831] -0.10 [0.231] -0.08 [0.355]
SPF disagreement 0.51 [0.000] 0.48 [0.000] 0.46 [0.000]

Financial uncertainty measures
Financial uncertainty 0.45 [0.000] 0.28 [0.000] 0.27 [0.001]
LMN-�n-1 0.41 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN-�n-3 0.40 [0.000] 0.29 [0.000] 0.28 [0.001]
LMN-�n-12 0.40 [0.000] 0.29 [0.000] 0.26 [0.001]
Realized volatility 0.44 [0.000] 0.34 [0.000] 0.35 [0.000]
VXO 0.60 [0.000] 0.52 [0.000] 0.48 [0.000]

Note: The Macro uncertainty and Financial uncertainty in bold are the mea-
sures calculated in this paper, and presented in Figures 3 and 4. Medium-
term and long-term responses are calculated 12 and 40 quarters ahead, respec-
tively. The p-values for the test with zero correlation under the null hypothe-
sis are in brackets. The statistic is calculated ast = � 0

q
T � 2
1� � 2

0
. For details

on the uncertainty measures and availability, see Table G.3 in Appendix G.
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long-term. There is a high correlation with the aggregated macroeconomic uncertainty

estimated here and with the macro uncertainties from Ludvigson et al. (2016).19 The cor-

relation is also positive and signi�cant with the disagreement measure from the Survey of

Professional Forecasters (SPF), ranging from 0.50 to 0.55 inthe medium-term, and from

0.46 to 0.51 in the long-term. There is no correlation of the responses with the policy

uncertainty calculated by Baker, Bloom, and Davis (2016) and with the business uncer-

tainty from Bachmann, Elstner, and Sims (2013). Although smaller, all the correlations

between �nancial uncertainties and the e�ects on utilization-adjusted TFP, consumption

and GDP are statistically signi�cant.

It is important to note that the news shocks identi�ed acrosstime are normalized,

with the same size. The high correlation of the medium and long-term e�ects presented

in Table 1 is a result of the transmission mechanism of the uncertainty measures to the

mean of the variables presented in equations 1 and 5. This transmission mechanism makes

the news shock stronger in periods of higher macroeconomic and �nancial uncertainty, as

suggested by the data when viewed through the stochastic volatility in mean VAR model.

Figure 7 presents a clearer image of the di�erences between the e�ects of a news

shock during high and low macroeconomic uncertainty periods. The red lines correspond

to the average of generalized impulse responses on periods of high uncertainty, while the

blue lines correspond to the average of generalized impulseresponses on periods of low

uncertainty. I de�ne high uncertainty as the periods with the highest 10% of values for

macroeconomic uncertainty, and low uncertainty with the lowest 10% of values.

In the high uncertainty period, the positive e�ects of a newsshock on utilization-

adjusted TFP, consumption, investment and real personal income are substantially higher.

The path of utilization-adjusted TFP (top-left graph of Figure 7) is 
atter in the low un-

certainty period, while it has a positive peak about 20 quarters ahead in the high uncer-

tainty period. Cascaldi-Garcia and Galvao (2017) show that,after an uncertainty shock,

utilization-adjusted TFP rises in the medium-term, converging to zero in the long-term.

This hump-shaped path of utilization-adjusted TFP observedin the high uncertainty

19Between 0.78 and 0.96 in the medium-term across TFP, consumption and GDP, and between 0.68
and 0.95 in the long-term.
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Figure 7 Impulse responses to news shocks in periods of high and low macro uncertainty

Note: The news shock is identi�ed for each period in time under the procedure proposed
in Section 3.1. Red and blue lines correspond to the average of generalized impulse re-
sponses on periods of high and low uncertainty, respectively. High and low uncertainty
are the periods with the higher and lower 10% values for the macroeconomic uncertainty,
respectively. Each impulse response is evaluated at the posterior mean. Dashed lines
correspond to 68% distribution of the impulse responses in the high and low periods.

period is in line with the view that uncertainty predicts a medium-term positive e�ect

on technology.

The positive e�ect on consumption is higher in the high macroeconomic uncertainty

period over the entire forecast horizon of 40 quarters, following same pattern as real

personal income. With respect to GDP, the biggest di�erence between the high and

low uncertainty periods is in the medium-term. This divergence is a direct result of the

economic response of investment, which peaks about two to three years after the news

shock occurred. In the long-term, the path of investment in the high uncertainty period

converges to the path of the low uncertainty period.

The de
ationary e�ect of the news shock is more pronounced inthe high macroeco-

nomic uncertainty period. In the low uncertainty period theresponse of the GDP de
ator

is 
atter, and close to zero. The e�ect of the news shock on thehours worked is positive in

the medium-term and negative in the long-term under the highuncertainty period, while

it is closer to zero under the low uncertainty period. There isno perceptible di�erence

29



between the responses of the stock prices in the high or low uncertainty macroeconomic

periods. It is positive on impact, converging to zero in the long-term in both cases.

In summary, these results provide evidence that news shockshave quantitatively dif-

ferent e�ects in periods of high and low uncertainty. In periods of high uncertainty the

positive e�ects of news shocks are boosted, in line with the notion of a transmission

mechanism of technology news through uncertainty.

5.2 The uncertainty transmission mechanism of news shocks

How important is uncertainty for the e�ect of news shocks on the economy? Does it

depend only on the level of uncertainty at the time of the shock, or is there an uncertainty

transmission mechanism that in
uences the e�ect of a news shock throughout time? I

investigate these questions by providing two counterfactuals: what would happen to a

news shock (i) if uncertainty would remain unchanged acrosstime, or (ii) if there was no

feedback e�ect from uncertainty. Section 3.2 provides the full description of the procedure

for these two counterfactuals.

The �rst counterfactual checks if the initial uncertainty condition matters for the e�ect

of the news shock. Figure 8 presents the impulse responses of anews shock identi�ed

with a �xed uncertainty. Di�erently from Figure 6, the e�ects of the news shock do

not change over time when the initial uncertainty conditionis �xed. Figure 9 outlines

the importance of the initial uncertainty condition, by showing the di�erences between

the impulse responses with time-varying uncertainty and with �xed uncertainty. This is

constructed by taking the responses from Figure 6 and subtracting the responses from

Figure 8. The e�ects of a news shock are more substantial in periods of high uncertainty,

con�rming the level e�ect that the initial uncertainty condi tion generates in the responses

to a news shock.

The second counterfactual checks if there is nonlinear feedback between uncertainty

and the news shock. Figure 10 presents the generalized impulse responses of a news

shock without feedback e�ect from uncertainty. The patternof these responses is quite

similar to the responses from the full model, in which there is a feedback e�ect from
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Figure 8 Time-varying e�ects of news shocks over di�erent forecast horizons with �xed
uncertainty

Note: The news shock is identi�ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e�ect of the news shockh-quarters ahead from the point in time.

Figure 9 Di�erences between responses to a news shock computed with time-varying
uncertainty and with �xed uncertainty

Note: The news shock is identi�ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e�ect of the news shockh-quarters ahead from the point in time.
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uncertainty (Figure 6). However, these e�ects di�er in magnitude. Figure 11 depicts the

di�erences between the impulse responses with and without feedback from uncertainty.

This is constructed by taking the responses of Figure 6 and subtracting the responses

from Figure 10.

Figure 10 Time-varying e�ects of news shocks over di�erent forecast horizons with no
feedback e�ect from uncertainty

Note: The news shock is identi�ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e�ect of the news shockh-quarters ahead from the point in time.

Overall, the presence of an uncertainty feedback creates a positive bias in the e�ect

of a news shock on consumption, GDP and investment. This can be easily observed by

averaging these time-varying impulse responses, as in Figure 12. This Figure summarizes

the nonlinear feedback e�ect of uncertainty over the news shock. On average, the feedback

e�ect generates a positive medium-term e�ect on utilization-adjusted TFP, investment

and GDP. Interestingly, the positive bias on investment peaks after about 10 quarters, a

period in which there is still no positive bias on utilization-adjusted TFP. This is evidence

that investment is anticipating future expected productivity, in line with the �ndings of

Beaudry and Portier (2006). In the long-term, this positivebias on utilization-adjusted

TFP, investment and GDP tends to die out. With regard to consumption and real

personal income, there is a positive bias that tends to persist in the long-term.
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Figure 11 Di�erences between responses to a news shock computed with and without
feedback e�ect from uncertainty

Note: The news shock is identi�ed for each period in time under the procedure pro-
posed in Section 3.2. The generalized impulse responses for each period are the av-
erage of 1,000 simulated random innovations, as described in Appendix F. Each line
corresponds to the e�ect of the news shockh-quarters ahead from the point in time.

Figure 12 Percentiles of the di�erences between responses toa news shock computed with
and without feedback e�ect from uncertainty

Note: The news shock is identi�ed for each period in time under the procedure proposed
in Section 3.2. Each line corresponds to the deciles of the di�erences between the news
shock impulse responses with and without feedback e�ect from uncertainty, identi�ed in
each point in time and calculated at the posterior mean. The red line is the median.
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In summary, the counterfactuals presented here indicate that uncertainty and news

shocks are linked through two mechanisms: an initial condition e�ect and a transmission

e�ect. The initial condition e�ect means that, if the initia l level of uncertainty in the

economy is high, the e�ects of the news shock will also be high. This evidence is in line

with the `good uncertainty' shock literature, described before.

The transmission e�ect is more complex. The empirical results from the second coun-

terfactual show that when macro and �nancial uncertaintiesare allowed to react to news

shocks, the positive e�ects of such news are ampli�ed. Theseresults are in line with a new

stream in the literature on news and uncertainty shocks, which explores the dynamics

of uncertainty updating based on the arrival of news. Forni,Gambetti, and Sala (2017)

propose a model in which uncertainty is generated by news about future developments in

economic conditions. Uncertainty arises from the fact that these conditions are not per-

fectly predicted by the economic agents. Berger, Dew-Becker, and Giglio (2017) de�ne an

uncertainty shock as a second-moment news, or changes in theexpected future volatility

of aggregate stock returns. The authors argue that news about the squared growth rates

are changes in the conditional variance, which is equivalent to an uncertainty shock.

In summary, the results from the second counterfactual suggest that the arrival of

information about future technology makes the economic agents update not only their

expectations about future productivity, as in the news shock literature, but also their

expectations about macroeconomic and �nancial conditions, proxies to uncertainty. This

process is continuous, with consecutive updates as the e�ects of this new information

materialize. More broadly, the level of uncertainty reactsto information about the state

of the economy, and the state of the economy reacts to the level of uncertainty.
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6 Responses to macroeconomic and �nancial uncer-

tainty shocks

In this Section I present generalized impulse responses of macroeconomic and �nancial

uncertainty shocks.20 These responses help to better understand the link between un-

certainty and news shocks. The uncertainty shocks are disturbances to the common

macroeconomic and uncertainty volatility factors, or a second-moment shock to the vari-

ables. The benchmark results presented here consider the macro uncertainty as the �rst

orthogonalization position, and the �nancial uncertaintyas the last.21

Figure 13 shows the generalized impulse responses of a �nancial uncertainty shock for

selected variables. The full generalized impulse responses can be found in Appendix J.

The most interesting result here is the e�ect on utilization-adjusted TFP. After the �nan-

cial uncertainty shock, utilization-adjusted TFP increases in the medium-term, starting

from a zero e�ect on impact (t = 0), and converging to zero in the long-term. This path

resembles the expected result of a news shock on this variable. This result is in line with

Cascaldi-Garcia and Galvao (2017), who show that a �nancialuncertainty shock foresees

a medium-term positive hike in utilization-adjusted TFP.22

The similarity of the responses on utilization-adjusted TFPpresented here and in

Cascaldi-Garcia and Galvao (2017) are noteworthy, in the sense that the identi�cation

method for the �nancial shock is substantially di�erent. While Cascaldi-Garcia and

Galvao (2017) identify the �nancial uncertainty shock as the orthogonalization that max-

imizes the variance decomposition of an observableproxy of �nancial uncertainty in the

short-term, here the �nancial uncertainty shock is a second moment shock to a latent es-

timated �nancial uncertainty measure from a stochastic volatility process. Nevertheless,

the impact of �nancial uncertainty on technology follows the evidence from Cascaldi-

Garcia and Galvao (2017).

20Appendix F presents the procedure of identi�cation of the macro and �nancial uncertainty shocks
and the calculation of the generalized impulse responses.

21The alternative impulse responses considering the inverted ordering (�rst �nancial and second macro
uncertainty) are presented in Appendix I.

22It is also robust to the alternative identi�cation with �nancial unce rtainty ordered �rst, as presented
in Figure I.1 in Appendix I.
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Figure 13 Impulse responses to a �nancial uncertainty shock

Note: The uncertainty shocks are identi�ed through Cholesky decomposition with
macroeconomic uncertainty ordered �rst, and �nancial uncertainty ordered last, as de-
scribed in Section 3.3. The generalized impulse responses of the uncertainty shock
are the average of 1,000 simulated random innovations, as described in Appendix F.
The shaded areas de�ne the 68% con�dence bands computed with 200 posterior draws.

The e�ect of the �nancial shock on other variables is distinct from the utilization-

adjusted TFP. There is no signi�cant e�ect on consumption. GDP falls after the shock,

driven by a reduction on investment. Both GDP and investmentpaths converge to

zero in the medium-term, con�rming the short-lived characteristic of uncertainty shocks.

There is a de
ationary e�ect, and the Federal funds rate goesdown to counteract the

recessionary impact.

Figure 14 presents the generalized impulse responses of a macroeconomic uncertainty

shock on selected variables. The full generalized impulse responses can be found in

Appendix J. Although smaller, the e�ect on utilization-adjusted TFP is similar to that

observed in the �nancial uncertainty shock, with a medium-term positive e�ect.23 The

e�ect on consumption, GDP and investment are virtually zero. There is a negative impact

on hours worked, and a de
ationary e�ect in the medium-term.

23Similar results can be found in the alternative identi�cation with � nancial uncertainty ordered �rst,
as presented in Figure I.2 in Appendix I.
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Figure 14 Impulse responses to a macroeconomic uncertainty shock

Note: The uncertainty shocks are identi�ed through Cholesky decomposition with
macroeconomic uncertainty ordered �rst, and �nancial uncertainty ordered last, as de-
scribed in Section 3.3. The generalized impulse responses of the uncertainty shock are
the average of 1,000 simulated random innovations, as described in Appendix F. The
shaded areas de�ne the 68% con�dence bands computed with 200 posterior draws.

7 Conclusion

This paper shows that the positive economic e�ects of news onthe future increase in

technology di�er depending on the level of uncertainty of the economy. It contributes to

the literature on shocks driven by agents' beliefs in two ways.

First, I propose an innovative method of checking whether thee�ects of technology

news shocks change depending on the point in time at which it is identi�ed. By em-

ploying this identi�cation strategy, I show that economic responses to a news shock vary

quantitatively across time. While the conventional Barsky and Sims (2011) identi�cation

is not robust to changes in the estimation period,24 the results from this paper indicate

that processes with time invariant covariances may not be appropriate for a news shock

identi�cation. Moreover, the fact that the responses to news shocks vary signi�cantly

over time helps to explain why there is still no consensus in the news shock literature

24See an empirical evaluation in the Introduction Section of this paper.
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about the e�ects on macroeconomic variables.25

The second contribution is new evidence supporting a dynamic relationship between

technology news and uncertainty. I propose a nonlinear model that allows a feedback

e�ect between the level of uncertainty and the macroeconomic and �nancial variables.

The e�ects of news on consumption, GDP, investment and real personal income are

ampli�ed when the news shock hits the economy in periods of high uncertainty. The

results from two counterfactuals suggest that the size of these e�ects depends on the

initial degree of uncertainty (initial condition e�ect) and on how expectations about

macroeconomic and �nancial conditions are updated (transmission e�ect).

The initial condition e�ect is in line with the idea of a `gooduncertainty' shock, that

is, high uncertainty increases the likelihood of news shocks (Cascaldi-Garcia and Galvao,

2017). Periods of high uncertainty are related to a higher potential return on investment,

increasing the range of growth options (Segal et al., 2015).While uncertainty reduces

the utilization of production factors, it also creates an incentive to substitute less 
exible

for more 
exible capital (Comin, 2000, Bloom, 2009, Cascaldi-Garcia and Galvao, 2017).

The transmission e�ect relates to how uncertainty is updatedwith the arrival of posi-

tive technological news (Forni et al., 2017, Berger et al., 2017). The second counterfactual

shows that the positive e�ects of a news shock are even higherwhen allowing for a feed-

back to (and from) uncertainty. From the perspective of the news shock literature, this

evidence implies that neglecting the uncertainty transmission e�ect leads to the conclu-

sion that the positive e�ects of news shocks are weaker than they really are. From the

perspective of the uncertainty literature, it raises the question of how the arrival of news,

and the realization of its economic e�ects, in
uences the way economic agents update

their expectations about macroeconomic and �nancial conditions.

25See Beaudry and Portier (2014) for a review of the empirical evidence of news shocks under di�erent
assumptions and identi�cation methods.
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A Appendix: Triangular estimation

In this Appendix I describe the triangular estimation procedure proposed by Carriero

et al. (2016c). Consider the model presented by the equation1, but rewriting the reduced

form residuals� t from equation 2 as
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where a�
j;i are the elements of the matrixA � 1

0 . Under this structure, it is possible to

rewrite each equation of the main VAR described in 1 and variable j as

yt;j � (a�
j; 1� 1=2

1;t � 1;t + ::: + a�
j;j � 1� 1=2

j � 1;t � j � 1;t )

=
nX

i =1

pX

c=1

A (i )
j;c yi;t � c +

lX

c=0

Bc;j gt � c + � j;t � j;t ;
(A.2)

where A (i )
j;l represents the coe�cients of the matricesA i , and Bc;j represents the coe�-

cients of the matricesB i . The VAR can be estimated equation-by-equation following this

structure by taking into account that, for equationj , the left-hand side is knowna priori :

it is the di�erence betweenyt;j and the residuals from the previous (j � 1) equations. By

rescalingyt;j as

y�
t;j = yt;j � (a�

j; 1� 1=2
1;t � 1;t + ::: + a�

j;j � 1� 1=2
j � 1;t � j � 1;t ) (A.3)

it is possible to estimate equation A.2 as a standard generalized least squares (GLS)

model.

B Appendix: Steps of the MCMC algorithm

The MCMC algorithm for this estimation follows the steps andnotation proposed by

Carriero et al. (2016a), which I describe here. The conditional posterior distributions for

44



the draws described in this Section are detailed in Appendix E.

Step 1: Draw of the idiosyncratic volatilities.

Rescaling� t as ~� t = A 0� t , combined with the linear factor model for the log-volatilities

described by equation 3, it is possible to de�ne the observation equations

8
>><

>>:

ln(~� 2
j;t + �c) � � m;j ln mt = ln hj;t + ln � 2

j;t if j = 1; :::; nm

ln(~� 2
j;t + �c) � � f;j ln f t = ln hj;t + ln � 2

j;t if j = nm + 1; :::; n
; (B.1)

where � m;j and � f;j are the loadings drawn from the previous MCMC iteration, �c is a

small constant in order to avoid near-zero values, andS1:T is the states from the 10-state

mixture of normals draw from the previous iteration of the MCMC. Since� j;t is Gaussian

with unit variance, it is possible to produce an approximateGaussian system conditional

on S1:T .

I �rst produce a draw for the j statesh1:T as

h1:T j� ; S1:T ; m1:T ; f 1:T ; (B.2)

using the Kim et al. (1998) algorithm, where� collects the coe�cients from the matrices

A i , B i , � , D i , the coe�cients in the conditional mean of the idiosyncratic components


 = ( 
 j; 0; 
 j; 1), the elements of the matrixA 0, and the elements of the volatility matrices

� � and � u, as in

� = ( A i ; B i ; �; D i ; 
; A 0; � � ; � u): (B.3)

Step 2: Draw of the factor loadings.

Next, I produce a draw for the factor loadings� m;j and � f;j , as

� m;j ; � f;j j� ; h1:T ; S1:T ; m1:T ; f 1:T : (B.4)

The loadings can be drawn through a generalized least squares form, conditional on
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the draws ofh1:T and S1:T , by transforming the observation equations as

ln(~� 2
j;t + �c) � ln hj;t =

8
>><

>>:

� m;j ln mt + ln � 2
j;t if j = 1; :::; nm

� f;j ln f t + ln � 2
j;t if j = nm + 1; :::; n

: (B.5)

Step 3: Draw of the model coe�cients and volatilities.

The posterior coe�cients and volatilities collected in� are drawn as

� j� m;j ; � f;j ; h1:T ; S1:T ; m1:T ; f 1:T : (B.6)

Step 4: Draw of the macroeconomic and �nancial states.

Next, the macroeconomic and �nancial statesm1:T and f 1:T are drawn as

m1:T ; f 1:T j� ; � m;j ; � f;j ; h1:T ; S1:T ; (B.7)

by employing the particle Gibbs with ancestor sampling proposed by Andrieu et al. (2010)

and Lindsten et al. (2014) described in Appendix C.

Step 5: Draw of the 10-state mixture approximation.

Finally, I draw the 10-state mixture or normals from Omori et al. (2007) as

S1:T j� ; � m;j ; � f;j ; h1:T ; m1:T ; f 1:T : (B.8)

C Appendix: Particle Gibbs with ancestor sampling

Consider a state space model as in

ln(~v2
t + �c) � ln ht = ln mt + ln � 2

t ; ln � 2 � � 2(0; sT ) (C.1)

ln mt = D1 ln mt � 1 + � m � yt � 1 + um;t ; ut � IW (0; � ) (C.2)

where ln(~v2
t + �c) is a rescaled combination of the residuals from the VAR basedon the

loadings� j , ln ht is a rescaled combination of the idiosyncratic volatilities lnhj;t , and ln� 2
t
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has a variance which is a rescaled combination of the 10-state mixture of states drawS1:T .

Step 1: Draw of � from the IW distribution.

Compute the error between lnmt from the previous iteration (i � 1) and the predicted

ln mt , as in

um;t = ln mi � 1
t �

�
D1 ln mi � 1

t � 1 + � m � yt � 1
�

: (C.3)

Draw ~� as following

� � IW

 

d� � +
TX

t=1

u2
m;t ; d� + T

!

: (C.4)

Step 2: Compute importance weights fort = 1.

De�ne a matrix X m (N; T ), which collects theN particles. De�ne the �rst observation

of the Nth particle as the �rst observation ofmi � 1
t , and zero for the other particles, as in

X m (N; 1) = ln mi � 1
t (1; 1); X m (1 : (N � 1); 1) = 0: (C.5)

Compute ln ~� 2;(j )
1 for each of thej = 1 : N particles, as in

ln ~� 2;(j )
1 = (ln(~v2

1 + �c) � ln h1) � X m (j; 1): (C.6)

Compute importance weights by comparing the variance of theN particles and the

S1:T state draw, as in

w(j; 1) = exp

0

B
@�

1
2

�
ln ~� 2;(j )

1

� 2

S1:T (1)

1

C
A ; (C.7)

and normalizing

w(j; 1) =
w(j; 1)

P N
j =1 w(j; 1)

: (C.8)

Step 3: Compute importance weights fort = 2 : T.

Compute N predicted mt based on the previous particles, as in

ln ~m(j; t ) = ( D1X m (j; t � 1) + � � yt � 1) : (C.9)
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Draw an index vectorind(N ) that samples the particles fromP(ind(j ) = j ) / w(1 :

j; t � 1), and ranging on the interval [1; N ] { these are the ancestor indexes. This index

will point out which particles will be collected in the current t-step for the N � 1 �rst

particles. Store the particles as in

X n (j; t ) = ln ~m(ind(j ); t) + ~� 1=2 � randn(1; 1); (C.10)

and set theNth particle as the previous iteration (i � 1) value for mt

X m (N; t ) = ln mi � 1
t (1; t): (C.11)

Compute ln ~� 2;(j )
1 for each of thej = 1 : N particles as before, following

ln ~� 2;(j )
t = (ln(~v2

t + �c) � ln ht ) � X m (j; t ); (C.12)

the importance weights as

w(j; t ) = exp

0

B
@�

1
2

�
ln ~� 2;(j )

t

� 2

S1:T (t)

1

C
A ; (C.13)

and normalizing

w(j; t ) =
w(j; t )

P N
j =1 w(j; t )

: (C.14)

The last part of this step is de�ning theNth ancestor index. In a conventional Particle

Gibbs, this is done by simply assigningind(N ) = N , ensuring that mi � 1
t (1; t) from the

previous iteration is one of the particles. With the ancestorsampling, a new value for

ind(N ) is sampled to arti�cially assign a history to this partial path, by connecting

mi � 1
t (1; t) to one of the particles. Formally, this sample is done by computing

wind (j; t ) = w(j; t � 1) � exp

 

�
1
2

�
mi � 1

t (1; t) � ~m(j; t )
� 2

~�

!

; (C.15)
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normalizing

wind (j; t ) =
wind (j; t )

P N
j =1 wind (j; t )

; (C.16)

and drawingind(N ) from P(ind(N ) = j ) / wind (j; t ). Finally, store the ancestor indexes

in a matrix a(N; T ) as a(1 : N; t ) = ind(1 : N ).

Step 4: Compute the �nal �ltered mi
t .

RearrangeX m (j; t ) in order to generate the trajectories of theN particles based on the

ancestor indexes stored ina(N; T ) following the last orderinga(j; T ). Draw an indicator

J from P(J = j ) / w(j; 1 : T), and set lnmi
t = X m (J; 1 : T).

D Appendix: State-space representation

The model described by equations 1 and 5 can be combined and rewritten in a state-

space representation. This transformation makes it easierto check the stationarity of the

system and to compute impulse responses.

Consider a model in which the macroeconomic and �nancial factors only depend on

their previous values (D i lag order isk = 1) and on � yt � 1. Equation 5 becomes

gt = D 1gt � 1 + � � yt � 1 + ut ; (D.1)

or simply

gt = D 1gt � 1 + �y t � 1 � �y t � 2 + ut : (D.2)

Consider now that the main VAR (equation 1) has lag order ofyt of p, l = 1 lag of

the macro and �nancial factorsgt , and vt = A � 1
0 � 1=2

t � t . Rewrite equation 1 as

yt = A 1yt � 1 + ::: + A pyt � p + B 0gt + B 1gt � 1 + A � 1
0 � 1=2

t � t ; (D.3)
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substituting gt from equation D.2 in equation D.3, results in

yt = A 1yt � 1 + ::: + A pyt � p + B 0(D 1gt � 1 + �y t � 1 � �y t � 2 + ut ) + :::

::: + B 1gt � 1 + A � 1
0 � 1=2

t � t ;
(D.4)

which can be rearranged as

yt = ( A 1 + B 0� )yt � 1 + ( A 2 � B 0� )yt � 2 + ::: + A pyt � p + :::

::: + ( B 1 + B 0D 1)gt � 1 + B 0ut + A � 1
0 � 1=2

t � t :
(D.5)

Now, this equation can be conveniently written in a state-space form as in

2

6
6
6
6
6
6
6
6
6
6
4

yt

yt � 1

:::

yt � p

gt

3

7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
4

F1 F2 ::: F3 F4

I n 0 ::: 0 0

::: ::: ::: ::: :::

0 0 ::: I n 0

� � � ::: 0 D 1

3

7
7
7
7
7
7
7
7
7
7
5

| {z }
F

2

6
6
6
6
6
6
6
6
6
6
4

yt � 1

yt � 2

:::

yt � p� 1

gt � 1

3

7
7
7
7
7
7
7
7
7
7
5

+

2

6
6
6
6
6
6
6
6
6
6
4

A � 1
0 � 1=2

t 0 ::: 0 B 0

0 0 0 0 0

::: ::: ::: ::: :::

0 0 0 0 0

0 0 0 0 I 2

3

7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
4

� t

0

:::

0

ut

3

7
7
7
7
7
7
7
7
7
7
5

;

(D.6)

where

F1 = ( A 1 + B 0� );

F2 = ( A 2 � B 0� );

F3 = A p;

F4 = ( B 1 + B 0D 1):

(D.7)

The matrix � t takes the form

� t =

2

6
6
6
6
4

� 1;t 0 ::: 0

0 � 2;t ::: 0

0 0 ::: � n;t

3

7
7
7
7
5

; (D.8)
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where each of its coe�cients are a combination of an idiosyncratic shock hj;t and either

a macroeconomic factormt or a �nancial factor f t , as in

� j;t =

8
>><

>>:

m� m;j
t hj;t if j = 1; :::; nm

f � f;j
t hj;t if j = nm + 1; :::; n

; (D.9)

where the log of the idiosyncratic shocks lnhj;t follow an AR(1) process as in

ln hj;t = 
 j; 0 + 
 j; 1 ln hj;t � 1 + ej;t ; j = 1; :::; n: (D.10)

E Appendix: Priors and conditional posteriors

Here I present the prior and conditional posterior distributions for the parameters and

coe�cients for the MCMC steps explained in Appendix B. I follow the proposed priors

and notation from Carriero et al. (2016a), with priors de�ned as

vec(A i ; B i ) � N (vec(�
A

); 
 A ); i = 1; :::; p; (E.1)

aj � N (�
a;j

; 
 a;j ); j = 2; :::; n; (E.2)

� j � N (�
�
; 
 � ); j = 2; :::; nm ; nm+2 ; :::; n; (E.3)


 j � N (�


; 
 
 ); j = 1; :::; n; (E.4)

� � N (�
�
; 
 � ); (E.5)

� j � IG (d� � ; d� ); j = 1; :::; n; (E.6)

� u � IW (d� u � u; d� u ): (E.7)

Under these priors, the posterior conditional distributions follow

vec(A i ; B i )jA 0; �; m 1:T ; f 1:T ; h1:T ; y1:T � N (vec(�� A ); �
 A ); i = 1; :::; p; (E.8)
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aj jA i ; B i ; �; m 1:T ; f 1:T ; h1:T ; y1:T � N (�� a;j ; �
 a;j ); j = 2; :::; n; (E.9)

1� j jA i ; A 0; B i ; 
; � ; �; m 1:T ; f 1:T ; S1:T ; y1:T � N (�
�
; 
 � ); j = 2; :::; nm ; nm+2 ; :::; n;

(E.10)


 j jA i ; A 0; B i ; � ; �; m 1:T ; f 1:T ; h1:T ; y1:T � N (�


; 
 
 ); j = 1; :::; n; (E.11)

� jA i ; A 0; B i ; � ; 
; �; m 1:T ; f 1:T ; h1:T ; y1:T � N (�
�
; 
 � ); (E.12)

� j jA i ; A 0; B i ; 
; �; m 1:T ; f 1:T ; h1:T ; y1:T � IG (d� � ; d� ); j = 1; :::; n; (E.13)

� u jA i ; A 0; B i ; 
; �; �; m 1:T ; f 1:T ; h1:T ; y1:T � IW (d� u � u; d� u ): (E.14)

The posterior �� A is drawn equation-by-equation through the triangularization method

described in Section A. The posteriors �� a;j , �� � and �� 
 follow the results from the standard

linear regression model. The factor loadings� are drawn following a GLS-based form

depending on the mixture states drawn for the volatilities,as in Carriero et al. (2016a).

With regard to the priors, I adopt a Minnesota-type structurefor the VAR coe�-

cients in A i . This model contains stationary and non-stationary variables, so the prior

coe�cients of the stationary variables are set to 0, while the prior coe�cients of the non-

stationary variables are set to 1. The variance-covariancematrix 
 A is diagonal, with

standard Minnesota shrinkage form, as in


 A = var[A ij
k ] =

8
>>>>>><

>>>>>>:

�
� 2

1
l2

�
if i = j;

�
� 1 � 2

l
� i
� j

� 2
; if i = j;

(� 0� i )2; if intercept or gt :

(E.15)

where l is the lag. The overall prior tightness� 1 is set here as 0.05, the cross-shrinkage

parameter � 2 is set to 0.5 and the intercept shrinkage parameter� 0 is set to 1,000. I

follow Carriero et al. (2016a) by also setting a prior variance for the uncertainty factors

ln mt and lnf t equal to the intercept. The variance parameters� i come from the residual

variances of anAR(p) process for each variable.

The prior means and variances for the remainder of the coe�cients are presented in
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Table E.1.

Table E.1 Mean and variance priors

Mean Variance Degree of freedom
aj 0 10 -
(
 i; 0; 
 i; 1) (ln � 2

i ; 0) (2; 0:42) -
� j , for j = 2; :::; nm ,
and j = nm+2 ; :::n

1 0:42 -

D i
0:8, for �rst own lag,

0 otherwise
0:22 -

� 0 0:12 -
� j 0:03 - 10
� u 0:01I n 10
ln m0 and lnf 0 0 - -
ln hi; 0 ln � 2

i 2 -

There is discussion in the literature on the impact of the prior on the componentsaj

of matrix A 0. The model may be dependent on the ordering of the variables,along with

the priors imposed onaj . This is an issue primarily in using this model for forecasting

purposes. I address these questions by following Carriero et al. (2016a) and Cogley and

Sargent (2005) and imposing a prior fairly uninformative for aj , with mean of 0 and

variances of 10. In addition, the identi�cation procedure of maximizing the variance

decomposition over a prede�ned forecast period is order-invariant, avoiding the problem

of choosing the wrong order of variables.

Finally, the dependence of the uncertainty factors on laggedvalues ofyt creates an

(indirect) extra dependency of current values ofyt to lagged values not captured by the

main VAR. This dependency is clearly noticed when the main VAR is rewritten in a

state-space model, as in equation D.6, where the coe�cients� are also part ofF1 and

F2. I follow strategy similar to Mumtaz and Theodoridis (2015)by imposing additional

shrinkage to the variance of� , which I set to
�

� 2
1

l2

�
.
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F Appendix: Generalized impulse responses proce-

dure

In this Appendix I present the procedure of estimating the generalized impulse responses

for the news shock and the uncertainty shocks.

Due to the non-linearity that the time-varying volatilitie s bring to the model, the

feedback e�ect that the variables cause to the volatility through the uncertainty factors,

and the feedback of the uncertainty factors on the mean of thevariables, it is not possible

to employ a conventional impulse response setting in this case. The strategy here is to

use an adaptation of the procedure proposed by Koop et al. (1996) and Pesaran and

Shin (1998), taking into account that the shocksvt = A � 1
0 � 1=2

t � t are orthogonal by

construction.

The idea is to create two distinct forecast paths for the variablesyt , a baseline and a

shocked containing the shock of interest (namely,� j ). The generalized impulse responses

are the di�erence between these two paths. To accomplish this, it is necessary to construct

a set of random shocks! j;t over the forecast period that mimic the behavior of� t . The

generalized impulse response (GI) of ar set of randomly drawn! r
j;t is given by

GI r (k; � j ; ! r
j;t ; Z t ; � ) = E[yr

t+ k j� j ; ! r
j;t ; Z t ; � ] � E[yr

t+ k j! j;t ; Z t ; � ]; (F.1)

wherek is the forecast point in time,Z t is the information set containing all the known

history up to time t de�ned as Z t = ( yt � p; :::; yt ; gt � p; ::; gt ),26 � collects the coe�cient

matrices as� = [ A i ; B i ; D i ; � j ; 
 j ; � ], E[yr
t+ k j� j ; ! r

j;t ; Z t ] is the shocked path ofyt and

E[yr
t+ k j! r

j;t ; Z t ] is the baseline path of the baseline path ofyt .

Repeat the procedure of equation F.1R times, and take the averages overR of these

paths. Koop et al. (1996) show that asR ! 1 , by the Law of Large Numbers these

averages will converge the conditional expectationsE[yt+ k j� j ; Z t ; � ] and E[yt+ k jZ t ; � ],

26Where gt = (ln mt ; ln f t ).
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and the generalized impulse response can be constructed as

GI (k; � j ; Z t ; � ) = E[yt+ k j� j ; Z t ; � ] � E[yt+ k jZ t ; � ]: (F.2)

F.1 Generalized impulse responses for a news shock

For the news shock case, I start with the state-space procedure presented in equations

D.6 and D.9 (Appendix D). The news shock is identi�ed as the orthogonalization of

the shocks on the mean of the variables that maximize the variance decomposition of one

objective variable over a prede�ned forecast period. It follows that the identi�cation relies

on an orthogonalization of the innovations� t . By construction, � t is independent from

the idiosyncratic innovationsej;t and the uncertainty innovationsum;t and uf;t . Since I

am only interested in � t for the news shock identi�cation, I setej;t = 0, um;t = 0 and

uf;t = 0 in this procedure.

With this simpli�cation, it is possible to rewrite equations D.6 and D.9, respectively,

as
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0 � 1=2

t 0 ::: 0 B 0

0 0 0 0 0

::: ::: ::: ::: :::

0 0 0 0 0
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;

(F.3)

and

ln hj;t = 
 j; 0 + 
 j; 1 ln hj;t � 1; j = 1; :::; n: (F.4)

Now that the model has only a single set of innovations� t , the generalized impulse

responses for the news shock can be constructed with the following steps. The identi�-

cation of the news shock is dependent on the total variance, and the variance changes

over time, so the following procedure is executed at each point in time. This allows the
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construction of a time-varying identi�cation, with di�ere nt impulse responses at every

point in the time span considered.

Step 1: Construct a baseline path.

Considering one drawr of the random innovations ! r
j;t and K being the forecast

period, construct by simulation a baseline path fromt + 1 to t + K for the idiosyncratic

innovations lnhr
j;t using equation F.4, and foryr

t;base, gr
t;base

27 and � r
t;base using equation

F.3.

Step 2: Construct a shocked path for a utilization-adjusted TFP shock.

Take the same drawr from Step 1, and the idiosyncratic innovations lnhr
j;t . For t + 1,

construct a one standard deviation shock on utilization-adjusted TFP by adding to ! r
j;t +1

the shock� r
T F P , which is a vector with 1 in the �rst position (where utilization-adjusted

TFP ordered �rst in the VAR) and zeros elsewhere. Construct by simulation a TFP

shocked path fromt + 1 to t + K for yr
T F P;t , gr

T F P;t
28 and � r

T F P;t using equation F.3.

Step 3: Construct the impulse responses for a TFP shock.

Following equation F.1, construct the impulse responses fora utilization-adjusted

TFP shock as the di�erences between the shocked and the baseline paths for the drawr

as

GI r
T F P;t (k; � r

T F P ; ! r
j;t ; Z t ; � ) = E[yr

t+ k;T F P ; gr
t+ k;T F P j� r

T F P ; � r
t+ k;T F P ; ! r

j;t ; Z t ; � ]

� E[yr
t+ k;base; gr

t+ k;basej�
r
t+ k;base; ! r

j;t ; Z t ; � ]:
(F.5)

Step 4: Identify the news shock.

Identify the news shock for the drawr as the orthogonalization on� t that maximizes

the variance decomposition of utilization-adjusted TFP over a prede�ned K forecast

period.29 The idea of identifying the news shock for everyr draw is in line with the

discussion about the di�erence between structural and model identi�cation from Fry and

Pagan (2011). Everyr draw is a realization of a di�erent model among in�nite alternative

models, leading to unique identi�cation of the news shock. The best approximation of

27Where gt;base = (ln mt;base ; ln f t;base ).
28Where gt;T F P = (ln mt;T F P ; ln f t;T F P ).
29For this paper, I follow Barsky and Sims (2011) and setK = 40 quarters ahead.
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the structural identi�cation will be the average across allr impulse responses after the

news shock is properly identi�ed for each di�erent model.

Following the identi�cation procedure proposed in Section3.1, the news shock� r
t;news

can be identi�ed as

� r
t;news = arg max

P K
k=0 GI r

T F P;t (k; � r
T F P ; ! r

j;t ; Z t ; ; � ; � )GI r
T F P;t (k; � r

T F P ; ! r
j;t ; Z t ; ; � ; � )

0

P K
k=0 B 1A � 1� 1=2

t+ k;T F P (A � 1� 1=2
t+ k;T F P )0B 0

1

;

(F.6)

subject to

A � 1(1; j ) = 0 ; 8j > 1;

� (1; 1) = 0;

� 0� = 1;

(F.7)

where B 1 is the line correspondent to the utilization-adjusted TFP coe�cients in the

state-space representation described in equation D.6 (Appendix D).

Step 5: Construct a shocked path for the news shock.

Take the same drawr from Step 1, and the idiosyncratic innovations lnhr
j;t . For

t + 1, construct a TFP news shock by adding the shock� r
t;news to ! r

j;t +1 . Construct by

simulation a news shocked path fromt + 1 to t + K for yr
t;news , gr

t;news
30 and � r

t;news using

equation F.3.

Step 6: Construct the impulse responses for the news shock.

Following equation F.1, construct the impulse responses forthe news shock as the

di�erences between the shocked news path and the baseline path from Step 1 for the

draw r as

GI r
t;news (k; � r

t;news ; ! r
j;t ; Z t ; � ) = E[yr

t+ k;news ; gr
t+ k;news j� r

t;news ; � r
t+ k;news ; ! r

j;t ; Z t ; � ]

� E[yr
t+ k;base; gr

t+ k;basej�
r
t+ k;base; ! j;t ; Z t ; � ]:

(F.8)

Step 7: Construct the average impulse responses for the news shock.

Repeat Steps 1 to 6 forR number of times and form the averages of the shocked news

30Where gt;news = (ln mt;news ; ln f t;news ).
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and baseline paths across allR draws of ! j;t r as

�yt+ k;news (k; � t;news ; Z t ; � ) =
1
R

RX

r =1

yr
t+ k;news (� r

t;news ; � r
t+ k;news ; ! r

j;t ; Z t ; � );

�gt+ k;news (k; � t;news ; Z t ; � ) =
1
R

RX

r =1

gr
t+ k;news (� r

t;news ; � r
t+ k;news ; ! r

j;t ; Z t ; � );

�yt+ k;base(k; Z t ; � ) =
1
R

RX

r =1

yr
t+ k;base(�

r
t+ k;base; ! r

j;t ; Z t ; � );

�gt+ k;base(k; Z t ; � ) =
1
R

RX

r =1

gr
t+ k;base(�

r
t+ k;base; ! r

j;t ; Z t ; � ):

(F.9)

Lastly, construct the �nal generalized impulse responses for the news shock as the

di�erences between these averages, as in

GI t;news (k; � t;news ; Z t ; � ) = [�yt+ k;news (k; � t;news ; Z t ; � ); �gt+ k;news (k; � t;news ; Z t ; � )]

� [�yt+ k;base(k; Z t ; � ); �gt+ k;base(k; Z t ; � )]:
(F.10)

After testing di�erent R sizes, I setR = 1; 000 for this paper. Since changing fromR =

1; 000 to R = 5; 000 did not present any noticeable di�erence,R = 1; 000 is su�ciently

large to achieve the di�erence between conditional expectations expressed in equation

F.2.

F.2 Generalized impulse responses for uncertainty shocks

Here I describe the procedure for constructing the generalized impulse responses to macro

and �nancial uncertainty shocks.

Step 1: Construct a baseline path.

Considering one drawr of the random innovations ! r
j;t and K being the forecast

period, construct by simulation a baseline path fromT + 1 to T + K for the idiosyncratic

innovations lnhr
j;t using equation F.4, and foryr

t;base, gr
t;base and � r

t;base using equation F.3.

Step 2: Construct a shocked path for each of the uncertainty shocks.

Take the same drawr from Step 1, and the idiosyncratic innovations lnhr
j;t . Construct
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the macro and �nancial shocks through a lower triangular Cholesky decomposition as

� r
macro = chol(� u; `lower') � qmacro

i ;

� r
f in = chol(� u; `lower') � qf in

i ;
(F.11)

whereqmacro
i is a 2� 1 vector with 1 in the �rst position and zero in the second, andqf in

i is

a 2� 1 vector with zero in the �rst position and 1 in the second. ForT +1, construct a one

standard deviation shock on macro uncertainty by substituting (um;t ; uf;t )0 in equation

D.6 for � r
macro . Construct by simulation a macro shocked path fromT + 1 to T + K for

yr
t;macro , gr

t;macro and � r
t;macro using equation D.6. Repeat the process for the �nancial

uncertainty by using � r
f in to construct paths for yr

t;f in , gr
t;f in and � r

t;f in .

Step 3: Construct the impulse responses for the uncertainty shocks.

Following equation F.1, construct the impulse responses forthe macro and �nancial

shocks as the di�erences between the shocked and the baseline paths for the drawr as

GI r
macro (k; � r

macro ; ! r
j;t ; ZT ; � ) = E[yr

T + k;macro ; gr
T + k;macro j� r

macro ; � r
T + k;macro ; ! r

j;t ; ZT ; � ]

� E[yr
T + k;base; gr

T + k;basej�
r
T + k;base; ! r

j;t ; ZT ; � ];

GI r
f in (k; � r

f in ; ! r
j;t ; ZT ; � ) = E[yr

T + k;f in ; gr
T + k;f in j� r

f in ; � r
T + k;f in ; ! r

j;t ; ZT ; � ]

� E[yr
T + k;base; gr

T + k;basej�
r
T + k;base; ! r

j;t ; ZT ; � ]:

(F.12)

Step 4: Construct the average impulse responses for the uncertainty shocks.

Repeat Steps 1 to 3 forR number of times and form the averages of the shocked and
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baseline paths across allR draws of ! j;t r as

�yt+ k;macro (k; � t;macro ; Z t ; � ) =
1
R

RX

r =1

yr
t+ k;macro (� r

t;macro ; � r
t+ k;macro ; ! r

j;t ; Z t ; � );

�yt+ k;f in (k; � t;f in ; Z t ; � ) =
1
R

RX

r =1

yr
t+ k;f in (� r

t;f in ; � r
t+ k;f in ; ! r

j;t ; Z t ; � );

�gt+ k;macro (k; � t;macro ; Z t ; � ) =
1
R

RX

r =1

gr
t+ k;macro (� r

t;macro ; � r
t+ k;macro ; ! r

j;t ; Z t ; � );

�gt+ k;f in (k; � t;f in ; Z t ; � ) =
1
R

RX

r =1

gr
t+ k;f in (� r

t;f in ; � r
t+ k;f in ; ! r

j;t ; Z t ; � );

�yt+ k;base(k; Z t ; � ) =
1
R

RX

r =1

yr
t+ k;base(�

r
t+ k;base; ! r

j;t ; Z t ; � );

�gt+ k;base(k; Z t ; � ) =
1
R

RX

r =1

gr
t+ k;base(�

r
t+ k;base; ! r

j;t ; Z t ; � ):

(F.13)

Lastly, construct the �nal generalized impulse responses for the macro and �nancial

shocks as the di�erences between these averages, as in

GI t;macro (k; � t;macro ; Z t ; � ) = [�yt+ k;macro (k; � t;macro ; Z t ; � ); �gt+ k;macro (k; � t;macro ; Z t ; � )]

� [�yt+ k;base(k; Z t ; � ); �gt+ k;base(k; Z t ; � )];

GI t;f in (k; � t;f in ; Z t ; � ) = [�yt+ k;f in (k; � t;f in ; Z t ; � ); �gt+ k;f in (k; � t;f in ; Z t ; � )]

� [�yt+ k;base(k; Z t ; � ); �gt+ k;base(k; Z t ; � )]:

(F.14)

As it is the case for the news shock, I setR = 1; 000 for the uncertainty shocks,

which is enough to achieve the di�erence between conditional expectations expressed in

equation F.2.
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G Appendix: Data description

Table G.1 Description of macroeconomic variables

Name Description Source
1 Utilization-

adjusted TFP
Utilization-adjusted TFP in log levels. Computed by
Fernald (2014).

Fernald's website
(Nov/2015)

2 Consumption Real per capita consumption in log levels. Computed
using PCE (nondurable goods + services), price de
ator
and population.

Fred

3 Output Real per capita GDP in log levels. Computed using the
real GDP (business, nonfarm) and population.

Fred

4 Investment Real per capita investment in log levels. Computed using
PCE durable goods + gross private domestic investment,
price de
ator and population.

Fred

5 Hours Per capita hours in log levels. Computed with Total
hours in nonfarm business sector and population values.

Fred

6 Prices Price de
ator, computed with the implicit price de
ator
for nonfarm business sector.

Fred

7 FFR Fed funds rate. Fred

8 Payroll Total nonfarm payroll: All employees in log levels. Fred

9 IP Industrial production index in log levels. Fred

10 Help to unemp. Help wanted to unemployment ratio. Fred

11 Pers. income Real personal income in log levels. Fred

12 M&T sales Real manufacturing and trad sales in log levels. Fred

13 Earnings Average of hourly earnings (goods producing) in log lev-
els.

Fred

14 PPI Producer price index (�nished goods) in log levels. Fred

Note: All for the 1975Q1-2012Q3 period. Monthly series converted to quarterly by averaging over
the quarter.
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Table G.2 Description of �nancial variables

Name Description Source
1 Spread Di�erence between the 10-year Treasury rate and the

FFR.
Fred

2 S&P500 S&P500 stock index in logs levels. Fred

3 S&P dividend
yield

S&P dividend yield, in log and annualized. Fred

4 EBP Excess bond premium as computed by Gilchrist and Za-
kraj�sek (2012).

Gilchrist's website
(Mar/2015)

5 Excess returns CRSP excess returns, in log and annualized. French's website
(Jul/2016)

6 SMB Small minus big risk factor, in log and annualized. French's website
(Jul/2016)

7 HML High minus low risk factor, in log and annualized. French's website
(Jul/2016)

8 Momentum Momentum, in log and annualized. French's website
(Jul/2016)

9 R15-R11 Small stock value spread, in log and annualized. French's website
(Jul/2016)

10 Ind. 1 Consumer industry sector-level return, in log and annu-
alized.

French's website
(Jul/2016)

11 Ind. 2 Manufacturing industry sector-level return, in log and
annualized.

French's website
(Jul/2016)

12 Ind. 3 High technology industry sector-level return, in log and
annualized.

French's website
(Jul/2016)

13 Ind. 4 Health industry sector-level return, in log and annual-
ized.

French's website
(Jul/2016)

14 Ind. 5 Other industries sector-level return, in log and annual-
ized.

French's website
(Jul/2016)

Note: All for the 1975Q1-2012Q3. Monthly series converted to quarterly by averaging over the
quarter.
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Table G.3 Macroeconomic and �nancial uncertainties

Name Description Source
Financial Uncertainty Measures

1 Realized
Volatility

Realized volatility computed using daily returns using
the robust estimator by Rousseeuw and Croux (1993).

CRPS

2 VXO Option-implied volatility of the SP100 future index.
Available from 1986Q1.

CBOE

3 LMN-�n-1 Financial forecasting uncertainty computed by
Ludvigson et al. (2016). -1 is one-month-ahead, -3 is
three-months and -12 is one-year ahead.

Ludvigson's
website
(Feb/2016)

4 LMN-�n-3
5 LMN-�n-12

Macroeconomic Uncertainty Measures
1 Policy

uncertainty
Economic Policy Uncertainty Index in logs computed by
Baker et al. (2016).

Bloom's website
(Mar/2016)

2 Business
uncertainty

Business forecasters dispersion computed by Bachmann
et al. (2013) up to 2011Q4.

AER website

3 SPF
disagreement

SPF forecasters dispersion on one-quarter-ahead Q/Q
real GDP forecasts computed using the interdecile range.

Philadelphia Fed

4 LMN-macro-1 Macro forecasting uncertainty computed by Ludvigson
et al. (2016). -1 is one-month-ahead, -3 is three-months
and -12 is one-year ahead.

Ludvigson's
website
(Feb/2016)

5 LMN-macro-3
6 LMN-macro-12
Note: All for the 1975Q1-2012Q3 period except when noted. Monthly series converted to quarterly
by averaging over the quarter.
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H Appendix: Volatilities

Figure 15 Volatilities of macroeconomic variables

Note: The estimated volatilities of macroeconomic variables are composed of an id-
iosyncratic component and the common macroeconomic volatility factor weighted by
a loading � m;j . The dotted lines de�ne the 68% con�dence bands computed with
200 posterior draws. The macroeconomic variables are described in Table G.1.

Figure 16 Volatilities of �nancial variables

Note: The estimated volatilities of �nancial variables are composed of an id-
iosyncratic component and the common �nancial volatility factor weighted by
a loading � f;j . The dotted lines de�ne the 68% con�dence bands computed
with 200 posterior draws. The �nancial variables are described in Table G.2.
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I Appendix: Alternative ordering of uncertainty shocks

Figure I.1 Impulse responses to a �nancial uncertainty shockwith �nancial uncertainty
ordered �rst

The uncertainty shocks with alternative ordering are identi�ed through Cholesky
decomposition with �nancial uncertainty ordered �rst, and macroeconomic un-
certainty ordered last, as described in Section 3.3. The generalized im-
pulse responses of the uncertainty shock are the average of 1,000 simu-
lated random innovations, as described in Appendix F. The shaded ar-
eas de�ne the 68% con�dence bands computed with 200 posterior draws.

Figure I.2 Impulse responses to a macroeconomic uncertaintyshock with �nancial uncer-
tainty ordered �rst

Note: The uncertainty shocks with alternative ordering are identi�ed through
Cholesky decomposition with �nancial uncertainty ordered �rst, and macroeco-
nomic uncertainty ordered last, as described in Section 3.3. The general-
ized impulse responses of the uncertainty shock are the average of 1,000 sim-
ulated random innovations, as described in Appendix F. The shaded ar-
eas de�ne the 68% con�dence bands computed with 200 posterior draws.
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