(just) published in J Intl Econ 2013, Vol. 90(1), 91-106

Sascha O. Becker¹, Karolina Ekholm² and Marc-Andreas Muendler³

¹CAGE @ U Warwick

²Sveriges Riksbank

³UC San Diego

PEUK13

Background

- Studies of the effect of FDI (in-house offshoring) on the composition of labor demand typically find small or negligible effects.
 - ► E.g. work by Slaughter (2000), Head and Ries, (2002)
- Offshoring of intermediate inputs contributes to an increased relative demand for high-skilled workers.
 - US imports contribute 15-40 percent to an increased relative demand for non-production workers (Feenstra and Hanson, 1999).

- Studies of the effect of FDI (in-house offshoring) on the composition of labor demand typically find small or negligible effects.
 - ► E.g. work by Slaughter (2000), Head and Ries, (2002)
- Offshoring of intermediate inputs contributes to an increased relative demand for high-skilled workers.
 - US imports contribute 15-40 percent to an increased relative demand for non-production workers (Feenstra and Hanson, 1999).

- Potential explanations for weak correlation between offshoring and changes in the skill composition of the work force:
 - Offshoring may increase the relative demand for unskilled workers, depending on effect on productivity (Jones and Kierzkowski, 2001, Grossman and Rossi-Hansberg, 2008, Kohler, 2008).
 - The ease to which jobs can be offshored may be only weakly correlated with its skill content (Markusen, 2006)
 - Computer programmer versus janitor.

- Potential explanations for weak correlation between offshoring and changes in the skill composition of the work force:
 - Offshoring may increase the relative demand for unskilled workers, depending on effect on productivity (Jones and Kierzkowski, 2001, Grossman and Rossi-Hansberg, 2008, Kohler, 2008).
 - The ease to which jobs can be offshored may be only weakly correlated with its skill content (Markusen, 2006)
 - Computer programmer versus janitor.

- Potential explanations for weak correlation between offshoring and changes in the skill composition of the work force:
 - Offshoring may increase the relative demand for unskilled workers, depending on effect on productivity (Jones and Kierzkowski, 2001, Grossman and Rossi-Hansberg, 2008, Kohler, 2008).
 - The ease to which jobs can be offshored may be only weakly correlated with its skill content (Markusen, 2006)
 - Computer programmer versus janitor.

- Potential explanations for weak correlation between offshoring and changes in the skill composition of the work force:
 - Offshoring may increase the relative demand for unskilled workers, depending on effect on productivity (Jones and Kierzkowski, 2001, Grossman and Rossi-Hansberg, 2008, Kohler, 2008).
 - The ease to which jobs can be offshored may be only weakly correlated with its skill content (Markusen, 2006)
 - Computer programmer versus janitor.

The tradability of tasks

Motivation

- The tradability of tasks is related to whether they:
 - are routine tasks that can be easily summarized by deductive rules (Levy and Murnane, 2004)
 - require codifiable rather than tacit information (Leamer and Storper, 2001).
 - do not require physical contact and geographic proximity (Blinder, 2006).
- Evidence that IT has had effects on the nature of tasks

The tradability of tasks

Motivation

- The tradability of tasks is related to whether they:
 - are routine tasks that can be easily summarized by deductive rules (Levy and Murnane, 2004)
 - require codifiable rather than tacit information (Leamer and Storper, 2001).
 - do not require physical contact and geographic proximity (Blinder, 2006).
- Evidence that IT has had effects on the nature of tasks. performed on the job.
 - Autor, Levy, and Murnane (2003): US computerization associated with reduced inputs of workers carrying out routine manual and cognitive tasks and increased inputs of workers carrying out *nonroutine cognitive* tasks.

Our contribution

- Revisit the issue of how FDI affects the composition of labor demand at parent firms.
- Use data that enable us to distinguish between:
 - ▶ (*i*) occupations (white-collar versus blue-collar),
 - (ii) education (at least upper-secondary education versus at most lower secondary education), and
 - (iii) tasks (non-routine versus routine/interactive versus non-interactive).
- Provide empirical evidence on the relevance of a focus on tasks when analyzing effects of offshoring on relative labor demand.
- Provide evidence for the service sector as well as the manufacturing sector.

- Revisit the issue of how FDI affects the composition of labor demand at parent firms.
- Use data that enable us to distinguish between:
 - ▶ (i) occupations (white-collar versus blue-collar),
 - (ii) education (at least upper-secondary education versus at most lower secondary education), and
 - (iii) tasks (non-routine versus routine/interactive versus non-interactive).
- Provide empirical evidence on the relevance of a focus on tasks when analyzing effects of offshoring on relative labor demand.
- Provide evidence for the service sector as well as the manufacturing sector.

- Revisit the issue of how FDI affects the composition of labor demand at parent firms.
- Use data that enable us to distinguish between:
 - ▶ (i) occupations (white-collar versus blue-collar),
 - (ii) education (at least upper-secondary education versus at most lower secondary education), and
 - (iii) tasks (non-routine versus routine/interactive versus non-interactive).
- Provide empirical evidence on the relevance of a focus on tasks when analyzing effects of offshoring on relative labor demand.
- Provide evidence for the service sector as well as the manufacturing sector.

- Revisit the issue of how FDI affects the composition of labor demand at parent firms.
- Use data that enable us to distinguish between:
 - ▶ (i) occupations (white-collar versus blue-collar),
 - (ii) education (at least upper-secondary education versus at most lower secondary education), and
 - (iii) tasks (non-routine versus routine/interactive versus non-interactive).
- Provide empirical evidence on the relevance of a focus on tasks when analyzing effects of offshoring on relative labor demand.
- Provide evidence for the service sector as well as the manufacturing sector.

Data

Motivation

- We match data from the Deutsche Bundesbank on affiliate activities of German MNEs (MIDI-USTAN database) with worker-level social security data from the German Federal Labor Agency (Bundesagentur für Arbeit, BA).
 - Use information at plant level.
 - Use commercial database MARKUS (from Verband der Vereine Creditreform) to identify all German affiliates of MIDI-USTAN firms, to which we then link BA plants.
 - Panel at plant level 1998-2001 containing 1,252 plants at about 500 MNEs.
- Task content of occupations based on information from

6/22

Data

- We match data from the Deutsche Bundesbank on affiliate activities of German MNEs (MIDI-USTAN database) with worker-level social security data from the German Federal Labor Agency (Bundesagentur für Arbeit, BA).
 - Use information at plant level.
 - Use commercial database MARKUS (from Verband der Vereine Creditreform) to identify all German affiliates of MIDI-USTAN firms, to which we then link BA plants.
 - ► Panel at plant level 1998-2001 containing 1,252 plants at about 500 MNEs.
- Task content of occupations based on information from survey conducted by the German Federal Institute for Vocational Training (BIBB) and the Research Institute of BA (IAB).

Becker, Ekholm and Muendler

- Inferred from 81 questions about:
 - tools, instruments and other equipment used by the employee.
 - the extent to which the work is related to computer programming, repairing and supervision.
- Create indicators of whether a job implies:
 - non-routine (NR) tasks
 - tasks requiring personal <u>interaction</u> (Int) with other workers in the firm and/or with the firm's customers.
- Suppose maximum number of NR tasks carried out by any occupation is 20 and secretaries report an average of 5.
 - We assign secretaries the value 5/20=0.25.
 - 25% of the wagebill of secretaries at a plant is wages paid for NR tasks.
 - 25% of the labor input of secretaries at a plant is input of NR tasks.

- Inferred from 81 questions about:
 - tools, instruments and other equipment used by the employee.
 - the extent to which the work is related to computer programming, repairing and supervision.
- Create indicators of whether a job implies:
 - non-routine (NR) tasks.
 - tasks requiring personal <u>interaction</u> (Int) with other workers in the firm and/or with the firm's customers.
- Suppose maximum number of NR tasks carried out by any occupation is 20 and secretaries report an average of 5.
 - ▶ We assign secretaries the value 5/20=0.25.
 - 25% of the wagebill of secretaries at a plant is wages paid for NR tasks.
 - 25% of the labor input of secretaries at a plant is input of NR tasks.

Motivation

Task content of occupations

- Inferred from 81 questions about:
 - tools, instruments and other equipment used by the employee.
 - the extent to which the work is related to computer programming, repairing and supervision.
- Create indicators of whether a job implies:
 - non-routine (NR) tasks.
 - tasks requiring personal <u>interaction</u> (Int) with other workers in the firm and/or with the firm's customers.
- Suppose maximum number of NR tasks carried out by any occupation is 20 and secretaries report an average of 5.
 - ▶ We assign secretaries the value 5/20=0.25.
 - ▶ 25% of the wagebill of secretaries at a plant is wages paid for NR tasks.
 - 25% of the labor input of secretaries at a plant is input of NR tasks.

Descriptives

Higher levels and larger increases in the share of all four "advanced" work types (non-routine/interactive/upper-sec. education/white-collar) in MNEs compared to non-MNEs.

Estimation Strategy

- Changes in the composition of tasks relatively small in comparison with the other measures.
- Increases in wage-bill shares of "advanced" work types larger in services than in manufacturing.

Motivation

Higher levels and larger increases in the share of all four "advanced" work types (non-routine/interactive/upper-sec. education/white-collar) in MNEs compared to non-MNEs.

Estimation Strategy

- Changes in the composition of tasks relatively small in comparison with the other measures.
- Increases in wage-bill shares of "advanced" work types larger in services than in manufacturing.

- Higher levels and larger increases in the share of all four "advanced" work types (non-routine/interactive/upper-sec. education/white-collar) in MNEs compared to non-MNEs.
- Changes in the composition of tasks relatively small in comparison with the other measures.
- Increases in wage-bill shares of "advanced" work types larger in services than in manufacturing.

Non-routine tasks

Upper-secondary education

White-collar occupations

Correlations between wage-bill shares

	NR tasks	IA tasks	Uppsec. educ.
Interact. tasks	.519		
	(.000)		
Uppsec. educ.	.615	.302	
	(.000)	(.000)	
White-collar	.198	.109	.229
	(.000)	(.000)	(.000)

$$\theta_{\mathit{ijt}} = \alpha_{\mathit{j}} + \beta_{\mathit{K}} \ln \frac{\mathit{K}_{\mathit{kt}}}{\mathit{Y}_{\mathit{kt}}} + \beta_{\mathit{Y}} \ln \mathit{Y}_{\mathit{jt}} + \beta_{\mathit{w}} \ln \frac{\mathit{w}_{\mathit{ijt}}}{\mathit{w}_{-\mathit{ijt}}} + \sum_{\ell} \gamma_{\ell} \mathit{OE}_{\mathit{k}\ell\mathit{t}} + \delta_{\mathit{t}} + \varepsilon_{\mathit{ijt}},$$

- "FDI-exposure" OE measured as the foreign share of the firm's employment (distinguishing between high-income and low-income countries)
- Control for sector-level offshoring, R&D intensity and import penetration
- Use different measures for non-routine and interactive tasks (more restrictive, less restrictive, Spitz-Oener (2006)

Motivation

$$\theta_{ijt} = \alpha_j + \beta_K \ln \frac{K_{kt}}{Y_{kt}} + \beta_Y \ln Y_{jt} + \beta_W \ln \frac{w_{ijt}}{w_{-ijt}} + \sum_{\ell} \gamma_\ell OE_{k\ell t} + \delta_t + \varepsilon_{ijt},$$

- ▶ "FDI-exposure" *OE* measured as the foreign share of the firm's employment (distinguishing between high-income and low-income countries)
- Control for sector-level offshoring, R&D intensity and
- Use different measures for non-routine and interactive

Motivation

$$\theta_{ijt} = \alpha_j + \beta_K \ln \frac{K_{kt}}{Y_{kt}} + \beta_Y \ln Y_{jt} + \beta_W \ln \frac{w_{ijt}}{w_{-ijt}} + \sum_{\ell} \gamma_\ell OE_{k\ell t} + \delta_t + \varepsilon_{ijt},$$

- ▶ "FDI-exposure" *OE* measured as the foreign share of the firm's employment (distinguishing between high-income and low-income countries)
- Control for sector-level offshoring, R&D intensity and import penetration

$$\theta_{ijt} = \alpha_j + \beta_K \ln \frac{K_{kt}}{Y_{kt}} + \beta_Y \ln Y_{jt} + \beta_W \ln \frac{w_{ijt}}{w_{-ijt}} + \sum_{\ell} \gamma_\ell OE_{k\ell t} + \delta_t + \varepsilon_{ijt},$$

- "FDI-exposure" OE measured as the foreign share of the firm's employment (distinguishing between high-income and low-income countries)
- Control for sector-level offshoring, R&D intensity and import penetration
- Use different measures for non-routine and interactive tasks (more restrictive, less restrictive, Spitz-Oener (2006))

Table 6
Offshoring and non-routine and interactive tasks.
Sources: Linked STATISTIK-BA/MIDI data 1998–2001 and BIBB-IAB Worker SURVEY 1998/99, balanced panel of N

Sectors estimator	Non-routine tasks				
	All	All	Manuf.	Serv.	Comm.
	FE	Random effects			
	(1)	(2)	(3)	(4)	(5)
Offshore empl. share	2.693	2.505	3.671	4.317	.735
	(.686)***	(.585)***	(2.214)*	(2.030)**	(1.474)
LogCap./val. add.	.033	.524	.139	423	.503
	(.165)	(.144)***	(.314)	(.458)	(.271)*
Log value added	331	.322	221	411	.782
	(.126)***	(.102)***	(.435)	(.456)	(.390)**
Year 1999	.270	.206	.527	.653	217
	(.124)**	(.125)*	(.189)***	(.420)	(.193)
Year 2000	.305	.243	.592	.781	170
	(.125)**	(.126)*	(.186)***	(.503)	(.190)
Year 2001	.275	.197	.613	.654	177
	(.127)**	(.127)	(.210)***	(.489)	(.222)
Hausman test (<i>F</i> statistic) $\gamma_{-}^{FE} - \gamma_{-}^{RE}$.187 (.359)				
Obs. R^2 (within)	5008	5008	1876	1020	2112
	.010	.004	.026	.023	.002
R ² (between)	.003	.069	.012	.001	.098
R ² (overall)	.002	.064	.013	.002	.093

Notes: Wage-bill shares in percent, varying between zero and 100. Estimators are plant fixed (FE) and $\mathfrak x$ sectors against FE specification. Standard errors in parentheses: * significance at 10%, ** 5%, and *** 1%.

Becker, Ekholm and Muendler

√E plants.

Interactive	Interactive tasks							
All	All	Manuf.	Serv.	Comm.				
FE	Random eff	Random effects						
(6)	(7)	(8)	(9)	(10)				
1.319 (.352)*** .025 (.085) .044 (.065) .088 (.064) .103 (.064) 001 (.065) 334 (.195) 5008 .006	1.653 (.293)**** .042 (.072) 072 (.051) .087 (.063) .092 (.064) 016 (.065)	2.265 (1.429) 053 (167) 125 (.215) .292 (.092)*** .254 (.110)** .198 (.119)*	2.594 (.974)*** 477 (.208)** 212 (.187) .272 (.158)* .363 (.195)* .209 (.265)	.683 (.587) .029 (.177) .204 (.191) 167 (.094)* 228 (.126)*				
.013	.023	.022	.061	.00002				

Statistical and economic signficance

- Estimated coefficients for offshore employment in Table 6 are positive and (mostly) statistically significant, except in commerce.
- Offshore employment increased by .059 across all sectors between 1998 and 2001.
- Coefficient estimate in column 2, for instance, implies a .15 (2.505 * .059) percentage point increase in the wage-bill share of non-routine tasks across all sectors.
- ► That corresponds to 10 percent of the observed 1.5 percentage point increase in the wage-bill share of non-routine tasks.

Statistical and economic signficance

- Estimated coefficients for offshore employment in Table 6 are positive and (mostly) statistically significant, except in commerce.
- Offshore employment increased by .059 across all sectors between 1998 and 2001.
- Coefficient estimate in column 2, for instance, implies a .15 (2.505 * .059) percentage point increase in the wage-bill share of non-routine tasks across all sectors.
- That corresponds to 10 percent of the observed 1.5 percentage point increase in the wage-bill share of non-routine tasks.

- Estimated coefficients for offshore employment in Table 6 are positive and (mostly) statistically significant, except in commerce.
- Offshore employment increased by .059 across all sectors between 1998 and 2001.
- Coefficient estimate in column 2, for instance, implies a .15 (2.505 * .059) percentage point increase in the wage-bill share of non-routine tasks across all sectors.
- That corresponds to 10 percent of the observed 1.5 percentage point increase in the wage-bill share of non-routine tasks.

- Estimated coefficients for offshore employment in Table 6 are positive and (mostly) statistically significant, except in commerce.
- Offshore employment increased by .059 across all sectors between 1998 and 2001.
- Coefficient estimate in column 2, for instance, implies a .15 (2.505 * .059) percentage point increase in the wage-bill share of non-routine tasks across all sectors.
- That corresponds to 10 percent of the observed 1.5 percentage point increase in the wage-bill share of non-routine tasks.

Table 7Offshoring and non-routine and interactive tasks: four world regions. *Sources*: Linked Statistik-Ba/MIDI data 1998–2001 and BIBB-IAB worker survey 1998/99, MNE plants only.

	Non-routine tasks			Interactive tasks		
	All	Manuf.	Serv.	All	Manuf.	Serv.
	(1)	(2)	(3)	(4)	(5)	(6)
Offshore empl. share in CEE	541 (1.182)	-2.240 (1.481)	.922 (2.427)	.343 (.465)	392 (.675)	2.642 (1.110)**
Offshore empl. share in DEV	7.008 (4.819)	11.330 (6.582)*	8.394 (4.353)*	4.020 (2.716)	6.904 (4.372)	2.017 (2.744)
Offshore empl. share in OIN	4.178 (2.413)*	6.080 (2.248)***	1.149 (3.730)	2.636 (.970)***	2.879 (.977)***	3.170 (2.430)
Offshore empl. share in WEU	3.074 (1.788)*	3.389 (2.272)	6.210 (2.768)**	1.615 (.679)**	1.444 (1.211)	2.599 (1.278)**

Table 8
Offshoring, education and occupations.
Source: Linked STATISTIK-BA/MIDI data 1998–2001, MNE plants only.

	Highly educated (Abitur+)			
	Manuf.	Manuf.	Serv.	Serv.
	(1)	(2)	(3)	(4)
Offshore empl.	7.486 (3.573)**		12.328 (4.724)***	
Offshore empl. share in CEE		1.658 (3.159)		2.587 (7.835)
Offshore empl. share in DEV		16.803 (11.713)		23.706 (9.579)**
Offshore empl. share in OIN		5.753 (3.997)		-2.737 (10.757)
Offshore empl. share in WEU		7.477 (4.341)*		20.404 (9.330)**

Manuf.	Manuf.	Serv.	Serv.
(5)	(6)	(7)	(8)
9.726		2.233	
(5.056)*		(3.748)	
	.636		3.479
	(3.427)		(3.582)
	25.002		5.691
	(15.848)		(7.249)
	14.323		688
	(4.464)***		(15.546
	6.071		1.090
	(4.320)		(4.438)

Table 10

Offshoring predictions of wage bill shares.

Sources: Linked STATISTIK-BA/MIDI data 1998–2001 and BIBB-IAB worker survey 1998/99,

balanced panel of MNE plants.

	Coefficient estimate	Change in offsh. emp.	Pred. change in wage-bill sh.	Obs. change in wage-bill sh.	Contrib. to obs. change
All sectors					
Non-routine tasks	2.51	.059	.148	1.44	10.2%
Interactive tasks	1.65	.059	.097	1.03	9.4%
Highly educated	8.44	.059	.497	4.23	11.7%
(Abitur+)					
White-collar	6.45	.059	.380	4.56	8.3%
occupations					
Manufacturing					
Non-routine tasks	3.67	.039	.145	1.03	14.1%
Interactive tasks	2.27	.039	.089	.94	9.5%
Highly educated	7.49	.039	.295	3.08	9.6%
(Abitur+)					
White-collar	9.73	.039	.384	3.44	11.2%
occupations					
Services					
Non-routine tasks	4.32	.090	.390	4.34	9.0%
Interactive tasks	2.59	.090	.235	1.37	17.1%
Highly educated	12.33	.090	1.115	11.60	9.6%
(Abitur+)					
White-collar occupations	2.23	.090	.202	9.84	2.1%

Notes: Wage-bill shares in percent, varying between zero and 100. Services exclude

20/22

- The task-based measures have a statistically significant relationship to offshoring in the direction theory leads us to expect:
- parent-firm workers perform more non-routine and more interactive tasks at MNEs with more offshoring
- Offshoring is consistently associated with skill/education upgrading at the German plants:
- this is the case even when we control for the composition of tasks at plant level.
- Effects more pronounced for offshoring to low-wage locations (exception: CEE)

- ► The task-based measures have a statistically significant relationship to offshoring in the direction theory leads us to expect:
- parent-firm workers perform more non-routine and more interactive tasks at MNEs with more offshoring
- Offshoring is consistently associated with skill/education upgrading at the German plants:
- this is the case even when we control for the composition of tasks at plant level.
- Effects more pronounced for offshoring to low-wage locations (exception: CEE)

- The task-based measures have a statistically significant relationship to offshoring in the direction theory leads us to expect:
- parent-firm workers perform more non-routine and more interactive tasks at MNEs with more offshoring
- Offshoring is consistently associated with skill/education upgrading at the German plants:
- this is the case even when we control for the composition of tasks at plant level.
- Effects more pronounced for offshoring to low-wage locations (exception: CEE)

Conclusion

- Our findings are consistent with the more traditional view that offshored tasks tend to be carried out by low-skilled rather than high-skilled workers.
- Skills measured by educational attainment is a more
- ► The estimated relationships (within plants over time) are
- Salient differences in workforce compositions between

22/22

- Our findings are consistent with the more traditional view that offshored tasks tend to be carried out by low-skilled rather than high-skilled workers.
- Skills measured by educational attainment is a more important workforce dimension than whether tasks are non-routine or interactive
- The estimated relationships (within plants over time) are relatively modest:
- wage-bill share of workers with upper-secondary education
- Salient differences in workforce compositions between MNEs and non-MNEs point to relevance of extensive margin

Conclusion

- Our findings are consistent with the more traditional view that offshored tasks tend to be carried out by low-skilled rather than high-skilled workers.
- Skills measured by educational attainment is a more important workforce dimension than whether tasks are non-routine or interactive
- The estimated relationships (within plants over time) are relatively modest:
- 10 percent contribution of offshoring to changes in the wage-bill share of workers with upper-secondary education
- Salient differences in workforce compositions between MNEs and non-MNEs point to relevance of extensive margin

Conclusion

- Our findings are consistent with the more traditional view that offshored tasks tend to be carried out by low-skilled rather than high-skilled workers.
- Skills measured by educational attainment is a more important workforce dimension than whether tasks are non-routine or interactive
- The estimated relationships (within plants over time) are relatively modest:
- 10 percent contribution of offshoring to changes in the wage-bill share of workers with upper-secondary education
- Salient differences in workforce compositions between MNEs and non-MNEs point to relevance of extensive margin

Becker, Ekholm and Muendler