
WORKING PAPER SERIES

Centre for Competitive Advantage in the Global Economy

Department of Economics

Dec 2015 No.252

The Dynamics of Comparative Advantage

Gordon H. Hanson, Nelson Lind and

Marc-Andreas Muendler



The Dynamics of Comparative Advantage∗

Gordon H. Hanson†

UC San Diego and NBER

Nelson Lind§

UC San Diego

Marc-Andreas Muendler¶

UC San Diego and NBER

November 19, 2015

Abstract

This paper characterizes the dynamic empirical properties of country export capabilities in order to inform
modelling of the long-run behavior of comparative advantage. The starting point for our analysis is two strong
empirical regularities in international trade that have previously been studied incompletely and in isolation
to one another. The literature has noted a tendency for countries to concentrate exports in a few sectors.
We show that this concentration arises from a heavy-tailed distribution of industry export capabilities that is
approximately log normal and whose shape is stable across countries, sectors, and time. Likewise, previous
research has detected a tendency for mean reversion in national industry productivities. We establish that
mean reversion in export capability, rather than indicative of convergence in productivities or degeneracy in
comparative advantage, is instead consistent with a well behaved stochastic growth process that delivers a
stationary distribution of country export advantage. In literature on the growth of cities and firms, economists
have used stochastic processes to study the determinants of the long-run size distributions. Our contribution
is to develop an analogous empirical framework for identifying the parameters that govern the stationary
distribution of export capability. The main result of this analysis is that a generalized gamma distribution,
which nests many commonly studied distributions, provides a tight fit of the data but log normality offers a
reasonable approximation. Importantly, the stochastic process that generates log normality can be estimated
in its discretized form by simple linear regression. Log linearity allows for an extension of our approach to
multivariate diffusions, in which one can permit innovations to productivity to be transmitted intersectorally
and internationally, as in recent models of trade and growth.
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1 Introduction

Comparative advantage has made a comeback in international trade. After a long hiatus during which the Ri-

cardian model was widely taught to students but rarely applied in research, the role of comparative advantage

in explaining trade flows is again at the center of inquiry. Its resurgence is due in large part to the success of

the Eaton and Kortum (2002) model (EK hereafter). A growing literature uses EK as a foundation for quanti-

tative modelling of changes in trade policy and other trade shocks (e.g., Costinot and Rodríguez-Clare 2014, Di

Giovanni et al. 2014, Caliendo and Parro 2015). In empirical work, Chor (2010) and Costinot et al. (2012) find

strong support for EK in cross-section trade data. Renewed interest in comparative advantage also stems from

the rapid recent growth in North-South and South-South trade, which ostensibly gives resource and technology

differences between countries a prominent role in determining global commerce (Hanson 2012).

In this paper, we characterize how country export advantages evolve over time. From the gravity model

of trade we extract a measure of country export capability, which we use to evaluate how export performance

changes for 90 countries in 133 industries from 1962 to 2007. Distinct from Waugh (2010), Costinot et al.

(2012), Levchenko and Zhang (2013), and other recent work, we do not use industry production or price data to

evaluate country export prowess.1 Instead, we rely solely on trade data, which allows us to impose less structure

on the determinants of trade and to examine both manufacturing and nonmanufacturing industries at a fine degree

of disaggregation and over a long time span. These features of the analysis help us uncover stable and hitherto

underappreciated patterns of export dynamics.

The gravity framework is consistent with a large class of trade models (Anderson 1979, Anderson and van

Wincoop 2003, Arkolakis et al. 2012). These models have in common an equilibrium relationship in which bilat-

eral trade in a particular industry and year can be decomposed into an exporter-industry fixed effect, which mea-

sures the exporting country’s export capability in an industry; an importer-industry fixed effect, which captures

the importing country’s effective demand for foreign goods in an industry; and an exporter-importer component,

which accounts for bilateral trade frictions (Anderson 2011). We estimate these components for each year in our

data.2 In the EK model, the exporter-industry fixed effect embodies the location parameter of a country’s produc-

tivity distribution for an industry, which fixes its sectoral efficiency in producing goods. By taking the deviation

of a country’s log export capability from the global mean for the industry, we obtain a measure of a country’s

absolute advantage in an industry. By further normalizing absolute advantage by its country-wide mean, we re-

move the effects of aggregate country growth. We refer to export capability after its double normalization by the

global-industry and country-wide means as a measure of comparative advantage.
1On the gravity model and industry productivity also see Finicelli et al. (2009, 2013), Fadinger and Fleiss (2011), and Kerr (2013).
2We perform the estimation with and without correcting for zero bilateral trade flows. Silva and Tenreyro (2006), Helpman et al.

(2008), Eaton et al. (2012), and Fally (2012) provide econometric approaches to account for zero trade.
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The aim of our analysis is to identify the dynamic empirical properties of absolute and comparative advantage

that any theory of their determinants must explain. Though we motivate our approach using EK, we are agnos-

tic about the origins of export advantage. In the Krugman (1980), Heckscher-Ohlin (Deardorff 1998), Melitz

(2003), and Anderson and van Wincoop (2003) models, which also yield gravity specifications, the origins of the

exporter-industry fixed effect differ. However, regardless of its origin the interpretation of the exporter-industry

fixed effect as a country’s export capability in an industry still applies. By focusing on the dynamics of ex-

port advantage, we seek to uncover the general properties of its distribution across countries, industries, and

time, whether advantage arises from the accumulation of ideas (Eaton and Kortum 1999), home-market effects

(Krugman 1980), resource supplies (Trefler 1995, Davis and Weinstein 2001, Schott 2003, Romalis 2004), or

the quality of institutions (Levchenko 2007, Costinot 2009, Cuñat and Melitz 2012). We verify that our results

are robust to replacing our gravity-based measure of export capability with Balassa’s (1965) index of revealed

comparative advantage and to using data based on more disaggregated sectors.

After estimating country-industry export capabilities, our analysis proceeds in two parts. First, we document

two regularities in trade behavior that motivate our modelling of trade dynamics. One is hyperspecialization

in exporting.3 In any given year, exports from a typical country are highly concentrated in a small number of

industries. Across the 90 countries in our data, the median share for the top good (out of 133) in a country’s total

exports is 23%, for the top 3 goods is 46%, and for the top 7 goods is 64%. Consistent with strong concentration,

the cross-industry distribution of absolute advantage for a country in a given year is approximately log normal,

with ratios of the mean to the median of about 7. Strikingly, the log-normal shape applies both across countries

that specialize in different types of goods and over time for countries at diverse stages of development.

Stability in the shape of the distribution of absolute advantage makes the second empirical regularity all the

more surprising: there is continual turnover in a country’s top export products. Among the goods that account for

the top 5% of a country’s current absolute-advantage industries, 60% were not in the top 5% two decades earlier.

Churning is consistent with mean reversion in export advantage. In an OLS regression of the ten-year change

in log export capability on its initial log value and industry-year and country-year fixed effects, we estimate

mean reversion at the rate of about one-third per decade. Levchenko and Zhang (2013) interpret such mean

reversion, which they find for 19 manufacturing industries, as evidence of international convergence in industry

productivities that causes comparative advantage to degenerate.4 Yet, the persistence of hyperspecialization in

exporting suggests that a different process must be at work. Ongoing innovations to export capability somehow

offset mean reversion by shifting industries along the distribution, while preserving its shape and heavy tails.

The combination of a stable cross-industry distribution for absolute advantage with churning in national
3See Easterly and Reshef (2010) and Freund and Pierola (2013) for related findings.
4On changes in export diversification over time see Imbs and Wacziarg (2003) and Cadot et al. (2011).
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industry export rankings is characteristic of a stochastic growth model, the estimation of which occupies the

second part of our analysis. As a mean-reverting AR(1) specification, our OLS decay regression is a discrete-

time analogue of a continuous-time Ornstein-Uhlenbeck (OU) process.5 An OU process is governed by two

parameters, which we recover from our OLS estimates. The dissipation rate regulates the rate at which absolute

advantage reverts to its long-run mean and determines the shape of its stationary distribution; the innovation

intensity scales the stochastic shocks to absolute advantage and determines how frequently industries reshuffle

along the distribution. Our results indicate that the dissipation rate is stable across countries and sectors, which

suggests that the heavy-tailedness of export advantage is close to universal. The innovation intensity, in contrast,

is more variable. It is higher for developing countries and for nonmanufacturing industries, which implies that

the pace of churning in industry export ranks is idiosyncratic to countries and sectors.

If log export capability follows an OU process, the cross-industry distribution of absolute advantage for each

country is log normal. The puzzle over how to reconcile hyperspecialization in exporting with churning in export

ranks is then resolved. Stochastic innovations in export advantage cause a country’s top industries to turn over

and when paired with mean reversion imply that at any moment of time a country’s exports are concentrated in a

few industries. Comparative advantage is not degenerate but alive and well, if always on the move.

Although attractive for its linearity when discretized, the OU is but one of many possible stochastic processes

to consider. To be as expansive as possible in our characterization of export dynamics, while still in a parametric

family of Markovian stochastic processes, we next specify and estimate a generalized logistic diffusion (GLD)

for absolute advantage. The appeal of the GLD is that it has as its stationary distribution a generalized gamma,6

which unifies the gamma and extreme-value families and therefore nests many common distributions (Crooks

2010), including those used in influential analyses of city sizes (Gabaix and Ioannides 2004, Luttmer 2007) and

firm sizes (Sutton 1997, Gabaix 1999). Relative to the OU process, the GLD adds an additional parameter to

estimate—the decay elasticity—which allows the speed of mean reversion to differ from above versus below

the mean. Slower reversion from above the mean, for instance, would indicate that absolute advantage tends

to be “sticky,” eroding slowly once acquired. Since the GLD nests the OU, we can easily assess log normality

against the generalized gamma for the distribution of export advantage. To estimate comparative advantage as a

GLD, we allow for stochastic country trends (converting absolute to comparative advantage), transform the GLD

to a process for which closed-form expressions of conditional moments exist (permitting estimation by GMM),

and develop a finite-sample standard error correction to account for estimation of export capability as a gravity
5The OU is the unique non-degenerate Markov process that has a stationary normal distribution (Karlin and Taylor 1981). It is a

baseline stochastic process in the natural sciences and finance (see e.g. Vasicek 1977, Chan et al. 1992).
6See Kotz et al. (1994) on the properties of generalized gamma distributions. Cabral and Mata (2003) use a similar generalized gamma

to study firm-size distributions. The finance literature considers a wide family of stochastic asset price processes with linear drift and
power diffusion terms (see, e.g., Chan et al. 1992), which nest neither an ordinary nor a generalized logistic diffusion.
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parameter (analogous to two-step estimators in Newey and McFadden (1994)).

To gauge the fit of the GLD, we take the GMM time series estimates of the three global parameters—the

dissipation rate, the innovation intensity, and the decay elasticity—and predict the cross-section distribution of

absolute advantage, which is not targeted in our estimation. Based on just three parameters, the predicted values

match the cross-sectional distributions with considerable accuracy. While the data select the GLD over the

more restrictive OU process, the difference in the performance of the two is slight. The GLD and OU yield

closely similar predictions for period-to-period transition probabilities between quantiles of the distribution of

export advantage. This finding is of significant practical importance for it suggests that in many applications

the OU process, with its linear discrete-time analogue, will adequately characterize export dynamics. An OU

process greatly simplifies estimating multivariate diffusions, which would encompass the types of intersectoral

and international linkages in the transmission of knowledge that are at the core of recent theories of trade and

growth (Eaton and Kortum 1999, Alvarez et al. 2013, Buera and Oberfield 2014).

Our finding that churning in export advantage applies to both manufacturing and nonmanufacturing industries

suggests that “the discovery of new ideas” in models such as EK should be interpreted broadly. There may be

many ways in which countries resolve uncertainty about what they are good at producing (Hausmann and Rodrik

2003). Discovery may result from R&D, such as Nokia’s foray into cellular technology transforming Finland into

a powerhouse for mobile telephony in the early 2000s, or from foreign direct investment, such as Intel’s 1996

decision to build a chip factory in Costa Rica, which made electronics the country’s largest export (Rodríguez-

Clare 2001). Alternatively, discovery may arise from mineral exploration, such as Bolivia’s realization in the

1980s that it held the world’s largest reserves of lithium,7 or experimentation with soil conditions that in the

1970s allowed Brazil to begin exporting soybeans (Bustos et al. 2015). Just as discovery comes in many forms,

so too does its erosion. While Brazil remains a leading exporter of soybeans, the rise of smart phones has dented

Finland’s prominence in mobile technology, Intel’s decision to close its operations in Costa Rica is abruptly

shifting the country’s comparative advantage, and ongoing conflicts over property rights have limited Bolivia’s

exports of lithium.

In Section 2 we present a theoretical motivation for our gravity specification. In Section 3 we describe the

data and gravity model estimates, and document hyperspecialization in exporting and churning in top export

goods. In Section 4 we introduce a stochastic process that generates a cross-sectional distribution consistent with

hyperspecialization and embeds innovations consistent with observed churning, and derive a GMM estimator for

this process. In Section 5 we present estimates and evaluate the fit of the model. In Section 6 we conclude.
7Lawrence Wright, “Lithium Dreams,” The New Yorker, March 22, 2010.

5



2 Theoretical Motivation

In this section, we use the EK model to motivate our definitions of export capability and absolute advantage, and

describe our approach for extracting these measures from the gravity equation of trade.

2.1 Export capability, absolute advantage, and comparative advantage

In EK, an industry consists of many product varieties. The productivity q of a source-country s firm that

manufactures a variety in industry i is determined by a random draw from a Fréchet distribution with CDF

FQ(q) = exp{−(q/q
is

)−θ} for q > 0. Consumers, who have CES preferences over product varieties within

an industry, buy from the firm that delivers a variety at the lowest price. With marginal-cost pricing, a higher

productivity draw makes a firm more likely to be the lowest-price supplier of a variety to a given market.

Comparative advantage stems from the location of the industry productivity distribution, given by q
is

, which

may vary by country and industry. In a country-industry with a higher q
is

, firms are more likely to have a high

productivity draw, such that in this country-industry a larger fraction of firms succeeds in exporting to multiple

destinations.8 Consider the many-industry version of the EK model in Costinot et al. (2012). Exports by source

country s to destination country d in industry i can be written as,

Xisd =

(
wsτisd/qis

)−θ
∑

ς

(
wςτiςd/qiς

)−θ µiYd, (1)

where ws is the unit production cost in source country s, τisd is the iceberg trade cost between s and d in industry

i, µi is the Cobb-Douglas share of industry i in global expenditure, and Yd is national expenditure in country d.

Taking logs of (1), we obtain a gravity equation for bilateral trade

lnXisd = kis +mid − θ ln τisd, (2)

where kis ≡ θ ln(q
is
/ws) is source country s’s log export capability in industry i, which is a function of the

8The importance of the productivity distribution for trade also depends on the shape of the distribution, given by θ. Lower dispersion
in productivity draws—associated with a higher value of θ—elevates the role of the distribution’s position in determining a country’s
strength in an industry. These two features—the country-industry location parameter q

is
and the globally invariant dispersion parameter

θ—together pin down a country-industry’s export capability.
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country-industry’s efficiency (q
is

) and the country’s unit production cost (ws),9 and

mid ≡ ln

[
µiYd

/∑
ς

(
wςτiςd/qiς

)−θ]

is the log of effective import demand by country d in industry i, which depends on national expenditure on goods

in the industry divided by an index of the toughness of industry competition in the country.

Though we focus on EK, any trade model that has a gravity structure will generate exporter-industry fixed

effects and a reduced-form expression for export capability (kis). In the Armington (1969) model, as applied

by Anderson and van Wincoop (2003), export capability is a country’s endowment of a good relative to its

remoteness from the rest of the world. In Krugman (1980), export capability equals the number of varieties a

country produces in an industry times effective industry marginal production costs. In Melitz (2003), export

capability is analogous to that in Krugman adjusted by the Pareto lower bound for productivity in the industry.

And in a Heckscher-Ohlin model (Deardorff 1998), export capability reflects the relative size of a country’s

industry based on factor endowments and sectoral factor intensities. The common feature of these models is

that export capability is related to a country’s productive potential in an industry, be it associated with resource

supplies, a home-market effect, or the distribution of firm-level productivity.

Looking forward to the estimation, the presence of the importer-industry fixed effect mid in (2) implies that

export capability kis is only identified up to an industry normalization. We therefore re-express export capability

as the deviation from its global industry mean (1/S)
∑S

ς=1 kiς , where S is the number of source countries.

Exponentiating this value, we measure absolute advantage of source country s in industry i as

Ais ≡
exp {kis}

exp
{

1
S

∑S
ς=1 kiς

} =
(q
is
/ws)

θ

exp
{

1
S

∑S
ς=1(q

iς
/wς)θ

} . (3)

The normalization in (3) differences out both worldwide industry supply conditions, such as shocks to global

TFP, and worldwide industry demand conditions, such as variation in the expenditure share µi.

Our measure of absolute advantage is somewhat unconventional. When Ais rises for country-industry is, we

say that country s’s absolute advantage has increased in industry i even though it is only strictly the case that its

export capability has risen relative to the global geometric mean for i. In truth, the country’s export capability in

imay have gone up relative to some countries and fallen relative to others. Our motivation for using the deviation

from the industry geometric mean to define absolute advantage is that in so doing we simplify the specification
9Export capability kis depends on endogenously determined production costs ws and therefore is not a primitive. The EK model

does not yield a closed-form solution for wages, so we cannot solve for export capabilities as explicit functions of the q
is

’s. In a model
with labor as the single primary factor of production, the q

is
’s are the only country and industry-specific fundamentals—other than trade

costs—that determine factor prices, implying in turn that the ws’s are implicit functions of the q
is

’s.
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of a stochastic process for export capability. Rather than modeling export capability itself, we model its deviation

from a worldwide industry trend, which frees us from having to model a trend component that will reflect the

evolution of global industry equilibrium.

To relate our use of absolute advantage Ais to conventional approaches, average (2) over destinations and

define (harmonic) log exports from source country s in industry i at the country’s industry trade costs as

ln X̄is ≡ kis +
1

D

D∑
d=1

mid −
1

D

D∑
d=1

θ ln τisd, (4)

where D is the number of destination markets. We say that country s has a comparative advantage over country

ς in industry i relative to industry j if the following familiar condition holds:

X̄is/X̄iς

X̄js/X̄jς
=
Ais/Aiς
Ajs/Ajς

> 1. (5)

Intuitively, absolute advantage defines country relative exports, once we neutralize the distorting effects of trade

costs and proximity to market demand on trade flows, as in (4). In practice, a large number of industries and

countries makes it cumbersome to conduct double comparisons of country-industry is to all other industries and

all other countries, as suggested by (5). The definition in (3) simplifies this comparison in the industry dimension

by setting the “comparison country” in industry i to be the global mean across countries in i. In the final esti-

mation strategy that we develop in Section 4, we will further normalize the comparison in the country dimension

by estimating the absolute advantage of the “comparison industry” for country s, consistent with an arbitrary

stochastic country-wide growth process. First demeaning in the industry dimension here, and then estimating the

most suitable normalization in the country dimension later, makes our empirical approach consistent with both

worldwide stochastic industry growth and stochastic national country growth.

Our concept of export capability kis can be related to the deeper origins of comparative advantage by treating

the country-industry specific location parameter q
is

as the outcome of an exploration and innovation process. In

Eaton and Kortum (1999, 2010), firms generate new ideas for how to produce existing varieties more efficiently.

The efficiency q of a new idea is drawn from a Pareto distribution with CDF G(q) = (q/xis)
−θ, where xis > 0

is the minimum efficiency. New ideas arrive in continuous time according to a Poisson process, with intensity

rate ris (t). At date t, the number of ideas with at least efficiency q is then distributed Poisson with parameter

Tis (t) q−θ, where Tis (t) is the number of previously discovered ideas that are available to producers and that

is in turn a function of xθis and past realizations of ris (t).10 Setting Tis(t) = q
is

(t)θ, this framework yields

10Eaton and Kortum (2010) allow costly research effort to affect the Poisson intensity rate and assume that there is “no forgetting” such
that all previously discovered ideas are available to firms. In our simple sketch, we abstract away from research effort and treat the stock
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identical predictions for the volume of bilateral trade as in equation (1). Our empirical approach is to treat the

stock of ideas available to a country in an industry Tis (t)—relative to the global industry mean stock of ideas

(1/S)
∑S

ς=1 Tiς (t)—as following a stochastic process.11

2.2 Estimating the gravity model

Allowing for measurement error in trade data or unobserved trade costs, we can introduce a disturbance term into

the gravity equation (2), converting it into a linear regression model. With data on bilateral industry trade flows

for many importers and exporters, we can obtain estimates of the exporter-industry and importer-industry fixed

effects from an OLS regression. The gravity model that we estimate is

lnXisdt = kist +midt + r′sdtbit + visdt, (6)

where we have added a time subscript t. We include dummy variables to measure exporter-industry-year kist and

importer-industry-year midt terms. The regressors rsdt represent the determinants of bilateral trade costs (rsdtbit

adapts equation (2) by replacing −θt ln τPisdt), and visdt is a residual that is mean independent of rsdt. In the

estimation, we exclude a constant term, include an exporter-industry-year dummy for every exporting country in

each industry, and include an importer-industry-year dummy for every importing country except for one, which

we select to be the United States. The variables we use to measure trade costs rsdt in (6) are standard gravity

covariates, which do not vary by industry.12 However, we do allow the coefficient vector bit on these variables

to differ by industry and by year.13 Absent annual measures of industry-specific trade costs for the full sample

period, we model these costs via the interaction of country-level gravity variables and time-and-industry-varying

coefficients.

The values that we will use for empirical analysis are the deviations of the estimated exporter-industry-year

dummies from global industry means. The empirical counterpart to the definition of absolute advantage in (3)

of knowledge available to firms in a country (relative to the mean across countries) as stochastic.
11Buera and Oberfield (2014) microfound the innovation process in Eaton and Kortum (2010) by allowing agents to transmit ideas

within and across borders through trade. A Fréchet distribution for country-industry productivity emerges as an equilibrium outcome in
this environment, where the location parameter of this distribution reflects the current stock of ideas in a country. Below, we describe
how the stochastic process we estimate relates to their prediction for the growth rate of the stock of ideas.

12These include log distance between the importer and exporter, the time difference (and time difference squared) between the importer
and exporter, a contiguity dummy, a regional trade agreement dummy, a dummy for both countries being members of GATT, a common
official language dummy, a common prevalent language dummy, a colonial relationship dummy, a common empire dummy, a common
legal origin dummy, and a common currency dummy.

13We estimate (6) separately by industry and by year. Since in each year the regressors are the same across industries for each bilateral
exporter-importer pair, there is no gain to pooling data across industries in the estimation, which helps reduce the number of parameters
to be estimated in each regression.
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for source country s in industry i is

Aist =
exp {kOLS

ist }

exp
{

1
S

∑S
ς=1 k

OLS
iςt

} =
exp {kist}

exp
{

1
S

∑S
ς=1 kiςt

} , (7)

where kOLS
ist is the OLS estimate of kist in (6). By construction, this measure is unaffected by the choice of the

omitted importer-industry-year fixed effect in the estimation.

We can place alternative distributional assumptions on the gravity equation (2). As is well known, the linear

regression model (6) is inconsistent with the presence of zero trade flows, which are common in bilateral data.

We recast EK to allow for zero trade by following Eaton et al. (2012), who posit that in each industry in each

country only a finite number of firms make productivity draws, meaning that in any realization of the data there

may be no firms from country s that have sufficiently high productivity to profitably supply destination market

d in industry i. Instead of augmenting the expected log trade flow E [lnXisd] from gravity equation (2) with a

disturbance, Eaton et al. (2012) consider the expected share of country s in the market for industry i in country d,

E [Xisd/Xid], and write this share in terms of a multinomial logit model. This approach requires that one know

total expenditure in the destination market, Xid, including a country’s spending on its own goods. Since total

spending is unobserved in our data, we invoke independence of irrelevant alternatives and specify the dependent

variable as the expectation for the share of source country s in import purchases by destination d in industry i:

E

[
Xisdt∑
ς 6=dXiςdt

]
=

exp {kist − r′sdtbit}∑
ς 6=d exp

{
kiςt − r′ςdtbit

} . (8)

We re-estimate exporter-industry-year fixed effects and apply multinomial pseudo-maximum likelihood to (8).14

Our baseline measure of absolute advantage relies on regression-based estimates of exporter-industry-year

fixed effects. Even when following the approach in Eaton et al. (2012), estimates of these fixed effects may

become imprecise when a country exports a good to only a few destinations in a given year. As an alternative

measure of export performance, we use the Balassa (1965) measure of revealed comparative advantage:

RCAist ≡
∑

dXisdt/
∑

ς

∑
dXiςdt∑

j

∑
dXjsdt/

∑
j

∑
ς

∑
dXjςdt

. (9)

While the RCA index is ad hoc and does not correct for distortions in trade flows introduced by trade costs or

proximity to market demand, it has the appealing attribute of being based solely on raw trade data. Throughout

our analysis we will employ the gravity-based measure of absolute advantage (7) alongside the Balassa RCA

measure (9). Reassuringly, our results for the two measures are quite similar.
14We thank Sebastian Sotelo for estimation code.
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3 Data and Main Regularities

The data for our analysis are World Trade Flows from Feenstra et al. (2005),15 which are based on SITC revision 1

industries for 1962 to 1983 and SITC revision 2 industries for 1984 and later. We create a consistent set of country

aggregates in these data by maintaining as single units countries that divide or unite over the sample period.16

To further maintain consistency in the countries present, we restrict the sample to nations that trade in all years

and that exceed a minimal size threshold, which leaves 116 country units.17 The switch from SITC revision 1

to revision 2 in 1984 led to the creation of many new industry categories. To maintain a consistent set of SITC

industries over the sample period, we aggregate industries to a combination of two and three digit categories.18

These aggregations and restrictions leave 133 industries in the data. In an extension of our main analysis, we

limit the sample to SITC revision 2 data for 1984 forward, so we can check the sensitivity of our results to

industry aggregation by using two-digit (60 industries) and three-digit definitions (225 industries), which bracket

the industry definitions that we use for the full sample period, as well as four-digit (682) definitions.

A further set of country restrictions are required to estimate importer and exporter fixed effects. For coeffi-

cients on exporter-industry dummies to be comparable over time, the countries that import a product must do so

in all years. Imposing this restriction limits the sample to 46 importers, which account for an average of 92.5% of

trade among the 116 country units. We also need that exporters ship to overlapping groups of importing countries.

As Abowd et al. (2002) show, such connectedness assures that all exporter fixed effects are separately identified

from importer fixed effects. This restriction leaves 90 exporters in the sample that account for an average of

99.4% of trade among the 116 country units. Using our sample of 90 exporters, 46 importers, and 133 industries,

we estimate the gravity equation (6) separately by industry i and year t and then extract absolute advantage Aist

given by (7). Data on gravity variables are from CEPII.org.
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Figure 1: Concentration of Exports
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007.
Note: Shares of industry i’s export value in country s’s total export value: Xist/(

∑
j Xjst). For the classification of less developed

countries (LDC) see Appendix E.

3.1 Hyperspecialization in exporting

We first characterize export behavior across industries for each country. For an initial take on the concentration

of exports in leading products in this subsection, we tabulate the share of an industry’s exports in a country’s

national exports across the 133 industries Xist/(
∑

j Xjst). We then average these shares across the current and

preceding two years to account for measurement error and cyclical fluctuations. In Figure 1a, we display median

export shares across the 90 countries in our sample for the top export industry as well as the top 3, top 7, and top

14 industries, which correspond to the top 1%, 2%, 5% and 10% of products.

For the typical country, a handful of industries dominate exports. The median export share of just the top

export good is 24.6% in 1972, which declines modestly to 21.4% in 1982 and then remains stable around this

level. Over the full period, the median export share of the top good averages 22.9%. For the top 3 products, the
15We use a version of these data that have been extended to 2007 by Robert Feenstra and Gregory Wright.
16These are the Czech Republic, the Russian Federation, and Yugoslavia. We join East and West Germany, Belgium and Luxembourg,

as well as North and South Yemen.
17This reporting restriction leaves 141 importers (97.7% of world trade) and 139 exporters (98.2% of world trade) and is roughly

equivalent to dropping small countries from the sample. For consistency in terms of country size, we drop countries with fewer than 1
million inhabitants in 1985 (in which year 42 countries had 1985 population less than 250,000, 14 had 250,000 to 500,000, and 9 had
500,000 to 1 million), reducing the sample to 116 countries (97.4% of world trade).

18There are 226 three-digit SITC industries that appear in all years, which account for 97.6% of trade in 1962 and 93.7% in 2007.
Some three-digit industries frequently have their trade reported only at the two-digit level (which accounts for the just reported decline
in trade shares for three-digit industries). We aggregate over these industries, creating 143 industry categories that are a mix of SITC two
and three-digit sectors. From this group we drop non-standard industries: postal packages (SITC 911), special transactions (SITC 931),
zoo animals and pets (SITC 941), non-monetary coins (SITC 961), and gold bars (SITC 971). We further exclude uranium (SITC 286),
coal (SITC 32), petroleum (SITC 33), natural gas (SITC 341), and electrical current (SITC 351), which violate the Abowd et al. (2002)
requirement of connectedness for estimating identified exporter fixed effects in most years.
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median export share declines slightly from the 1960s to the 1970s and then is stable from the early 1980s onward,

averaging 43.5% for 1982 to 2007. The median export shares of the top 7 and top 14 products display a similar

pattern, averaging 63.1% and 78.6%, respectively, for 1982 to 2007. In Figure 1b we limit the sample to less

developed countries (see Appendix E for the set of countries). The patterns are similar to those for all countries,

though median export shares for LDCs are somewhat higher in the reported quantiles.19

An obvious concern about using export shares to measure export concentration is that these values may be

distorted by demand conditions. Exports in some industries may be large simply because these industries capture

a relatively large share of global expenditure, leading the same industries to be top export industries in numerous

countries. In 2007, for instance, the top export industry in Great Britain, France, Germany, Japan, and Mexico

is road vehicles. In the same year in Korea, Malaysia, the Philippines, Taiwan, and the United States the top

industry is electric machinery. We may not want to conclude from these facts that each of these countries has

a comparative advantage in one of these products, simply because road vehicles and machinery are among the

most traded manufactures.

To control for variation in industry size that is associated with global preferences or technology, we turn to our

measure of absolute advantage in (7) expressed in logs as lnAist. To provide a sense of the identities of absolute-

advantage goods and the magnitudes of their advantages, we show in Appendix Table A1 the top two products

in terms of lnAist for 28 of the 90 exporting countries, using 1987 and 2007 as representative years. To remove

the effect of overall market size and thus make values comparable across countries, we normalize log absolute

advantage by its country mean, such that the value we report for country-industry is is lnAist−(1/I)
∑I

j lnAjst,

where I is the number of industries. The country normalization yields a double log difference—a country’s

log deviation from the global industry mean less its average log deviation across all industries—and therefore

captures comparative advantage.

There is considerable variation across countries in the top export advantage industries. In 2007, the top

industry for Argentina is maize, for Brazil is iron ore, for Germany is road vehicles, for Indonesia is rubber,

for Poland is furniture, for Thailand is rice, for Turkey is glassware, and for the United States is other transport

equipment (such as commercial aircraft). The magnitudes of these export advantages are enormous. Among the

90 countries in 2007, comparative advantage in the top product is over 400 log points in 76 of the cases and over

300 log points in 88 of the cases.20

19In analyses of developing-country trade, Easterly and Reshef (2010) document the tendency of a small number of destination markets
to dominate national exports by industry and Freund and Pierola (2013) describe the prominent export role of country’s very largest firms.

20To verify that our measure of export advantage does not peg obscure industries as top sectors, we plot lnAist against the log of the
share of the industry in national exports ln(Xist/(

∑
j Xjst)). The graphs are in the Online Supplement (Figure S1). In all years, there

is a strongly positive correlation between log absolute advantage and the log industry share of national exports. This correlation is 0.77
in 1967, 0.78 in 1987, and 0.83 in 2007. (For comparison, the correlation between lnAist and the log Balassa RCA index is these same
years is 0.69, 0.70, and 0.68, respectively.)
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Figure 2: Cumulative Probability Distribution of Absolute Advantage for Select Countries in 2007
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPII.org; gravity measures of absolute advantage (7).
Note: The graphs show the frequency of industries (the cumulative probability 1− FA(a) times the total number of industries I = 133)
on the vertical axis plotted against the level of absolute advantage a (such that Aist ≥ a) on the horizontal axis. Both axes have a log
scale. The fitted Pareto and log normal distributions are based on maximum likelihood estimation by country s in year t = 2007 (Pareto
fit to upper five percentiles only).
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To characterize the full distribution of absolute advantage across industries for a country, we next plot the log

number of source country s industries that have at least a given level of absolute advantage in year t against the

corresponding log level of absolute advantage lnAist for industries i. By design, the plot characterizes the cu-

mulative distribution of absolute advantage by country and by year (Axtell 2001, Luttmer 2007). Figure 2 shows

the distribution plots of log absolute advantage for 12 countries in 2007. Plots for 28 countries in 1967, 1987 and

2007 are shown in Appendix Figures A1, A2 and A3. The figures also graph the fit of absolute advantage to a

Pareto distribution and to a log normal distribution using maximum likelihood, where each distribution is fit sepa-

rately for each country in each year (such that the number of parameters estimated equals the number of countries

× number of years). We choose the Pareto and the log normal as comparison cases because these are standard

options in the literature on the distribution of city and firm sizes (Sutton 1997). For the Pareto distribution, the

cumulative distribution plot is linear in the logs, whereas the log normal distribution generates a relationship that

is concave to the origin in a log-log plot. Relevant to our later analysis, both the Pareto and the log normal distri-

butions are special cases of the generalized gamma distribution that we will specify. To verify that the graphed

cross-section distributions are not a byproduct of specification error in estimating export capabilities from the

gravity model, we repeat the plots using the Balassa RCA index in 1987 and 2007, with similar results. And to

verify that the patterns we uncover are not a consequence of arbitrary industry aggregations we construct plots

also at the 4-digit level based on SITC revision 2 data in 1987 and 2007, again with similar results.21

The cumulative distribution plots clarify that the empirical distribution of absolute advantage is decidedly

not Pareto. The log normal, in contrast, fits the data closely. The concavity of the cumulative distribution plots

drawn for the data indicate that gains in absolute advantage fall off progressively more rapidly as one moves

up the rank order of absolute advantage, a feature absent from the scale-invariant Pareto but characteristic of

the log normal. This concavity could indicate limits on industry export size associated with resource depletion,

congestion effects, or general diminishing returns. Though the log normal well approximates the shape of the

distribution for absolute advantage, there are discrepancies between the fitted log normal plots and the raw data

plots. For some countries, we see that compared to the log normal the number of industries in the upper tail drops

too fast (is more concave), relative to what the log normal distribution implies. These discrepancies motivate our

specification of a generalized logistic diffusion for absolute advantage in Section 4.

Overall, countries tend to have a strong export advantage in only a few industries, where this pattern is

stable both across countries and over time. Before examining the time series of export advantage in more detail,

we consider whether a log normal distribution of absolute advantage across industries could be an incidental

consequence of gravity estimation. The exporter-industry fixed effects are estimated sample parameters, which
21Each of these additional sets of results is available in the Online Supplement: Figures S2 and S3 for the Balassa measure as well as

Figures S4 and S5) for the four-digit industry definitions under SITC revision 2.
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by the Central Limit Theorem converge to being normally distributed around their respective population moments

as the sample size becomes large. However, normality of this log export capability estimator does not imply that

the cross-sectional distribution of absolute advantage becomes log normal. The Central Limit Theorem does not

relate to the distribution of the population moments. If no other stochastic element but the residual noise from

gravity estimation generated log normality in absolute advantage, then the cross-sectional distribution of absolute

advantage between industries in a country would be degenerate around a single mean.

The empirics are decidedly in favor of non-degeneracy for the distribution of absolute advantage. First,

Figure 2 and its counterparts (Figures A1, A2 and A3 in the Appendix) document that industries within a

country differ markedly in terms of their mean export capability. In turn, the top export advantage industries

in Appendix Table A1, far from being random selections, appear closely related to country resource abundance

(e.g., Brazil’s specialization in iron ore, Indonesia’s specialization in rubber) or technological prowess (e.g.,

Germany’s specialization in road vehicles; Turkey’s specialization in glassware). Second, the distribution of

Balassa revealed comparative advantage is also approximately log normal, indicating that alternative measures

of comparative advantage elicit similar distributional patterns. Third, the dynamics of absolute advantage, which

we study next, reveal a pace of mean reversion in lnAist that appears to be too slow to be consistent with iid

sampling errors being the sole explanation for the variable’s normal shape. The distribution of absolute advantage

therefore appears to reflect meaningful economic variation in export capability across industries within countries.

3.2 Churning in export advantage

The distribution plots of absolute advantage give an impression of stability. The strong concavity in the plots

is present in all countries and in all years and the shape, though not the position, of the cumulative distribution

function remains similar across countries and years. Yet, this stability masks considerable turnover in industry

rankings of absolute advantage. Initial evidence of churning is evident in Appendix Table A1. Between 1987

and 2007, Canada’s top good switches from sulfur to wheat, China’s from explosives (fireworks) to TVs and

telecommunications equipment, Egypt’s from cotton to crude fertilizers, India’s from tea to precious stones, and

Poland’s from barley to furniture. Of the 90 total exporters, 68 have a change in the top comparative-advantage

industry between 1987 and 2007. Moreover, most new top products in 2007 were not the number two product in

1987 but from lower down the ranking. Churning thus appears to be both pervasive and disruptive.

To characterize turnover in industry export advantage more completely, in Figure 3 we calculate the fraction

of top products in a given year that were also top products some time ago. For each country in each year, we

identify where in the distribution the top 5% of absolute-advantage products (in terms of Aist) were 20 years

before, with the categories being top 5%, next 10%, next 25% or bottom 60%. We then average across outcomes
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Figure 3: Absolute Advantage Transition Probabilities
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007.
Note: The graphs show the percentiles of products is that are currently among the top 5% of products, 20 years earlier. The sample
is restricted to products (country-industries) is with current absolute advantage Aist in the top five percentiles (1 − FA(Aist) ≥ .05),
and then grouped by frequencies of percentiles twenty years prior, where the past percentile is 1 − FA(Ais,t−20) of the same product
(country-industry) is. For the classification of less developed countries (LDC) see Appendix E.

for the 90 export countries. The fraction of top 5% products in a given year that were also top 5% products two

decades earlier ranges from a high of 42.9% in 2002 to a low of 36.7% in 1997. Averaging over all years, the

share is 40.2%, indicating a 60% chance that a good in the top 5% in terms of absolute advantage today was not in

the top 5% two decades before. On average, 30.6% of new top products come from the 85th to 95th percentiles,

15.5% come from the 60th to 85th percentiles, and 11.9% come from the bottom six deciles. Outcomes are

similar when we limit the sample to developing economies.

Turnover in top export goods suggests that over time export advantage dissipates—countries’ strong sectors

weaken and their weak sectors strengthen. We test for mean reversion in export capability by specifying the

following AR(1) process,

kOLS
is,t+10 − kOLS

ist = ρ kOLS
ist + δit + δst + εis,t+10 (10)

where kOLS
ist is the OLS estimate of log export capability from gravity equation (6). In (10), the dependent variable

is the ten-year change in export capability and the predictors are the initial value of export capability and dummies

for the industry-year δit and for the country-year δst. We choose a long time difference for export capability—

a full decade—to help isolate systematic variation in country export advantages. Controlling for industry-year

fixed effects converts export capability into a measure of absolute advantage; controlling further for country-

year fixed effects allows us to evaluate the dynamics of comparative advantage. The coefficient ρ captures

the fraction of comparative advantage that decays over ten years. The specification in (10) is similar to the
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Table 1: DECAY REGRESSIONS FOR COMPARATIVE ADVANTAGE

Full sample LDC exporters Nonmanufacturing
Exp. cap. k ln RCA Exp. cap. k ln RCA Exp. cap. k ln RCA

(1) (2) (3) (4) (5) (6)

Decay Regression Coefficients
Decay rate ρ -0.355 -0.303 -0.459 -0.342 -0.457 -0.293

(0.002)∗∗∗ (0.01)∗∗∗ (0.002)∗∗∗ (0.013)∗∗∗ (0.003)∗∗∗ (0.012)∗∗∗

Var. of residual s2 2.104 2.318 2.424 2.849 2.522 2.561
(0.024)∗∗∗ (0.006)∗∗∗ (0.025)∗∗∗ (0.009)∗∗∗ (0.039)∗∗∗ (0.009)∗∗∗

Implied Ornstein-Uhlenbeck (OU) Parameters
Dissipation rate η 0.277 0.222 0.292 0.199 0.280 0.195

(0.003)∗∗∗ (0.006)∗∗∗ (0.003)∗∗∗ (0.006)∗∗∗ (0.005)∗∗∗ (0.006)∗∗∗

Intensity of innovations σ 0.562 0.570 0.649 0.648 0.661 0.596
(0.003)∗∗∗ (0.005)∗∗∗ (0.004)∗∗∗ (0.009)∗∗∗ (0.006)∗∗∗ (0.006)∗∗∗

Observations 324,978 324,983 202,010 202,014 153,768 153,773
Adjusted R2 (within) 0.227 0.216 0.271 0.224 0.271 0.214
Years t 36 36 36 36 36 36
Industries i 133 133 133 133 68 68
Source countries s 90 90 62 62 90 90

Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPII.org.
Note: Reported figures for ten-year changes. Variables are OLS-estimated gravity measures of export capability k from (6) and the log
Balassa index of revealed comparative advantage lnRCAist = ln(Xist/

∑
ς Xiςt)/(

∑
j Xjst/

∑
j

∑
ς Xjςt). OLS estimation of the

ten-year decay rate ρ from
kis,t+10 − kist = ρ kist + δit + δst + εis,t+10,

conditional on industry-year and source country-year effects δit and δst for the full pooled sample (column 1-2) and subsamples
(columns 3-6). The implied dissipation rate η and squared innovation intensity σ2 are based on the decay rate estimate ρ and the es-
timated variance of the decay regression residual ŝ2 by (13). Less developed countries (LDC) as listed in Appendix E. Nonmanufacturing
merchandise spans SITC sector codes 0-4. Robust standard errors, clustered at the industry level and corrected for generated-regressor
variation of export capability k, for ρ and s2, applying the multivariate delta method to standard errors for η and σ. ∗ marks significance
at ten, ∗∗ at five, and ∗∗∗ at one-percent level.

productivity convergence regressions reported in Levchenko and Zhang (2013), except that we use trade data to

calculate country advantage in an industry, examine industries at a more disaggregate level, and include both

manufacturing and nonmanufacturing sectors in the analysis. Because we estimate log export capability kOLS
ist

from the first-stage gravity estimation in (6), we need to correct the standard errors in (10) for the presence of

generated variables. To do so, we apply the generated-variable correction discussed in Appendix D.22

Table 1 presents coefficient estimates for equation (10). The first two columns report results for all countries

and industries, first for log export capability and next for the log Balassa RCA index. Subsequent pairs of columns

show results separately for developing countries and nonmanufacturing industries. Estimates for ρ are uniformly

negative and precisely estimated, consistent with mean reversion in export advantage. We soundly reject the
22This correction is for GMM. See the Online Supplement S.1 for a discussion of the OLS correction as a special case of the GMM

correction.
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hypothesis that there is no decay (H0: ρ = 0) and also the hypothesis that there is instantaneous dissipation (H0:

ρ = −1). Estimates in columns 1 and 2 are similar in value, equal to −0.36 when using log export capability

and −0.30 when using log RCA. These magnitudes indicate that over the period of a decade the typical country-

industry sees approximately one-third of its comparative advantage (or disadvantage) erode. In columns 3 and 4,

we present comparable results for the subsample of developing countries. Decay rates for this group are larger

than the worldwide averages in columns 1 and 2, indicating that in less developed economies mean reversion in

comparative advantage is more rapid. In columns 5 and 6, we present results for nonmanufacturing industries (in

all countries). For export capability, though not for Balassa RCA, decay rates are larger in absolute value for the

nonmanufacturing sector (agriculture, mining, and other primary commodities).

To account for zero trade flows, we re-estimate exporter-industry-year fixed effects under the distributional

assumptions of Eaton et al. (2012), as described in Section 2, and use multinomial pseudo-maximum likelihood

(MPML) on (8). With the resulting gravity-based export capability measures at hand, we re-estimate the decay

regression (10). Results are reported in Appendix Table A3. MPML-estimated export capability exhibits a

somewhat stronger rate of decay ρ, in the full sample (−0.43 for MPML gravity but only−0.36 for OLS gravity)

as well as in the LDC (−0.50 instead of −0.46) and nonmanufacturing (−0.49 instead of −0.46) subsamples,

and a roughly one-third larger residual variance.

As an additional robustness check, we re-estimate (10) for the period 1984-2007 using data from the SITC

revision 2 sample, reported in Appendix Table A5. Estimated decay rates are comparable to those in Table 1. At

the two-digit level (60 industries), the ten-year decay rate for absolute advantage using the full sample is −0.26,

at the three-digit level (224 industries) it is−0.38; the two decay rate estimates for two- and three-digit industries

bracket the earlier estimate of−0.36 for our preferred industry aggregate between the two- and three-digit levels.

At the four-digit level (682 industries) we estimate a decay rate of −0.51. When using log RCA, decay rates

vary less across aggregation levels, ranging from −0.31 at the two-digit level to −0.33 at the three-digit level

and −0.34 at the four-digit level. The qualitative similarity in decay rates across definitions of export advantage

and levels of industry aggregation suggest that our results are neither the byproduct of sampling error nor the

consequence of arbitrary industry definitions.

Our finding that decay rates imply incomplete mean reversion is evidence against absolute advantage being

incidental. Suppose that the cumulative distribution plots of log absolute advantage reflected random variation in

export capability around a common expected value for each country in each year due, say, to measurement error

in trade data. If this measurement error were classical, all within-country variation in the exporter-industry fixed

effects would be the result of iid disturbances that were uncorrelated across time. We would then observe no

temporal connection between these distributions. When estimating the decay regression in (10), mean reversion
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would be complete, yielding a value of ρ close to−1. The coefficient estimates are clearly inconsistent with such

a pattern.

3.3 Comparative advantage as a stochastic process

On its own, reversion to the mean in log export capability is uninformative about the dynamics of its distribu-

tion.23 While mean reversion is consistent with a stationary cross-sectional distribution, it is also consistent with

a non-ergodic distribution or a degenerate comparative advantage that collapses at a long-term mean of one (log

comparative advantage of zero). Degeneracy in comparative advantage is the interpretation that Levchenko and

Zhang (2013) give to their finding of cross-country convergence in industry productivities. Yet, the combination

of mean reversion in Table 1 and temporal stability of the cumulative distribution plots in Figure 2 is suggestive

of a balance between random innovations to export capability and the dissipation of these capabilities. Such

balance is characteristic of a stochastic process that generates a stationary cross-section distribution.

To explore the dynamics of comparative advantage, we limit ourselves to the family of stochastic processes

known as diffusions. Diffusions are Markov processes for which all realizations of the random variable are

continuous functions of time and past realizations. As a first exercise, we exploit the fact that the decay regres-

sion in (10) is consistent with the discretized version of a commonly studied diffusion, the Ornstein-Uhlenbeck

(OU) process. Consider log comparative advantage ln Âis(t)—export capability normalized by industry-year and

country-year means.24 Suppose that, when expressed in continuous time, comparative advantage Âis(t) follows

an OU process given by

d ln Âis(t) = −ησ
2

2
ln Âis(t) dt+ σ dW Â

is (t), (11)

whereW Â
is (t) is a Wiener process that induces stochastic innovations in comparative advantage.25 The parameter

η regulates the rate at which comparative advantage reverts to its global long-run mean and the parameter σ scales
23See, e.g., Quah’s (1996) critique of using cross-country regressions to test for convergence in rates of economic growth.
24In Section 4, we will specify log generalized comparative advantage in continuous time as

ln Âis(t) ≡ lnAis(t)− lnZs(t),

where lnAis(t) is log absolute advantage from (7) and lnZs(t) is an unobserved country-wide stochastic trend that we will ultimately
estimate. For now, we simply define lnZs(t) ≡ (1/I)

∑
j lnAjs(t).

25To relate equation (11) to trade theory, our specification for the evolution of export advantage is analogous to the equation of motion
for a country’s stock of ideas in the dynamic EK model of Buera and Oberfield (2014). In their model, each producer in source country
s draws a productivity from a Pareto distribution, where this productivity combines multiplicatively with ideas learned from other firms,
either within the same country or in different countries. Learning—or exposure to ideas—occurs at an exogenous rate αs(t) and the
transmissibility of ideas from one producer to another depends on the parameter β. In equilibrium, the distribution of productivity across
suppliers within a country is Fréchet, with location parameter equal to a country’s current stock of ideas. The OU process in (11) emerges
from the equation of motion for the stock of ideas in Buera and Oberfield (2014, eq. (4)) as the limiting case with the transmissibility
parameter β → 1, provided that the learning rate αs(t) is subject to random shocks and producers in a country only learn from suppliers
within the same country. In Section 6, we discuss how equation (11) could be extended to allow for learning across national borders.
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time and therefore the Brownian innovations dW Â
is (t).26

Comparative advantage reflects a double normalization of export capability, so it is natural to consider a global

mean of one, implying a global mean of zero for ln Âis(t). The OU case is the unique non-degenerate Markov

process that has a stationary normal distribution (Karlin and Taylor 1981). An OU process of log comparative

advantage ln Âis(t) therefore implies that Âis(t) has a stationary log normal distribution. In other words, if we

were to plot comparative advantage Âis(t) in a manner similar to Figure 2, we would find a log normal shape if

and only if the underlying Markov process of ln Âis(t) is an OU process.

In (11), we refer to the parameter η as the rate of dissipation of comparative advantage because it contributes

to the speed with which ln Âis(t) would collapse to a degenerate level of zero if there were no stochastic innova-

tions. The parametrization in (11) implies that η alone determines the shape of the stationary distribution, while

σ is irrelevant for the cross section. Our parametrization treats η as a normalized rate of dissipation that measures

the “number” of one-standard deviation shocks that dissipate per unit of time. We refer to σ as the intensity of

innovations. It plays a dual role: on the one hand, σ magnifies volatility by scaling up the Wiener innovations; on

the other hand the parameter regulates the speed at which time elapses in the deterministic part of the diffusion.

To connect the continuous-time OU process in (11) to our decay regression in (10), we use the fact that

the discrete-time process that results from sampling an OU process at a fixed time interval ∆ is a Gaussian

first-order autoregressive process with autoregressive parameter exp{−ησ2∆/2} and innovation variance (1 −

exp{−ησ2∆})/η (Aït-Sahalia et al. 2010, Example 13). Applying this insight to the first-difference equation

above, we obtain our decay regression:

kis(t+ ∆)− kis(t) = ρ kis(t) + δi(t) + δs(t) + εis(t, t+∆), (12)

which implies for the reduced-form decay parameter

ρ ≡ −(1− exp{−ησ2∆/2}) < 0

and for the unobserved country fixed effect δs(t) ≡ lnZs(t+∆)−(1+ρ) lnZs(t), where the residual εist(t, t+∆) ∼

N
(
0, (1− exp{−ησ2∆})/η

)
. An OU process with ρ ∈ (−1, 0) generates a log normal stationary distribution

in the cross section, with a shape parameter of 1/η and a mean of zero.

The reduced-form decay coefficient ρ in (12) is a function both of the dissipation rate η and the intensity of

innovations σ and may differ across samples because either or both of these parameters vary. That is, ρ may be
26Among possible parameterizations of the OU process, we choose (11) because it is related to our later extension to a generalized

logistic diffusion and clarifies that the parameter σ is irrelevant for the shape of the cross-sectional distribution. We deliberately specify
η and σ to be invariant over time, industry and country and explore the goodness of fit under this restriction.
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large either because the number of standard deviation adjustments toward the mean at each unit of time is large

or because the size of these standard deviation adjustments is large. This distinction is important because ρ may

vary even if the shape of the distribution of comparative advantage does not change.27

From OLS estimation of (12), we can obtain estimates of η and σ2 using the solutions,

η =
1− (1 + ρ̂)2

ŝ2

σ2 =
ŝ2

1− (1 + ρ̂)2

ln (1 + ρ̂)−2

∆
, (13)

where ρ̂ is the estimated decay rate and ŝ2 is the estimated variance of the decay regression residual.

Table 1 shows estimates of η and σ2 implied by the decay regression results, with standard errors obtained

using the multivariate delta method.28 Estimates of η based on log export capability, at 0.28 in column 1 of

Table 1, are somewhat larger than those based on the log RCA index, at 0.22 in column 2 of Table 1, implying

that the distribution of export capability will be more concave to the origin. But estimates for each indicate strong

concavity, consistent with the visual evidence in Figure 2 (as well as Figures A1, A2 and A3 in the Appendix)

for log absolute advantage (and Figures S2 and S3 for Balassa RCA in the Online Supplement). Patterns of

interest emerge when we compare η and σ2 across subsamples.

First, compare the estimate for ρ in the subsample of developing economies in column 3 of Table 1 to

that for the full sample of countries in column 1. The larger estimate of ρ in the former sample (−0.46 in

column 3 versus −0.36 in column 1) implies that reduced-form mean reversion is relatively rapid in developing

countries. However, this result is silent about how the shape of the distribution of comparative advantage varies

across nations. The absence of a statistically significant difference in the estimated dissipation rate η between

the developing-country sample (η = 0.29) and the full-country sample (η = 0.28) indicates that comparative

advantage is similarly heavy-tailed in the two groups. The larger reduced-form decay rate ρ for developing

countries results from their having a larger intensity of innovations (σ = 0.65 in column 3 versus σ = 0.56 in

column 1, where this difference is statistically significant). In other words, a one-standard-deviation shock to

comparative advantage in a developing country dissipates at roughly the same rate as in an industrialized country.

But because the magnitude of this shock is larger for the developing country, its observed rate of decay will be

faster, too (otherwise the country’s export capabilities would not have a stationary cross-sectional distribution).

Second, compare nonmanufacturing industries in column 5 to the full sample of industries in column 1.
27The estimated value of ρ is sensitive to the time interval4 that we define in (12), whereas the estimated value of η is not. At shorter

time differences—for which there may be relatively more noise in export capability—the estimated magnitude of σ is larger and therefore
the reduced-form decay parameter ρ is as well. However, the estimated intrinsic speed of mean reversion η is unaffected. We verify these
insights by estimating the decay regression in (10) for time differences of 1, 5, 10, and 15 years.

28Details on the construction of standard errors for η and σ2 are available in the Online Supplement (Section S.2).
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Whereas the average nonmanufacturing industry differs from the average overall industry in the reduced-form

decay rate ρ (−0.46 in column 5 versus−0.36 in column 1), it shows no such difference in the estimated dissipa-

tion rate η (0.28 in both columns 1 and 5). This implies that comparative advantage has comparably heavy tails

among manufacturing and nonmanufacturing industries. However, the intensity of innovations σ is larger for

nonmanufacturing industries (0.66 in column 5 versus 0.56 in column 1), due perhaps to higher output volatility

associated with occasional major resource discoveries. These nuances regarding the implied shape of and the

convergence speed toward the cross-sectional distribution of comparative advantage are not at all apparent when

one considers the reduced-form decay rate ρ alone.

Finally, we compare results for two-, three- and four-digit industries in Appendix Table A5 for the subperiod

1984-2007. Whereas reduced-form decay rates ρ increase in magnitude by a factor of 1.4 as one goes from the

two- to the three-digit level or the three- to the four-digit level (from−0.26 in column 1 to−0.38 in column 3 and

−0.51 in column 5), dissipation rates η move in the opposite direction (from 0.31 in column 1 to 0.30 in column 3

and 0.26 in column 5). The difference in reduced-form decay rates ρ is driven largely by a higher intensity of

innovations σ among the more narrowly defined industries at the three- and four-digit levels. Intuitively, the

magnitude of shocks to comparative advantage is larger in the more disaggregated three- and four-digit product

groupings.

The diffusion model in (11) and its discrete-time analogue in (12) reveal a deep connection between hyper-

specialization in exporting and churning in industry export ranks. Random innovations in absolute advantage

cause industries to alternate positions in the cross-sectional distribution of comparative advantage for a country

at a rate of innovation precisely fast enough so that the deterministic dissipation of absolute advantage creates a

stable, heavy-tailed distribution of export prowess. Having established the plausibility of comparative advantage

following a stochastic growth process, we turn next to a more rigorous analysis of the properties of this process.

4 The Diffusion of Comparative Advantage

We now search in a more general setting for a parsimonious stochastic process that characterizes the dynamics

of export advantage. In Figure 2, the cross-sectional distributions of absolute advantage drift steadily rightward

for each country, implying that absolute advantage is non-stationary. However, the cross-sectional distributions

preserve their shape over time. We therefore consider absolute advantage as a proportionally scaled outcome

of an underlying stationary and ergodic variable: comparative advantage. We specify generalized comparative

advantage in continuous time as

Âis(t) ≡
Ais(t)

Zs(t)
, (14)
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where Ais(t) is observed absolute advantage and Zs(t) is an unobserved country-wide stochastic trend. This

measure satisfies the properties of comparative advantage in (5), which compares country and industry pairs.

To find a well-defined stochastic process that is consistent with the churning of absolute advantage over time

and with heavy tails in the cross section, we implement a generalized logistic diffusion of comparative advantage

Âis(t), which then has a generalized gamma as its stationary distribution. We denote comparative advantage

in the cross section with Âis (not a function of time) and take it to have a time-invariant stationary distribution

given constant parameters of the stochastic process. Absolute advantage Ais(t), in contrast, has a trend-scaled

generalized gamma as its cross-sectional distribution, with stable shape but moving position as in Figure 2.

An attractive feature of the generalized gamma that we specify is that it nests many distributions as special

or limiting cases, making the diffusion we employ flexible in nature. We construct a GMM estimator by working

with a mirror diffusion, which is related to the generalized logistic diffusion through an invertible transformation.

Our estimator uses the conditional moments of the mirror diffusion and accommodates the fact that we observe

absolute advantage only at discrete points in time. Once we get an estimate of the stochastic process from the

time series of absolute advantage in Section 5, we will explore how well the implied cross-sectional distribution

fits the actual cross-section data, which we do not target in the estimation.

4.1 Generalized logistic diffusion

The regularities in Section 3.1 indicate that the log normal distribution is a plausible benchmark for the cross

section of absolute advantage. But the graphs in Figure 2 (as well as Figures A1 through A3 in the Appendix)

also indicate that for many countries, the number of industries drops off more quickly or more slowly in the

upper tail than the log normal distribution can capture. We require a distribution that generates kurtosis and that

is not simply a function of the lower-order moments, as would be the case in the two-parameter log normal. The

generalized gamma distribution, which unifies the gamma and extreme-value distributions as well as many others

(Crooks 2010), offers a candidate family.29 There are a number of alternative generalizations to the ordinary

gamma distribution (see e.g. Kotz et al. 1994, Ch. 17, Section 8.7). Our implementation of the generalized

gamma uses three parameters, as in Stacy (1962).30

In a cross section of the data, after arbitrarily much time has passed, the generalized gamma probability
29In their analysis of the firm size distribution by age, Cabral and Mata (2003) also use a version of the generalized gamma distribution

with a support bounded below by zero and document a good fit.
30In the early Amoroso (1925) formulation the generalized gamma distribution has four parameters. One of the four parameters is the

lower bound of the support. However, our measure of absolute advantage Ais can be arbitrarily close to zero by construction (because
the exporter-industry fixed effect in gravity estimation is not bounded below so that by (7) logAis can be negative and arbitrarily small).
As a consequence, the lower bound of the support is zero in our application. This reduces the relevant generalized gamma distribution to
a three-parameter function.
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density function for a realization âis of the random variable comparative advantage Âis is given by:

fÂ(âis
∣∣θ̂, κ, φ) =

1

Γ(κ)

∣∣∣∣φθ̂
∣∣∣∣ ( âisθ̂

)φκ−1

exp

{
−
(
âis

θ̂

)φ}
for âis > 0, (15)

where Γ(·) denotes the gamma function and (θ̂, κ, φ) are real parameters with θ̂, κ > 0.31 The generalized

gamma nests the ordinary gamma distribution for φ = 1 and the log normal or Pareto distributions when φ

tends to zero.32 The parameter restriction φ = 1 clarifies that the generalized gamma distribution results when

one takes an ordinary gamma distributed variable and raises it to a finite power 1/φ. The exponentiated random

variable is then generalized gamma distributed—a result that also points to a candidate stochastic process that has

a stationary generalized gamma distribution. The ordinary logistic diffusion, a widely used stochastic process,

generates an ordinary gamma as its stationary distribution (Leigh 1968). By extension, the generalized logistic

diffusion has a generalized gamma as its stationary distribution.33

Lemma 1. The generalized logistic diffusion

dÂis(t)

Âis(t)
=
σ2

2

[
1− η Âis(t)

φ − 1

φ

]
dt+ σ dW Â

is (t) (16)

for real parameters (η, σ, φ) has a stationary distribution that is generalized gamma with a probability density

fÂ(âis
∣∣θ̂, κ, φ) given by (15) and the real parameters

θ̂ =
(
φ2/η

)1/φ
> 0 and κ = 1/θ̂φ > 0.

A non-degenerate stationary distribution exists only if η > 0.

Proof. See Appendix A.

The term (σ2/2)[1 − η{Âis(t)φ − 1}/φ] in (16) is a deterministic drift that regulates the relative change in

comparative advantage dÂis(t)/Âis(t). The variable W Â
is (t) is the Wiener process. The generalized logistic

31We do not restrict φ to be strictly positive (as do e.g. Kotz et al. 1994, ch. 17). We allow φ to take any real value (see Crooks
2010), including a strictly negative φ for a generalized inverse gamma distribution. Crooks (2010) shows that this generalized gamma
distribution (Amoroso distribution) nests the gamma, inverse gamma, Fréchet, Weibull and numerous other distributions as special cases
and yields the normal, log normal and Pareto distributions as limiting cases.

32As φ goes to zero, it depends on the limiting behavior of κ whether a log normal distribution or a Pareto distribution results (Crooks
2010, Table 1).

33Returning to the connection between our estimation and the dynamic EK model in Buera and Oberfield (2014)—also see footnotes 11
and 25—the specification in (16) is equivalent to their equation of motion for the stock of ideas (Buera and Oberfield 2014, equation (4))
under the assumptions that producers only learn from suppliers within their national borders and the learning rate αs (t) is constantly
growing across industries, countries, and over time but subject to idiosyncratic shocks. The parameter φ in (16) is equivalent to the value
β − 1 in their model, where β captures the transmissibility of ideas between producers. Our finding, discussed in Section 5, that φ is
small and negative implies that the value of β in the Buera and Oberfield model is large (but just below 1, as they require).
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diffusion nests the Ornstein-Uhlenbeck process (φ → 0 and η finite), leading to a log normal distribution in the

cross section. In the estimation, we will impose the constraint that η > 0.34

The deterministic drift involves both constant parameters (η, σ, φ) and a level-dependent component Âis(t)φ,

where φ is the elasticity of the mean reversion with respect to the current level of absolute advantage. We call φ

the elasticity of decay. The ordinary logistic diffusion has a unitary elasticity of decay (φ = 1). In our benchmark

case of the OU process (φ → 0), the relative change in absolute advantage is neutral with respect to the current

level. If φ > 0, then the level-dependent drift component Âis(t)φ leads to a faster than neutral mean reversion

from above than from below the mean, indicating that the loss of absolute advantage in a currently strong industry

tends to occur more rapidly than the buildup of absolute disadvantage in a currently weak industry. Conversely, if

φ < 0 then mean reversion tends to occur more slowly from above than below the long-run mean, indicating that

absolute advantage above average is sticky. Only in the level neutral case of φ→ 0 is the rate of mean reversion

from above and below the mean the same.

The parameters η and σ in (16) inherit their interpretations from the OU process in (11) as the rate of dis-

sipation and the intensity of innovations, respectively. The intensity of innovations σ again plays a dual role:

on the one hand magnifying volatility by scaling up the Wiener innovations and on the other hand regulating

how fast time elapses in the deterministic part of the diffusion. This dual role guarantees that the diffusion will

have a non-degenerate stationary distribution. Scaling the deterministic part of the diffusion by σ2/2 ensures

that dissipation occurs at the right speed to offset the unbounded random walk that the Wiener process would

otherwise induce for each country-industry. Under the generalized logistic diffusion, the dissipation rate η and

decay elasticity φ jointly determine the heavy tail of the cross-sectional distribution of comparative advantage,

with the intensity of innovations σ determining the speed of convergence to this distribution but having no effect

on its shape.

For subsequent derivations, it is convenient to restate the generalized logistic diffusion (16) more compactly

in terms of log changes as,

d ln Âis(t) = −ησ
2

2

Âis(t)
φ − 1

φ
dt+ σ dW Â

is (t),

which follows from (16) by Itō’s lemma.
34If η were negative, comparative advantage would collapse over time for φ < 0 or explode for φ ≥ 0. We do not constrain η to be

finite.
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4.2 The cross-sectional distributions of comparative and absolute advantage

If comparative advantage Âis(t) follows a generalized logistic diffusion by (16), then the stationary distribution of

comparative advantage is a generalized gamma distribution with density (15) and parameters θ̂ =
(
φ2/η

)1/φ
> 0

and κ = 1/θ̂φ > 0 by Lemma 1. From this stationary distribution of comparative advantage Âis, we can infer

the cross-sectional distribution of absolute advantage Ais(t). Note that, by definition (14), absolute advantage is

not necessarily stationary because the stochastic trend Zs(t) may not be stationary.

Absolute advantage is related to comparative advantage through a country-wide stochastic trend by defini-

tion (14). Plugging this definition into (15), we can infer that the probability density of absolute advantage must

be proportional to

fA(ais
∣∣θ̂, Zs(t), κ, φ) ∝

(
ais

θ̂Zs(t)

)φκ−1

exp

−
(

ais

θ̂Zs(t)

)φ .

It follows from this proportionality that the probability density of absolute advantage must be a generalized

gamma distribution with θs(t) = θ̂Zs(t) > 0, which is time varying because of the stochastic trend Zs(t). We

summarize these results in a lemma.

Lemma 2. If comparative advantage Âis(t) follows a generalized logistic diffusion

d ln Âis(t) = −ησ
2

2

Âis(t)
φ − 1

φ
dt+ σ dW Â

is (t) (17)

with real parameters η, σ, φ (η > 0), then the stationary distribution of comparative advantage Âis(t) is gener-

alized gamma with the CDF

FÂ(âis
∣∣θ̂, φ, κ) = G

[(
âis

θ̂

)φ
;κ

]
,

where G[x;κ] ≡ γx(κ;x)/Γ(κ) is the ratio of the lower incomplete gamma function and the gamma function,

and the cross-sectional distribution of absolute advantage Ais(t) is generalized gamma with the CDF

FA(ais
∣∣θs(t), φ, κ) = G

[(
ais
θs(t)

)φ
;κ

]

for the strictly positive parameters

θ̂ =
(
φ2/η

)1/φ
, θs(t) = θ̂Zs(t) and κ = 1/θ̂φ.

Proof. Derivations above establish that the cross-sectional distributions are generalized gamma. The cumulative

distribution functions follow from Kotz et al. (1994, Ch. 17, Section 8.7).
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Returning to the graphs in Figure 2, Lemma 2 clarifies that a country-wide stochastic trend Zs(t) shifts log

absolute advantage horizontally and that the shape related parameter κ is not country specific if comparative

advantage follows a diffusion with a common set of three deep parameters (θ̂, κ, φ) worldwide.

As a prelude to the GMM estimation, the r-th raw moments of the ratios ais/θs(t) and âis/θ̂ are

E
[(

ais
θs(t)

)r]
= E

[(
âis

θ̂

)r]
=

Γ(κ+ r/φ)

Γ(κ)

and identical because both [ais/θs(t)]
1/φ and [âis/θ̂]

1/φ have the same standard gamma distribution (Kotz et

al. 1994, Ch. 17, Section 8.7). As a consequence, the raw moments of absolute advantage Ais are scaled by

a country-specific time-varying factor Zs(t)r whereas the raw moments of comparative advantage are constant

over time if comparative advantage follows a diffusion with three constant deep parameters (θ̂, κ, φ):

E
[
(ais)

r
∣∣Zs(t)r] = Zs(t)

r · E [(âis)
r] = Zs(t)

r · θ̂rΓ(κ+ r/φ)

Γ(κ)
.

By Lemma 2, the median of comparative advantage is â.5 = θ̂(G−1[.5;κ])1/φ. A measure of concentration in the

right tail is the ratio of the mean and the median, which is independent of θ̂ and equals

Mean/median ratio =
Γ(κ+ 1/φ)/Γ(κ)

(G−1[.5;κ])1/φ
. (18)

We report this measure of concentration to characterize the curvature of the stationary distribution.

4.3 Implementation

The generalized logistic diffusion model (16) has no known closed-form transition density when φ 6= 0. We

therefore cannot evaluate the likelihood of the observed data and cannot perform maximum likelihood estimation.

However, an attractive feature of the generalized logistic diffusion is that it can be transformed into a diffusion

that belongs to the Pearson-Wong family, for which closed-form solutions of the conditional moments exist.35

We construct a consistent GMM estimator based on the conditional moments of a transformation of comparative

advantage, using results from Forman and Sørensen (2008).

Our model depends implicitly on the unobserved stochastic trend Zs(t). We use a closed form expression for

the mean of a log-gamma distribution to identify and concentrate out this trend. For a given country and year,

the cross-section of the data across industries has a generalized gamma distribution. The mean of the log of this

distribution can be calculated explicitly as a function of the model parameters, enabling us to identify the trend
35Pearson (1895) first studied the family of distributions now called Pearson distributions. Wong (1964) showed that the Pearson

distributions are stationary distributions of a specific class of stochastic processes, for which conditional moments exist in closed form.
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from the relation that Est[ln Âis(t)] = Est[lnAis(t)]− lnZs(t) by definition (14). We adopt the convention that

the expectations operator Est[·] denotes the conditional expectation for source country s at time t. This result is

summarized in the following proposition:

Proposition 1. If comparative advantage Âis(t) follows the generalized logistic diffusion (16) with real param-

eters η, σ, φ (η > 0), then the country specific stochastic trend Zs(t) is recovered from the first moment of the

logarithm of absolute advantage as:

Zs(t) = exp

{
Est[lnAis(t)]−

ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ

}
(19)

where Γ′(κ)/Γ(κ) is the digamma function.

Proof. See Appendix B.

This proposition implies that for any GMM estimator, and at any iterative estimation step, we can obtain

detrended data based on the sample analog of equation (19):

ÂGMM
is (t) = exp

lnAis(t)−
1

I

I∑
j=1

lnAjs(t) +
ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ

 (20)

Detrending absolute advantage to arrive at an estimate of comparative advantage completes the first step in

implementing an estimator of model (16).

Next, we perform a change of variable to recast our model as a Pearson-Wong diffusion, which allows us to

apply results in Kessler and Sørensen (1999) and construct closed-form expressions for the conditional moments

of comparative advantage. This approach, introduced by Forman and Sørensen (2008), enables us to estimate

the model using GMM on time series data.36 The following proposition presents an invertible transformation of

comparative advantage that makes estimation possible.

Proposition 2. If comparative advantage Âis(t) follows the generalized logistic diffusion (16) with real param-

eters η, σ, φ (η > 0), then the following two statements are true.

• The transformed variable

B̂is(t) = [Âis(t)
−φ − 1]/φ (21)

36More generally, our approach fits into the general framework of prediction-based estimating functions reviewed in Sørensen (2011)
and discussed in Bibby et al. (2010). These techniques have been previously applied in biostatistics (e.g., Forman and Sørensen 2013)
and finance (e.g., Lunde and Brix 2013).
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follows the diffusion

dB̂is(t) = −σ
2

2

[(
η − φ2

)
B̂is(t)− φ

]
dt+ σ

√
φ2B̂is(t)2 + 2φB̂is(t) + 1 dW B̂

is (t)

and belongs to the Pearson-Wong family.

• For any time t, time interval ∆ > 0, and integer n ≤ M < η/φ2, the n-th conditional moment of the

transformed process B̂is(t) satisfies the recursive condition:

E
[
B̂is(t+ ∆)n

∣∣∣B̂is(t) = b
]

= exp {−an∆}
n∑

m=0

πn,mb
m −

n−1∑
m=0

πn,mE
[
B̂is(t+ ∆)m

∣∣∣B̂is(t) = b
]
,

(22)

where the coefficients an and πn,m (n,m = 1, . . . ,M ) are defined in Appendix C.

Proof. See Appendix C.

Consider time series observations for B̂is(t) at times t1, . . . , tT .37 By (22) in Proposition 2, we can calculate

a closed form for the conditional moments of the transformed diffusion at time tτ conditional on the information

set at time tτ−1. We then compute the forecast error based on using these conditional moments to forecast the

m-th power of B̂is(tτ ) with time tτ−1 information. These forecast errors are uncorrelated with any function of

past B̂is(tτ−1). We can therefore construct a GMM criterion for estimation. Denote the forecast error with

Uis(m, tτ−1, tτ ) = B̂is(tτ )m − E
[
B̂is(tτ )m

∣∣∣B̂is(tτ−1)
]
.

This random variable represents an unpredictable innovation in the m-th power of B̂is(tτ ). As a result, the fore-

cast error Uis(m, tτ−1, tτ ) is uncorrelated with any measurable transformation of B̂is(tτ−1). A GMM criterion

function based on these forecast errors is

gisτ (η, σ, φ) ≡ [h1(B̂is(tτ−1))Uis(1, tτ−1, tτ ), . . . , hM (B̂is(tτ−1))Uis(M, tτ−1, tτ )]′,

where each hm is a row vector of measurable functions specifying instruments for the m-th moment condition.

This criterion function has mean zero due to the orthogonality between the forecast errors and the time tτ−1

instruments. Implementing GMM requires a choice of instruments. Computational considerations lead us to

choose polynomial vector instruments of the form hm(B̂is(t)) = (1, B̂is(t), . . . , B̂is(t)
K−1)′ to construct K

37Taking advantage of our continuous time more, our estimation does not require evenly spaced observations. For estimation based a
given horizon of h (say 5 years), we include in our sample every possible pair of observations such that no observation is used in more
than two pairs, the gap between observations is at least h years, and each time series gap is made as small as possible.
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instruments for each of the M moments that we include in our GMM criterion.38 In estimation, we use K = 2

instruments and M = 2 conditional moments, providing us with K ·M = 4 equations and overidentifying the

three parameters (η, σ, φ).

Let Tis denote the number of time series observations available in industry i and country s. Given sample

size of N =
∑

i

∑
s Tis, our GMM estimator solves the minimization problem

(η∗, σ∗, φ∗) = arg min
(η,σ,φ)

(
1

N

∑
i

∑
s

∑
τ

gisτ (η, σ, φ)

)′
W

(
1

N

∑
i

∑
s

∑
τ

gisτ (η, σ, φ)

)
(23)

for a given weighting matrix W. Being overidentified, we adopt a two-step estimator. On the first step we

compute an identity weighting matrix, which provides us with a consistent initial estimate. On the second step

we update the weighting matrix to an estimate of the optimal weighting matrix by setting the inverse weighting

matrix to W−1 = (1/N)
∑

i

∑
s

∑
τ gisτ (η, σ, φ)gisτ (η, σ, φ)′, which is calculated at the parameter value from

the first step. Forman and Sørensen (2008) establish asymptotics for a single time series as T → ∞.39 For

estimation, we impose the constraints that η > 0 and σ2 > 0 by reparametrizing the model in terms of ln η > −∞

and 2 lnσ > −∞. We evaluate the objective function (23) at values of (η, σ, φ) by detrending the data at

each iteration to obtain ÂGMM
is (t) from equation (20), transforming these variables into their mirror variables

B̂GMM
is (t) = [ÂGMM

is (t)−φ − 1]/φ, and using equation (22) to compute forecast errors. Then we calculate the

GMM criterion function for each industry and country pair by multiplying these forecast errors by instruments

constructed from B̂GMM
is (t), and finally sum over industries and countries to arrive at the value of the GMM

objective.

Standard errors of our estimates need to account for the preceding estimation of our absolute advantage

lnAis(t) measures. Newey and McFadden (1994) present a two-step estimation method for GMM, which ac-

counts for the presence of generated (second-stage) variables that are predicted (from a first stage). In contrast

to that generated-regressor correction, our absolute advantage lnAis(t) measures are not predicted variables but

parameter estimates from a gravity equation: lnAis(t) is a normalized version of the estimated exporter-sector-

year fixed effect in equation (6). The Newey-McFadden results require a constant first stage parameter, but the

number of parameters we estimate in our first stage increases with our first stage sample size. Moreover, the mo-

ments in GMM time series estimation here (just as the variables in OLS decay estimation in Section 3.2 above)
38We work with a suboptimal estimator because the optimal-instrument GMM estimator considered by Forman and Sørensen (2008)

requires the inversion of a matrix for each observation. Given our large sample, this task is numerically expensive. Moreover, our
ultimate GMM objective is ill-conditioned and optimization to find our estimates of φ, η, and σ2 requires the use of a global numerical
optimization algorithm. For these computational concerns we sacrifice efficiency and use suboptimal instruments.

39Our estimator would also fit into the standard GMM framework of Hansen (1982), which establishes consistency and asymptotic
normality of our second stage estimator as IS → ∞. To account for the two-step nature of our estimator, we use an asymptotic
approximation where each dimension of our panel data gets large simultaneously (see Appendix D).
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involve pairs of parameter estimates from different points in time—lnAis(t) and lnAis(t+∆)—and thus require

additional treatments of induced covariation in the estimation. In Appendix D, we extend Newey and McFadden

(1994) to our specific finite-sample context, which leads to an alternative two-step estimation method that we

employ for the computation of standard errors. We use the multivariate delta method to calculate standard errors

for transformed functions of the estimated parameters.

5 Estimates

Following the GMM procedure described in Section 4.3, we proceed to estimate the dissipation rate η, innovation

intensity σ, and decay elasticity φ in the diffusion of comparative advantage, subject to an estimated country-

specific stochastic trendZs(t). The trend allows absolute advantage to be non-stationary but because it is common

to all industries in a country has no bearing on comparative advantage. Thus, we aim to describe the global

evolution of comparative advantage using just three parameters, which must apply to all industries in all countries

and in all time periods. This approach contrasts sharply with our descriptive exercise in Figure 2, where we fit

the cumulative distribution to the log normal and Pareto distributions separately for each country and each year.

Specifying the GLD allows us further to test the strong distributional assumptions implicit in the OLS estimation

of the discretized OU process in Table 1.

5.1 GMM results for the Generalized Logistic Diffusion

Table 2 presents our baseline GMM estimation results using moments on five-year or single-year intervals. The

parameter η measures the rate at which shocks dissipate in continuous time so that log comparative advantage

reverts towards the global mean. In combination with the decay elasticity φ, the dissipation rate η controls both

the magnitude of the long-run mean and the curvature of the cross-sectional distribution. Across specifications in

Table 2, η takes a value of about one-quarter for gravity estimates of export capability (odd-numbered columns)

and about one-fifth for the Balassa RCA index (even-numbered columns). To gain intuition about η, suppose the

intensity of innovations of the Wiener process is unity (σ = 1) and comparative advantage is sticky neither above

nor below the mean (φ = 0). Then a value of η equal to 0.25 means that it will take 5.5 years for half of the initial

shock to log comparative advantage to dissipate and 18.4 years for 90 percent of the initial shock to dissipate.40

Alternatively, if η equals 0.20 it will take 6.9 years for half of the initial shock to decay.

The sign of φ captures asymmetry in mean reversion for comparative advantage. The estimate of φ is negative
40In the absence of shocks and for σ = 1 and φ = 0, log comparative advantage follows the deterministic differential equation

d ln Âis(t) = −(η/2) ln Âis(t) dt by (16) and Itō’s lemma, with the solution ln Âis(t) = ln Âis(0) exp{−(eta/2)t}. Therefore, the
number of years for a dissipation of ln Âis(0) to a remaining level ln Âis(T ) is T = 2 log[ln Âis(0)/ ln Âis(T )]/η.
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and statistically significantly different from zero in all specifications for gravity-based comparative advantage,

but for the Balassa RCA index φ is imprecisely estimated at the five-year time interval. Thus, for gravity-based

comparative advantage we reject log normality in favor of the generalized gamma distribution. Negativity in

φ implies that comparative advantage reverts to the long-run mean more slowly from above than from below.

Industries that randomly churn into the upper tail of the cross section will tend to retain their comparative advan-

tage for longer than those below the mean, affording high-advantage industries with opportunities to reach higher

levels of comparative advantage as additional innovations arrive. However, the value of φ is not far from zero,

suggesting that in practice deviations of comparative advantage from log normality may be modest. We explore

this possibility in more detail in Section 5.4.

The parameter σ measures both the volatility of the Wiener innovations to comparative advantage and the

speed of convergence on the deterministic dissipation. This dual role binds the parameter estimate of σ to a level

such that a non-degenerate stationary distribution of comparative advantage exists. The intensity of innovations

therefore does not play a role in determining the cross-sectional distribution. That job is performed by κ and

θ̂, which depend exclusively on η and φ, so that we are describing the shape and scale of the cross-sectional

distribution with just two parameters. Similar to the earlier decay regressions in Section 3.2, our estimates

for η and σ are stable across subsamples. In the LDC subsample (column 3) η is slightly higher, while in

the manufacturing subsample (column 5) it is slightly reduced. The estimate of φ is also robust. In the LDC

subsample, the negative value of φ gains in absolute magnitude (reflecting increased stickiness of comparative

advantage from above) but this estimate is not significantly different from the point estimate for the full sample. In

the nonmanufacturing subsample, φ is again not statistically significantly different from the full-sample estimate.

The parameter estimates for η and φ together imply that the distributions of absolute and comparative advan-

tage have considerable mass in the upper tail. The mean exceeds the median by a factor of more than eight for

gravity-based comparative advantage, both among developing and industrialized countries. This concentration

of gravity-based comparative advantage is slightly more pronounced in nonmanufacturing industries (column 5).

When we use the Balassa RCA index, the mean/median ratio increases to 10 (column 2) in the full sample and ex-

ceeds 17 in the nonmanufacturing sample (column 6). One interpretation of the greater concentration in revealed

comparative advantage relative to our gravity-based measure is that geography reinforces comparative advantage

by making countries appear overspecialized in the goods in which their underlying capability is strong.

To fully describe the time-series dynamics, we go to the shortest time horizon our data allow and estimate the

GLD at one-year intervals. Similar to attenuation bias driving estimates of persistence to zero in auto-regression

models, one might expect measurement error in the GLD to deliver larger values of σ at shorter horizons. In

the limit when σ becomes arbitrarily large, the GLD would exhibit no persistence, converging to an iid process.
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Columns 7 and 8 of Table 2 report GMM estimates of the GLD using moments at the one-year horizon. The

estimates for φ and η are statistically no different from the estimates at five-year intervals but, consistent with the

interpretation that measurement error biases estimation towards faster mean reversion, the estimate of σ nearly

doubles for the gravity-based measure of comparative advantage and increases by a factor of 1.5 for RCA.

To compare estimates to the previous OLS decay regression, and to further assess the sensitivity of σ to the

choice of interval length, we next fit the GLD to moments based on ten-year intervals. Table A7 in the Appendix

shows the results. We obtain estimates comparable to those at the five-year horizon, with the dissipation rate η

still around one-quarter for gravity-based comparative advantage and with a somewhat lower value of σ. There

is a less pronounced drop in σ as we go from five- to ten-year intervals, compared to the more marked drop when

moving from the one- to the five-year horizon, which suggests that measurement error in the GLD is less of a

concern when expanding the time horizon beyond five years.

By relating GLD parameter estimates back to those from the decay regressions in Section 3.2, we can assess

the importance of relaxing the assumption of log normality for comparative advantage. Because the GLD nests

the Ornstein-Uhlenbeck process as a limiting case with φ→ 0 (and finite η), the dissipation rate η and the inten-

sity of innovations σ carry over one-for-one between the two models. We can therefore compare GLD parameter

estimates of η and σ at the decade horizon in Table A7 to the ten-year decay estimates from specification (11)

reported in Table 1. GLD and OLS estimates of η are very similar (0.27 versus 0.28 for gravity-based compara-

tive advantage and 0.23 versus 0.22 for the RCA index), as are estimates for the innovation intensity σ. Although

we reject the OU process in favor the GLD in five of the eight samples, the similarity of the estimates in the two

models suggest that imposing log normality introduces little in the way of specification bias.

As an additional robustness check, we repeat the GMM procedure using MPML-based estimates of gravity

fixed effects that account for zero trade flows. Appendix Table A4 reports GMM estimates of the GLD at the

five-year and one-year horizons for MPML-based export capability. A comparison to our benchmark estimates

in Table 2 shows little change in coefficient estimates for η, σ, or φ. Finally, we re-estimate the GLD on data

for the post-1984 period with SITC revision 2 industries at the two-, three- and four-digit levels. We report the

results in Appendix Table A6. The findings are largely in line with those in Table 2. Estimates of the dissipation

rate η are slightly larger for the post-1984 period than for the full sample period but become smaller as we move

from broader to narrower industry classifications. Estimates of the decay elasticity φ are negative but only at the

two-digit level is φ statistically significantly different from zero.
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5.2 Model fit I: Matching the empirical cross-section distribution

We have given the GMM estimator a heavy task: to fit the export dynamics across 90 countries for 46 years

using only three time invariant parameters (η, σ, φ), conditional on stochastic country-wide growth trends. The

moments we use in GMM estimation are based on five-year intervals (in our benchmark specification) that re-

flect the time-series behavior of country-industry exports. In other words, our estimator targets the diffusion

of comparative advantage but not its stationary cross-sectional distribution. We can therefore use the stationary

generalized gamma distribution implied by the GLD process to assess how well our model captures the heavy

tails of export advantage observed in the repeated cross-section data. For this comparison, we use the benchmark

estimates from Table 2 at five-year intervals in column 1.

For each country in each year, we project the cross-sectional distribution of comparative advantage implied

by the parameters estimated from the diffusion and compare it to the empirical distribution. To implement this

validation exercise, we need a measure of Âist in (14), the value of which depends on the unobserved country-

specific stochastic trend Zst. This trend accounts for the observed horizontal shifts in distribution of log absolute

advantage over time, which may result from country-wide technological progress, factor accumulation, or other

sources of aggregate growth. In the estimation, we concentrate out Zst by (19), which allows us to estimate its

realization for each country in each year. Combining observed absolute advantage Aist with the stochastic-trend

estimate allows us to compute realized values of comparative advantage Âist.

To gauge the goodness of fit of our specification, we first plot our empirical measure of absolute advantage

Aist. To do so, following the earlier exercise in Figure 2, we rank order the data and plot for each country-

industry observation the level of absolute advantage (in log units) against the log number of industries with

absolute advantage greater than this value, which is equal to the log of one minus the empirical CDF. To obtain

the simulated distribution resulting from the parameter estimates, we plot the global diffusion’s implied stationary

distribution for the same series. The diffusion implied values are constructed, for each level ofAist, by evaluating

the log of one minus the predicted generalized gamma CDF at Âist = Aist/Zst. The implied distribution thus

uses the global diffusion parameter estimates (to project the scale and shape of the CDF) as well as the identified

country-specific trend Zst (to project the position of the CDF).

Figure 4 compares plots of the actual data against the GLD-implied distributions for four countries in three

years, 1967, 1987, 2007. Figures A4, A5 and A6 in the Appendix present plots in these years for the 28 coun-

tries that are also shown in Figures A1, A2 and A3.41 While Figures A1 through A3 depict Pareto and log

normal maximum likelihood estimates of each individual country’s cross-sectional distribution by year (number
41Because the country-specific trend Zst shifts the implied stationary distribution horizontally, to clarify fit we cut the depicted part of

that single distribution at the lower and upper bounds of the specific country’s observed support in a given year.
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Figure 4: Diffusion Predicted and Observed Cumulative Probability Distributions of Absolute Advantage
for Select Countries in 1967, 1987 and 2007
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPII.org; gravity-based measures of absolute advantage (7).
Note: The graphs show the observed and predicted frequency of industries (the cumulative probability 1− FA(a) times the total number
of industries I = 133) on the vertical axis plotted against the level of absolute advantage a (such that Aist ≥ a) on the horizontal axis.
Both axes have a log scale. The predicted frequencies are based on the GMM estimates of the comparative advantage diffusion (17)
in Table 2 (parameters η and phi in column 1) and the inferred country-specific stochastic trend component lnZst from (19), which
horizontally shifts the distributions but does not affect their shape.
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of parameters estimated = number of countries × number of years), our exercise now is vastly more parsimo-

nious and based on a fit of the time-series evolution, not the observed cross sections. Figure 4 and Figures A4

through A6 show that the empirical distributions and the GLD-implied distributions have the same concave shape

and horizontally shifting position. Considering that the shape of the distribution effectively depends on only two

parameters for all country-industries and years, the GLD-predicted distributions are remarkably accurate. There

are important differences between the actual and predicted plots in only a few countries and a few years, includ-

ing China in 1987, Russia in 1987 and 2007, Taiwan in 1987, and Vietnam in 1987 and 2007. Three of these four

cases involve countries undergoing a transition away from central planning during the designated time period,

suggesting periods of economic disruption.

There are other, minor discrepancies between the empirical distributions and the GLD-implied distributions

that merit further attention. In 2007 in a handful of countries in East and Southeast Asia—China, Japan, Rep.

Korea, Malaysia, Taiwan, and Vietnam—the empirical distributions exhibit less concavity than the generalized

gamma distributions (or the log normal for that matter). These countries show more mass in the upper tail of

comparative advantage than they ought, implying that they excel in too many sectors, relative to the norm. It

remains to investigate whether these differences in fit are associated with conditions in the countries themselves

or with the particular industries in which these countries tend to specialize.

5.3 Model fit II: Matching dynamic transition probabilities

We next evaluate the dynamic performance of the model by assessing how well the GLD replicates the churning

of export industries observed in the data. Using estimates based on the five-year horizon from column 1 in

Table 2, we simulate trajectories of the GLD. In the simulations, we predict the model’s transition probabilities

over the one-year horizon across percentiles of the cross-section distribution. We deliberately use a shorter time

horizon for the simulation than for estimation to assess moments that we did not target in the GMM routine. We

then compare the model-based predictions to the empirical transition probabilities at the one-year horizon.

Figure 5 shows empirical and model-predicted conditional cumulative distribution functions for annual tran-

sitions of comparative advantage. We pick select percentiles in the start year: the 10th and 25th percentile, the

median, the 75th, 90th and 95th percentile. The left-most upper panel in Figure 5, for example, considers in-

dustries that were at the tenth percentile of the cross-section distribution of comparative advantage in the start

year; panel Figure 5c shows industries that were at the median of the distribution in the start year. Each curve

in a panel then plots the conditional CDF for the transitions from the given percentile in the start year to any

percentile of the cross section one year later. By design, data that are re-sampled under an iid distribution would

show up at a 45-degree line, while complete persistence of comparative advantage would make the CDF a step
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Figure 5: Diffusion Predicted Annual Transitions
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPII.org; gravity measures of absolute advantage (7).
Note: Predicted cumulative distribution function of comparative advantage Âis,t+1 after one year, given the percentile (10th, 25th, me-
dian, 75th, 90th, 95th) of current comparative advantage Âis,t. Predictions based on simulations using estimates from Table 2 (column 1).
Observed cumulative distribution function from mean annual transitions during the periods 1964-1967, 1984-1987, and 2004-2007.

function.

To characterize the data, we use three windows of annual transitions: the mean annual transitions during the

years 1964-67 around the beginning of our sample period, the mean annual transitions during the years 1984-87

around the middle of our sample, and the mean annual transitions during the years 2004-07 towards the end of

the sample. These transitions are shown in grey. Our GLD estimation constrains parameters to be constant over

time, so the model predicted transition probabilities give rise to a time-invariant CDF shown in blue.

The five-year GLD performs well in capturing the annual dynamics of comparative advantage for most in-

dustries. As Figure 5 shows, the model-predicted conditional CDF’s tightly fit their empirical counterparts for

industries at the median and higher percentiles in the start year. It is only in the lower tail, in particular around

the 10th percentile, that the fit of the GLD model becomes less close, though the model predictions are more

comparable to the data in later than in earlier periods. Country-industries in the bottom tail have low trade vol-

umes, especially in the early sample period, meaning that estimates of the empirical transition probabilities in the

lower tail are not necessarily precisely estimated and may fluctuate more over time. Figure 5 indicates that the

dynamic fit becomes relatively close for percentiles at around the 25th percentile. The discrepancies in the lowest
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tail notwithstanding, for industries with moderate to high trade values, which account for the bulk of global trade,

the model succeeds in matching empirical transition probabilities.

5.4 Model fit III: The GLD versus the OU process

The GLD model also affords us with a framework to rigorously assess how well a simple Ornstein-Uhlenbeck

process approximates trade dynamics. As a final exercise we estimate the GLD under the constraint φ = 0, which

yields the Ornstein-Uhlenbeck process and a stationary log normal distribution in the cross section.

Table 3 presents GMM estimates for the GLD under the constraint that φ = 0, paired with the benchmark

GMM estimates from Table 2 that use gravity-based measures of absolute advantage. We can now formally

compare the OU coefficient estimates from the OLS decay regression in Section 3.2 (Table 1) to those from

the GMM estimation (we informally attempted such a comparison in Section 5.1 before). As suggested by the

earlier results, the constrained coefficient estimates of η and σ are close to the unconstrained benchmark estimates

across subsamples and for different time horizons. This parameter stability implies that the special case of the

OU process captures the broad persistence and overall variability of comparative advantage. Still, the extension

to a GLD does help explain the degree of export concentration documented in Section 3.1. The estimated mean-

median ratio increases from 6.2 − 7.0 under the constrained estimation of the OU process to 8.1 − 8.3 under

the unconstrained case. As noted above, the negative and significant decay elasticity φ implies that the data

reject the constrained model in favor of the unconstrained model (as least for gravity-based measures of absolute

advantage).

In a statistical horse race between the unconstrained GLD and the OU process, the former clearly wins be-

cause we soundly reject that φ = 0 in Table 3. Yet, estimating the unconstrained GLD is substantially more

burdensome than estimating the simple OU process, which has a convenient linear form when discretized. More-

over, for finer industry aggregates at the three- and four-digit level, the unconstrained GLD no longer clearly wins

as it becomes statistically impossible to reject the null hypothesis that φ = 0 (see Appendix Table A6).

For both empirical and theoretical modelling, it is important to understand how much is lost by imposing

the constraint that comparative advantage has a stationary log normal distribution. To address this economic

question, we compare the implied dynamics of the unconstrained GLD and the OU process. Following Figure 5,

we simulate trajectories of the GLD, once from unconstrained estimates and once from constrained estimates,

using coefficients from columns 1 and 2 in Table 3. The simulations predict the theoretical transition probabilities

over the one-year horizon across percentiles of the cross-section distribution.

Figure 6 shows the empirical cumulative distribution functions for annual transitions of comparative advan-

tage over the full sample period 1962-2007 (in grey) and compares the empirical distribution to the two model-
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Figure 6: Diffusion Predicted Annual Transitions, Constrained and Unconstrained φ
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Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007; gravity
measures of absolute advantage (7).
Note: Predicted cumulative distribution function of comparative advantage Âis,t+1 after one year, given the percentile (10th, 25th, me-
dian, 75th, 90th, 95th) of current comparative advantage Âis,t. Predictions based on simulations using estimates from Table 2 (column 1)
and Table 3 (column 2, φ = 0). Observed cumulative distribution function from mean annual transitions during the period 2006-2009.

predicted cumulative distribution functions (light and dark blue), where the fit of the unconstrained GLD model

(dark blue) is the same as depicted in Figure 5 above. Each panel in Figure 6 considers industries that were at a

given percentile of the cross-section distribution of comparative advantage in the start year: the left-most upper

panel in Figure 6, for instance, considers industries that were at the tenth percentile in the start year; the right-

most lower panel shows industries that were at the 95th percentile in the start year. Each curve in a panel shows

the conditional CDF for the transitions from the given percentile in the start year to any percentile of the cross

section one year later. For all start-year percentiles, the model-predicted transitions hardly differ between the

constrained specification (light blue) and the unconstrained specification (dark blue). When alternating between

the two models, the shapes of the model-predicted conditional CDF’s are very similar, even in the upper tail. In

the lower tail, where the GLD produces the least tight dynamic fit, the constrained OU specification performs no

worse than the unconstrained GLD. We conclude that while the GLD extension is important for capturing hyper-

specialization in the upper tail of the cross-section distribution precisely, the simple OU process approximates

the empirical dynamics in a manner that is similar to the GLD extension.
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6 Conclusion

The traditional Ricardian trade model has long presented a conundrum to economists. Although it offers a simple

and intuitive characterization of comparative advantage, it yields knife-edge predictions for country specialization

patterns that fit the data poorly. Eaton and Kortum (2002) have reinvigorated the Ricardian framework. By

treating the capability of firms from a country in a sector as probabilistic rather than deterministic, they derive

realistically complex country specialization patterns and provide a robust framework for quantitative analysis.

The primitives in the EK model are the parameters of the distribution for industry productivity, which pin down

country export capabilities. Comparative advantage arises from these capabilities varying across countries. Our

goal in this paper is to characterize the dynamic empirical properties of export capability in order to inform

modelling of the deep origins of comparative advantage.

The starting point for our analysis is two strong empirical regularities in trade that economists have studied

incompletely and in isolation. Many papers have noted the tendency for countries to concentrate their exports in

a relatively small number of sectors. Our first contribution is to show that this concentration arises from a heavy-

tailed distribution of industry export capability that is approximately log normal and whose shape is stable across

countries, sectors, and time. Likewise, the trade literature has detected in various forms a tendency for mean

reversion in national industry productivities. Our second contribution is to establish that mean reversion in export

capability, rather than indicative of convergence in productivities and degeneracy in comparative advantage,

is instead consistent with a disciplined stochastic growth process, whose properties are also common across

borders and sectors. In literature on the growth of cities and the growth of firms, economists have used stochastic

processes to study the determinants of the long-run distribution of sizes. Our third contribution is to develop an

analogous empirical framework for identifying the parameters that govern the stationary distribution of export

capability. The main result of this analysis is that, while a generalized gamma distribution provides the best

fit, log normality offers a reasonable approximation. The stochastic process that generates log normality can be

estimated in its discretized form by simple linear regression.

In the stochastic processes that we estimate, country export capabilities evolve independently across indus-

tries, subject to controls for aggregate country growth, and independently across countries, subject to controls

for global industry growth. This approach runs counter to recent theoretical research in trade, which examines

the manner in which innovations to productivity are transmitted across space and time. Yet, our analysis can be

extended straightforwardly to allow for such interactions. Our Ornstein-Uhlenbeck process generalizes to a mul-

tivariate diffusion, in which stochastic innovations to an industry in one country also affect related industries in

the same economy or in a nation’s trading partners. Because of the linearity of the OU process when discretized,

it is feasible to estimate such interactions while still identifying the parameters that characterize the stationary
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distribution of comparative advantage. An obvious next step in the analysis is to model diffusions that allow for

intersectoral and international productivity linkages.
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Appendix

A Generalized Logistic Diffusion: Proof of Lemma 1

The ordinary gamma distribution arises as the stationary distribution of the stochastic logistic equation (Leigh
1968). We generalize this ordinary logistic diffusion to yield a generalized gamma distribution as the stationary
distribution in the cross section. Note that the generalized (three-parameter) gamma distribution relates to the or-
dinary (two-parameter) gamma distribution through a power transformation. Take an ordinary gamma distributed
random variable X with two parameters θ̄, κ > 0 and the density function

fX(x
∣∣θ̄, κ) =

1

Γ(κ)

1

θ̄

(x
θ̄

)κ−1
exp

{
−x
θ̄

}
for x > 0. (A.1)

Then the transformed variable A = X1/φ has a generalized gamma distribution under the accompanying param-
eter transformation θ̂ = θ̄1/φ because

fA(a|θ̂, κ, φ) = ∂
∂a Pr(A ≤ a) = ∂

∂a Pr(X1/φ ≤ a)

= ∂
∂a Pr(X ≤ aφ) = fX(aφ

∣∣θ̂φ, κ) · |φaφ−1|

=
aφ−1

Γ(κ)

∣∣∣∣ φθ̂φ
∣∣∣∣ (aφθ̂φ

)κ−1

exp

{
−a

φ

θ̂φ

}
=

1

Γ(κ)

∣∣∣∣φθ̂
∣∣∣∣ (aθ̂

)φκ−1

exp

{
−
(
a

θ̂

)φ}
,

which is equivalent to the generalized gamma probability density function (15), where Γ(·) denotes the gamma
function and θ̂, κ, φ are the three parameters of the generalized gamma distribution in our context (a > 0 can be
arbitrarily close to zero).

The ordinary logistic diffusion of a variable X follows the stochastic process

dX(t) =
[
ᾱ− β̄ X(t)

]
X(t) dt+ σ̄ X(t) dW (t) for X(t) > 0, (A.2)

where ᾱ, β̄, σ̄ > 0 are parameters, t denotes time, W (t) is the Wiener process (standard Brownian motion)
and a reflection ensures that X(t) > 0. The stationary distribution of this process (the limiting distribution of
X = X(∞) = limt→∞X(t)) is known to be an ordinary gamma distribution (Leigh 1968):

fX(x
∣∣θ̄, κ) =

1

Γ(κ)

∣∣∣∣1θ̄
∣∣∣∣ (xθ̄)κ−1

exp
{
−x
θ̄

}
for x > 0, (A.3)

as in (A.1) with

θ̄ = σ̄2/(2β̄) > 0, (A.4)

κ = 2ᾱ/σ̄2 − 1 > 0

under the restriction ᾱ > σ̄2/2. The ordinary logistic diffusion can also be expressed in terms of infinitesimal
parameters as

dX(t) = µX(X(t)) dt+ σX(X(t)) dW (t) for X(t) > 0,

µX(X) = (ᾱ− β̄ X)X and σ2
X(X) = σ̄2X2.

Now consider the diffusion of the transformed variable A(t) = X(t)1/φ. In general, a strictly monotone

50



transformation A = g(X) of a diffusion X is a diffusion with infinitesimal parameters

µA(A) =
1

2
σ2
X(X)g′′(X) + µX(X)g′(X) and σ2

A(A) = σ2
X(X)g′(X)2

(see Karlin and Taylor 1981, Section 15.2, Theorem 2.1). Applying this general result to the specific monotone
transformation A = X1/φ yields the generalized logistic diffusion:

dA(t) =
[
α− βA(t)φ

]
A(t) dt+ σA(t) dW (t) for A(t) > 0. (A.5)

with the parameters

α ≡
[

1− φ
2

σ̄2

φ2
+
ᾱ

φ

]
, β ≡ β̄

φ
, σ ≡ σ̄

φ
. (A.6)

The term −βA(t)φ now involves a power function and the parameters of the generalized logistic diffusion col-
lapse to the parameters of the ordinary logistic diffusion for φ = 1.

We infer that the stationary distribution ofA(∞) = limt→∞A(t) is a generalized gamma distribution by (15)
and by the derivations above:

fA(a|θ̂, κ, φ) =
1

Γ(κ)

∣∣∣∣φθ̂
∣∣∣∣ (aθ̂

)φκ−1

exp

{
−
(
a

θ̂

)φ}
for x > 0,

with

θ̂ = θ̄1/φ = [σ̄2/(2β̄)]1/φ = [φσ2/(2β)]1/φ > 0,

κ = 2ᾱ/σ̄2 − 1 = [2α/σ2 − 1]/φ > 0 (A.7)

by (A.4) and (A.6).
Existence of a non-degenerate stationary distribution with θ̂, κ > 0 circumscribes how the parameters of

the diffusion α, β, σ and φ must relate to each other. A strictly positive θ̂ implies that sign(β) = sign(φ).
Second, a strictly positive κ implies that sign(α− σ2/2) = sign(φ). The latter condition is closely related to the
requirement that absolute advantage neither collapse nor explode. If the level elasticity of dissipation φ is strictly
positive (φ > 0) then, for the stationary probability density fÂ(·) to be non-degenerate, the offsetting constant
drift parameter α needs to strictly exceed the variance of the stochastic innovations: α ∈ (σ2/2,∞). Otherwise
absolute advantage would “collapse” as arbitrarily much time passes, implying industries die out. If φ < 0 then
the offsetting positive drift parameter α needs to be strictly less than the variance of the stochastic innovations:
α ∈ (−∞, σ2/2); otherwise absolute advantage would explode.

Our preferred parametrization (16) of the generalized logistic diffusion in Lemma 1 is

dÂis(t)

Âis(t)
=
σ2

2

[
1− η Âis(t)

φ − 1

φ

]
dt+ σ dW Â

is (t)

for real parameters η, σ, φ. That parametrization can be related back to the parameters in (A.5) by setting α =
(σ2/2) + β and β = ησ2/(2φ). In this simplified formulation, the no-collapse and no-explosion conditions
are satisfied for the single restriction that η > 0. The reformulation in (16) also clarifies that one can view our
generalization of the drift term [Âis(t)

φ− 1]/φ as a conventional Box-Cox transformation of Âis(t) to model the
level dependence.

The non-degenerate stationary distribution accommodates both the log normal and the Pareto distribution as
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limiting cases. When φ → 0, both α and β tend to infinity; if β did not tend to infinity, a drifting random walk
would result in the limit. A stationary log normal distribution requires that α/β → 1, so α → ∞ at the same
rate with β → ∞ as φ → 0. For existence of a non-degenerate stationary distribution, in the benchmark case
with φ → 0 we need 1/α → 0 for the limiting distribution to be log normal. In contrast, a stationary Pareto
distribution with shape parameter p would require that α = (2−p)σ2/2 as φ→ 0 (see e.g. Crooks 2010, Table 1;
proofs are also available from the authors upon request).

B Trend Identification: Proof of Proposition 1

First, consider a random variable X which has a gamma distribution with scale parameter θ and shape parameter
κ. For any power n ∈ N we have

E [ln(Xn)] =

ˆ ∞
0

ln(xn)
1

Γ(κ)

1

θ

(x
θ

)κ−1
exp

{
−x
θ

}
dx

=
n

Γ(κ)

ˆ ∞
0

ln(θz)zκ−1e−zdz

= n ln θ +
n

Γ(κ)

ˆ ∞
0

ln(z)zκ−1e−zdz

= n ln θ +
n

Γ(κ)

∂

∂κ

ˆ ∞
0

zκ−1e−zdz

= n ln θ + n
Γ′(κ)

Γ(κ)
,

where Γ′(κ)/Γ(κ) is the digamma function.
From Appendix A (Lemma 1) we know that raising a gamma random variable to the power 1/φ creates a

generalized gamma random variable X1/φ with shape parameters κ and φ and scale parameter θ1/φ. Therefore

E
[
ln(X1/φ)

]
=

1

φ
E [lnX] =

ln(θ) + Γ′(κ)/Γ(κ)

φ

This result allows us to identify the country specific stochastic trend Xs(t).
For Âis(t) has a generalized gamma distribution across i for any given s and t with shape parameters φ and

η/φ2 and scale parameter (φ2/η)1/φ we have

Est
[
ln Âis(t)

]
=

ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ
.

From definition (14) and Âis(t) = Ais(t)/Zs(t) we can infer that Est[ln Âis(t)] = Est[lnAis(t)] − lnZs(t).
Re-arranging and using the previous result for E[ln Âis(t) | s, t] yields

Zs(t) = exp

{
Est[lnAis(t)]−

ln(φ2/η) + Γ′(η/φ2)/Γ(η/φ2)

φ

}
as stated in the text.
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C Pearson-Wong Process: Proof of Proposition 2

For a random variable X with a standard logistic diffusion (the φ = 1 case), the Bernoulli transformation 1/X
maps the diffusion into the Pearson-Wong family (see e.g. Prajneshu 1980, Dennis 1989). We follow up on that
transformation with an additional Box-Cox transformation and apply B̂is(t) = [Âis(t)

−φ − 1]/φ to comparative
advantage, as stated in (21). Define W B̂

is (t) ≡ −W Â
is (t). Then Â−φis = φB̂is(t) + 1 and, by Itō’s lemma,

dB̂is(t) = d

(
Âis(t)

−φ − 1

φ

)
= −Âis(t)−φ−1 dÂis(t) +

1

2
(φ+ 1)Âis(t)

−φ−2(dÂis(t))2

= −Âis(t)−φ−1

[
σ2

2

(
1− η Âis(t)

φ − 1

φ

)
Âis(t) dt+ σÂis(t) dW Â

is (t)

]
+

1

2
(φ+ 1)Âis(t)

−φ−2σ2Âis(t)
2 dt

= −σ
2

2

[(
1 +

η

φ

)
Âis(t)

−φ − η

φ

]
dt− σÂis(t)−φ dW Â

is (t) +
σ2

2
(φ+ 1)Âis(t)

−φ dt

= −σ
2

2

[(
η

φ
− φ

)
Âis(t)

−φ − η

φ

]
dt− σÂis(t)−φ dW Â

is (t)

= −σ
2

2

[(
η

φ
− φ

)
(φB̂is(t) + 1)− η

φ

]
dt+ σ(φB̂is(t) + 1) dW B̂

is (t)

= −σ
2

2

[(
η − φ2

)
B̂is(t)− φ

]
dt+ σ

√
φ2B̂is(t)2 + 2φB̂is(t) + 1 dW B̂

is (t).

The mirror diffusion B̂is(t) is therefore a Pearson-Wong diffusion of the form:

dB̂is(t) = −q(B̂is(t)− B̄) dt+

√
2q(aB̂is(t)2 + bB̂is(t) + c) dW B̂

is (t),

where q = (η − φ2)σ2/2, B̄ = σ2φ/(2q), a = φ2σ2/(2q), b = φσ2/q, and c = σ2/(2q).
To construct a GMM estimator based on this Pearson-Wong representation, we apply results in Forman and

Sørensen (2008) to construct closed form expressions for the conditional moments of the transformed data and
then use these moment conditions for estimation. This technique relies on the convenient structure of the Pearson-
Wong class and a general result in Kessler and Sørensen (1999) on calculating conditional moments of diffusion
processes using the eigenfunctions and eigenvalues of the diffusion’s infinitesimal generator.42

A Pearson-Wong diffusion’s drift term is affine and its dispersion term is quadratic. Its infinitesimal generator
must therefore map polynomials to equal or lower order polynomials. As a result, solving for eigenfunctions and
eigenvalues amounts to matching coefficients on polynomial terms. This key observation allows us to estimate
the mirror diffusion of the generalized logistic diffusion model and to recover the generalized logistic diffusion’s
parameters.

Given an eigenfunction and eigenvalue pair (hs, λs) of the infinitesimal generator of B̂is(t), we can follow

42For a diffusion
dX(t) = µX(X(t)) dt+ σX(X(t)) dWX(t)

the infinitesimal generator is the operator on twice continuously differentiable functions f defined by A(f)(x) = µX(x) d/dx +
1
2
σX(x)2 d2/dx2. An eigenfunction with associated eigenvalue λ 6= 0 is any function h in the domain of A satisfying Ah = λh.
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Kessler and Sørensen (1999) and calculate the conditional moment of the eigenfunction:

E
[
B̂is(t+ ∆)

∣∣∣B̂is(t)] = exp {λst}h(B̂is(t)). (C.8)

Since we can solve for polynomial eigenfunctions of the infinitesimal generator of Bis(t) by matching coef-
ficients, this results delivers closed form expressions for the conditional moments of the mirror diffusion for
B̂is(t).

To construct the coefficients of these eigen-polynomials, it is useful to consider the case of a general Pearson-
Wong diffusion X(t). The stochastic differential equation governing the evolution of X(t) must take the form:

dX(t) = −q(X(t)− X̄) +
√

2(aX(t)2 + bX(t) + c)Γ′(κ)/Γ(κ) dWX(t).

A polynomial pn(x) =
∑n

m=0 πn,mx
m is an eigenfunction of the infinitesimal generator of this diffusion if there

is some associated eigenvalue λn 6= 0 such that

−q(x− X̄)
n∑

m=1

πn,mmx
m−1 + θ(ax2 + bx+ c)

n∑
m=2

πn,mm(m− 1)xm−2 = λn

n∑
m=0

πn,mx
m

We now need to match coefficients on terms.
From the xn term, we must have λn = −n[1 − (n − 1)a]q. Next, normalize the polynomials by setting

πm,m = 1 and define πm,m+1 = 0. Then matching coefficients to find the lower order terms amounts to
backward recursion from this terminal condition using the equation

πn,m =
bm+1

am − an
πn,m+1 +

km+2

am − an
πn,m+2 (C.9)

with am ≡ m[1− (m− 1)a]q, bm ≡ m[X̄ + (m− 1)b]q, and cm ≡ m(m− 1)cq. Focusing on polynomials with
order of n < (1 + 1/a)/2 is sufficient to ensure that am 6= an and avoid division by zero.

Using the normalization that πn,n = 1, equation (C.8) implies a recursive condition for these conditional
moments:

E [X(t+ ∆)n) |X(t) = x ] = exp{−an∆}
n∑

m=0

πn,mx
m −

n−1∑
m=0

πn,mE [X(t+ ∆)m |X(t) = x ] .

These moments exist if we restrict ourselves to the first N < (1 + 1/a)/2 moments.
To arrive at the result in the second part of Proposition 2, set the parameters as qs = σ2(η − φ2)/2, X̄s =

φ/(η − φ2), as = φ2/(η − φ2), bs = 2φ/(η − φ2), and cs = 1/(η − φ2). From these parameters, we can
construct eigenvalues and their associated eigenfunctions using the recursive condition (C.9). These coefficients
correspond to those reported in equation (22).

In practice, it is useful to work with a matrix characterization of these moment conditions by stacking the
first N moments in a vector Yis(t):

Π · E
[
Yis(t+ ∆)

∣∣∣B̂is(t)] = Λ(∆) ·Π ·Yis(t) (C.10)

with Yis(t) ≡ (1, B̂is(t), . . . , B̂is(t)
M )′ and the matrices Λ(∆) = diag(e−a1∆, e−a2∆, . . . , e−aM∆) and Π =

(π1,π2, . . . ,πM )′, where πm ≡ (πm,0, . . . , πm,m, 0, . . . , 0)′ for each m = 1, . . . ,M . In our implementation of
the GMM criterion function based on forecast errors, we work with the forecast errors of the linear combination
Π ·Yis(t) instead of the forecast errors for Yis(t). Either estimator is numerically equivalent since the matrix
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Π is triangular by construction, and therefore invertible.

D Correction for Generated Variables in GMM Estimation

D.1 Sampling variation in estimated absolute and comparative advantage

Let ki·t denote the vector of export capabilities of industry i at time t across countries and mi·t the vector of
importer fixed effects. Denote the set of exporters in the industry in that year with Sit and the set of destinations,
to which a country-industry is ships in that year, with Dist. The set of industries active as exporters from source
country s in a given year is denoted with Ist. Consider the gravity regression (6)

lnXisdt = kist +midt + r′sdtbit + visdt.

Stacking observations, the regression can be expressed more compactly in matrix notation as

xi··t = JSitki·t + JDitmi·t + R··tbit + vi··t,

where xi··t is the stacked vector of log bilateral exports, JSit and JDit are matrices of indicators reporting the
exporter and importer country by observation, R··t is the matrix of bilateral trade cost regressors and vi··t is the
stacked vector of residuals.

We assume that the two-way least squares dummy variable estimator for each industry time pair it is con-
sistent and asymptotically normal for an individual industry i shipping from source country s to destination d at
time t,43 and state this assumption formally.

Assumption 1. If kOLS
i·t is the OLS estimate of ki·t, then√

D̄it(k
OLS
i·t − ki·t)

d→ N (0,Σit) as D̄it →∞,

where D̄it ≡ (1/|Sit|)
∑

s∈Sit |Dist| is the source-country-average number of countries importing industry i
goods in year t and

Σit = σ2
it

[
lim

D̄it→∞

1

D̄it

(
JSit
)′

Mit

(
JSit
)]−1

with σ2
it ≡ Eitv2

isdt,

Mit ≡ I|Sit|D̄it − [JDit ,R··t]{[JDit ,R··t]′[JDit ,R··t]}−1[JDit ,R··t]
′,

and I|Sit|D̄it the identity matrix.

In finite samples, uncertainty as captured by Σit can introduce sampling variation in second-stage estimation
because kOLS

i·t is a generated variable. To perform an according finite sample correction, we use

ΣOLS
it = (σOLS

it )2

[
1

D̄it

(
JSit
)′

Mit

(
JSit
)]−1

with (σOLS
it )2 = (1/|Sit|D̄it)(v

OLS
i··t )′vOLS

i··t to consistently estimate the matrix Σit.

43This high-level assumption can be justified by standard missing-at-random assumptions on the gravity model.
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Our second stage estimation uses demeaned first-stage estimates of export capability. For the remainder of
this appendix, we define log absolute advantage and log comparative advantage in the population as

aist ≡ lnAist = kist −
1

|Sit|
∑
ς∈Sit

kiςt and âist ≡ ln Âist = aist −
1

|Ist|
∑
j∈Ist

ajst. (D.11)

Correspondingly, we denote their estimates with aOLS
ist and âOLS

ist .
For each year, let KOLS

t denote an I × S matrix with entries equal to estimated export capability whenever
available and equal to zero otherwise, let Ht record the pattern of non-missing observations and Kt collect the
population values of export capability:

[KOLS
t ]is =

{
kOLS
ist s ∈ Sit

0 s /∈ Sit
, [Ht]is =

{
1 s ∈ Sit
0 s /∈ Sit

, [Kt]is =

{
kist s ∈ Sit
0 s /∈ Sit,

.

where [·]is denotes the specific entry is. Similarly, collect estimates of log absolute advantage into the matrix
AOLS
t and estimates of log comparative advantage into the matrix ÂOLS

t :

[AOLS
t ]is =

{
lnAOLS

ist s ∈ Sit
0 s /∈ Sit

, [ÂOLS
t ]is =

{
ln ÂOLS

ist s ∈ Sit
0 s /∈ Sit

.

We maintain the OLS superscripts to clarify that absolute advantage AOLS
ist and comparative advantage ÂOLS

ist are
generated variables.

The two matrices AOLS
t and ÂOLS

t are linearly related to the matrix containing our estimates of export capa-
bility KOLS

t . From equation (D.11), the matrix AOLS
t is related to KOLS

t and Ht by

vec(AOLS
t ) = Trans(I, S)


IS −

[Ht]′1·[Ht]1·
[Ht]1·[Ht]′1·

· · · 0
...

. . .
...

0 · · · IS −
[Ht]′I·[Ht]I·
[Ht]I·[Ht]′I·


︸ ︷︷ ︸

≡ZIS(Ht)

vec[(KOLS
t )′]. (D.12)

Here vec(·) stacks the columns of a matrix into a vector and Trans(I, S) is a vectorized-transpose permutation
matrix.44 The function ZIS(Ht) maps the matrix Ht into a block diagonal IS × IS matrix, which removes the
global industry average across countries. The matrix of comparative advantage estimates is then:

vec(ÂOLS
t ) =


II −

[H′t]
′
1·[H

′
t]1·

[H′t]1·[H
′
t]
′
1·
· · · 0

...
. . .

...
0 · · · II −

[H′t]
′
S·[H

′
t]S·

[H′t]S·[H
′
t]
′
S·


︸ ︷︷ ︸

≡ZSI(H′t)

vec(AOLS
t ) ≡ ZSI(H

′
t)vec(AOLS

t ). (D.13)

The function ZSI(H
′
t) maps the matrix Ht into a block diagonal SI × SI matrix, which removes the national

44The vectorized-transpose permutation matrix of type (m,n) is uniquely defined by the relation

vec(B) = Trans(m,n)vec(B′) ∀B ∈ Rm×n.

The (ij)-th entry of this matrix is equal to 1 if j = 1 +m(i− 1)− (mn− 1)floor((i− 1)/n) and 0 otherwise.
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average across industries.
For simplicity, we assume that the sampling variation in export capability estimates is uncorrelated across

industries and years.

Assumption 2. For any (it) 6= (jT ), E(kOLS
i·t − ki·t)(k

OLS
j·T − kj·T )′ = 0.

We then have the following result.

Lemma 3. Suppose Assumptions 1 and 2 hold and that there is an ωit > 0 for each (it) so that limD→∞ D̄it/D =
ωit. Then

√
D[vec(AOLS

t )−Trans(I, S)ZIS(Ht)vec[(KOLS
t )′]]

d→ N (0,Trans(I, S)ZIS(Ht) Σ∗t ZIS(Ht)
′Trans(I, S)′)

and
√
D{vec(ÂOLS

t )− ZSI(H
′
t)Trans(I, S)ZIS(Ht)vec[(KOLS

t )′]

d→ N (0,ZSI(H
′
t)Trans(I, S)ZIS(Ht) Σ∗t ZIS(Ht)

′Trans(I, S)′ZSI(H
′
t)
′)

with

Σ∗t ≡

ω
−1
1t Σ∗1t · · · 0

...
. . .

...
0 · · · ω−1

It Σ∗It


where the s-th column of Σ∗it is equal to country s’s corresponding column in Σit whenever export capability is
estimated for (ist) and is a vector of zeros otherwise.

Proof. Assumptions 1 and 2 along with D̄it → D →∞ for all (it) implies that
√
D(vec[(KOLS

t )′]−vec[K′t])
d→

N (0,Σ∗t ). The results then follow from equation (D.12) and equation (D.13).

D.2 Second-stage generated variable correction

We estimate two time series models which both can be implemented as GMM estimators. For brevity, we focus on
GLD estimation here. (We present the case of OLS estimation of the decay regression in Online Supplement S.1,
which simply uses a different GMM criterion and absolute advantage as data instead of comparative advantage.)
GLD estimation is based on a conditional moment of the form:

0 = Eis,t−∆g (θ, âist, âis,t−∆) , (D.14)

where θ = (η, σ, φ)′ is the vector of parameters. In our overidentified GMM estimator, g is a column vector of
known continuously differentiable functions (moment conditions) for any time lag ∆ > 0.

The moment conditions apply to any instant in continuous time, but our data come in discrete annual obser-
vations for a finite period of years. To account for missing data, let SPit ⊂ Sit denote the set of countries that
were previously observed to export good i and that are still exporting good i at current time t: SPit ≡ {s ∈ Sit |
∃ τP < t s.t. s ∈ SiτP }. Similarly, let SFit ≡ {s ∈ Sit | ∃ τF > t s.t. s ∈ SiτF } be current exporter countries
that ship good i to at least one destination also some future year. Denote the most recent prior period in which s
exported in industry i by τPist ≡ sup{τP < t | s ∈ SiτP } and the most recent future period in which s will export
by τFist ≡ inf{τF > t | s ∈ SiτF }. We will use these objects to keep track of timing.

For instance, for each i = 1, . . . , I , t = 2, . . . , T , and s ∈ SPit we can design a GMM criterion based on the
following conditional moment:

Ei,s,τPistg
(
θ, âist, âisτPist

)
= 0.
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Our finite sample analog for second-stage estimation is:

1

I(T−1)

I∑
i=1

T∑
t=2

1

|SPit |
∑
s∈SPit

gist(θ) with gist(θ) ≡ g
(
θ, âOLS

ist , â
OLS
isτPist

)
,

where |SPit | is the number of exporters in industry i at time t that were also observed exporting good i at a previous
time.

The effective sample size for the second stage is N ≡
∑I

t=1

∑T−1
t=1 |Sit| and the GMM criterion can be

expressed as

QN (θ; W) =

 1

N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)
gist(θ)

′ W
 1

N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)
gist(θ)


where W is a weighting matrix.

In order to get consistency, we assume that all dimensions of our data are large as N gets large.

Assumption 3. As N →∞ we have

1. D →∞;

2. ∀(it) ∃ωit > 0 so that D̄it/D → ωit, N/[I|SPit |(T−1)]→ 1, and |Sit| → ∞;

3. ∀(st) |Ist| → ∞;

4. T →∞.

Letting D → ∞ and D̄it/D → ωit > 0 ensures that we consistently estimate ki·t on the first stage and we
can use Lemma 3 for the first stage sampling distribution of comparative advantage. Then, letting |Sit| → ∞
ensures that we consistently estimate absolute advantage and |Ist| → ∞ lets us consistently estimate comparative
advantage. The asymptotic results of Forman and Sørensen (2008) apply under the assumption that T →∞.

Under the maintained assumptions, we get the following consistency result.

Proposition 3. Suppose that

1. θ ∈ Θ for some compact set Θ;

2. for any ∆ > 0, there is a unique θ0 ∈ Θ such that

0 = Eg (θ0, âist, âis,t−∆) ;

3. for any given positive definite matrix W and for each N , there is a unique minimizer of QN (θ; W) given
by θ̂N ;

4. both Eitkist and Estkist exist and are finite.

Then, under Assumptions 1 and 3, we have θ̂N
p→ θ0.

Proof. The proof follows from a standard consistency argument for extremum estimators (see e.g. Newey and
McFadden 1994). Given (a) compactness of the parameter space, (b) the continuity of the GMM objective, and
(c) the existence of moments as in Forman and Sørensen (2008), we get a uniform law of large numbers for the
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objective function on the parameter space asN →∞. The GLD estimator is then consistent under the assumption
that the model is identified, provided that we consistently estimate comparative advantage. The consistency of
our comparative advantage estimates follows from the strong law of large numbers given Assumption 3 and the
existence and finiteness of Eitkist and Estkist.

Proposition 4. Under the conditions of Proposition 3 and Assumptions 1, 2, and 3 we have

√
N(θ̂N − θ0)

d→ N (0, (Λ′WΛ)−1Λ′W(Ξ + Ω) W Λ(Λ′WΛ)−1),

where

Λ = E
∂

∂θ
g
(
θ0, âist, âisτPist

)
,

Ξ = Eg
(
θ0, âist, âisτPist

)
g
(
θ0, âist, âisτPist

)′
,

Ω = lim
N→∞

1

ND

T∑
t=1

GtZSI(H
′
t)Trans(I, S)ZIS(Ht) Σ∗t ZIS(Ht)

′Trans(I, S)′ZSI(H
′
t)
′G′t

for a Gt matrix of weighted Jacobians of gist(θ), as defined below.

Proof. To get a correction for first stage sampling variation, we use a mean-value expansion of the GMM
criterion. Given continuous differentiability of the moment function gist(θ) and the fact that θ̂N maximizes
QN (θ; W) we must have

0 =
∂

∂θ
QN (θ̂N ; W)

=

 1

N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)

∂

∂θ
gist(θ̂N )

′W
 1

N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)
gist(θ̂N )

 .

The criterion function g is continuously differentiable. Therefore, by the mean value theorem, there exist random
variables θ̃N and ãist such that |θ̃N − θ0| ≤ |θ̂N − θ0|, |ãist − âist| ≤ |âOLS

ist − âist|, and

g(θ̂N ; ist) = g
(
θ0, âist, âisτPist

)
︸ ︷︷ ︸

≡G0
ist

+
∂

∂θ
g
(
θ, ãist, ãisτPist

)∣∣∣∣
θ=θ̃N︸ ︷︷ ︸

≡G̃1
ist

(θ̂N − θ0)

+
∂

∂a
g
(
θ̃N , a, ãisτPist

)∣∣∣∣
a=ãist︸ ︷︷ ︸

≡G̃2
ist

(âOLS
ist − âist) +

∂

∂aP
g
(
θ̃N , ãist, a

P
)∣∣∣∣
aP=ã

isτP
ist︸ ︷︷ ︸

≡G̃3
ist

(
âOLS
isτPist

− âisτPist
)
.

Then,

0 = Λ̃′NW
1

N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)

[
G0
ist + G̃1

ist(θ̂N−θ0) + G̃2
ist(â

OLS
ist −âist) + G̃3

ist(â
OLS
isτPist
−âisτPist)

]

where Λ̃N = 1
I(T−1)

∑I
i=1

∑T
t=2

1
|SPit |

∑
s∈SPit

G̃1
ist.
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Solving for θ̂N − θ0 and multiplying by
√
N , we obtain

√
N(θ̂N − θ0) =

−
[
Λ̃′NWΛ̃N

]−1
Λ̃′NW

1√
N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)

[
G0
ist + G̃2

ist(â
OLS
ist −âist) + G̃3

ist(â
OLS
isτPist
−âisτPist)

]
.

Note that the set SPi1 is empty since no country is observed exporting in years before the first sample year and
SFiT is empty since no country is observed exporting after the final sample year. Moreover,

Λ̃N
p→ Λ ≡ E

∂

∂θ
g
(
θ0, âist, âisτPist

)
G̃2
ist

p→ G2
ist ≡

∂

∂a
g
(
θ0, a, âisτPist

)∣∣∣∣
a=âist

G̃3
ist

p→ G3
ist ≡

∂

∂aP
g
(
θ0, âist, a

P
)∣∣∣∣
aP=â

isτP
ist

because θ̂N and âOLS
ist are consistent and g is the continuously differentiable.

As a result, we can re-write the sum as

1√
N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)

[
G0
ist + G̃2

ist(â
OLS
ist − âist) + G̃3

ist(â
OLS
isτPist

− âisτPist)
]

=
1√
N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)

[
G0
ist + G2

ist(â
OLS
ist − âist) + G3

ist(â
OLS
isτPist

− âisτPist)
]

+ op(1)

=
1√
N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)
G0
ist + op(1)

+
1√
N

T∑
t=1

I∑
i=1

S∑
s=1

[
1{s ∈ SPit }

N

I|SPit |(T−1)
G2
ist + 1{s ∈ S0

iτFist
} N

I|S0
iτFist
|(T−1)

G3
isτFist

]
(âOLS
ist − âist)︸ ︷︷ ︸

≡Lt

,

using the fact that τF = τFist ⇔ τP
isτF

= t.
The term Lt is a vector and a linear function of the entries of the matrix ÂOLS

t − Ât. This vector can also be
expressed as

Lt = Gtvec(ÂOLS
t − Ât),

and the matrix Gt has entries

[Gt]·j = 1
{
s(j) ∈ SPi(j),t

} N

I
∣∣∣SPi(j),t∣∣∣ (T−1)

G2
i(j),s(j),t

+ 1

{
s(j) ∈ SF

i(j),τF
i(j),s(j),t

}
N

I

∣∣∣∣SFi(j),τF
i(j),s(j),t

∣∣∣∣ (T−1)

G3
i(j),s(j),τF

i(j),s(j),t
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for
i(j) = 1 + (j mod S), s(j) = 1 + floor((j − 1)/S).

We can now re-write the sum as

1√
N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)

[
G0
ist + G̃2

ist(â
OLS
ist − âist) + G̃3

ist(â
OLS
isτPist

− âisτPist)
]

=
1√
N

I∑
i=1

T∑
t=2

∑
s∈SPit

N

I|SPit |(T−1)
G0
ist +

1√
ND

T∑
t=1

Gt

√
Dvec(ÂOLS

t − Ât) + op(1).

The first term is asymptotically normal under the results of Forman and Sørensen (2008). The second term is
asymptotically normal because ÂOLS

t is asymptotically normal by Lemma 3.

For an adaption of the GMM generated-variable correction to second-stage OLS estimation, see the Online
Supplement S.1.

E Classifications

In this appendix, we report country and industry classifications.
Our empirical analysis requires a time-invariant definition of less developed countries (LDC) and industrial-

ized countries (non-LDC). Given our data time span of more then four decades (1962-2007), we classify the 90
economies, for which we obtain export capability estimates, by their relative status over the entire sample period.

In our classification, there are 28 non-LDC: Australia, Austria, Belgium-Luxembourg, Canada, China Hong
Kong SAR, Denmark, Finland, France, Germany, Greece,Ireland, Israel, Italy, Japan, Kuwait, Netherlands, New
Zealand, Norway, Oman, Portugal, Saudi Arabia, Singapore,Spain, Sweden, Switzerland, Trinidad and Tobago,
United Kingdom, United States.

The remaining 62 countries are LDC: Algeria, Argentina, Bolivia, Brazil, Bulgaria, Cameroon, Chile, China,
Colombia, Costa Rica, Cote d’Ivoire, Cuba, Czech Rep., Dominican Rep., Ecuador, Egypt, El Salvador, Ethiopia,
Ghana, Guatemala, Honduras, Hungary, India, Indonesia, Iran, Jamaica, Jordan, Kenya, Lebanon, Libya, Mada-
gascar, Malaysia, Mauritius, Mexico, Morocco, Myanmar, Nicaragua, Nigeria, Pakistan, Panama, Paraguay,
Peru, Philippines, Poland, Rep. Korea, Romania, Russian Federation, Senegal, South Africa, Sri Lanka, Syria,
Taiwan, Thailand, Tunisia, Turkey, Uganda, United Rep. of Tanzania, Uruguay, Venezuela, Vietnam, Yugoslavia,
Zambia.

We split the industries in our sample by broad sector. The manufacturing sector includes all industries with
an SITC one-digit code between 5 and 8. The nonmanufacturing merchandise sector includes industries in the
agricultural sector as well industries in the mining and extraction sectors and spans the SITC one-digit codes
from 0 to 4.

F Additional Evidence

In this appendix, we report additional evidence to complement the reported findings in the text.

F.1 Top products

Table A1 shows the top two products in terms of normalized log absolute advantage lnAist for 28 of the 90
exporting countries, using 1987 and 2007 as representative years. To obtain a measure of comparative advantage,
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we normalize log absolute advantage by its country mean: lnAist−(1/I)
∑I

j lnAjst. The country normalization
of log absolute advantage lnAist results in a double log difference of export capability kist—a country’s log
deviation from the global industry mean in export capability less its average log deviation across all industries.
For comparison, Table A2 presents the top two products in terms of the Balassa RCA index.

F.2 Cumulative probability distribution of log absolute advantage

Figures A1, A2 and A3 extend Figure 2 in the text and plot, for 28 countries in 1967, 1987 and 2007, the log
number of a source country s’s industries that have at least a given level of absolute advantage in year t against
that log absolute advantage level lnAist for industries i. The figures also graph the fit of absolute advantage in
the cross section to a Pareto distribution and to a log normal distribution using maximum likelihood, where each
cross sectional distribution is fit separately for each country in each year (such that the number of parameters
estimated equals the number of parameters for a distribution × number of countries × number of years).

F.3 Gravity-based comparative advantage from multinomial pseudo-maximum likelihood esti-
mation

We re-estimate exporter-industry-year fixed effects under the distributional assumptions of Eaton et al. (2012),
as described in Section 2, and use multinomial pseudo-maximum likelihood (MPML) on (8). With the resulting
gravity-based export capability measures at hand, we re-estimate the decay regression (10) at then-year intervals
and the GLD model (23) using GMM at five-year intervals.

For the decay regression, Table A3 restates the benchmark results (from Table 1) in columns 1, 3 and 5
and contrasts them with the respective results for MPML-estimated export capability in columns 2, 4 and 6.
MPML estimated absolute advantage exhibits both a somewhat stronger rate of decay ρ in the full sample as well
as the LDC and nonmanufacturing subsamples and a larger residual variance. When translated into the rate of
dissipation η and the intensity of innovations σ, the difference in coefficient estimates loads onto both η, which
drops from slightly above one-quarter for OLS-estimated absolute advantage to slightly below one-quarter for
MPML-estimated absolute advantage, and σ, which increases.

For GLD estimation with GMM at the five-year and one-year horizons, Table A4 restates the benchmark
results (from Table 2) in columns 1, 3, 4 and 7 and contrasts them with the respective results for MPML-estimated
absolute advantage in columns 2, 4, 6 and 8.

F.4 Comparative advantage at varying industry aggregates

As a robustness check, we restrict the sample to the period 1984-2007 with industry aggregates from the SITC
revision 2 classification. Data in this late period allow us to construct varying industry aggregate, from the
four-digit STIC revision 2 level to the two-digit level. We first obtain gravity-based estimates of log absolute
advantage from OLS (6) at the refined industry aggregates. Following our benchmark specifications in the text,
we then estimate the decay regression (10) at ten-year intervals and the GLD model (23) using GMM at five-year
intervals.

For the decay regression, Table A5 shows that estimated decay rates are comparable to those in Table 1
for our benchmark sector aggregates at the SITC 2-3 digit level (133 industries). At the two-digit level (60
industries), the ten-year decay rate for absolute advantage using all countries and industries is −0.26, at the
three-digit level (224 industries) it is −038, and at the four-digit level (682 industries) it is −0.51. When using
log RCA, decay rates vary less across aggregation levels, ranging from −0.31 at the two-digit level to −0.34 at
the four-digit level. The qualitative similarity in decay rates across definitions of export advantage and levels of
industry aggregation suggest that our results are neither the byproduct of sampling error nor the consequence of
industry definitions.
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Table A3: DECAY REGRESSIONS FOR COMPARATIVE ADVANTAGE, MPML GRAVITY ESTIMATES

Full sample LDC exporters Nonmanufacturing
OLS k MPML k OLS k MPML k OLS k MPML k
(1) (2) (3) (4) (5) (6)

Decay Regression Coefficients
Decay rate ρ -0.355 -0.430 -0.459 -0.496 -0.457 -0.487

(0.002)∗∗∗ (0.0002)∗∗∗ (0.002)∗∗∗ (0.0003)∗∗∗ (0.003)∗∗∗ (0.0004)∗∗∗

Var. of residual s2 2.104 2.829 2.424 3.297 2.522 3.499
(0.024)∗∗∗ (0.018)∗∗∗ (0.025)∗∗∗ (0.022)∗∗∗ (0.039)∗∗∗ (0.032)∗∗∗

Implied OU Parameters
Dissipation rate η 0.277 0.239 0.292 0.226 0.280 0.211

(0.003)∗∗∗ (0.002)∗∗∗ (0.003)∗∗∗ (0.002)∗∗∗ (0.005)∗∗∗ (0.002)∗∗∗

Intensity of innovations σ 0.562 0.687 0.649 0.778 0.661 0.796
(0.003)∗∗∗ (0.002)∗∗∗ (0.004)∗∗∗ (0.003)∗∗∗ (0.006)∗∗∗ (0.004)∗∗∗

Observations 324,978 324,978 202,010 202,010 153,768 153,768
Adjusted R2 (within) 0.227 0.277 0.271 0.303 0.271 0.298
Years t 36 36 36 36 36 36
Industries i 133 133 133 133 68 68
Source countries s 90 90 62 62 90 90

Source: WTF (Feenstra et al. 2005, updated through 2008) for 133 time-consistent industries in 90 countries from 1962-2007 and
CEPII.org.
Note: Reported figures for ten-year changes. Variables are OLS-estimated gravity measures of export capability k from (6) in columns 1,
3 and 5 (as previously reported in Table 1), and MPML-estimated gravity measures of export capability k from (8) following Eaton et al.
(2012) in columns 2, 4 and 6. OLS estimation of the ten-year decay rate ρ from

kis,t+10 − kist = ρ kist + δit + δst + εis,t+10,

conditional on industry-year and source country-year effects δit and δst for the full pooled sample (column 1-2) and subsamples
(columns 3-6). The implied dissipation rate η and squared innovation intensity σ2 are based on the decay rate estimate ρ and the es-
timated variance of the decay regression residual ŝ2 by (13). Less developed countries (LDC) as listed in Appendix E. Nonmanufacturing
merchandise spans SITC sector codes 0-4. Robust standard errors, clustered at the industry level and corrected for generated-regressor
variation of export capability k, for ρ and s2, applying the multivariate delta method to standard errors for η and σ. ∗ marks significance
at ten, ∗∗ at five, and ∗∗∗ at one-percent level.

For the GLD model under the GMM procedure, Table A6 confirms that results remain largely in line with
those in Table 2 before, for the benchmark aggregates at the SITC 2-3 digit level (133 industries). Estimates of the
dissipation rate η are slightly larger during the post-1984 period than over the full sample period and, similar to
the decay regressions, become larger as we move from broader to finer classifications of industry disaggregation.
Estimates of the elasticity of dissipation φ are negative in all cases except one—when we measure export prowess
using log absolute advantage (based on the gravity fixed effects) at the four-digit SITC level. As mentioned in
Section 3.1, with nearly 700 four-digit SITC revision 2 industries we frequently have few destination markets per
exporter-industry with which to estimate the gravity fixed effects, contributing to noise in the estimated exporter-
industry coefficients.

F.5 GMM estimates of comparative advantage diffusion at ten-year horizon

We repeat GMM estimation of the generalized logistic diffusion of comparative advantage at the ten-year horizon.
Table A7 shows that estimated coefficients at the ten-year horizon are comparable to those for our benchmark
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Table A5: DECAY REGRESSIONS FOR COMPARATIVE ADVANTAGE, VARYING INDUSTRY AGGREGATES

2-digit Industries 3-digit Industries 4-digit Industries
Exp. cap. k ln RCA Exp. cap. k ln RCA Exp. cap. k ln RCA

(1) (2) (3) (4) (5) (6)

Decay Regression Coefficients
Decay rate ρ -0.262 -0.307 -0.375 -0.326 -0.512 -0.335

(0.003)∗∗∗ (0.017)∗∗∗ (0.002)∗∗∗ (0.01)∗∗∗ (0.002)∗∗∗ (0.006)∗∗∗

Var. of residual s2 1.472 1.678 2.021 2.270 2.941 2.672
(0.027)∗∗∗ (0.009)∗∗∗ (0.028)∗∗∗ (0.007)∗∗∗ (0.115)∗∗∗ (0.005)∗∗∗

Implied OU Parameters
Dissipation rate η 0.309 0.310 0.301 0.241 0.259 0.209

(0.006)∗∗∗ (0.014)∗∗∗ (0.004)∗∗∗ (0.006)∗∗∗ (0.01)∗∗∗ (0.003)∗∗∗

Intensity of innovations σ 0.443 0.486 0.558 0.573 0.744 0.625
(0.004)∗∗∗ (0.008)∗∗∗ (0.004)∗∗∗ (0.006)∗∗∗ (0.015)∗∗∗ (0.004)∗∗∗

Observations 70,609 70,609 230,583 230,584 566,225 566,494
Adjusted R2 (within) 0.241 0.233 0.266 0.224 0.311 0.213
Years t 14 14 14 14 14 14
Industries i 60 60 225 225 682 682
Source countries s 90 90 90 90 90 90

Source: WTF (Feenstra et al. 2005, updated through 2008) for 60 time-consistent industries at the 2-digit SITC level, 225 industries at 3
digits and 682 industries at 4 digits in 90 countries from 1984-2007 and CEPII.org.
Note: Reported figures for ten-year changes. Variables are OLS-estimated gravity measures of export capability k from (6). OLS
estimation of the ten-year decay rate ρ from

kis,t+10 − kist = ρ kist + δit + δst + εis,t+10,

conditional on industry-year and source country-year effects δit and δst for the full pooled sample. The implied dissipation rate η and
innovation intensity σ2 are based on the five-year decay rate estimate ρ and the estimated variance of the decay regression residual ŝ2

by (13). Robust standard errors, clustered at the industry level and corrected for generated-regressor variation of export capability k, for ρ
and s2, applying the multivariate delta method to standard errors for η and σ. ∗ marks significance at ten, ∗∗ at five, and ∗∗∗ at one-percent
level.

estimation at the five-year horizon. To facilitate the comparison, columns 7 and 8 of Table A7 here restate the
full-sample estimates at the five-year horizon from Table 2 (columns 1 and 2). The qualitative similarity in global
diffusion coefficients at varying intervals for the estimation moments suggest that our results tightly characterize
the dynamics of comparative advantage.

F.6 Diffusion predicted and observed cumulative probability distributions of absolute advan-
tage

Figures A4, A5 and A6 present plots for the same 28 countries in 1967, 1987 and 2007 as shown before (in
Figures A1, A2 and A3). Figures A4 through A6 contrast graphs of the actual data with the diffusion implied
predictions.
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