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Abstract
Contact tracing has been a central pillar of the public health response to the
COVID-19 pandemic. Yet, contact tracing measures face substantive chal-
lenges in practice and well-identified evidence about their effectiveness re-
mains scarce. This paper exploits quasi-random variation in COVID-19 con-
tact tracing. Between September 25 and October 2, 2020, a total of 15,841
COVID-19 cases in England (around 15 to 20% of all cases) were not imme-
diately referred to the contact tracing system due to a data processing error.
Case information was truncated from an Excel spreadsheet after the row limit
had been reached, which was discovered on October 3. There is substantial
variation in the degree to which different parts of England areas were exposed
– by chance – to delayed referrals of COVID-19 cases to to the contact tracing
system. We show that more affected areas subsequently experienced a drastic
rise in new COVID-19 infections and deaths alongside an increase in the pos-
itivity rate and the number of test performed, as well as a decline in the per-
formance of the contact tracing system. Conservative estimates suggest that
the failure of timely contact tracing due to the data glitch is associated with
more than 125,000 additional infections and over 1,500 additional COVID-19-
related deaths. Our findings provide strong quasi-experimental evidence for
the effectiveness of contact tracing.
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1 Introduction
The scientific and public debates around the most effective measures to mitigate

the COVID-19 pandemic almost universally acknowledge the paramount impor-

tance of non-pharmaceutical interventions. Public health experts suggest that even

after vaccines and treatments become available, such measures will remain neces-

sary for a considerable amount of time (Ferguson et al., 2020). A central measure to

contain COVID-19 has been the build-up testing-and-tracing capacities (Desvars-

Larrive et al., 2020). The relative success of some countries in dealing with the

pandemic has repeatedly been associated with the effectiveness of their COVID-19

tracing systems (Lu et al., 2020; Cowling and Lim, 2020; Anderson et al., 2020).

Contact tracing comprises two key elements: first, people who have tested positive

are contacted and asked to submit information on their recent, close contacts; and

second, contact tracers attempt to reach each contact and encourage them to self-

isolate for a period of time (WHO, 2020). This simple strategy has been a central

pillar of communicable disease control in public health for decades. The eradi-

cation of smallpox in the 1970s, for example, is routinely credited to exhaustive

contact tracing (Fenner et al., 1988).

Despite the simple appeal of contact tracing to contain the spread of infec-

tious diseases such as COVID-19, significant doubts about its effectiveness remain

(Clark et al., 2020; Li and Guo, 2020; Steinhauer and Goodnough, 2020). These

revolve around two types of concerns. The first originates in the implementa-

tion of contact tracing: most systems still rely on human contact tracers both to

identify the contacts of infected persons and to get in touch with those contacts

to impose or advise self-isolation. Contact tracers often engaged at short notice

and not well trained for their role (Manthorpe, 2020; Mueller and Bradley, 2020).

Second, and more importantly, contact tracing may fail even if it is successfully

implemented, because it fundamentally relies on eliciting the intended behavioral

response. There is evidence that many people are unwilling to cooperate with

contact tracers, and contact tracing faces opposition of various other kinds in the

population. Infected person may not want to share complete or accurate infor-

mation about their contacts, e.g., because they don’t take contact tracers seriously,
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distrust the government, are afraid of scams, social stigma, or have other pri-

vacy and cybersecurity concerns (Simko et al., 2020; Hakak et al., 2020; Cho et

al., 2020; Altmann et al., 2020; Steinhauer and Goodnough, 2020). An even more

pressing problem is that contacts may not believe contact tracers. This can lead to

non-adherence to self-isolation, undermining the very purpose of contact tracing

(Webster et al., 2020; Rubin et al., 2020). The obstacles faced by contact tracers have

received significant media attention in the course of the COVID-19 pandemic.

Consider the case of England: an official report endorsed by the Scientific Ad-

visory Group for Emergencies published on September 21, 2020, assessed the role of

contact tracing, concluding that “[t]he relatively low levels of engagement with

the system [...] coupled with [...] likely poor rates of adherence with self-isolation

suggests that this system is having a marginal impact on transmission at the mo-

ment” (GOV.UK, 2020e). Notwithstanding this sobering assessment, the testing

and tracing system in England was reported to draw on a budget of about £12 bil-

lion. Just in October 2020, over 1,100 additional Deloitte consultants were engaged

to support the tracing system (Conway, 2020).

This striking disparity between, on one hand, the resources that countries

around the world allocate to their contact tracing systems and, on the other hand,

the uncertainty around their relevance to contain a pandemic call for a better un-

derstanding of their actual effectiveness. Policy evaluations are important because

government interventions can have unintended consequences (Fetzer, 2020). The

effectiveness of contact tracing, however, is notoriously hard to assess due to a

lack of naturally occurring, exogenous variation. The existing literature therefore

mostly relies on correlational evidence (Klinkenberg et al., 2006; Kendall et al.,

2020; Kretzschmar et al., 2020b,a; Afzal et al., 2020; Kucharski et al., 2020; Park et

al., 2020; Grantz et al., 2020). Correlational evidence on the role of contact tracing

is subject to the concern that variation in the intensity of contact tracing across

time or geographical areas is correlated with other variation not related to contact

tracing, such as simultaneously occurring changes in other public health measures

or area-fixed characteristics such as local populations’ different levels of adherence

to self isolation.

In this paper, we exploit a unique quasi-experiment in England that generated
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exogenous variation in the intensity of contact tracing and allows us to estimate

the causal effect of contact tracing on the evolution of COVID-19. England pro-

vides an ideal setting to study the effectiveness of contact tracing as it relies on a

centrally managed testing-and-tracing system. On October 3, 2020, UK authorities

announced that due to a “technical error,” 15,841 COVID-19 cases that should have

been reported between September 25 and October 2 have not entered the official

case statistics and were not referred to the central contact tracing system (GOV.UK,

2020d). Different areas in England were affected to very different degrees by the

late referrals to contact tracing originating in the data glitch, providing our source

of exogenous variation to determine the effectiveness of contact tracing. We will

argue that the local affectedness by the technical glitch – caused by the 65,536 rows

limit of the XLS file format used in the official data reporting process – is unre-

lated to any other factors that determined the previous spread of COVID-19. We

conduct a series of analyses to test our identification assumption. These analyses

strongly confirm that the local impact of the data glitch may indeed be random;

specifically, it is unrelated to a large battery of area characteristics such an area’s

demographic makeup and to recent levels and trends in an area’s exposure to

the COVID-19 pandemic as captured by a host of conventionally used pandemic

outcomes.

15,841 missed referrals correspond to a share of 15-20% of all new cases re-

ported in the time range under consideration. The resulting aggregate effects at

the national level are illustrated in Panel A of Figure 1, which plots the daily

number of positive cases that were officially published (red line) next to the total

number of positive tests conducted at a given date (blue line). The evolution of

these lines over time reveals the following patterns: (i) the red line trails behind the

blue line prior to the data glitch, reflecting the “natural reporting lag” that occurs

because tests need to be evaluated, processed and reported; (ii) the gap between

the reported and actual cases widens drastically between September 20 and Octo-

ber 2, a mechanical result of the data glitch that also led to the spike in reported

cases on October 3; (iii) we witness a strongly accelerated growth in the actual

numbers of positive cases (blue line) during the time of the misreporting, which

we will argue is the adverse effect of late referrals to contact tracing on pandemic
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growth; and (iv) we see persistently higher case numbers in the aftermath of the

data correction, indicating that the data glitch propelled England to a different

stage of pandemic spread.

This paper leverages spatially and temporally granular data from England to

investigate the potential causal effect underlying these observations. Our approach

relies on a reconstruction, for each geographical unit, of the number of cases that

were referred late to the contact tracing system as a result of the data glitch. This

measure forms the basis for a series of difference-in-differences analyses to es-

timate the effect of contact tracing on variety of outcomes related to the spread

of COVID-19. Our baseline estimations leverage a dataset containing 37,485 ob-

servations across 315 geographical units in England. We document robust and

quantitatively large effects of contact tracing on the evolution of the pandemic. In

areas with higher exposure to the contact tracing shock, we subsequently find a

notable increase in COVID-19 infections and, with the usual delay, in COVID-19-

related deaths. These effects go hand in hand with an increase in the test positivity

rate, a sharp increase in number of tests performed and a worsening of the quality

of contact tracing.

A large part of this paper is dedicated to examining the robustness of our find-

ings. Among other things, we document that our results are robust (i) to different

ways of constructing the measure of late referrals, (ii) to the level of spatial disag-

gregation and (iii) the exclusion of individual regions, (iv) to different empirical

strategies which compare areas that had been evolving very similarly in terms of

a host of measures of pandemic development prior to the data glitch, but that

were affected differentially by the data glitch itself, (v) to alternative functional

forms of the estimated relationship (e.g., log-log specifications) that acknowledge

the non-linear nature of infection dynamics, (vi) to controlling for a large vector of

more than 50 additional area characteristics, (vii) to alternative ways of conduct-

ing statistical inferences, specifically, randomization inference, (viii) to controls for

the effect that lower reported case numbers at the local level might have had on

people’s behavior, and (iix) we conduct an empirically highly demanding placebo

test.

Across this battery of analyses, our point estimates of the effect imply that
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the specific failure of timely contact tracing due to the data glitch is associated

with something between 126,836 (22.5% of all cases in the post-treatment period

under consideration) and 185,188 (32.8%) additional cases, and with between 1,521

(30.6% of all deaths) and 2,049 (41.2%) additional COVID-19-related deaths. We

advise caution, however, against taking these effect sizes at face value: due to the

complex structure of a pandemic, such as significant externalities across areas and

the non-linear nature of infectious developments, effect magnitudes are inherently

difficult to interpret.

The rest of this paper is organized as follows. Section 2 provides background

information on the context, data and the measurement approach. Section 3 de-

scribes the empirical strategy. Section 4 presents the results, discusses their signif-

icance and explores the robustness of our findings. Section 5 concludes.

2 Context and data

2.1 Contact tracing in England and the data glitch
In England, laboratories report positive COVID-19 test results to Public Health

England (PHE) on a daily basis. The PHE aggregates all nation-wide test results

using an automated reporting dashboard, which forms the basis for the official

reporting of case numbers as well as contact tracing (GOV.UK, 2020a). Specifically,

data on positive cases are passed on to the NHS Test and Trace (Test and Trace)

system, a government-funded service that was established in 2020 to organize all

contact tracing at the national level (GOV.UK, 2020c). For all cases that do not come

from a high exposure setting such as a school or a prison, the infected person is

contacted via a text, email alert or phone call and asked to shared details of their

recent close contacts and places they have visited. They can respond online via

a secure website or by telephone with a contact tracer. NHS initially employed a

team of 25,000 contact tracers.

On October 4, 2020, the PHE released a public statement on a “technical issue”

discovered in the night of October 2 to October 3 (GOV.UK, 2020d). An internal

investigation had revealed that 15,841 positive cases had accidentally been missed

in the data reported to Test and Trace. The maximum file size of 65,536 rows of
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the document type used for official data processing purposes (Excel Binary File

Format, XLS) had been exceeded, leading to a failure to transfer case information

in excess of that limit. PHE reported that the original reporting dates for these

cases would have been between September 25 and October 2. While the data

glitch did not affect people receiving their individual COVID-19 test results, an

anticipated 48,000 close, recent contacts of COVID-19 patients had not been traced

in a timely manner and had therefore not been encouraged to isolate (BBC, 2020).

The evolution of the daily number of newly reported cases is depicted in Panel

A of Figure 1. In the seven seven days preceding the discovery of the data glitch

on October 3, newly reported cases averaged 4,853 per day, ranging from a low of

3,277 to a high of 5,599. The delayed reporting of some cases resulted in a severe

jump in the daily case numbers: the officially reported number increased to 10,436

on October 3 and to 21,140 on October 4, before leveling off to an average of 11,814

reported new cases per day in the subsequent seven days. The Excel error attracted

significant public and media attention.1

2.2 Data on COVID-19 in England
Our baseline analyses leverage three sources of publicly available data.

Reporting dashboard Our primary dataset is constructed using the UK’s COVID-

19 dashboard.2 This dashboard provides granular data on COVID-19 infections

and deaths at different spatial resolutions. Our geographical focus is on England,

because other countries in the UK were not affected by the Excel error. The data

include daily lab-confirmed positive test results and deaths. Data on positive cases

are characterized by two dates: the specimen date, i.e., the date when the sample

is taken from the person being tested, and the reporting date, i.e., the date when a

positive case is first included in the published totals and referred to Test and Trace,

so that contact tracing can begin. In order to reconstruct the time line of case re-

porting for each specimen date, we collect “vintage datasets” published on past

reporting dates. The distinction between specimen and reporting date forms the

basis for our analysis of late referrals due to the data glitch, as detailed in Section

1See, e.g., Guardian (2020); Telegraph (2020); Mirror (2020).
2Available at https://coronavirus.data.gov.uk/.
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2.3.

We conduct analyses at different levels of spatial disaggregation. England has

315 lower tier local authority districts (LTLA). While most COVID-19 data are

published at this level, some data are only available at the upper tier authority

district level (UTLA) – of which there are 149 in England. Our baseline analyses

exploit variation at the LTLA level but we replicate our results at the UTLA level

as well as NUTS3 region level, of which there are 93 units.

The resulting core dataset is a balanced daily panel. Our estimation window

focuses on the period starting in calendar week 28 (starting July 6, 2020) all the way

to calendar week 44 (starting October 26), covering a total of 37,485 observations.

Test and Trace statistics We also draw on data on testing and tracing statistics

provided by NHS Test and Trace (GOV.UK, 2020b). These data are published

weekly and provide some statistics on the effectiveness of the contact tracing ef-

forts such as the fraction of contacts reached, delays as well as the total number

of tests taken and test positivity rates. These data are available at different ge-

ographical and temporal resolutions than the daily case data. Specifically, while

the COVID-19 test statistics are provided for the most granular lower tier local

authority district level (LTLA), the contact-tracing data are more patchy and only

available at the coarser UTLA level. The data are provided at the weekly level for

weeks starting on Thursday and ending on Wednesday. This implies that calendar

weeks are not cleanly separated in this dataset. We matched reporting windows to

calendar week based on the largest overlap. For example, calendar week 39 ranges

from September 21 to September 28. The nearest reporting window for the Test

and Trace statistics is the week starting on September 24 and ending on Septem-

ber 30, which straddles four days of calendar week 39 and three days of calendar

week 40. We match this week to calendar week 39. This implies, however, that the

identification of the exact timing of effects is more challenging in the weekly data.

Lastly, we note that the data on contact tracing at the subnational level are far

from exhaustive. Data on the effectiveness of contact tracing are only available

at the UTLA level. Various relevant pieces of information on the performance of

contact tracing are not provided. For example, the data provided at the UTLA
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level do not include information that is available in aggregated statistics, such as

the time-taken for COVID-19 positive individuals to be reached; the time taken for

those individuals to provide their close contacts information; and the time taken

for these contacts to be reached.

Appendix Figure A7 provides an overview of the process flow and highlights

the sources of delays and potential caveats to bear in mind when studying and

interpreting the data, especially relating to contact tracing and its performance.

The performance of the system, for example, is undermined if, e.g., a high fraction

of COVID-19 positive individuals cannot be contacted or reached. This naturally

implies that potential close recent contacts may not be identified. Similarly, even if

an individual that tested positive is successfully contacted, they may not remember

the individuals they spent notable time together during the time they may have

been infectious. And even if individuals provide details of close contacts, these

may not be reached in a timely fashion or may not be reached at all.

There appears to be room for improvement in the comprehensiveness of public

reporting and the statistical presentation of the data.3

Additional weekly death statistics In addition to the daily death statistics, we

also leverage weekly death statistics at the local authority level as published by

the Office for National Statistics (ONS, 2020). These data report on new COVID-

19-related deaths by the type of location where the death occurred, e.g., at home,

in hospitals or in care homes. These data will be studied primarily as an auxiliary

outcome data in the Appendix.

2.3 Identifying delayed referrals to contact tracing
We rely on granular data on positive COVID-19 tests to construct a measure

capturing the extent to which positive COVID-19 cases have been affected by the

delayed referral to contact tracing across different parts of England. The official

PHE announcement only specified the total number of late referrals but provided

no information about the geographical distribution and the specimen dates of

3The authors have launched a public FOIA request to request more granular data. The FOIA
request can be accessed here: https://www.whatdotheyknow.com/request/nhs test and trace s

tatistics re.
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these cases. A Freedom of Information request has been raised by the authors

to obtain a detailed geographic and temporal break down of all cases that were

referred to contact tracing with a delay – so far, these data have not been made

available.4

Baseline measure of late referrals Despite the lack of official data, we can infer

which individual cases have been affected by a delayed referral. To do so, we study

the reported case figures at different points in time. The logic of our approach fol-

lows from Table 1 and Panels B and C of Figure 1. Table 1 shows the COVID-19

case counts as they were reported on three different dates: November 15, October

4 and October 2. The case counts are broken down by the date on which the test

sample was taken (specimen date). For all tests taken on September 24, the most

recent figures from November 15 imply a total of 6199 positive cases known as

of November 15. Because more than 1.5 months have passed between the speci-

men date of September 24 and the reporting date of November 15, all tests should

have been processed and entered the statistics. We can interpret the number from

November 15 as the final case count for this specimen date. In fact, the typical time

lag between the specimen date and the reporting date is much shorter. Appendix

Table A1 and Appendix Figure A3 highlight that usually, between 94% to 96% of

all positive cases are identified and reported within the five days following the

specimen date. For our baseline measure, we therefore restrict our attention to the

earliest specimen dates that where likely impacted by the Excel error, September

20 to September 27. By the time the error was discovered on October 3, tests taken

during this specimen date range should have almost fully entered the statistics

under normal circumstances. Panel B of Figure 1 visualizes the striking discon-

tinuity caused by the data glitch in the otherwise smooth increase of the fraction

of cases reported in the days following a given specimen date. Taking the exam-

ple of the specimen date September 24, we observe that the fraction reported had

converged to a steady level by October 2, but then a sudden upward revision oc-

curred on October 3. This stands in contrast to the overall smooth evolution of
4The FOIA is in the public domain on https://www.whatdotheyknow.com/request/regiona

l breakdown of cases not.
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the fraction reported for specimen dates not affected by the data glitch, as shown

in Appendix Figure A2. These figures capturing the over-time conversion to the

final case count on a given specimen date leverage data from different historically

published versions of the COVID-19 dataset.

Judging from the typical reporting lag as observed between September 1 and

September 19, we would expect that at least 95.9% of the positive tests taken on

September 27 and at least 99.3% of the positive tests taken on September 20 have

been reported before October 3. In reality, however, this share turned out to be

much lower as a result of the late referrals. Appendix Figure A3 visualizes the

share of cases reported with different reporting delays – the fraction reported by

day five following a specimen date dropped to roughly 60% during the period

affected by the data glitch.

For reasons of parsimony, our baseline measure is constructed assuming that

all cases taken between September 20 and 27 would have been reported by October

2 in the absence of the data glitch. Formally, this means we define the number of

late referrals in district i that were likely due to the Excel error as

Mi =
27 Sep 2020

∑
ω=20 Sep 2020

True Cases11 Nov 2020
i,ω −Cases02 Oct 2020

i,ω .

Specifically, across target specimen dates we sum up the difference between the

final, “true” case count approximated by the most recent dataset version (Novem-

ber 15) and the case count known as of October 2. Note that, first, this base-

line measure is transparent and does not impose auxiliary assumptions about the

structure of the counterfactual reporting lag. Second, missed cases from earlier

specimen dates are likely to have had the most pronounced effect on the develop-

ment of the pandemic. A contact who contracted the disease from a person who

tested positive on September 20, for example, could in turn infect others before

the contact was finally traced by Test and Trace on October 3 or thereafter. This

implies that the adverse effect of delayed contact tracing is stronger for cases with

earlier specimen dates. In total, we calculate a number of 7,242 late referrals to

contact tracing with specimen dates between September 20 and 27. This figure

broken down to the LTLA level forms the basis for our measure of the local im-
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pact on late referrals due to the Excel error. We thus have a time-invariant scalar

measure of treatment intensity in terms of late referrals.

Our baseline measure captures substantial variation in the extent to which dif-

ferent areas were affected by the data glitch. To illustrate, Panel D of Figure 1

shows a distinct geographic signature – there is substantial heterogeneity in the

fraction of cases that we categorize as late referrals in each area. We confirm be-

low that this heterogeneity is as-if random: it appears to be unrelated to all area-

specific characteristics that are relevant for the local development of the pandemic,

and we can therefore exploit it to evaluate the quasi-causal effects of the intensity

of contact tracing.

Alternative measures of late referrals While our baseline measure relies on just

7,242 late referrals out of the total of 15,841 cases that were officially acknowl-

edged, our subset of late referrals from early specimen dates are likely to have had

the strongest impact on the progression of COVID-19, and we can most cleanly

identify these from the available sources of data. We construct a set of alternative

measures of late referrals covering shorter or longer windows of specimen dates,

e.g., from September 20 to 25, or from September 20 to 30. We further complement

these analyses with a more parametric approach that statistically approximates the

time path of the “typical reporting lag”, i.e., the distribution of delays in the ab-

sence of a processing error. Specifically, we proceed in two steps. First, for a given

window of specimen dates, e.g., September 20 to October 1, we determine the

reported case numbers that should be expected under the typical reporting lag,

which we obtain by statistically approximating the usual evolution of reported

fractions as shown in Appendix Figure A3. To this end, we estimate the fraction of

cases that would be reported d days after the test was taken by fitting the following

function using non-linear least squares:

fi,d = 1− (1− (
r

1 + e−c·(d−t)
)d. (1)

The above functional form is often invoked to approximate converging pro-

cesses in variety of domains and can be estimated using non-linear least squares

12



(see Steer et al., 2019 for an implementation in R). The fit of this estimation for the

pre-treatment period of September 1 to September 19 is illustrated in Appendix

Figure A5.

In a second step, we compare the predicted number of reported cases to the

actually reported number of cases by October 2 to construct our measure of late

referrals:

Mi =
1 Oct 2020

∑
ω=20 Sep 2020

True Cases11 Nov 2020
i,ω (1− f̂i,d(ω))

The above model 1 can be estimated at the country-level, but can also be trained

at the region level to allow for region-specific variation in the typical reporting lag.

Our baseline specification relies on the number of late referrals normalized by

the population size, while flexibly controlling for the local level and dynamics of

the evolution of the pandemic. As an alternative measure, we can express the

number of late referrals as a fraction of the final number of positive cases reported

for September 20 to 27, by computing

mi =
∑

27 Sep 2020
ω=20 Sep 2020 True Cases11 Nov 2020

i,ω −Cases02 Oct 2020
i,ω

∑
27 Sep 2020
ω=20 Sep 2020 True Cases11 Nov 2020

i,ω

This measure is conceptually appealing in that it accounts for the local severity

of the pandemic but it is statistically problematic due to a small sample issue. A

fraction measure is noisy for areas with a low true case count, which creates a

positive bias in our application. We use the above as an auxiliary measure impos-

ing some sample restrictions, i.e., by focusing on places with at least a minimum

number of cases. In the Appendix, we explore a variety of measures and show

that our findings are robust to those.

3 Empirical strategy
Our empirical strategy exploits cross-sectional variation in the extent to which

different parts of England were affected by the delayed referral of COVID-19 pos-

itive cases to contact tracing efforts. This cross-area variation in exposure is quasi-
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random as a result of the Excel data entry error, allowing us to study the causal

effect of contact tracing on measures of subsequent COVID-19 spread. We follow

a simple and a refined difference-in-differences estimation approach at different

geographic resolutions of the data.

3.1 Difference-in-differences specification
The basic difference-in-differences estimate is obtained from estimating

yi,t = ηi + γt + η × Postt ×Mi + β′Xi,t + ε, (2)

where yi,t denotes a measure of COVID-19 spread in area i at time t (either a

specific date or a week). The regression controls for district fixed effects, ηi, as well

as a set of time fixed effects γt. To account for the non-linear nature of case growth

we add a host of additional measures Xi,t of the disease progression across areas

and control flexibly for these.

Specifically, we measure an area’s average number of new COVID-19 cases per

capita, the number of tests per capita as well as the positivity rate of the tests

during calendar weeks 37 to 38 (September 7 to September 20), directly preceding

the data glitch. For each of these measures, we categorize districts into deciles

according to its empirical distribution across districts. We successively control for

non-linear time trends in these variables by decile. This ensures that we are not

confounding or wrongly attributing differences in the outcome variables to the

fact that different parts of England had been at different stages in the pandemic.

Instead this specification aims at identifying the differential effect that late referrals

to contact tracing had on the subsequent spread of COVID-19, comparing areas

that have been on a very similar trajectory in the pandemic in the weeks just prior

to the data glitch.

Naturally, the above exercise can be extended to flexibly estimate treatment

effects over time. This will further allow us to shed light on the common-trends

identification assumption implicit in the above difference-in-differences approach.

Specifically, we estimate
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yi,t = ηi + γt + ∑
t

ηt × 1(Weekt = t)×Mi + β′Xi,t + ε. (3)

This allows us to plot the estimated coefficients η̂t allowing us to explore to

what extent differences in the outcome emerge around the time that the contact

tracing shock happened and to what extent this affected the pandemic develop-

ment going forward.

3.2 Zooming in on districts with similar pandemic evolution
We supplement our baseline difference-in-difference exercise with an addi-

tional exercise that aims to tackle potential concerns about the non-linear growth

in cases. To do so, we refine the control group for our difference-in-differences de-

sign. For each district i, we compute the similarity between that district i and every

other district j in terms of their disease progression just prior to the Excel error.

To measure distance, we use the cosine similarity metric, applied to the following

vector of seventeen characteristics Xi capturing the disease progression in a dis-

trict i: new COVID-19 cases and deaths per capita reported on October 1, 2020; the

number of COVID-19 tests along with the positivity rate in calendar week 40; the

average number of new COVID-19 cases and deaths per capita in calendar weeks

37 and 38; the average number of COVID-19 tests per capita and positivity rate

during weeks 37 and 38; and the growth in new COVID-19 cases, tests, deaths and

the positivity rate between week 37 and 38. We also add measures of the pandemic

progression in the first wave, such as the death rates in March to June, as well as

other area characteristics, such as population density. The similarity measure is

computed as:

similarityij = cos(θ) = Xi ·
Xj

‖Xi‖‖Xj‖
=

n
∑

p=1
xi,pxj,p√

n
∑

p=1
x2

i,p

√
n
∑

p=1
x2

j,p

. (4)

To illustrate this exercise, Appendix Figure A6 displays the cosine similarity

measure between Adur and Watford (red diamonds), as well as their similarity to

all other districts (blue dots) on the horizontal axis, along with a set of measures
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capturing the pandemic situation prior to the data glitch. Based on cosine similar-

ity, Adur and Watford are closest to each other and are used to form a matched

pair. Across all individual measures included in the similarity measure, the two

districts are highly similar, showcasing that cosine similarity allows to identify

districts with similar disease progression statistics. Even though the two districts

share a cosine similarity score of 0.97, they differ substantially in terms of their

number of late referrals, owing to the idiosyncratic effect of the data glitch. While

Adur experienced 6.3 late referrals per 100k, Watford only saw 3.44 late referrals

in that same time period. This highlights that our measure captures heterogeneity

in exposure to the data glitch even in this matching approach that zooms in on

otherwise highly similar districts.

For each district i, we identified a “best match” j using matching without re-

placement. We obtain 157 matched pairs from 314 districts, omitting the last dis-

trict. We estimate a version of the above specification,

yi,t = ηi + γp,t + η × Postt ×Mi + β′Xi,t + ε, (5)

where we now control for matched-pair-by-time fixed effects γp,t. In our most

demanding specification, we control for 157 different sets of time fixed effects,

allowing individual non-linear time trends for places that have been on a similar

pandemic trajectory in the pre-treatment period. Practically, we estimate nearly

18,683 (157 x 119 days) separate time effects. This addresses the fact that infection

dynamics in a pandemic may produce non-linear growth in cases. By virtue of

zooming in on matched pairs of districts that look very similar in terms of the

pandemic just around the Excel error occurred and affected these districts quite

differentially, this will further strengthen the identification offered by this natural

experiment.

4 Results and discussion
We present our findings in five steps. First, we discuss the effects of late re-

ferrals on our main outcomes of interest, new infections and COVID-19-related

deaths. Second, we begin to shed light on the corresponding mechanisms by look-
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ing at data on testing activity. Third, we zero in on the the impact of late referrals

due to the data glitch on the performance of the Test and Trace system. Fourth, we

present a battery of robustness analyses. In the fifth and final step, we discuss the

quantification of the effects estimated across our set of estimation strategies.

4.1 Effect on new infections and COVID-19-related deaths
Results from our main specifications are reported in Table 2. We begin by

considering the effect on new infections. Results in column (1) of Panel A are

obtained from estimating our main specification (equation (2)) using daily data at

the LTLA level with 315 units (N=37,485). We regress the case count per capita on

the number of late referrals per capita, controlling for time- and area-fixed effects

as well non-linear time trends in measures of COVID-19 spread in calendar weeks

37 and 38, directly preceding the data glitch.

Our estimate for the difference-in-differences estimator that captures the daily

increase in cases during calendar weeks 39 to 44 is 0.6. This implies that one

additional late referral to Test and Trace was associated with a total of 25 additional

cases over the subsequent six weeks. This implies that, given a total of 7,242 late

referrals that we identified using our conservative baseline treatment measure, a

total of 184,324 additional infections are likely associated with with the contact

tracing delays due to the data glitch.

In all regressions, we non-parametrically control for non-linear time trends in

infection dynamics as follows: we categorize districts into deciles according to a

given measure of COVID-19 spread in the pre-treatment period (weeks 36 to 38)

and include decile-by-date fixed effects accordingly. Next to non-linear infection

dynamics based on total cases per capita (column (1)), we further allow for non-

linear time trends across different pre-treatment testing intensities (column (2))

and the share of positive tests (column (3)). Our main estimate for the effect of

late referrals on new cases (Panel A) is virtually unaffected by the different ways

of accounting for infection dynamics.

Columns (4) to (6) present results for the refined difference-in-differences ap-

proach (see Section 3.2 in which we identify matched pairs of districts that went

through a similar pandemic evolution prior to the Excel error. These results are
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discussed further in Section 4.4.

Figure 2 provides an an illustration of our regression results and sheds light

on the role of area-specific trends in the pre-treatment period. Panel A displays

the estimated weekly effects of late referrals due to the data glitch on the number

of positive cases, obtained from estimating equation (3). Dates refer to specimen

dates – i.e., the date on which a COVID-19 test was taken – of the corresponding

cases. We make three observations. First, we do not find a significant relationship

between our measure of late referrals and pre-treatment case numbers. Recall that

the first reporting day affected by the data glitch was September 25, which due

to the natural reporting lag impacted test results with specimen dates down to

around five days earlier, i.e., September 19. This explains the small positive effect

observed in calendar week 38 that ended on September 20. Second, we observe

a pronounced positive effect of late referrals on case numbers in calendar weeks

39 to 41. The effect is largest in calendar week 40, roughly 2 weeks following

the first COVID-19 cases whose contacts were not traced in a timely manner. The

error was discovered and corrected late in week 40, on October 3. Third, the

treatment effect of late referrals becomes statistically indistinguishable from zero

from around calendar week 44, indicating that the impact of late referrals to contact

tracing from late September had a notable, but temporary effect on infections over

a four-week window.

Analogous regression estimates for the effect on new daily COVID-19-related

deaths are displayed in Panel B of Table 2. Our main difference-in-differences

approach yields a precisely estimated and significant effect of 0.008 additional

daily deaths per late referral to Test and Trace. This corresponds to 0.33 new

COVID-19 deaths per late referral over the post-treatment time period studied

(calendar weeks 39-44). From this, we estimate that the non-timely referral to Test

and Trace resulted in an additional 2,433 COVID-19-related deaths in England.

Comparing this number to the estimated increase in cases suggests that the implicit

case fatality rate among additional COVID-19 infections due to the late referrals to

contact tracing was around around 1.3%.

Panel B of Figure 2 illustrates the sizeable increase in deaths per capita that

starts to become apparent from around calendar week 40. The effect becomes
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statistically significant at the 10% level by week 41, peaking in calendar week 43.

The effect on the death toll lags behind the increase in cases shown in Panel A,

which is due to the well-known lag between infections and subsequent deaths.

The estimated effect is largest three weeks after the corresponding peak in the

impact on positive cases and appears to subside by week 44, again following the

trajectory of infections with a lag.

4.2 Effect on COVID-19 testing
We complement our baseline analyses by studying the mechanisms related to

the effect of late referrals, leveraging different sets of outcomes. First, we investi-

gate the impact on testing activity.

Contacts of infected persons are encouraged by contact tracers to self-isolate for

14 days. Note that without symptoms, a contact is neither required nor advised

to take a test themselves (cf. NHS, 2020; GOV.UK, 2020c). A negative test does

not rule out an infection and the procedures required to conduct tests can by

themselves contribute to the spread of the disease if a person is already infectious.

By contrast, a contact who is not reached by the contact tracing system and never

learns of their potential infection will not self-isolate or take other precautionary

measures, especially if they are asymptomatic or pre-symptomatic. A failure to

trace contacts has two implications: First, affected contacts cannot respond to their

potential infection, increasing the likelihood both of infecting others and of getting

infected by a third infectious person if they are not already infected. Second, upon

developing minor symptoms, contacts not reached by the tracing system are more

likely to get a test in order to confirm their infection, which they might have been

advised against by a contact tracer. As a consequence, holding everything else

equal, more contact tracing may be associated with less testing overall.

In Panel A of Figure 3, we show the effect of late referrals due to the data

glitch on the total number of tests taken in a given district, based on a regression

specification analogous to the ones above (equation (2)). We document a sizeable

increase in the number of tests conducted. The COVID-19 testing data are avail-

able at the weekly level. In order to be able to directly compare the magnitudes

with the previous results, we divide the weekly testing figures by seven to obtain
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an estimate of the daily testing rate. Our main difference-in-differences estimate

suggests that each late referral led to, on average, 2.7 additional tests taken per

day between calendar week 39 and 44 (Table 3, Panel A, column (1)).

At the same time, we report a strongly positive effect on the number of positive

tests per capita as well as the test positivity rate, see Panels B and C of Figure

3, respectively. We estimate that each additional late referral led to a significant

increase in a district’s test positivity rate by 0.1 percentage points, given an average

positivity rate of 3.6% (Table 3, Panel C, column (1)). The share of positive tests

reverted back to pre-treatment levels in calendar week 43.

Our estimate of the effect on weekly positive tests per capita data lends cre-

dence to our above estimate for the effect on new infections which uses a different

data source. We obtain a baseline estimate of 0.67 on positive tests (Table 3, Panel

B, column (1)), which is closely in line and statistically indistinguishable to our

estimate of 0.61 for new cases (Table 2, Panel A, column (1)).

These results underscore the intuition outlined above: because contacts not

traced in a timely fashion did not change their behavior by self-isolating, and

because they were more likely to take tests, we find that late referrals increased

both the number of tests taken and the positivity rate.

4.3 Effects on the performance of contact tracing
Next, we analyze the repercussions on the effectiveness of the contact tracing

system. To contain the further spread of the pandemic, a timely referral of cases

to the contact tracing is essential. Unfortunately, the publicly available data on

the Test and Trace system, especially on contact tracing performance, are far from

exhaustive. As described in Section 2, contact tracing begins after positive cases

are reported by laboratories to PHE, which in turn transfers case information to

NHS Test and Trace (see also GOV.UK, 2020c). Contact tracers contracted by NHS

Test and Trace then first contact individuals who tested positive. At this stage al-

ready, not all individuals that tested positive may be successfully reached. Even

if an individual is reached and asked to provide contact details of recent close

contacts, they may not properly recall or they may not be willing to disclose all

relevant information. The actual contact tracing only sets in after contact infor-
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mation is obtained either through the contact tracer or the secure website. This

implies that there are multiple margins through which contact tracing – even un-

der normal circumstances – may fail: (a) not all COVID-19 positive individuals

may be successfully reached; (b) those individual may imperfectly recall or incom-

pletely disclose recent contacts; (c) and the contact tracing system may fail to reach

all identified contacts.

Appendix Figure A1 studies aggregate performance data capturing the fraction

of close contacts that were advised to self-isolate by the time taken to reach them.

It demonstrates the possible effect that the data glitch had on the time taken to

reach contacts. Note that this figure zooms in on the number of contacts that were

actually reached, i.e., it focuses on step (c) above conditional on success in steps

(a) and (b). While the fraction of those who were reached within the first 24 hours

hovered above 80% in the weeks preceding the data glitch, the fraction plummeted

to just above 60% in calendar week 40. Strikingly, we find that the tracing system’s

performance remains low even in the three weeks following the correction of the

data glitch. The share of contacts reached within 24 hours only appears to revert

back to pre-treatment levels by week 44. This suggests that the tracing system was

jammed by the late referrals from late September, adversely affecting the tracing

performance for cases referred after the data glitch was corrected on October 3.

Put differently, the tracing system may not have been well adapted to handle both

a sudden influx of thousands of COVID-19 positive tested individuals referred to

contact tracing with a delay and the subsequent higher infection levels that arose

due to the preceding failure of a timely referral to Test and Trace.

In Figure 4 we present findings on the Test and Trace performance at the Up-

per Tier Local Authority level, analyzed using the same baseline specifications as

above. Areas that experienced a larger impact on late referrals saw a deluge of

referrals to contact tracing from calendar week 40. Note that a part of this increase

may be mechanical as the contact tracing statistics for the week from October 1

to October 7 – that straddles calendar weeks 40 and 41, as explained in Section

2.2 – is matched to calendar week 40. We find that the impact on referrals per-

sists throughout the subsequent weeks, similar to our estimates of the effects on

infections and testing activity. This prolonged impact likely captures the fact that

21



many of the individuals that were referred late to the contact tracing system fur-

ther spread the disease, resulting in an overall worsening of the local pandemic

situation.

The only subnational performance measure available at the UTLA level cap-

tures the share of contacts reached out of all contacts recorded from those pos-

itively tested individuals who were both referred to the contact tracing system

and successfully reached. These data do not include the time it took to reach in-

dividuals. In Panel C of Figure 4, we document some (more noisily estimated)

evidence suggesting that the performance of contact tracing declined more drasti-

cally in parts of England that experienced a stronger impact on late referrals due

to the data glitch. These estimates imply that the performance deteriorated with

fewer close contacts being successfully reached. Late referrals are associated with

a prolonged negative effect on the performance of the Test and Trace system that

extends well beyond the correction on October 3. The corresponding difference-

in-differences estimates are presented in Table 4.

4.4 Robustness exercises
We conduct a number of additional analyses to shed light on the robustness of

our findings.

Refined difference-in-differences estimation using matched pairs As outlined

in Section 3.2, we construct a refined difference-in-differences estimator based on

a procedure of matching areas which are highly similar in terms of their pre-

treatment exposure to the pandemic. This approach aims at creating even more

accurate treatment-control comparisons. In columns (4) to (6) of Table 2, we report

results that correspond to those in columns (1) to (3) except for the different con-

struction of control groups. We reliably estimate treatment effects that are statisti-

cally indistinguishable from the plain difference-in-differences approach. Similar

robustness exercises are reported for the other outcome measures that we study,

see columns (4) to (6) in Tables 3 and 4.

We point out that the matched-pairs design is empirically exceptionally de-

manding. By creating matched pairs and controlling for time-fixed effects specific
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to each pair, we conduct like-for-like comparisons by studying pandemic outcomes

within pairs of districts that have been on a highly similar trajectory just prior to

the data glitch.

Regional heterogeneity Before exploring to which extent our results are driven

by individual regions, we examine the regional heterogeneity of the estimated

treatment effects. To obtain these estimates, we refer back to our main difference-

in-differences model and interact the main treatment measure with a set of region

dummies, plotting out the coefficients along with 90% confidence bands. These are

presented in Appendix Figure A8. The results suggest that the impact of delayed

referrals on subsequent infections is most pronounced in the East Midlands, the

North West, the South East as well as in Yorkshire. The effects on COVID-19-

related deaths are more noisily estimated. This analysis suggests that the positive

impact on deaths is most severe in the East, London, the North West and Yorkshire.

Sensitivity to geographic regions and spatial disaggregation So far, we reported

our analyses at the the level of the Lower Tier Local Authority (315 units, Table

2). In Appendix Tables A2 and A3 we replicate our findings at the Upper Tier

Local Authority Level (149 units) as well as the NUTS3 region level (93 units).

Moreover, in Appendix Figure A9 we examine the sensitivity of our findings to

excluding individual areas from the estimation. We show the distribution of the

leave-one-out-estimator of the effect of late referrals on new cases and deaths,

separately for analyses conducted at the LTLA, UTLA and NUTS3 levels. The

observed sensitivity of the treatment effects to excluding individuals regions is

small.

Alternative functional forms for the relationship between late referrals and

COVID-19 spread Our main regression specifications estimate the effect of the

per capita level of late referrals on the per capita level of measures of COVID-

19 spread, controlling for the level as well as non-linear trends in pre-treatment

exposure to the pandemic. The non-linear nature of infection dynamics suggests

specifications with logarithms as an alternative. In Appendix Table A4, we addi-
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tionally estimate the same type of regressions using different combinations, such

as a log-log as well as a log-levels specification, replicating our main findings.

Alternative measures of late referrals As outlined in Section 2.3, we made con-

servative assumptions to construct our baseline measure of late referrals, but there

is some degree of flexibility in the calculation of the treatment measure. We explore

the sensitivity of our findings to the use of alternative approaches in Appendix Ta-

ble A6. Our main measure of late referrals aggregates all cases with a specimen

date between September 20 and September 26 that were not referred to Test and

Trace as of October 2. This measure is conservative in terms of the number of

late referrals it predicts: it relies on 7,242 late referrals that can most clearly be

identified as such, which is less than half of the officially reported figure of 15,841

late referrals. We report regression results analogous to those in Table 2 for three

alternative ways of inferring of late referrals that are due to the data glitch.

To this end, we non-parametrically estimate the time path of the typical report-

ing lag from the time immediately preceding the data glitch, i.e., for specimen

dates between September 1 and September 20 as described in Section 2.3. This

allows us to predict the fraction of cases with a given specimen date that should

be reported a given number of days after the test was taken.

We use this prediction exercise, first, to create an even more conservative mea-

sure than our baseline by subtracting the number of cases that we would expect

to not have have been reported by October 2 under the typical reporting lag. As

argued above, this barely affects our measure. Even for the latest date in the speci-

men date range considered, September 27, we would expect 95.9% of cases to have

been reported by October 2 under normal circumstances (see Table A1). This more

conservative measure reduces our predicted number of late referrals from 7,242 to

6,044.

Second, we create a more comprehensive, yet less conservative measure by

including specimen dates of up to October 1, and by accounting for the typical

reporting lag using the same non-parametric estimation as above. Note that due

to the potential divergence between the estimated typical reporting lag from pre-

treatment data and the actual reporting lag, this measure is noisy, especially for
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lower spatial aggregation. This measure leads to a total number of 9,755 late

referrals, still below the officially reported figure of 15,841 missed cases.

Third, we re-run our analyses using our baseline measure of late referrals as

a fraction of the total number of cases between September 20 and September 27

in a given area. As discussed in Section 2.3, this measure suffers from statistical

bias: because a fraction measure is noisy in areas with low case counts, it has an

artificial upward bias. We present estimation results for the fraction measure as

well as a version that exclude areas with a total case count below 50 during the

time of September 20 and 27.

All of these results are presented in Appendix Table A6. We replicate our main

results for each of these three alternative measures, and more compellingly, find

that the estimated effect magnitude varies little across specifications.

Placebo tests In Appendix Figure A10, we present a series of placebo tests. To

do so, we construct a simple estimator of late referrals by specimen date date as

follows. First, for each specimen date, we retrieve the number of cases that was

reported as of seven days following that specimen date. Second, we subtract this

number from the final, “true” case count for that specimen date, which is the

number of cases known for this specimen date as of the most recent version of the

data. This allows us to construct, for each specimen date, a measure of the number

of cases that are were not yet reported as of one week following the specimen date.

We construct this measure for each specimen before, during and after the period

that was affected by the Excel error.

The hypothesis of this placebo exercise is that judging from this measure of late

referrals for a specific specimen date, only specimen dates between September 20

and September 25 should be predictive of future case growth. For tests taken on

September 26, the case count seven days was already subject to the correction of

the data glitch that occurred on October 3.

We test this hypothesis by running our main specification (equation (2)) us-

ing these measures. The results are presented for both new infections and new

COVID-19-related deaths in Appendix Figure A10. We document that only the

missing case figures constructed in this fashion from around September 20 to
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September 26 strongly predict subsequent case growth and deaths.

Additional controls We conduct an exercise to address concerns about potential

confounding factors or non-linear trends in other area characteristics that may be

amenable to affect the spread of COVID-19. In Appendix Table A5, we re-run our

main analyses on new infections and deaths while inculding additional controls.

In columns (2) and (4), we add a large vector of 55 additional area characteristics

and interact them fully with a set of time fixed effects. The area characteristics are:

employment shares in 1-digit industries; educational attainment; socio-economic

status of the resident population, which also captures shares in full time education

or in university; and regular in-, and out commuting flows. These characteristics

come from the 2011 Census. We also leverage the detailed demographic makeup of

an area’s population by expressing population demographics as shares in ten year

age intervals. We further control for death rates in the first wave of the pandemic in

spring 2020; population density and its variability across small geographies within

an area. Throughout, despite these empirically highly demanding specifications

that control for non-linear case growth that may be induced by, e.g., school- or

university reopenings, the results remain virtually unchanged.

Alternative inference Inference in the paper is conducted using clustering of

standard errors at the spatial level at which the outcome data is measured. An

alternative is to conduct a type of randomization inference. To do so, we draw

repeated random samples of the main missing cases measure, redistributing the

missing cases randomly across districts. We do this in three ways: reshuffling

district exposure measures Mi across all districts in England; across all districts

within the 9 NUTS1 regions; and across all districts within the 33 NUTS2 regions.

For each exercise, we create 100 reshuffled treatment exposure measures using

these three approaches. This allows us to estimate the treatment effects for these

placebo treatment assignments. We would expect that the point estimate that are

obtained based on the true spatial distribution of the missed cases to be sharply

different from the null effects we would expect for the reshuffled distribution.

The latter may not be the case, especially for the reshuffling exercises at the
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region or NUTS2 region level: due to potential spatial autocorrelation, our treat-

ment effect estimates may spuriously pick up treatment effects due to such spatial

correlation. We present these results for new COVID-19 cases and deaths in Ap-

pendix Figure A11 as a set of kernel density plots of the distribution of the 100

point estimates that are obtained from these placebo exercises. We indicate with

a vertical line the point estimate obtained from using the true distribution of the

district exposure measures Mi. Throughout the exercises and the outcomes, we

can reject the null hypothesis that the effect we observe is spurious with implied

p-values that are below 0.01%.

The behavioral effect of lower reported case numbers Our analyses so far em-

phasize the effect that the delays in contact tracing have played for the progression

of the pandemic. Note, however, that the data glitch simultaneously led to lower

publicly announced new case numbers. Local variation in the share of cases that

was missing from these announcements might have affected people’s behavior.

More specifically, lower local case counts may be associated with less social dis-

tancing, more public activities etc. It is unclear to which extent the population

attends to and internalizes case numbers at the the local level. The most salient

figures are arguably those at the national level. The aggregate national growth

in cases due to the data glitch, however, is orthogonal to the regional variation

that our analyses exploit. To assess to which extent this endogenous response

to reported local cases numbers affects our results, we employ a method of ap-

proximating people’s activity based on mobility data (Google, 2020), as has been

successfully done in other work related to COVID-19 (Fetzer, 2020; Fetzer et al.,

2020; Yilmazkuday, 2020). Previous research showed that mobility measures pick

up people’s response to COVID-19 such as staying at home and predict the pro-

gression of the pandemic. As shown in columns (3) and (6) of Appendix Table

A5, however, controlling for a mobility metric does not affect estimates of the ef-

fect of late referrals, indicating that the behavioral response to the local number of

reported cases does not play a significant role here.
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Distribution of estimated effect sizes We estimate a distribution of effect sizes

across the universe of our robustness analyses laid out above. Regarding our key

outcomes of new infections and new COVID19-related deaths, we estimate the

following effect ranges: in our collection of point estimates, we find that each late

referral that we identify as being due to the data glitch was related to between 17.5

and 19 additional cases, and to between 0.21 and 0.29 additional COVID19-related

deaths during the six-week post-treatment period.

4.5 Quantification of effects
We offer a tentative quantification of the effects across the whole of England

and the English regions in Table 5. We anchor these point estimates on the main

point estimates presented in Table 2 as well as the most conservative point estimate

obtained from our most saturated specification in Appendix Table A5.

To arrive at the presented figures, we leverage the point estimate and simulate

the full distribution of effects for the post-treatment period that ranges from cal-

endar week 39 to including calendar week 44. For the cumulative new infections,

our point estimates suggest that with 90% confidence, between 13% to 40% of the

nearly 600,000 new detected COVID-19 infections may be attributable to the failure

to contact tracing. This calibration implies that 127,018 infections, or around 21%

of all detected infections may be due to the contact tracing failure.

The numbers of additional COVID-19-related deaths linked to the error are

estimated less precisely. Our central conservative point estimate would suggest

that, out of the total of 7,196 COVID-19 deaths during the time window, a similar

share of around 21% are due to the contact tracing error.

The table provides a range of further upper- and lower-bound estimates as

implied by the 90% confidence intervals spanning around the point estimates. It

also highlights that, not surprisingly, the effect is quite homogenous across the

English regions in a relative terms.

We advise caution, however, against taking these effect sizes at face value: due

to the complex structure of a pandemic, such as externalities across areas and

the non-linear nature of infectious developments, effect magnitudes are inherently

difficult to interpret.
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5 Conclusion
The large existing literature evaluating the effectiveness of contact tracing ex-

ploits observational data to establish correlational relationships (see, e.g., Klinken-

berg et al., 2006; Kendall et al., 2020; Kretzschmar et al., 2020b,a; Afzal et al., 2020;

Kucharski et al., 2020; Park et al., 2020; Grantz et al., 2020). This paper paper con-

tributes to this line of work by providing a causal estimate that leverages a unique

source of quasi-experimental variation. The gist of our main findings squares with

the previous state of evidence: despite numerous challenges faced by a contact

tracing system such as a population’s potential lack of trust, non-adherence and

privacy concerns, this non-pharmaceutical intervention can have a strong impact

on the progression of an infectious disease. In the context under consideration, the

non-timely referral to contact tracing due to a data blunder has likely propelled

England to a different stage of COVID-19 spread at the onset of a second pan-

demic wave. Our most conservative point estimates imply that the data glitch is

directly associated more than 120,000 additional infections and over 1,500 addi-

tional COVID-19-related deaths.

We acknowledge the following limitations of this study. First, there is substan-

tial heterogeneity in how different countries organize and implement their contact

tracing systems. Similarly, there is likely to be high variation in the extent to

which the population at difference places responds to and cooperates with the of-

ficial test-and-trace efforts. The results obtained in our analyses should thus be

viewed in the specific context of England with a nationally centralized tracing sys-

tem. We do not suggest any generality of our findings for other countries. Second,

the currently available data does not permit an exact reconstruction of the speci-

men dates of cases that were referred late to Test and Trace. As a consequence, we

made highly conservative assumptions in our identification of late referrals. The

number of late referrals that can be identified with high confidence as used in our

baseline analysis (7,242) strongly understates the officially reported figure of late

referrals (15,841). This implies that, in all likelihood, our conservative approach

underestimates the total impact of the data glitch.
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Figure 1: Delayed contact tracing referral: Identification of delayed referral to contact tracing

Panel A: Cases by date of test & by publishing date Panel B: Identifying missing cases across vintages

Panel C: Positive test results for tests taken Sept 24 Panel D: % cases not contact traced

Notes: Panel A plots the number of positive cases based on the date that case results are published as well as the number of positive cases based on the date that the test was
taken (not when the result was made public). There is a notable divergence between positive results published and positive test results from Sept 20 to Oct 2 capturing the
delayed referral of positive cases to contact tracing. Panel B documents the number of cases by date on which a test was taken for three different versions of the dataset: Nov
11, Oct 4 and Oct 2nd. The data for Oct 4 includes a large set of the missing positive cases that were not reported in the Oct 2 data version resulting in large upward revisions.
These revisions capture cases that were not referred to contact tracing until Oct 3 or 4th the earliest. Panel C illustrates this using data for all tests taken on Sept 24. Over time
the reported value of positive COVID-19 cases converges to the true value as all test results get processed. Usually, 5 days after a test is taken at least 95% of all test results
have been published. Between October 2 and October 3 the case count for Sept 24 jumps by around 715 cases or 12% of all cases due to the Excel glitch. Panel D illustrates the
geographic distribution of the fraction of cases tested from Sept 20 to Sept 27 that were not referred to contact tracing until Oct 3 or Oct 4.
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Figure 2: Impact of delayed referral to contact tracing, new COVID-19 infections and deaths

Panel A: Number of new COVID-19 cases per capita Panel B: Number of new COVID-19 deaths per capita

Notes: Figure presents regression estimates capturing the impact of cases that tested positive between Sept 20 to Sept 27 but were not referred to contact tracing until the
earliest October 3, 2020 on the outcome variables indicated in the figure panel heads. All regressions control for district fixed effects and date fixed effects, along with
non-linear time trends in the extent of true infections measured as of today during calendar weeks 37 and 38. Standard errors are clustered at the district level with 90%
confidence intervals shown.

36



Figure 3: Impact of Delayed Referral of COVID-19 positive cases to Test & Trace
on subsequent COVID-19 testing performance

Panel A: Tests per capita Panel B: Positive Tests per capita

Panel C: Share of positive tests

Notes: Figure presents regression estimates capturing the impact of cases that tested positive between Sept 20 to Sept 27 but
were not referred to contact tracing until the earliest October 3, 2020 on the outcome variables indicated in the figure panel
heads. Note that the subnational Test & Trace statistics are made available lack a lot of detail and reporting is not following
conventional calendar week definitions. Rather, a week refers to a time window ranging from Thursday to Wednesday of
the subsequent week. That implies that the week 39 label, covering to the period from 24 Sep 2020 to 30 Sep 2020, straddles
four days of calendar week 39 and three days of calendar week 40. All regressions control for district fixed effects and date
fixed effects, along with non-linear time trends in the extent of true infections measured as of today during calendar weeks
37 and 38. Standard errors are clustered at the district level with 90% confidence intervals shown.
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Figure 4: Impact of Delayed Referral to Contact Tracing on Test and Trace

Panel A: Referrals to Test and Trace per capita Panel B: Number of contacts reached

Panel C: Share of contacts reached

Notes: Figure presents regression estimates capturing the impact of cases that tested positive between Sept 20 to Sept 27 but
were not referred to contact tracing until the earliest October 3, 2020 on the outcome variables indicated in the figure panel
heads. Note that the subnational Test & Trace statistics are made available lack a lot of detail and reporting is not following
conventional calendar week definitions. Rather, a week refers to a time window ranging from Thursday to Wednesday of
the subsequent week. That implies that the week 39 label, covering to the period from 24 Sep 2020 to 30 Sep 2020, straddles
four days of calendar week 39 and three days of calendar week 40. All regressions control for district fixed effects and date
fixed effects, along with non-linear time trends in the extent of true infections measured as of today during calendar weeks
37 and 38. Standard errors are clustered at the district level with 90% confidence intervals shown.
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Table 1: Measuring the Number of Missing Cases Across Data Set Vintages

Date PHE Cases by test date and vintage ∆ Missing case measure

Nov 11 Oct 2 Oct 4 Oct 4 - Oct 2 Nov 11 - Oct 2 Nov 11 - Oct 4

20 September 2020 - 4578 4308 4569 261 270 9
21 September 2020 - 4609 4540 4604 64 69 5
22 September 2020 - 5269 5102 5251 149 167 18
23 September 2020 - 5795 4962 5704 742 833 91
24 September 2020 957 6199 5297 6132 835 902 67
25 September 2020 744 5912 4732 5840 1108 1180 72
26 September 2020 757 5560 4048 5476 1428 1512 84
27 September 2020 - 5944 3635 5898 2263 2309 46

28 September 2020 1415 8405 4969 8317 3348 3436 88
29 September 2020 3049 8598 4793 8461 3668 3805 137
30 September 2020 4133 10400 3123 10040 6917 7277 360
01 October 2020 4786 11172 51 10073 10022 11121 1099

Notes: Table illustrates how the number of missing cases is identified contrasting different versions of case data published on
the official English Coronavirus dashboard. We focus on our shock measure computing the missing cases between Sept 20 and
Sept 26. The bulk of the increase in cases for tests taken between Sept 20 - Sept 27 is corrected by the data update between Oct
4 to Oct 2. Revisions of figures for Sept 20 - Sept 27 are marginal after Oct 4th.
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Table 2: Impact of non-timely contact tracing on the pandemic progression

plain difference-in-difference matched pairs

(1) (2) (3) (4) (5) (5)

Panel A: Daily new COVID-19 cases per capita
Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.619*** 0.606*** 0.514*** 0.560*** 0.586***

(0.111) (0.111) (0.119) (0.120) (0.119) (0.121)

Mean DV 11.790 11.848 11.906 11.810 11.869 11.927
Observations 28665 28301 28119 28574 28210 28028
Spatial units 315 311 309 314 310 308
Additional controls 1001 1911 2821 15288 16198 17108

Panel B: Daily new COVID-19 deaths per capita
Post week 39 × Missing cases 20-27 Sept per capita 0.008*** 0.008*** 0.007** 0.006* 0.006* 0.005*

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Mean DV 0.183 0.184 0.185 0.183 0.184 0.185
Observations 28665 28301 28119 28574 28210 28028
Spatial units 315 311 309 314 310 308
Additional controls 1001 1911 2821 15288 16198 17108

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) present the main difference-in-differences
results. Columns (4) - (6) control for matched pair by time fixed effects. Matched pairs are constructed by identifying for each district
one that is closest in terms of the Euclidian distance between the following variables: new COVID-19 cases as of Oct 1, new COVID-19
deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in week 39, the average new cases and deaths per capita,
the average positive test share, the average number of tests performed during weeks 36-38, along with the growth rates in new cases,
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are clustered at the district level with starts
indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table 3: Impact of non-timely contact tracing on weekly COVID-19 test data

plain difference-in-difference matched pairs

(1) (2) (3) (4) (5) (5)

Panel A: Weekly Tests Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 2.665*** 2.894*** 2.746*** 2.769*** 2.990*** 2.886***

(0.512) (0.501) (0.516) (0.587) (0.526) (0.553)

Mean DV 304.007 304.007 304.070 304.242 304.242 304.307
Observations 28301 28301 28119 28210 28210 28028
Spatial units 311 311 309 310 310 308
Additional controls 1001 1911 2821 15288 16198 17108

Panel B: Weekly Positive Tests Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 0.674*** 0.685*** 0.676*** 0.560*** 0.617*** 0.648***

(0.122) (0.122) (0.130) (0.135) (0.135) (0.138)

Mean DV 13.468 13.468 13.496 13.493 13.493 13.521
Observations 27762 27762 27664 27671 27671 27573
Spatial units 311 311 309 310 310 308
Additional controls 1001 1911 2821 15274 16184 17094

Panel C: Share of tests returning a positive result
Post week 39 × Missing cases 20-27 Sept per capita 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean DV 0.036 0.036 0.036 0.036 0.036 0.036
Observations 27762 27762 27664 27671 27671 27573
Spatial units 311 311 309 310 310 308
Additional controls 1001 1911 2821 15274 16184 17094

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) present the main difference-in-differences
results. Columns (4) - (6) control for matched pair by time fixed effects. Matched pairs are constructed by identifying for each district
one that is closest in terms of the Euclidian distance between the following variables: new COVID-19 cases as of Oct 1, new COVID-19
deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in week 39, the average new cases and deaths per capita,
the average positive test share, the average number of tests performed during weeks 36-38, along with the growth rates in new cases,
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are clustered at the district level with starts
indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table 4: Impact of non-timely contact tracing on the weekly performance of contact tracing

plain difference-in-difference matched pairs

(1) (2) (3) (4) (5) (5)

Panel A: Referrals to Test and Trace Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 0.801*** 0.790*** 0.748*** 0.809*** 0.815*** 0.902***

(0.171) (0.170) (0.169) (0.171) (0.181) (0.203)

Mean DV 14.924 14.977 15.102 14.915 14.916 14.976
Observations 14378 14287 14105 14014 13832 13468
Spatial units 149 148 146 145 143 139
Additional controls 1001 1911 2821 7735 8554 9282

Panel B: Contacts Reached Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 0.897*** 0.880*** 0.836*** 0.887*** 0.888*** 1.006***

(0.232) (0.232) (0.234) (0.247) (0.260) (0.295)

Mean DV 20.232 20.295 20.442 20.177 20.174 20.236
Observations 14378 14287 14105 14014 13832 13468
Spatial units 149 148 146 145 143 139
Additional controls 1001 1911 2821 7735 8554 9282

Panel C: Share of contacts reached
Post week 39 × Missing cases 20-27 Sept per capita -0.000 -0.000 -0.001 -0.002* -0.001 -0.002*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Mean DV 0.633 0.633 0.633 0.633 0.633 0.633
Observations 14378 14287 14105 14014 13832 13468
Spatial units 149 148 146 145 143 139
Additional controls 1001 1911 2821 7735 8554 9282

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) present the main difference-in-differences
results. Columns (4) - (6) control for matched pair by time fixed effects. Matched pairs are constructed by identifying for each district
one that is closest in terms of the Euclidian distance between the following variables: new COVID-19 cases as of Oct 1, new COVID-19
deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in week 39, the average new cases and deaths per capita,
the average positive test share, the average number of tests performed during weeks 36-38, along with the growth rates in new cases,
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are clustered at the district level with starts
indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table 5: Quantification of impact of delayed or missing contact tracing on pandemic spread between calendar weeks 39
to 44

Panel A: Cases Implied estimates Ranges

Region Cases Col (1) Table 2 Col (3) Appendix Table A5 Levels % of all cases

Estimate 90% CI Estimate 90% CI Low High Low High
North East 44878 16573 11559 21587 11404 6828 15979 6828 21587 15% 48%
North West 161232 66903 46661 87145 46036 27565 64506 27565 87145 17% 54%
Yorkshire & ... 101873 27164 18945 35382 18691 11192 26190 11192 35382 11% 35%
East Midlands 59919 12703 8860 16547 8741 5234 12248 5234 16547 9% 28%
West Midlands 63546 17922 12500 23345 12332 7384 17280 7384 23345 12% 37%
East of England 29047 6339 4421 8257 4362 2612 6112 2612 8257 9% 28%
London 61371 19017 13263 24771 13085 7835 18336 7835 24771 13% 40%
South East 43307 10845 7564 14126 7462 4468 10456 4468 14126 10% 33%
South West 32208 7128 4972 9285 4905 2937 6873 2937 9285 9% 29%

England 597381 184595 128745 240445 127018 76056 177981 76056 240445 13% 40%

Panel B: Deaths Implied estimates Ranges

Region Deaths Col (4) Table 2 Col (6) Appendix Table A5 Levels % of all deaths

Estimate 90% CI Estimate 90% CI Low High Low High
North East 694 209 86 331 136 26 246 26 331 4% 48%
North West 2195 842 348 1337 550 107 992 107 1337 5% 61%
Yorkshire & ... 1085 342 141 543 223 43 403 43 543 4% 50%
East Midlands 653 160 66 254 104 20 188 20 254 3% 39%
West Midlands 747 226 93 358 147 29 266 29 358 4% 48%
East of England 474 80 33 127 52 10 94 10 127 2% 27%
London 529 239 99 380 156 30 282 30 380 6% 72%
South East 547 137 56 217 89 17 161 17 217 3% 40%
South West 272 90 37 142 59 11 106 11 142 4% 52%

England 7196 2324 960 3689 1516 295 2738 295 3689 4% 51%

Notes: Table provides a quantification exercise of the implied effects of the delayed contact tracing of COVID19 positive cases on subsequent
infections and deaths across English regions from calendar week 39 to 44 inclusive. Cases and Deaths refers to the cumulative total of new
COVID19 infections and deaths since week 39 up to week 44 inclusive. The subsequent columns provides the estimate of the number of cases
and deaths that appear econometrically linked to the cases that have not been referred to contact tracing. The table provides on the figures
implied by the central point estimate as well as the most conservative estimate. It further provides ranges associated with 90% confidence
intervals for the individual point estimates. The column head makes a reference to the specific point estimates leveraged.
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Appendix to “Does Contact Tracing Work?
Quasi-Experimental Evidence from an Excel

Error in England”
For Online Publication

Figure A1: Evolution of performance of centrally managed contact tracing effort
over time

Notes: Figure plots the share of contacts of individuals who were advised to self-isolate by time taken to reach them. The
vertical axis presents the share of all contacts of individuals that were asked to self-isolate that have been reached within
24h. This excludes data pertaining to cases where the individuals that are supposed to self-isolate have not been contacted
and may also exclude individuals who have not provided any details of close contacts. Individuals that were asked to
self-isolate in response to a positive test in weeks 39 and 40 were affected by the Excel error. The untimely referral caused
the contact tracing performance to decline.
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Figure A2: Delayed referral to contact tracing affecting individual cases with pos-
itive test result from Sept 20 - Sept 30

Sept 19 Sept 20 Sept 21 Sept 22

Sept 23 Sept 24 Sept 25 Sept 26

Sept 27 Sept 28 Sept 29 Sept 30

Notes: Figure plots the number of positive tests on the date indicated in the column head. The
vertical axis presents the number of positive cases while the horizontal axis presents the date on
which a case count was published. There are notable jumps in the case counts starting Sept 20 due
to positive cases not being reported and submitted to contact tracing due to an excel spreadsheet
error.
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Figure A3: Fraction of positive COVID-19 cases tested on a specific date by report-
ing delay
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Notes: Figure plots the share of positive COVID-19 test results that are reported, published and referred to contact tracing
as a function of the number of days since the test was taken. The maroon dashed line represents case data from Sept 1 to
Sept 20, 2020. On day 5 after the test was taken, on average, 92% of all test results have been published and individuals
have been referred to contact tracing. The blue line represents the same curve but for tests performed from Sept 20 to Oct
1st. There are notably fewer positive cases reported and referred to contact tracing as a result of the spreadsheet error. Up
to five days after the specimen for a test was taken only 61% of positive test results have been published. The black dotted
line presents the same data but for the period from Oct 5 to Oct 15 highlighting this was a temporary glitch.
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Figure A4: Geographic Signature of Oct 4 upward revision of Sept 24 COVID-19
positive cases across districts

Panel A: Sept 24 case count across vintages Panel B: Spatial spread of Oct 2 to Oct 4 jump

Notes: Figure plots the COVID-19 case figures as reported for Sept 24 across different reporting dates in Panel A. Panel B
presents the spatial distribution of the cases that were added to the jump in cases for Sept 24 between Oct 2 and Oct 4.

Figure A5: Fitting Evolution of Reported Cases since test date
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Notes: Figure plots data capturing the share of all positive COVID-19 tests that have been processed, reported and referred
to contact tracing as a function of the number of days that have passed since the COVID-19 test was taken on the horizontal
axis. The hallow circles refers to the average pattern in the data for Sept 1 to Sept 19. The red line is the one obtained
from fitting non-linear least squares of equation 1. The dashed line presents the evolution of the fraction of COVID-19 cases
reported and referred to contact tracing for tests taken on Sept 24. The fraction of reported cases jumps nine days after the
test was taken which coincides with the upward revision of October 3.
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Figure A6: Example Visualisation of Cosine Similarity measure for a pair of dis-
tricts

Cases per capita weeks 37 and 38 Tests per capita performed in week 39

Share of positive tests in week 39 New cases as of Oct 1 per capita

Notes: Figure plots example of the similarity measure used to construct matched pairs. The cosine
similarity measure is plotted along the horizontal axis. The vertical axis presents a subset of
features that are included in the cosine similarity measure. The matched pairs are indicated as
red diamonds representing two districts that are closest in terms of cosine similarity and form a
matched pair. Throughout, the two districts are very similar not just in terms of cosine similarity
but also in terms of similarity regarding each individual uni-dimensional measure.
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Figure A7: Contact Tracing Flowchart

Notes: Figure presents the process activating contact tracing as presented on GOV.UK (2020c).
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Figure A8: Regional Heterogeneity in Impact of Delayed Contact Tracing Referral
on new cases and deaths

Panel A: COVID-19 cases per day Panel B: COVID-19 deaths per day

Notes: Figure plots the impact of delayed referrals to test and trace on subsequent new COVID-19 cases (left panel) and
new COVID-19 deaths (right panel). All regressions correspond to the specifications presented in column (1) of Table 2, but
allowing the effect to be heterogenous across regions. 90% confidence intervals obtained from clustering standard errors at
the district level are indicated.
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Figure A9: Distribution of point estimates when dropping one region a time

Panel A: Dropping each of the 9 NUTS1 regions in turn

(a) New Cases per capita (b) New Deaths per capita

Panel B: Dropping each of the 30 NUTS2 regions in turn

(c) New Cases per capita (d) New Deaths per capita

Panel C: Dropping each of the 93 NUTS3 regions in turn

(e) New Cases per capita (f) New Deaths per capita

Notes: Figures present the distribution of the point estimates obtained when dropping all observations pertaining to one
region a time. The estimating regression has as dependent variable either the number of new COVID-19 infections or the
number of new COVID-19 deaths after week 40 as recorded in the most recent data version. All regressions control for area
fixed effects, time fixed effects and a non-linear time trend in the extent of the local COVID-19 spread measured per capita
during weeks 37 and 38. Standard errors are clustered at the district level.
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Figure A10: Placebo and treatment effect estimates of the number of missing cases and subsequent new infections
and deaths

Panel A: Cases per capita Panel B: Deaths per capita

Notes: Figure presents regression estimates of the number of missing cases on subsequent new COVID-19 case growth post calendar week 39 in Panel A and new COVID-19
deaths in Panel B. The number of missing cases on a specific date is computed by measuring, for each date, as the difference between the case count reported in the most
recent data version from November 11, 2020 and the case count published seven days after the actual test was taken. That is, the Sept 23 figures represent the gap in reported
cases between the Sept 30 version of the case count and the Nov 10, 2020 version of the case count for Sept 23. This implies missing cases affected by the Excel glitch would
appear in all data from Sep 20 to Sep 26 as the Excel error was only starting to be rectified from October 3. The point estimates obtained for the “missing cases measure” for
dates before Sept 20 and after Sept 30 serves as a placebo estimate. Standard errors are clustered at the district level with 90% confidence intervals shown.
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Figure A11: Randomisation inference: reshuffling the district-level exposure mea-
sure randomly

Panel BA: Reshuffling Mi across whole of England

(a) New Cases per capita (b) New Deaths per capita

Panel B: Reshuffling Mi across districts within each of the 9 NUTS1 regions

(c) New Cases per capita (d) New Deaths per capita

Panel C: Reshuffling Mi across districts within each of the 33 NUTS2 regions

(e) New Cases per capita (f) New Deaths per capita

Notes: Figures present the distribution of point estimates obtained from estimating the main difference-in-difference spec-
ification in column (1) of Table 2 when using 100 different reshuffled treatment exposure measure. Reshuffling is either
across all districts in England in Panel A; across all districts within each of the 9 NUTS1 regions; across all districts within
each of the 33 NUTS2 regions. The kernel density plots the distribution of the point estimates. The vertical line indicates the
point estimate obtained when using the actual Mi estimate which corresponds to the point estimates presented in column
(1) of Table 2. 10



Table A1: Comparison of usual case count share reported at least five days after
a test was taken across different data windows

Published date
Sept 24 Oct 2 Oct 14

Test date Sept 12 - Sept 19 Sept 20 - Sept 27 Oct 2 - Oct 9

Numer of days since test
5 95.9% 61.0% 94.0%
6 97.1% 72.7% 97.4%
7 98.8% 79.9% 99.2%
8 98.9% 85.3% 99.4%
9 98.9% 85.5% 99.3%
10 99.2% 96.6% 99.6%
11 99.0% 98.3% 99.6%
12 99.3% 94.1% 99.5%

Notes: Table presents the share of all positive tested cases published by the date indicated in
the column head covering different time windows up to a specific number of days after the test
was conducted. During the period affected by the Excel error, only 61% of all cases occurring
between Sept 20 and Sept 27 have been published and referred to contact tracing five days after
the test was done. This compares with 95.9% of positive cases immediately prior to the Excel
glitch and 94% of cases immediately after the Excel glitch.
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Table A2: Robustness of Impact of non-timely contact tracing on the pandemic progression : Analysis at the
Upper Tier Local Authority

plain difference-in-difference matched pairs

(1) (2) (3) (4) (5) (5)

Panel A: New Cases
Post week 39 × Missing cases 20-27 Sept per capita 0.619*** 0.621*** 0.635*** 0.680*** 0.688*** 0.776***

(0.160) (0.157) (0.161) (0.168) (0.176) (0.202)

Mean DV 14.069 14.115 14.228 14.054 14.043 14.083
Observations 14378 14287 14105 14014 13832 13468
Spatial units 149 148 146 145 143 139
Additional controls 1001 1911 2821 7735 8554 9282

Panel B: Deaths
Post week 39 × Missing cases 20-27 Sept per capita 0.010*** 0.009** 0.009** 0.011*** 0.011*** 0.014***

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Mean DV 0.202 0.202 0.204 0.201 0.201 0.202
Observations 14378 14287 14105 14014 13832 13468
Spatial units 149 148 146 145 143 139
Additional controls 1001 1911 2821 7735 8554 9282

Panel C: Tests
Post week 39 × Missing cases 20-27 Sept per capita 2.934*** 2.842*** 2.878*** 3.599*** 3.441*** 4.166***

(0.574) (0.602) (0.652) (0.678) (0.665) (0.894)

Mean DV 311.369 311.369 311.714 311.617 311.617 311.740
Observations 14287 14287 14105 13832 13832 13468
Spatial units 148 148 146 143 143 139
Additional controls 1001 1911 2821 7644 8554 9282

Panel D: Positivity rate
Post week 39 × Missing cases 20-27 Sept per capita 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean DV 0.044 0.044 0.044 0.045 0.045 0.045
Observations 13860 13860 13769 13118 13118 12936
Spatial units 148 148 146 143 143 139
Additional controls 1001 1911 2821 7322 8232 9051

Panel E: Contact tracing referral
Post week 39 × Missing cases 20-27 Sept per capita -0.000 -0.000 -0.001 -0.002* -0.001 -0.002*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Mean DV 0.633 0.633 0.633 0.633 0.633 0.633
Observations 14378 14287 14105 14014 13832 13468
Spatial units 149 148 146 145 143 139
Additional controls 1001 1911 2821 7735 8554 9282

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) present the main difference-in-differences
results. Columns (4) - (6) control for matched pair by time fixed effects. Matched pairs are constructed by identifying for each district
one that is closest in terms of the Euclidian distance between the following variables: new COVID-19 cases as of Oct 1, new COVID-19
deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in week 39, the average new cases and deaths per capita,
the average positive test share, the average number of tests performed during weeks 36-38, along with the growth rates in new cases,
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are clustered at the UTLA level with starts
indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A3: Robustness of Impact of non-timely contact tracing on the pandemic progression : Analysis at
the NUTS3 level

plain difference-in-difference matched pairs

(1) (2) (3) (4) (5) (5)

Panel A: New Cases
post × Missing cases 20-26 Sept per capita 1.210*** 1.275*** 1.039*** 0.899** 0.894** 0.704*

(0.256) (0.293) (0.276) (0.393) (0.414) (0.403)

Mean DV 11.051 11.113 11.267 10.986 10.959 11.253
Observations 11067 10948 10710 10948 10710 10234
Spatial units 93 92 90 92 90 86
Additional controls 1309 2499 3689 6783 7854 8806

Panel B: Deaths
post × Missing cases 20-26 Sept per capita 0.025*** 0.023*** 0.024*** 0.022*** 0.021*** 0.024***

(0.006) (0.007) (0.007) (0.006) (0.007) (0.008)

Mean DV 0.186 0.187 0.190 0.184 0.184 0.189
Observations 11067 10948 10710 10948 10710 10234
Spatial units 93 92 90 92 90 86
Additional controls 1309 2499 3689 6783 7854 8806

Panel C: Tests
post × Missing cases 20-26 Sept per capita 6.258*** 6.360*** 6.183*** 5.948*** 5.336** 5.292*

(1.577) (1.828) (1.918) (2.077) (2.193) (2.879)

Mean DV 281.180 281.180 281.833 280.602 280.602 282.266
Observations 10948 10948 10710 10710 10710 10234
Spatial units 92 92 90 90 90 86
Additional controls 1309 2499 3689 6664 7854 8806

Panel D: Positivity rate
post × Missing cases 20-26 Sept per capita 0.002*** 0.002*** 0.001*** 0.001* 0.001* 0.001

(0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Mean DV 0.036 0.036 0.036 0.038 0.038 0.038
Observations 10017 10017 9926 8946 8946 8764
Spatial units 92 92 90 90 90 86
Additional controls 1309 2499 3689 5740 6930 8029

Panel E: Contact tracing referral
post × Missing cases 20-26 Sept per capita -0.002* -0.002* -0.002* -0.003*** -0.003** -0.003*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Mean DV 0.634 0.634 0.633 0.633 0.634 0.634
Observations 8463 8372 8190 8372 8190 7826
Spatial units 93 92 90 92 90 86
Additional controls 1001 1911 2821 5187 6006 6734

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) present the main difference-
in-differences results. Columns (4) - (6) control for matched pair by time fixed effects. Matched pairs are constructed by
identifying for each district one that is closest in terms of the Euclidian distance between the following variables: new COVID-
19 cases as of Oct 1, new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in week
39, the average new cases and deaths per capita, the average positive test share, the average number of tests performed during
weeks 36-38, along with the growth rates in new cases, new deaths, positive test rate and tests performed in between weeks
36-38. Standard errors are clustered at the NUTS3 level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A4: Robustness of Results to Alternative Functional Forms

New COVID-19 cases New COVID-19 deaths

(1) (2) (3) (4) (5) (5)

Panel A: Main specification
Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.619*** 0.606*** 0.008*** 0.008*** 0.007**

(0.111) (0.111) (0.119) (0.003) (0.003) (0.003)

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel B: Log-Log per capita
Post week 39 × log(Missing cases 20-27 Sept +1 per capita) 0.239*** 0.248*** 0.224*** 0.045** 0.050** 0.045**

(0.045) (0.045) (0.048) (0.021) (0.021) (0.023)

Mean DV 1.746 1.748 1.753 -0.228 -0.229 -0.233
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel C: Levels-Levels
Post week 39 × Missing cases 20-27 Sept 0.977*** 0.967*** 0.970*** 0.009*** 0.009*** 0.009***

(0.139) (0.131) (0.135) (0.003) (0.003) (0.003)

Mean DV 24.169 24.361 24.505 0.346 0.348 0.350
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel D: Log-Levels per capita
Post week 39 × Missing cases 20-27 Sept per capita 0.020*** 0.022*** 0.022*** 0.006** 0.007** 0.007**

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Mean DV 1.746 1.748 1.753 -0.228 -0.229 -0.233
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel E: Log-Log
Post week 39 × log(Missing cases 20-27 Sept +1) 0.220*** 0.228*** 0.222*** 0.097*** 0.101*** 0.104***

(0.029) (0.029) (0.031) (0.015) (0.016) (0.017)

Mean DV 2.167 2.172 2.181 0.193 0.194 0.195
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) use new daily COVID-19 cases as dependent
variable while columns (4) - (6) explore new daily COVID-19 deaths as dependent variable. Standard errors are clustered at the district level with
starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.

14



Table A5: Robustness of Results to Additional Controls

New COVID-19 cases New COVID-19 deaths

(1) (2) (3) (4) (5) (5)

Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.443*** 0.417*** 0.007** 0.006** 0.005**
(0.119) (0.107) (0.101) (0.003) (0.003) (0.002)

Mean DV 11.906 11.906 11.991 0.185 0.185 0.185
Observations 28119 28119 27755 28119 28119 27755
Spatial units 309 309 305 309 309 305
Additional controls 2730 7371 7371 2730 7371 7371

Non-linear time trends in COVID-19 intensity weeks 36-38 X X X X X X
Non-linear time trends in vector of area controls X X X X
Google Daily Mobility Scores X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) use new daily COVID-19 cases as dependent
variable while columns (4) - (6) explore new daily COVID-19 deaths as dependent variable. Standard errors are clustered at the district level
with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A6: Robustness of Results to Alternative Treatment Exposure Measures

New COVID-19 cases New COVID-19 deaths

(1) (2) (3) (4) (5) (5)

Panel A: Main specification
Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.619*** 0.606*** 0.008*** 0.008*** 0.007**

(0.111) (0.111) (0.119) (0.003) (0.003) (0.003)

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel B: Curve fit Sep 20 - Sep 27
Post week 39 × Missing cases Sept/Oct per capita 0.654*** 0.664*** 0.641*** 0.008*** 0.009*** 0.008**

(0.125) (0.126) (0.133) (0.003) (0.003) (0.003)

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel B: Curve fit Sep 20 - Oct 1
Post week 39 × Missing cases Sept/Oct per capita 0.442*** 0.452*** 0.430*** 0.005*** 0.005*** 0.005**

(0.077) (0.076) (0.076) (0.002) (0.002) (0.002)

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel D: Fraction Missing cases Sept 20-27
Post week 39 × fracmissed2027sh 12.705** 12.232* 11.369* 0.037 0.053 0.015

(5.650) (6.246) (6.656) (0.098) (0.104) (0.111)

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185
Observations 28665 28301 28119 28665 28301 28119
Spatial units 315 311 309 315 311 309
Additional controls 1001 1911 2821 1001 1911 2821

Panel E: Missing cases Sept 20-27 high incidence places
Post week 39 × fracmissed2027sh cens2 39.734*** 41.164*** 45.858*** 0.245 0.311 0.324

(13.521) (14.468) (15.262) (0.216) (0.223) (0.241)

Mean DV 14.130 14.212 14.212 0.210 0.211 0.211
Observations 21385 21112 21112 21385 21112 21112
Spatial units 235 232 232 235 232 232
Additional controls 1001 1911 2821 1001 1911 2821

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) use new daily COVID-19 cases as dependent
variable while columns (4) - (6) explore new daily COVID-19 deaths as dependent variable. Standard errors are clustered at the district
level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A7: Impact of non-timely contact tracing on the weekly death statistics as reported by the Office of National
Statistics by place of death

plain difference-in-difference matched pairs

(1) (2) (3) (4) (5) (5)

Panel A: Weekly COVID-19 Deaths Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 0.006*** 0.007*** 0.006*** 0.005** 0.006*** 0.006***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Mean DV 0.079 0.080 0.081 0.079 0.080 0.081
Observations 28665 28301 28119 28574 28210 28028
Spatial units 315 311 309 314 310 308
Additional controls 1001 1911 2821 15288 16198 17108

Panel B: Weekly COVID-19 Deaths Recorded in Hospitals Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 0.006*** 0.006*** 0.005*** 0.006*** 0.006*** 0.006***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Mean DV 0.060 0.060 0.060 0.060 0.060 0.060
Observations 28189 28189 28007 28098 28098 27916
Spatial units 311 311 309 310 310 308
Additional controls 1001 1911 2821 15288 16198 17101

Panel C: Weekly COVID-19 Deaths Recorded in Care Homes Per Capita
Post week 39 × Missing cases 20-27 Sept per capita 0.000 0.001 0.001 -0.001 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Mean DV 0.015 0.015 0.015 0.015 0.015 0.015
Observations 28224 28224 28042 28133 28133 27951
Spatial units 311 311 309 310 310 308
Additional controls 1001 1911 2821 15288 16198 17108

Panel D: Weekly COVID-19 Deaths Recorded in Other Communal Establishments Per Capita
Post week 39 × Missing cases 20-27 Sept per capita -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean DV 0.000 0.000 0.000 0.000 0.000 0.000
Observations 28259 28259 28077 28168 28168 27986
Spatial units 311 311 309 310 310 308
Additional controls 1001 1911 2821 15288 16198 17108

Non-linear time trends in COVID-19 intensity weeks 36-38
Cases per capita deciles x Date X X X X X X
Tests per capita deciles x Date X X X X
Positive test rate deciles x Date X X

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) present the main difference-in-differences
results. Columns (4) - (6) control for matched pair by time fixed effects. Matched pairs are constructed by identifying for each district
one that is closest in terms of the Euclidian distance between the following variables: new COVID-19 cases as of Oct 1, new COVID-19
deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in week 39, the average new cases and deaths per capita,
the average positive test share, the average number of tests performed during weeks 36-38, along with the growth rates in new cases,
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are clustered at the district level with starts
indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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