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Abstract

Gravity equations are an important tool in empirical international trade re-

search. We study to what extent sector-level parameters can be recovered

from aggregate gravity equations estimated via Poisson pseudo maximum like-

lihood. We show that in the leading case where trade cost regressors do not

vary at the sector level, estimates obtained with aggregate data have a clear

interpretation as a weighted average of sectoral elasticities. Otherwise the es-

timates are biased but researchers may possibly infer the direction of the bias.

We illustrate our results by revisiting Baier and Bergstrand’s (2007) influential

study of the effects of free trade agreements.

JEL classification: C23, C43, F14, F15, F17

Keywords: Free trade agreements, gravity equation, heterogeneity, PPML, trade costs

1We thank the editor Daniel Xu and four anonymous referees for many helpful and interesting com-

ments. We gratefully acknowledge research support from the Economic and Social Research Council

(ESRC grant ES/P00766X/1). We also thank Thomas Zylkin and conference and seminar participants

at the European Trade Study Group conference 2019 and the London School of Economics for helpful

comments. The usual disclaimer applies.
2Holger Breinlich, School of Economics, University of Surrey, Guildford GU2 7XH, UK, CEP/LSE

and CEPR. Email: h.breinlich@surrey.ac.uk.
3Dennis Novy, Department of Economics, University of Warwick, Coventry CV4 7AL, UK, CEP/LSE,

CEPR and CESifo. Email: d.novy@warwick.ac.uk.
4João Santos Silva, School of Economics, University of Surrey, Guildford GU2 7XH, UK. Email:

jmcss@surrey.ac.uk.



1 Introduction

The gravity equation is the workhorse model in international trade for estimating trade

cost parameters and evaluating the effects of policy changes. Gravity equations have

been used to estimate the trade effects of free trade agreements (FTAs), currency unions,

WTO membership and colonial history, amongst other institutional features (see Ander-

son, 2011, and Head and Mayer, 2014). When trade costs change, the impact typically

materializes at the level of firms and consumers in a particular sector. That is, the impact

is governed by parameters at the sector level, for example sector-level demand elasticities.

However, due to data constraints, gravity equations are routinely estimated at the aggre-

gate level using country-level data. The resulting estimates are often assumed, explicitly

or implicitly, to be informative about the more fundamental sector-level parameters.

In this paper, we investigate to what extent this practice is justified. Specifically,

we ask whether we can identify sector-level elasticities from aggregate gravity regressions

and, if yes, under what conditions?5

We show that if trade elasticities and regressors (i.e., trade cost variables and fixed

effects) are the same at the sector level, we can recover the sector-level elasticity from esti-

mation based on aggregate data when the model is estimated by Poisson pseudo maximum

likelihood (PPML), as recommended by Santos Silva and Tenreyro (2006). For instance,

this scenario applies when the trade cost variables are bilateral distance and a common

language dummy whose elasticities do not differ at the sector level, and the fixed effects

included in the regressions do not vary at the sector level either.

When trade elasticities and fixed effects vary at the sectoral level but trade cost vari-

ables do not, naturally it is not possible to recover the sectoral elasticities from aggregate

5Although we only explicitly consider aggregation across sectors, aggregation over time raises similar

issues and our results can easily be applied to that problem.
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data. However, we show that in this case PPML estimation using aggregate data will

approximately recover a trade-weighted average of sector-level elasticities.

If the trade cost variables (e.g., tariffs) vary at the sector level, estimates obtained

with aggregate data yield biased estimates of the parameters of interest, but we show

that it may be possible to determine the direction of the bias when we have information

about the distribution of the sector-level regressors.

Our work contributes to several strands of the literature. First, we contribute to

the econometrics literature on cross-sectional aggregation of constant-elasticity models.

However, rather than considering the consequences of aggregation in the context of log-

linearized models estimated by OLS, as Lewbel (1992) and van Garderen, Lee and Pesaran

(2000), we study the effects of aggregation when constant-elasticity models are estimated

in their exponential form by PPML.

Second, we contribute to the literature that studies the consequences of aggregation

in the particular context of gravity equations. Specifically, our work is related to that

of Imbs and Mejean (2015) who exploit tariff variation and show that trade elasticity

estimates based on aggregate data are smaller in absolute value than the average of sectoral

elasticities. This finding is driven by the fact that tariffs tend to be less dispersed in elastic

sectors. The main difference to Imbs and Mejean (2015) is that we focus on aggregation

with PPML, not OLS, and we also consider cases where regressors are common across

sectors and only the parameters vary, and vice versa.6 Our results imply that aggregation

can either reduce or increase estimates depending on the sectoral distribution of trade

cost variables.
6In particular, we show that even if trade cost parameters are common across sectors, aggregation can

shift coeffi cient estimates (due to fixed effects with a sector dimension). In contrast, their argument only

applies if sectoral elasticities are heterogeneous (see Imbs and Mejean, 2015, p. 47).
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In a related contribution, Redding and Weinstein (2019a and 2019b) show that the

theoretical aggregation of gravity equations is not straightforward. They estimate the

distance elasticity at the aggregate level and devise a decomposition that breaks down the

estimated aggregate distance elasticity into various components. One of these components

is a Jensen’s inequality term that accounts for the fact that the typical gravity equation is

log-linear while aggregation implies summation in levels. As Redding and Weinstein rely

on OLS estimation for their decomposition, they do not account for the bias resulting from

heteroskedasticity as highlighted by Santos Silva and Tenreyro (2006). In addition, as the

Jensen’s inequality term has to be computed from estimates of sectoral gravity equations,

a researcher who only has access to aggregate data cannot resort to the decomposition

method as a way of adjusting for the effects of aggregation. This differs from our intention

of understanding the effects of aggregation in situations where sectoral data may not be

available.

In independent work, French (2019) also considers the effects of aggregation on gravity

equations estimated by PPML. We use a different analytical framework that provides an

interpretation of aggregation effects that is arguably more practical and intuitive. In par-

ticular, we show that in a leading case, aggregate PPML estimates of gravity coeffi cients

can be seen as weighted averages of sector-specific parameters, thereby providing a clear

link between the estimated parameters and the parameters of interest.

The paper is structured as follows. In Section 2 we present a simple international

trade model that delivers gravity equations at two levels of aggregation. This frame-

work provides theoretical guidance for our approach and helps to clarify the link between

parameter estimates and the underlying theoretical parameters common in international

trade models. In Section 3 we present initial motivating evidence regarding the effects

of aggregation in gravity estimation. In Section 4 we explain these findings by deriv-
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ing theoretical results on the aggregation of constant-elasticity models under different

assumptions. Section 5 concludes. We present additional results in an online appendix.

2 Gravity at different levels of aggregation

We sketch a theoretical framework that yields gravity equations at different levels of

aggregation. It is based on a simple model of international trade with a two-tier nested

constant elasticity of substitution (CES) demand system, following Redding andWeinstein

(2019a and 2019b). The upper tier represents the aggregate level of the economy, and the

lower tier the disaggregated (sector) level. Varieties in each sector are differentiated by

origin according to the Armington assumption.

Aggregate consumption at the upper tier is given by

Cj =

(∑
s

(cjs)
ν−1
ν

) ν
ν−1

,

where cjs is real consumption by country j of sector s aggregates, and ν is the elasticity

of substitution between sectors. The lower-tier aggregator is given by

cjs =

(∑
i

(θijscijs)
σs−1
σs

) σs
σs−1

,

where cijs is real consumption by country j of sector s varieties originating from country

i, σs is the elasticity of substitution across sector s varieties, and θijs ≥ 0 is a taste

parameter that implies zero trade flows between countries i and j in sector s if θijs = 0.

The CES demand relationship at the lower tier follows as

xijs =

(
pijs

θijsPjs

)1−σs
Ejs, (1)
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where xijs denotes nominal trade flows from country i to country j in sector s, pijs

denotes their unit price, Pjs is the sectoral CES price index in country j, and Ejs is the

corresponding sectoral expenditure. We assume that trade costs are of the iceberg type

such that

pijs = τ ijspis, (2)

where pis denotes the price (or unit cost) at origin i. We assume a standard log-linear

specification of the trade cost function with

ln τ ijs = ρs ln distij, (3)

where for simplicity we use bilateral distance distij as the sole trade cost component with

an elasticity ρs that can vary by sector.
7

Combining equations (1), (2) and (3), we can write the sector-level gravity equation

in log-linearized form as

lnxijs = φis + ξjs − (σs − 1) ρs ln distij + (1− σs) ln θijs, (4)

where the sector-origin fixed effect φis captures the origin price pis, the sector-destination

fixed effect ξjs captures the price index Pjs and expenditure Ejs, and (1− σs) ln θijs is the

error term, traditionally assumed to be independent of trade costs τ ijs. The sector-level

trade cost elasticity is thus a function of the elasticity of substitution.

7Feenstra, Luck, Obstfeld and Russ (2018) specify a monopolistic competition model with a separate

‘macro’elasticity between home and foreign varieties and a ‘micro’elasticity between different foreign

varieties. We do not make such a distinction but rather focus on the variation of elasticities across sectors.
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Aggregate bilateral trade is defined as the sum of bilateral trade flows across sectors

s = 1, . . . , l

xij ≡
l∑

s=1

xijs (5)

with i 6= j. We proceed to show that based on the framework in equations (1)-(3), an

aggregate gravity equation can be constructed but only with non-standard properties.

For this purpose, we substitute the demand function (1) into the definition of aggregate

bilateral trade (5) using equation (2):

xij =
∑
s

(
τ ijspis
θijsPjs

)1−σs
Ejs

=

(
τ ijpi
Pj

)1−σ
Ej exp(εij), (6)

where σ denotes the aggregate demand elasticity, ln τ ij = ρ ln distij, pi is the unit price

in country i, Pj is the CES price index in country j, Ej is the corresponding expenditure,

and

exp(εij) =
∑
s

(
τ ijpi
Pj

)σ−1(
τ ijspis
θijsPjs

)1−σs Ejs
Ej

. (7)

Taking logarithms of equation (6) implies

lnxij = Φi + Ξj − (σ − 1) ρ ln distij + εij, (8)

with Φi = (1− σ) ln pi and Ξj = (σ − 1) lnPj + lnEj.

Superficially, equation (8) has the same structure as a conventional log-linearized grav-

ity equation, but the key point is that εij should not be considered a standard error term
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because it is by construction a function of bilateral trade costs τ ij.8 The exception is the

case where θijs is the only source of sectoral heterogeneity, and therefore σs = σ, pis = pi,

Pjs = Pj, Ejs = Ej, and τ ijs = τ ij = distρij. In this special case we have

exp(εij) =
∑
s

θσ−1ijs ,

and therefore (8) would be a proper log-linearized gravity equation. We will use this result

later.

3 Motivating evidence

The theoretical framework in Section 2 delivers a gravity equation (4) at the disaggregate

level as well as an equation (8) at the aggregate level that can be construed as a non-

standard gravity equation. Building upon Baier and Bergstrand’s (2007) seminal work on

the effects of free trade agreements, we now explore empirically how estimated coeffi cients

on gravity variables behave at different levels of aggregation, and in the next section we

discuss the observed empirical patterns from a theoretical perspective.

Baier and Bergstrand’s estimation framework is based on an OLS regression of loga-

rithmic trade flows on multiple categories of fixed effects and dummies for whether two

countries have a trade agreement in place. Specifically, they consider models of the form

lnxijt = αit + αjt + αij + β1FTAijt + β2FTAijt−1 + β3FTAijt−2 + εijt, (9)

8The result in equation (8) resonates with Redding and Weinstein (2019a and 2019b) who also demon-

strate that in a nested CES demand system as above, a log-linear gravity equation can be derived at the

aggregate level but only with an error term that is not orthogonal to bilateral trade costs.
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where xijt are imports of country j from country i in year t, the FTA dummies (which

include a contemporaneous term as well as two lags to allow for phasing-in effects) are the

regressors of interest, αit and αjt denote exporter-year and importer-year fixed effects that

control for price index and expenditure terms, αij are bilateral fixed effects introduced by

Baier and Bergstrand to help address the potential endogeneity of free trade agreements,

and εijt is the error term.

Following Santos Silva and Tenreyro (2006), we also use the PPML estimator of

Gourieroux, Monfort, and Trognon (1984) to estimate models of the form

xijt = exp (αit + αjt + αij + β1FTAijt + β2FTAijt−1 + β3FTAijt−2) ηijt, (10)

where ηijt is a multiplicative error term.

Baier and Bergstrand estimate (9) using country-level bilateral trade data from the

IMF’s Direction of Trade Statistics (DOTS). In our context, the key question is how the

coeffi cient estimates on the FTA terms change as we vary the level of aggregation. For

this purpose we replicate Baier and Bergstrand’s key results but using data from the UN

Comtrade database which provides trade flows at different levels of aggregation.9 This

allows us to show results from estimating models (9) and (10) at three different levels

9Baier and Bergstrand use data from the IMF’s DOTS for the years 1960-2000 at five-year intervals for

96 countries, excluding zero trade flows. To achieve a similar timespan, we rely on data from Comtrade,

based on the SITC classification, for the same countries and for the years 1962, 1965, 1970, ..., 2000

(no data are available prior to 1962 so we use 1962 data for 1960). Specifically, we use the value of

bilateral imports in current US dollars on a c.i.f. basis. These data are available at five different levels of

aggregation, from SITC 4-digit to the country-level bilateral trade flows used by Baier and Bergstrand

(SITC 0-digit). Our data on FTAs are the same as in Baier and Bergstrand (2007), based on their Table

3.
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of aggregation: aggregate bilateral imports, and imports at the 2-digit and 4-digit SITC

levels.10

The results obtained when estimating models (9) and (10) at different levels of aggre-

gation are presented in Table 1. Specifically, for each estimator we present results at three

levels of aggregation and, when using disaggregated data, we present results for models

imposing that the fixed effects are the same across sectors and for models where the fixed

effects are allowed to vary by sector.11 For now the coeffi cients on the FTA dummies

are constrained to be the same for all sectors. Although we present estimates for each

of the three FTA dummies, we will focus our discussion on the total FTA effect, which

is reported in the last column of the table and is computed as the sum of the estimated

coeffi cients on the three FTA dummies.

Reassuringly, our results for the specification most directly comparable to Baier and

Bergstrand’s (the one using OLS estimation with aggregate trade) are similar to theirs.

We obtain a total FTA effect of 0.714 log points (see the last column of the first line of

Table 1) compared to 0.76 log points in the key specification by Baier and Bergstrand (see

their Table 5, column 4). This demonstrates that changing the data source from the IMF

10For each country pair in the data, we observe trade flows for 61 2-digit SITC sectors and 625 4-

digit SITC sectors. However, we drop all 4-digit sectors with fewer than 2, 000 observations of positive

trade flows. This is because in the sector-level regressions discussed below, it is not always possible to

identify all the parameters of interest when the number of positive observations is small. To keep our

samples comparable across different sections of this paper, we also exclude such observations for the

pooled regressions presented here. Dropping these observations reduces the number of 4-digit sectors to

576 and that of 2-digit sectors to 60.
11Models with sector-level fixed effects include importer-year-sector, exporter-year-sector and exporter-

importer-sector fixed effects, whereas models without sector-level fixed effects include only importer-year,

exporter-year and importer-exporter fixed effects.
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DOTS database to UN Comtrade does not in itself change the basic findings in Baier and

Bergstrand (2007).12

We now turn to our question of how results change as we change the degree of aggre-

gation in our data. The results in Table 1 show that OLS estimates are sensitive to the

level of aggregation, irrespective of the fixed effects we use. In contrast, with PPML the

estimated coeffi cients and standard errors are invariant to aggregation if we do not allow

the fixed effects to vary by sector, being exactly the same for the first three rows of the

PPML panel in Table 1.

Moreover, when we use PPML, estimation with aggregate data is equivalent to using

disaggregated data to estimate models where the fixed effects are assumed to be the same

for all sectors. To see this, note that the change in the estimates and standard errors

resulting from aggregation (e.g., going from the bottom row to the top row in the PPML

panel) is the same as the change resulting from removing the sector dimension from the

fixed effects (e.g., going from the bottom row to the middle row in the PPML panel).

Naturally, when we include the sector dimension into the fixed effects, the PPML

estimates do depend on the level of aggregation because changing the level of aggrega-

12Note that the two samples are not fully comparable because Baier and Bergstrand use log exports

as their dependent variable and thus have to exclude observations with zero flows from their sample. By

contrast, the results in Table 1 are based on a fully rectangularized set of bilateral trade flows following

current best practice in applied international trade research (see, e.g., Yotov, Piermartini, Monteiro and

Larch, 2016). That is, we fill in all missing country pair-sector-year combinations and assign a trade flow

value of zero for all such “filled in”observations. While the additional zero observations get dropped when

taking logs (as we do for our OLS specifications), rectangularization also changes the structure of the lags

of the FTA regressors, making Baier and Bergstrand’s and our rectangularized data incompatible. As

an additional comparability check, we have also re-estimated Baier and Bergstrand’s key specification on

our sample without rectangularizing the data, obtaining a total FTA effect of 0.77, which is very similar

to the total FTA effect of 0.76 estimated by Baier and Bergstrand (note, however, that some differences

in the individual coeffi cient estimates remain; results available on request).
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tion changes the model specification. However, even in this case the PPML estimates

are somewhat robust to changes in the level of aggregation, dropping from 0.591 at the

aggregate level to 0.500 at the 4-digit level.

Until now we have constrained the coeffi cients on the FTA dummies to be the same

across sectors. We now relax this restriction and estimate (9) and (10) separately for each

SITC sector at both the 2-digit and the 4-digit levels. That is, we now allow both the

fixed effects and the coeffi cients on the FTA dummies to vary by sector. This yields 60

sets of estimates for each equation at the 2-digit level, and 576 sets at the 4-digit level.

Figure 1 presents kernel density estimates of the total estimated FTA effects obtained

with OLS and PPML for each of the sectors at the 2-digit and 4-digit levels. In each

panel, we add two elements to help interpret the results. The vertical solid line represents

the estimated effect obtained by estimating the models with the aggregate data (this

corresponds to the results in the first line of each panel in Table 1). We also include a

vertical dashed line representing the weighted average of the estimated coeffi cients using

shares of 2-digit or 4-digit sectors in total trade as weights.

Figure 1 shows that in all cases the aggregate estimates lie reasonably close to the mode

of the distribution of the sector-level estimates. Moreover, with PPML, the aggregate

estimates are very close to the weighted averages of the disaggregate estimates (i.e., the

solid and dashed lines are very close to each other); the same does not necessarily happen

with OLS.

4 Aggregation of constant-elasticity models

We now examine the effects of aggregation from an econometric point of view and ex-

plain the patterns found in Section 3. We draw a distinction between disaggregate-level

parameters on the one hand (where coeffi cients vary at the sector level, for instance by
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letting the coeffi cients on the FTA regressors from Section 3 vary across SITC sectors),

and disaggregate-level regressors on the other hand (where regressors themselves differ

across sectors, for example the tariffs considered by Imbs and Mejean, 2015).

4.1 Set-up and aggregation with OLS

Consistent with our earlier theoretical framework (see equation 1), we assume that sector-

level trade flows (xijs) are described by the following constant-elasticity model

xijs = exp
(
z′ijsβs

)
ηijs, (11)

where zijs is a vector of regressors that includes trade cost variables and fixed effects, ηijs

is a non-negative error term such that E
(
ηijs|zijs

)
= 1, and βs is a vector of parameters

that are potentially allowed to vary with s and in which the slope parameters have the

usual interpretation as (semi-) elasticities. The model for the aggregate data is given by

(see equation 5)

xij =
l∑

s=1

xijs =
∑
s

exp
(
z′ijsβs

)
ηijs, (12)

which in general is not a constant-elasticity model (see the discussion around equation 8).

The traditional approach to estimating models such as (11) is to take logarithms of

both sides and estimate

lnxijs = z′ijsβs + ln ηijs (13)

by OLS, under the assumption that E
(
ln ηijs|zijs

)
is constant. Lewbel (1992) and van

Garderen, Lee and Pesaran (2000), among others, have studied the consequences of esti-

mating the aggregate counterpart of (13) and concluded that the parameters of interest

can only be identified under very restrictive assumptions.
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In the remainder of this section, we study the consequences of using aggregated data

when the multiplicative model is estimated using PPML. We focus on PPML because

it is the only pseudo maximum likelihood estimator that is valid in models with high-

dimensional fixed effects (Weidner and Zylkin, 2021), that is not adversely affected by

the possible non-existence of the estimates (Correia, Guimarães and Zylkin, 2021), and

whose results are compatible with structural gravity models (Fally, 2015). PPML is

therefore singularly suited to the estimation of gravity equations. However, in Appendix

A, we present results for other pseudo maximum likelihood estimators based on the linear

exponential family (see Gourieroux, Monfort, and Trognon, 1984).

4.2 Aggregation with PPML

Building on our earlier distinction between parameters and/or regressors varying at the

sector level, we consider four particular cases of this problem. Case 1 is the simplest

scenario where neither regressors nor parameters vary with s. In Case 2 the parameters

vary with s but regressors do not, and the reverse holds in Case 3. Finally, in Case 4

both parameters and regressors vary with s. In Appendix B we report the results of a

simulation experiment that illustrates the results of this section.

4.2.1 Case 1: Parameters and regressors are constant

We have seen in Section 2 that in this particular case we have proper gravity equations

at the disaggregate and aggregate levels. In this case equation (11) can be written as

xijs = exp
(
z′ijβ

)
ηijs, (14)
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and expression (12) becomes

xij =
∑
s

exp
(
z′ijβ

)
ηijs = exp

(
ln l + z′ijβ

)
η∗ij, (15)

where η∗ij = l−1
∑l

s=1 ηijs is an error term such that E
(
η∗ij|zij

)
= 1. Therefore, as discussed

in Section 2, in this particular case both xijs and xij are described by stochastic constant-

elasticity models.

It is easy to show that the PPML estimates of the slopes in (14) and (15) are identical,

a result first noted in the simulation evidence reported by Amrhein and Flowerdew (1992).

To see this, notice that the first-order condition of the PPML estimator of β in (14) is

(Gourieroux, Monfort, and Trognon, 1984)

S
(
β̂
)

=
∑
ijs

(
xijs − exp

(
z′ijβ̂

))
zij = 0,

where a “hat”is used to denote parameter estimates and
∑

ijs is shorthand for
∑

i

∑
j

∑
s.

This condition can be written as

S
(
β̂
)

=
∑
ij

(
xij − exp

(
ln l + z′ijβ̂

))
zij = 0,

which is the first-order condition of the PPML estimator of β in the aggregate model

defined by (15). Hence, the estimation results are invariant to the level of aggregation of

the data (with the exception of the intercept which is adjusted to reflect the number of

sectors being aggregated). Moreover, if the dependent variable in the aggregate equation

is the mean of xijs rather than its sum, the estimates are exactly the same at both

levels, and the invariance result continues to apply. Additionally, it is possible to show

that the cluster-robust estimate of the covariance matrix for the estimates from (14) is
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identical to the estimate of the robust covariance matrix for the estimates in the aggregate

equation when the dependent variable is the average of xijs over s. Therefore, the level

of aggregation does not matter for the significance of the estimates either.

It is important to note that the results above are obtained under the assumption that

the number of sectors l is the same for every ij pair. When that is not the case, the

same result holds in a panel where the models include pair fixed effects that will absorb

the differences in the number of sectors by pair. If the disaggregate model does not

include pair fixed effects, the aggregate and disaggregate elasticity estimates will not be

numerically identical in finite samples. However, the two estimates converge to the same

limit if the aggregate model includes pair fixed effects to account for the differences in the

number of sectors across pairs. To simplify the exposition, in what follows we continue to

assume that the number of sectors l is the same for every pair.

In summary, when both the parameters and the regressors are constant across s, both

xijs and xij are given by constant-elasticity models with the same parameters, and the

PPML estimates and standard errors are invariant to the level of aggregation of the data.

This invariance result plays a central role in the analysis of Cases 2 to 4 because it implies

that since aggregation in itself will not cause a bias, in those cases we only have to consider

the effect of ignoring heterogeneity when using disaggregated data.13

Looking back at our results from Section 3, we note that the models underlying the

estimates in the first three lines of the PPML panel of Table 1 fall into our Case 1 (neither

parameters nor regressors vary with s). Thus, the invariance result just outlined explains

why the estimates and standard errors obtained with these models are exactly the same.

13This result may be interesting in its own right. For example, it implies that wage equations estimated
by PPML using monthly or annual data will deliver the same estimates as long as the regressors do not
have within-year variation.
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4.2.2 Case 2: Parameters vary with s but regressors do not

In this case the relevant model at the disaggregate level is

xijs = exp
(
z′ijβs

)
ηijs.

Clearly, now it is not possible to recover the sectoral parameters from aggregate data, but

it is interesting to study what we estimate when using aggregate data.

To see the effect of ignoring parameter heterogeneity, write the first-order conditions

for the estimates of βs with sectoral data as

Ss

(
β̂s

)
=
∑
ij

(
xijs − exp

(
z′ijβ̂s

))
zij = 0, s = 1, . . . , l.

Since we have Ss
(
β̂s

)
= 0 for each s, for the full sample we have

∑
s Ss

(
β̂s

)
= 0.

Imposing homogeneity we estimate a single parameter for all s, say β̂
r
, which by definition

will satisfy S
(
β̂
r
)

=
∑

s Ss

(
β̂
r
)

= 0.14

To study the relation between β̂
r
and β̂s, s = 1, . . . , l, we can use the mean value

theorem to write

∑
s

Ss

(
β̂s

)
=
∑
s

Ss

(
β̂
r
)
−
∑
s

Hs (β∗s)
(
β̂s − β̂

r
)

with Hs (β∗s) = − ∂Ss (b) /∂b|b=β∗s , where β
∗
s is a point between β̂s and β̂

r
.

14Note, however, that Ss
(
β̂
r
)
6= 0; that is, the estimates obtained imposing homogeneity do not satisfy

the first-order conditions for each s.
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Because
∑

s Ss

(
β̂s

)
=
∑

s Ss

(
β̂
r
)

= 0, we can write

β̂
r

=

[∑
s

Hs (β∗s)

]−1∑
s

Hs (β∗s) β̂s, (16)

and therefore β̂
r
can be interpreted as an average of the estimates of βs weighted by the

matrices Hs (β∗s).

Noting that Hs (β∗s) =
∑

ij

(
exp

(
z′ijβ

∗
s

)
zijz

′
ij

)
, we can see that Hs (β∗s) is itself a

weighted sum of exp
(
z′ijβ

∗
s

)
, where the weights do not depend on s. Because exp

(
z′ijβ

∗
s

)
is closely related to the expectation of xijs, we can interpret β̂

r
as a weighted average of

the estimates of βs, giving more weight to the estimates from the subsamples where xijs

tends to be larger. That is, the estimate obtained with aggregate data is approximately

given by
∑

s qsβ̂s, where qs =
∑

ij xijs/
∑

ijs xijs denotes the share of sector s trade in

total trade.

It follows from the invariance result in Case 1 that the parameters estimated with

aggregated data can also be interpreted as weighted averages of the estimates of the

individual parameters with weights given by Hs (β∗s), which are approximately equal to

the average of the individual estimates weighted by qs.

Looking again at our findings from Section 3, the results for Case 2 explain why in

Figure 1 the trade-weighted average of the sectoral estimates (indicated by the dashed

vertical line) is always close to the PPML estimate obtained with aggregate data (repre-

sented by the solid vertical line). This finding is also confirmed by the simulation results

reported in Appendix B.
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4.2.3 Case 3: Regressors vary with s but parameters do not

Now the relevant model is

xijs = exp
(
z′ijsβ

)
ηijs, (17)

and we start by considering the effect of estimating

xijs = exp
(
z′ijβ

a
)
ηaijs, (18)

where zij is obtained by aggregating zijs, β
a denotes the parameters of the aggregate

equation, and ηaijs is a non-negative error term whose properties are determined by how

βa is defined.

Letting zijs = zij + εijs, we can write equation (17) as

xijs = exp
(
z′ijβ + ε′ijsβ

)
ηijs, (19)

and we can then interpret (18) as resulting from omitting ε′ijsβ from (19).

General results on the effects of omitted variables are diffi cult to obtain for non-linear

models (see, Kiefer and Skoog, 1984, Neuhaus and Jewell, 1993, and Drake andMcQuarrie,

1995). Therefore, to gain some insight into the effect of omitting ε′ijsβ, it is useful to start

by considering as an illustrative example the case where, conditional on zij, ε′ijsβ has a

normal distribution with mean z′ijµ and variance z
′
ijω, and

E [xijs|zijs] = E [xijs|zij, εijs] = exp
((
z′ij + ε′ijs

)
β
)
.

In this example exp
(
ε′ijsβ

)
is log-normal with

Eεijs
[
exp

(
ε′ijsβ

)
|zij
]

= exp
(
z′ijµ+ 0.5z′ijω

)
,
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and therefore

E [xijs|zij] = Eεijs [E [xijs|zij, εijs] |zij] = exp
(
z′ijβ

)
Eεijs

[
exp

(
ε′ijsβ

)
|zij
]

= exp
(
z′ijβ + z′ijµ+ 0.5z′ijω

)
= exp

(
z′ijβ

a
)
,

with βa = β+µ+ 0.5ω, which simplifies to βa = β+ 0.5ω when zij is defined as the mean

of zijs.

If zijs consists only of tariffs and zij is the mean of zijs, ignoring sectoral heterogeneity

will bias the estimates upward (towards zero) because β is negative and ω is positive (as

zijω is a variance). If zij is defined in a different way, the bias will also depend on µ, and

therefore it is more diffi cult to predict its direction.

More generally, the difference between the parameters at the two levels of aggregation

depends on how zij is defined and on how the conditional expectation of exp
(
ε′ijsβ

)
ηijs

is related to zij. Since in most applications ε′ijsβ will have little relation with ηijs, the

bias of βa will be largely determined by the relation between the conditional moments of

zijs and zij, as in the example above. In any case, β̂
a
is such that the fitted values of

the aggregate model approximate some of the characteristics of the fitted values of the

regression with disaggregated data, and in that sense β̂
a
provides an approximation to

β̂. Indeed, assuming that the models include intercepts, the residuals of both models will

have zero mean, with the residuals of the disaggregate model being orthogonal to zijs,

while the residuals of the aggregate model are orthogonal to zij but only approximately

orthogonal to the disaggregate regressors.

Combining these results with those for Case 1, we can conclude that the aggregate

model will estimate βa rather than β (except for the intercept), and it may be possible

to predict the magnitude and sign of the differences between the elements of the two

vectors when, as in Imbs and Mejean (2015), we have information on how the conditional
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moments of the omitted variable ε′ijsβ vary with zij. For example, if tariffs are the only

regressor with disaggregate-level variation and the aggregate regressor is the average tariff,

the bias is likely upward because higher average collected tariffs tend to be associated with

a higher variance across sectors (see, e.g., Pritchett and Sethi, 1994). Further information

on the performance of the PPML estimator in this case is provided by the simulation

study reported in Appendix B. It suggests that the bias can be small even when the

regressors have a reasonable amount of variation at the disaggregate level.

4.2.4 Case 4: Regressors and parameters vary with s

The case where both the regressors and the parameters vary with s can be addressed

by combining earlier results. As we know from Case 3, the effect of replacing zijs with

zij in the regressions for each s is that in each case we estimate a vector β
a that is an

approximation to βs. From Case 2 we know that imposing the same coeffi cients for all

s leads to a weighted average of these individual estimates. Therefore, it follows from

the invariance result for Case 1 that in Case 4 we estimate a weighted average of the

approximations to βs.

As in Case 3, in this case we need additional information, including on how the con-

ditional moments of zijs are related to zij, to be able to interpret the estimates obtained

with aggregate data. However, the simulation experiment presented in Appendix B sug-

gests that in Case 4 the parameter identified in Case 2 is estimated with a bias similar

to that observed in Case 3, which is not particularly severe in some of the scenarios

we consider. Of course, if there is strong disaggregate-level variation of the regressors,

meaningful estimates can only be obtained by using appropriately disaggregated data.
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4.2.5 Summary of the main results and practical implications

Which of the four cases considered above is the more relevant one will depend on the

particular application. However, as illustrated in Section 3, Case 2 is arguably the case

of interest when estimating conventional gravity equations. Indeed, in many applications,

gravity equations do not include trade cost variables such as tariffs that vary by sector,

and therefore only the fixed effects depend on s.

These sectoral fixed effects can be interpreted as a set of dummies that depend on s

but with constant coeffi cients, and hence can be seen as examples of Case 3. This way

of approaching the problem is similar to that of French (2019) in that he also establishes

that the consequences of aggregation in this context are equivalent to the omission of a

variable.

Alternatively, the sectoral fixed effects can be interpreted as a set of dummies whose

coeffi cients vary with s. Therefore, these models can also be seen as an example of

Case 2 where at least the coeffi cients on the fixed effects vary with s. This alternative

interpretation is interesting because it follows from our results that in this leading case, the

PPML estimates of the aggregate model have a meaningful interpretation as a weighted

average of the sector-specific parameters, something that is illustrated in Figure 1 and

confirmed by the simulation results in Appendix B.

In applications where trade cost variables have disaggregate-level variation, PPML

estimates will be biased but, as illustrated in Case 3, it may be possible to determine

the direction of the bias when there is information on the distribution of the disaggregate

regressors. Moreover, the simulation results reported in Appendix B reveal that in the

settings we consider the PPML biases can be relatively small.

Our results also have important implications for the use of gravity equation parameter

estimates, such as for forecasting purposes. We illustrate this point in Appendix C where
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we use the OLS and PPML parameter estimates to predict the trade effects of free trade

agreements.

5 Conclusion

We investigate the consequences of aggregation for the estimation of gravity equations

using PPML. We show that the estimation results are invariant to changes in the level of

aggregation in the most favorable case where neither the regressors nor the parameters

vary at the disaggregate level. In less favorable cases where the parameters, the regressors,

or both vary across units, the PPML estimates depend on the level of aggregation, but

it may still be possible to provide a meaningful interpretation of the estimates obtained

with aggregate data.

Specifically, we argue that for the empirically most relevant case where parameters vary

across sectors but trade cost variables do not (such as distance and common language),

PPML estimates are approximately trade-weighted averages of the underlying sector-level

parameters, and hence they still provide economically meaningful information. When

trade cost variables vary at the sector level, PPML produces biased estimates, but in

some cases it may be possible to determine the direction of the bias when, as in Imbs and

Mejean (2015), we have information about the distribution of the regressors at the sector

level. Encouragingly, our simulation results suggest that this bias can be small.

Overall, our findings provide guidance on the interpretation of PPML estimates ob-

tained using aggregate data and should be helpful to applied researchers who may not

have disaggregated data at their disposal.
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Table 1: Regression results at different aggregation levels

Regressor coeffi cients
(Standard errors clustered by pair)

Aggregation

level

Sample size

(# clusters)

Sector-level

fixed effects
FTAt FTAt−1 FTAt−2 Total

Estimator: OLS

Aggr. trade 43, 480
(7,896)

No 0.174
(0.0453)

∗∗∗ 0.379
(0.0455)

∗∗∗ 0.161
(0.0510)

∗∗∗ 0.714
(0.0608)

∗∗∗

SITC 2-digit 1, 142, 000
(8,286)

No 0.355
(0.0212)

∗∗∗ 0.191
(0.0206)

∗∗∗ −0.004
(0.0246)

0.542
(0.0307)

∗∗∗

SITC 4-digit 5, 562, 720
(8,307)

No 0.285
(0.0165)

∗∗∗ 0.161
(0.0140)

∗∗∗ 0.036
(0.0180)

∗∗ 0.481
(0.0268)

∗∗∗

SITC 2-digit 1, 079, 880
(7,487)

Yes 0.334
(0.0225)

∗∗∗ 0.168
(0.0209)

∗∗∗ 0.064
(0.0255)

∗∗∗ 0.566
(0.0326)

∗∗∗

SITC 4-digit 5, 039, 915
(7,274)

Yes 0.326
(0.0195)

∗∗∗ 0.116
(0.0159)

∗∗∗ 0.087
(0.0199)

∗∗∗ 0.529
(0.0314)

∗∗∗

Estimator: PPML

Aggr. trade 50, 013
(8,409)

No 0.278
(0.0324)

∗∗∗ 0.224
(0.0242)

∗∗∗ 0.089
(0.0267)

∗∗∗ 0.591
(0.0455)

∗∗∗

SITC 2-digit 3, 009, 960
(8,562)

No 0.278
(0.0324)

∗∗∗ 0.224
(0.0242)

∗∗∗ 0.089
(0.0267)

∗∗∗ 0.591
(0.0455)

∗∗∗

SITC 4-digit 28, 895, 616
(8,562)

No 0.278
(0.0324)

∗∗∗ 0.224
(0.0242)

∗∗∗ 0.089
(0.0267)

∗∗∗ 0.591
(0.0455)

∗∗∗

SITC 2-digit 1, 710, 888
(8,409)

Yes 0.235
(0.0252)

∗∗∗ 0.179
(0.0171)

∗∗∗ 0.118
(0.0217)

∗∗∗ 0.533
(0.0338)

∗∗∗

SITC 4-digit 9, 718, 394
(8,400)

Yes 0.210
(0.0270)

∗∗∗ 0.172
(0.0160)

∗∗∗ 0.117
(0.0201)

∗∗∗ 0.500
(0.0353)

∗∗∗

Notes: The table presents the results of estimating three-way gravity equations. The dependent variable

is logarithmic trade in the OLS panel and the level of trade in the PPML panel. The reported sam-

ple sizes exclude singletons and observations separated by fixed effects; the full sample sizes at the 0-,

2-, and 4-digit SITC levels are, respectively, 63,840, 3,830,400, and 36,771,840. Models with sector-level

fixed effects (“Yes”) include importer-year-sector, exporter-year-sector and exporter-importer-sector fixed

effects, whereas models without sector-level fixed effects (“No”) include only importer-year, exporter-year
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and importer-exporter fixed effects; the coeffi cients on the FTA dummies are constrained to be the same

for all sectors. Statistically significant at *** 0.01, ** 0.05, * 0.1.
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Figure 1: Kernel density plot of the estimated FTA effects at sectoral level
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Notes: The dashed line is the trade-weighted average of the estimated sectoral effects, and the solid line

is the effect estimated with aggregate data. The left panels show estimates at the 2-digit level, and the

right panels show estimates at the 4-digit level. The top panels are estimated with OLS and the bottom

panels with PPML.

29


