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Abstract

Lead exposure still threatens children’s health despite policies aiming to identify
lead exposure sources. Some US states require de jure universal screening while others
target screening, but little research examines the relative benefits of these approaches.
We link lead tests for children born in Illinois between 2010 and 2014 to geocoded
birth records and potential exposure sources. We train a random forest regression
model that predicts children’s blood lead levels (BLLs) to estimate the geographic
distribution of undetected lead poisoning. We use these estimates to compare de jure
universal screening against targeted screening. Because no policy achieves perfect
compliance, we analyze different incremental screening expansions. We estimate that
6,626 untested children had a BLL≥ 5µ/dL, in addition to the 18,115 detected cases.
83% of these undetected cases should have been screened under the current policy.
Model-based targeted screening can improve upon both the status quo and expanded
universal screening.
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1 Introduction

A recent literature has emphasized the role of place in shaping early childhood opportunities,

however “we know little about the relative importance of the different mechanisms that are typically

‘bundled’ together within a neighborhood”, including pollution (Chyn and Katz, 2021). Lead is a

neurotoxic heavy metal that has been widely used in paint, gasoline, and plumbing. Because it does

not decay, it still plagues neighborhoods throughout the United States, contaminating homes, soil,

and water, and endangering human health. Early childhood lead exposure is especially harmful; it is

associated with lifelong developmental impacts, including decreased IQ and increased impulsivity

and delinquency (Aizer and Currie, 2019; Aizer, Currie, Simon, and Vivier, 2018; Feigenbaum

and Muller, 2016; Reyes, 2014; Reyes, 2015; Bellinger, Stiles, and Needleman, 1992; Winter and

Sampson, 2017; Grönqvist, Nilsson, and Robling, 2020). These burdens are disproportionately

borne by communities of color and families of low socioeconomic status, potentially exacerbating

existing inequalities (Zartarian, Xue, Tornero-Velez, and Brown, 2017; Sampson and Winter, 2016).

Lead paint was extensively used in the first half of the last century, until its ban for residential

purposes in 1978 due to its recognized health hazards. The US Department of Housing and Urban

Development estimates that lead paint still lingers in 5.5 million houses inhabited by small children

nationwide, resulting in hazards in a fifth of homes with small children and constituting the major

source of lead exposure today, following the deleading of gasoline between 1973 and 1995 (HUD

(U.S. Department of Housing and Urban Development), 2011; Dewalt et al., 2015). In recognition

of these risks, federal and state agencies continue to enact and fund policies to “get the lead out”,

including disclosure and abatement mandates of known lead hazards in homes. Yet, these policies

appear to have failed to eliminate lead exposure: an estimated 500,000 young children are still

poisoned by lead each year in the US (Aizer, Currie, Simon, and Vivier, 2018).

This paper sheds light on one possible reason for this policy failure: imperfect information on

the location of lead hazards. A recent study using data from the National Health and Nutrition

Examination Survey highlights the potential importance of this channel, finding that US states

detect and report only 64% of the actual cases of BLL≥ 10µg/dL to the CDC (Roberts et al.,

2017). To analyze the role of hidden hazards and undetected lead poisoning, we use machine

learning to predict the BLLs of children who were never tested and identify those most at risk of

lead exposure. Our results highlight that the spatial distribution of lead exposure sources can be

used to better target resources to uncover and remediate hidden lead hazards that would otherwise

contribute to persistent patterns of spatial inequality.

Lead poisoning prevention programs in the United States follow a secondary prevention ap-

proach: blood lead screening identifies lead-exposed children who are then referred for case man-

agement, including removal of exposure sources. Deciding which children to screen is thus crucial

for identifying lead hazards. Federal guidelines mandate that all children on Medicaid be screened
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at ages one and two; guidelines for other children vary by state. Importantly, the screening require-

ment for children on Medicaid is unenforced. Some states, including Illinois, incentivize providers

to achieve high screening rates among Medicaid patients as part of bonus schemes that target

several performance measures (Tong, Artiga, and Rudowitz, 2022). Fourteen states and the Dis-

trict of Columbia currently adopt de jure universal screening, that is testing all children, although

their screening rates fall well short of 100% (Michel, Erinoff, and Tsou, 2020). Other states have

adopted the targeted screening approach recommended by the CDC, wherein testing is required

only for children deemed at high risk for lead exposure, identified through either socioeconomic and

location information or a self-assessment questionnaire (CDC, 1997). Thus, testing is not carried

out in response to symptoms, but rather as a preventative measure. This is a reasonable approach

given that lead exposure is asymptomatic and occurs very early in life for most of the cases in our

sample (CDC, 2013; CDC, 2022).

Currently, the state of Illinois adopts a targeted screening approach. The Illinois Department of

Public Health (IDPH) designates zip codes as high-risk based on housing age and the percentage of

children living below 200% of the federal poverty line (Figure 1). Children must receive a BLL test

at ages one and two if they reside in one of these high-risk zip codes, if they are on Medicaid, or if

they are flagged based on a risk assessment questionnaire. During most of our sample period (2010-

2016), the intervention threshold in Illinois was 10µg/dL, but from 2015 local delegate agencies were

given the option to lower the threshold based on their funding. In 2019, the intervention threshold

was lowered to 5µg/dL statewide.

While targeted screening might better balance the costs of screening with the potential benefits

of early detection and treatment, its efficacy hinges on the quality of the targeting tools available.

At present, these include self-assessment questionnaires (Dyal, 2012; Binns, LeBailly, Fingar, and

Saunders, 1999) and existing estimates of the distribution of exposure risks. Precisely because

screening is targeted, however, the sample of children used to construct these tools is not represen-

tative of the population as a whole and could lead to biased results (Manheimer and Silbergeld,

1998). Moreover, the CDC targeting guidelines were last updated when the intervention thresh-

old was 10µg/dL (Tsoi, C.-L. Cheung, T. T. Cheung, and B. M. Y. Cheung, 2016), so at today’s

5µg/dL reference level, or a proposed threshold of 3.5µg/dL, the benefits of targeted screening may

diminish (Abbasi, Pals, and Gazze, 2020).

To address these concerns, we propose an improved methodology for predicting undetected

childhood lead exposure in Illinois and use it to evaluate a number of alternative targeted screening

policies. Our approach combines flexible machine learning tools with a newly-constructed dataset

linking lead tests to geocoded birth records and a host of other spatial characteristics thought to

predict lead exposure (e.g. housing age, proximity to major roads, and industrial lead emissions).

Under a selection-on-observables assumption, these two ingredients allow us to “fill in” the missing

BLLs for all children born in Illinois between 2010 and 2014, thus estimating the number of above-
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threshold BLLs missed under the current targeted screening policy and the associated costs related

to IQ losses these children bear. We use these predictions to estimate how many of these additional

above-threshold BLLs would be detected under different policies, taking into account compliance

with screening guidelines, as well as different prioritization rules of targeted vs. de jure universal

screening policies. While ours is not the first paper to use machine learning to predict lead exposure

risk, (Lobo, Kalyan, and Gadgil, 2021, Potash et al., 2020), we innovate in several respects. First,

our model recognizes that the harm from lead exposure depends on the BLL itself, rather than

merely whether the BLL exceeds a particular threshold. For this reason, our preferred specification

is a continuous-outcome random forest regression model for BLLs. Second, rather than tuning and

evaluating our models using default metrics, e.g. root mean squared error, we introduce a novel,

policy-relevant metric and use it throughout. Third, we leverage these machine learning results to

shed light on the important and understudied question of how best to design a targeted screening

policy.

Our model predicts BLLs for each child born in Illinois between 2010 and 2014, regardless

of whether they were screened for lead exposure. We train this model using lead testing records

linked to geocoded birth records as well as other characteristics that are understood to contribute to

lead exposure (housing age, proximity to major roads, and industrial lead emissions). Using these

predictions, we estimate the number of undetected above-threshold BLLs (both at BLL≥ 5µg/dL

and ≥ 10µg/dL) and the costs associated to lead exposure these children bear under the status

quo targeted screening strategy, as well as under a de jure universal screening strategy. To account

for imperfect compliance with de jure universal screening, we repeat this estimation under various

assumptions about screening compliance.

We report two main findings. First, we find evidence of significant under-detection: we estimate

that over a quarter of cases of BLLs at or above 5µg/dL went undetected during our sample period.

Second, undetected lead exposure cases appear to be disproportionately located in high-risk zip

codes, where all children are supposed to be screened already under the current policy. As a result,

increasing screening rates in areas already targeted for screening would uncover more cases than

extending de jure universal screening at current compliance rates. Improving screening rates in

these high-risk zip codes could decrease inequality in human capital and labor market outcomes in

Illinois.

This paper contributes to a literature examining the benefits of expanding from targeted to

de jure universal screening. So far, studies have projected the benefits of universal screening

by multiplying the rate of elevated BLLs among the tested by the number of untested children

(Maryland Department of Health and Mental Hygiene, 2015; McMenamin et al., 2018). This

approach makes two crucial assumptions. First, it assumes perfect compliance with a hypothetical

universal screening program. Based on other evidence from other public health screening programs

(Einav et al., forthcoming; Kim and Lee, 2017) this seems unlikely. Second, this approach assumes
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that elevated BLLs are just as common among untested children as among tested children, in

other words that BLLs are “missing completely at random.” This assumption seems unlikely to

hold a priori, especially given that existing policies target children thought to be at the highest

risk. Indeed, our analysis suggests that this assumption is incorrect and that using it dramatically

overestimates the benefits of de jure universal screening. Proceeding under the weaker assumption

of selection-on-observables into testing, also known as “missing at random”, we estimated that

the rate of BLLs ≥ 5µg/dL is around one third as high among the untested as among the tested.

Importantly, our analysis adjusts for a large number of observed characteristics, including those

that are currently used to target children for screening. This approach explicitly acknowledges that

children tested under a targeted screening scheme are, by construction, a higher risk group.

2 Data

We obtained birth records for all 807,694 children born in Illinois between 2010 and 2014 from

IDPH. These birth records include the child’s address, race, ethnicity, parental education level,

parental age, and other demographic information.1 We also obtained records of all 1,105,168 lead

tests performed in Illinois between 2010 and 2016 on children born between 2010 and 2014. We

limit birth records to this time period because we use the highest BLL recorded for each child

by age two as our outcome of interest. We use testing by age two both because the damage of

lead exposure is thought to be more severe at lower ages, and to align with the federal screening

guidelines for children on Medicaid, which specifically require two tests by age two. Each lead test

record contains the name of the child, the date of the blood draw, the type of blood test used

(venous or capillary), the measured BLL, and the laboratory that processed the test. Because

venous tests are more reliable than capillary tests, we default to using each child’s highest venous

test result. If a child has not received a venous test, we instead use the highest capillary test result.

Certain laboratories had minimum reporting limits, meaning all BLLs below a certain threshold

were reported as the threshold limit (e.g. reporting BLL≤ 3µg/dL as 3µg/dL). We determine

minimum reporting cutoffs for each laboratory/test type/year combination by manually reviewing

BLL histograms. The BLL distribution is right-skewed, meaning an absence of tests below a certain

value for a given laboratory likely indicates a minimum reporting limit. We recode these to the

mean BLL of children in the same zip and age cohort. We estimate that 6,943 children in our

sample had their maximum blood lead level by age two analysed in laboratories with a reporting

limit ≥ 5µg/dL. These children are currently excluded from our machine learning pipeline.

To obtain information on potential lead exposure sources, we link the lead testing and birth

datasets using a custom fuzzy matching algorithm based on the Jaro-Winkler string distance of first

1See Table A1 for more details.
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name, last name, and date of birth, with manual determination of optimal cutoffs (Winkler, 1990).

We use addresses at time of birth because these are observed for both screened and unscreened

children. As such, we might overestimate the number of unscreened children if they have moved out

of state after birth, and we might misallocate children to low- or high-risk zip codes. We successfully

geocode birth addresses for 734,699 children, that is 91% of all birth records in our universe are

included in our analysis. For each census block group, the American Communities Survey provides

data on socioeconomic status, percent homeowners, and social vulnerability index. We obtained

data on housing age from the Zillow Transaction and Assessment Dataset, and geocode these data

for linkage to birth addresses. We also collected the Environmental Protection Agency’s Toxic

Release Inventory (TRI) data which detail industrial lead emissions by facility, and the location of

state and interstate highways from the Illinois Department of Transportation. We then calculate

the distance from lead-emitting facilities and roadways to each child’s address.

Table 2 shows summary statistics for selected characteristics of children in our sample, stratified

by whether a child was tested for lead exposure by age two. Tested children are more likely to be

Black (20.4% vs. 14.1% p<0.001), Hispanic (28% vs. 16.2%, p<0.001), and have mothers without

college education (43.9% vs. 27.9%, p<0.001). At birth, they are more likely to live in low-income

census block groups (32.7% vs. 16.0%, p<0.001) and in pre-1930 housing (39.5% vs. 22% p<0.001).

3 Methodology

We use machine learning methods to predict the incidence of elevated blood lead levels among

unscreened children in Illinois under a selection-on-observables assumption. Our key maintained

assumption is that a child’s BLL Yi is independent of her screening status Si conditional on the

observed covariates Xi given in Table A1. In other words, we assume that

Yi |= Si|Xi. (1)

As is well-known, (1) cannot be directly tested unless one has access to exogenous instrumental

variables or is willing to make parametric functional form assumptions. Given the rich covariate

information at our disposal and the flexible models that we employ, however, we consider (1) to be

a reasonable approximation.

Under (1), we can use the observed BLLs for screened children (Si = 1) with covariates Xi = x

to impute the unobserved BLLs for un-screened children (Si = 0) with the same covariate values.

We take a two-step approach to this problem. First we estimate a scalar-valued risk score function

r(Xi) that ranks children by their risk of elevated BLLs, conditional on covariates. This function

tells us how how best to prioritize children for screening based on their observed characteristics.

Second, we estimate m(Xi) ≡ E[Yi|r(Xi)] via local quadratic regression. Both of these steps use
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data for screened children, leveraging our selection-on-observables assumption. In Section 4, we use

r(·) and m(·) to impute the BLLs of untested children in Illinois and carry out policy experiments

comparing the effects of alternative screening policies.

3.1 Evaluation Metric: Cost-Weighted Targeting Efficiency

To choose an appropriate function r(·), we combine standard machine learning methods with

a novel, problem-specific evaluation metric that we call cost-weighted targeting efficiency

(CWTE). To motivate our approach, it is helpful to begin by considering an alternative that

compares screening policies based on false positive and false negative rates, as illustrated by the

confusion matrix in Table 1. Suppose that a BLL of 5µg/dl or above is considered “elevated.” Then

we could view a child with a BLL below 5 who is nonetheless screened as a “false positive” (type II

error) and a child with a BLL above 5 who is not screened as a “false negative” (type I error). While

natural, this approach has three limitations. First, the false negative rate can always be driven

to zero by simply testing more children, regardless of how effectively a given policy targets those

most at risk. Second, even when comparing two policies that test the same number of children, so

that the first criticism does not apply, it is still necessary to choose how much weight to give to

each type of error. Policy A could have a lower false positive rate than policy B but a higher false

negative rate. Third, and most importantly, any hard threshold for BLLs to count as “elevated” is

arbitrary: no level of lead in the blood is considered safe and the Environmental Protection Agency

has set a maximum contaminant level goal of 0 for lead (EPA, 2021). If a child with a BLL of

4µg/dl is classified as “elevated” is it really reasonable to call this a false positive?

We designed CWTE to address each of these concerns. The intuition is simple: not all elevated

blood lead levels are created equal. A BLL of 80 µg/dl is far more harmful, hence more costly, than

one of 5µg/dl. For this reason, we assume that policymakers would prefer to identify children with

higher BLLs before children with lower BLLs, all else equal. CWTE evaluates a risk score function

r(·) by comparing the rankings that it produces to an infeasible optimal ranking that perfectly

orders children from highest to lowest BLL. To operationalize this idea, we assign a policy-relevant

dollar value to the deviation between a feasible risk ranking and the optimum. To this end, let c(·)
be an increasing function that gives the cost associated with a BLL of Yi. We take this as the value

of identifying child i as lead-exposed, because of existing evidence suggesting that at least some of

these costs can reasonably be averted with appropriate treatment (Billings and Schnepel, 2018).

In our policy experiments below, we construct c(·) using off-the-shelf estimates of the costs

of lead exposure at a given level. The per-child social cost of lead exposure would sum health

and human capital costs for directly exposed children, including cognitive and non-cognitive losses

(Schwartz, 1994), as well as spillovers in terms of lost productivity of parents and disruption in

peers’ learning (Gazze, Persico, and Spirovska, forthcoming). However, because health costs and
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indirect costs are harder to estimate for specific BLLs, we follow the literature and focus on cognitive

costs (Hollingsworth and Rudik, 2021). Specifically, we take the average IQ point loss per 1µg/dl

for different levels of exposure from Lanphear et al., 2005 and Gould, 2009. This is 0.513 for

BLLs ≤ 10 µg/dl, 0.19 for BLLs 10− 19µg/dl, and 0.11 for BLLs ≥ 20 µg/dl. We monetize these

losses considering that one IQ point decrease for a three year old is associated with a present value

earnings loss of $20,568 in 2019 dollars (Klemick, Mason, and Sullivan, 2020). We note that a BLL

of 1µg/dL — the smallest value that appears in our data — implies an IQ cost of around $10,500.

Figure A1 illustrates the costs associated with each blood lead level. We note, however, that the

idea behind CWTE is general: the same approach could be used with any function that assigns a

cost to BLLs.

Having chosen an appropriate cost function c(·), suppose that we decide to screen n out of

a total of N children. The optimal screening policy tests the n children with the highest BLLs

Yi, yielding the highest possible averted cost Cmax(n). Screening n children chosen completely at

random, on the other hand, yields a total averted cost of nE[Yi], on average. Any reasonable risk

score should perform better than random screening, but no risk score can perform better than

the optimal policy. Let Cr(n) be the total averted cost of risk score function r(·), defined as the

sum of c(Yi) over the BLLs Yi of the n children with the highest values of r(Xi). Then we have

nE[Yi] ≤ Cr(n) ≤ Cmax(n).

A natural way to rank two risk score functions, r1(·) and r2(·), is to compare their corresponding

averted cost functions C1(n) and C2(n) to see which comes closest to the infeasible optimum

Cmax(n). In practice, however, it is unlikely that policymakers have a specific value of n in mind.

Ideally we would prefer a screening policy that performs well over a range of values of n. This

complicates the problem because C1(n) and C2(n) could cross when plotted as a function of n.

Suppose that r1 is extremely reliable in discerning which children will have a BLL above 20µg/dl

but no better than chance at determining which children have a BLL below 5 versus one between

5 and 20. In contrast, r2 is extremely good at distinguishing BLLs in the range from 1 to 10, but

unreliable for larger BLLs. Then we will have C1(n) > C2(n) for sufficiently small values of n

but C1(n) < C2(n) for sufficiently large values of n. This is similar to the problem of comparing

machine learning classifiers using operating characteristic (ROC) curves: if the curves cross, the

ranking of classifiers depends on the desired false positive rate.

To solve this problem, CWTE integrates the averted cost curve, as shown in Figure 2. This idea

is analogous to the area under the curve (AUC) measure for classification problems, constructed

by integrating the ROC curve. To simplify the figure and computations, we normalize all averted

cost curves by Cmax(N), the maximum total averted cost if all children were screened, and replace

the argument n with n/N , the the fraction of children screened. This transformation ensures that

averted cost curves always lie within the unit square, and normalizes that of the random screening

rule to coincide with the 45-degree line. Finally, we define CWTE for a risk score function r(·) as
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the area between its averted cost curve Cr(·) and that of random screening, relative to the area

between the area between the infeasible optimum averted cost curve and random screening. As

such, like the familiar regression R-squared measure, CWTE lies between zero and one, with higher

values indicating better performance.

3.2 Choosing a Risk Score Function

To construct an appropriate risk score function r(·) for use in our policy experiments below,

we apply standard machine learning methods to estimate conditional mean functions of the form

E[φ(Yi)|Xi, Si = 1] for a number of choices of φ(·) discussed below. Since (1) implies

E[φ(Yi)|Xi, Si = 1] = E[φ(Yi)|Xi, Si = 0]

for any choice of φ(·), we can use BLLs for children who have been screened, Si = 1, to recover a

risk score function that can rank children who have not.

We consider choices of φ(·) that lead to both regression and classification approaches. The

regression approach corresponds to φ(y) = y, in which case we estimate r(x) = E[Yi|Xi = x, Si = 1].

This approach equates risk score with the conditional mean of BLL given observed covariates. In

contrast, the classification approach corresponds to φ(y) = 1{y ∈ A} for some set A, in which case

we estimate P(Yi ∈ A|Xi, Si = 1). We consider three versions of the classification approach. The

first two set r(x) equal to P(Yi ≥ 5|Xi = x, Si = 1) and P(Yi ≥ 10|Xi = x, Si = 1), respectively.

This approach equates risk score with the probability of having an elevated BLL, where “elevated”

is defined as ≥ 5 and 10µg/dl. Each of these definitions yields a binary classification problem.

As discussed above in Section 3.1, however, the use of a hard binary threshold ignores potentially

important distinctions–e.g. 5 versus 80µg/dL–while magnifying unimportant ones–e.g. 4 versus

5µg/dL. For this reason, we consider a third multi-class classification approach based on Figure

A1. In this approach we calculate the conditional probability given Xi = x that Yi falls into each

of the bins [0, 5), [5, 10), [10, 20), and [20,+∞). To convert these four conditional probabilities into

a scalar risk score r(x), we average them with weights equal to the population average BLL within

each bin. This is effectively a discrete approximation to the regression approach described above.

A model of E[φ(Yi)|Xi, Si = 1] that is too flexible will correct for selection-on-observables (low

bias) at the cost of making extremely noisy predictions (high variance). In contrast, a rigidly

parametric model will make extremely precise predictions (low variance), but may fail to fully

correct for selection-on-observables (high bias). To navigate this trade-off, we tune, estimate, and

evaluate all of our models using a training-testing split. Observations that are used for model

estimation are not used for model evaluation, and vice-versa. There is no such thing as “the best”

predictive model; there is only the best predictive model for a given purpose. For this reason,
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we explicitly tie our machine learning exercises to the policy question at hand, using the CWTE

evaluation metric described above in Section 3.1 to tune each of our competing risk score models

and choose which to use in our policy experiments below.

The precise details of our machine learning pipeline are as follows. All of the steps described

below are carried out using the R package tidymodels, ensuring that all data processing steps

are consistent across models and fully replicable. We begin by constructing the variables listed in

Table A1 from our raw data and extracting the subset for which Si = 1, tested children. Note that

we exclude the final four variables in the table–distance to provider–from our risk score exercise.2

Starting from the observed continuous BLL variable, we construct three categorical BLL variables

as follows: an indicator that Yi ≥ 5, an indicator that Yi ≥ 10, and a categorical variable that

indicates which of the bins [0, 5), [5, 10), (10, 20], (20,+∞) a given observation of a child maximum

BLL by age two falls into.

We then construct an 80%-20% training-testing split for model evaluation, and further subdivide

the 80% training sample into five equally-sized cross-validation folds for model tuning. Both the

initial training-testing split and the subsequent cross-validation folds are constructed by sampling

randomly within strata defined by the values of the categorical BLL variable. This ensures that

the training and testing data, and each of the cross-validation folds, have the same proportion of

BLLs within each of the “bins” listed above. Stratification is crucial for accurate model tuning

and evaluation in this example because high BLLs are rare. Without stratification a given cross-

validation fold could end up with zero BLLs above 20µg/dl, purely by chance, leading to misleading

tuning results. Within strata, we sample observations independently and uniformly at the level

of individual children rather than geographic aggregates such as zip codes. This choice is based

on our selection-on-observables assumption and the goal of this paper. We do not aim to predict

BLLs in a new zip code, one for which BLLs are currently unobserved, or a new year, one for

which data are not yet available. Instead, it is to impute the missing BLLs of children who are

already included in our dataset. In other words, ours is an interpolation exercise rather than an

extrapolation exercise. As a general rule, the design of a cross-validation exercise should mimic

the structure of the real prediction problem as closely as possible. If the goal is to predict BLLs

for individuals in a new zip code, then cross-validation folds should be constructed by sampling

whole zip codes to ensure that the predictive model cannot pick up information from zip code level

unobservables. This information would be unavailable when extrapolating to a new zip code, so it

should not be used in the tuning and training exercise. In contrast, when the goal is to impute the

missing BLLs for children who live in a zip code where we do observe some BLL data, picking up zip

code level unobservables is a feature rather than a bug. Our cross-validation exercise simulates this

prediction exercise exactly: we randomly drop the BLLs for some children in each zip code, use the

2These are used below to construct a screening propensity score for our policy experiments.
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others to fill in the gap under selection-on-observables, and check the accuracy of our interpolation

against the real data.

After constructing our training-testing split and cross-validation folds, we define a tidymodels

“recipe” for processing the predictor variables. This automatically ensures that all data preparation

steps are consistent across sub-samples and models throughout training, tuning, and evaluation.

For example, if a predictor is centered around the sample mean, during tuning this mean should

only be computed using the appropriate portion of the training data, excluding one of the cross-

validation folds. We encode all categorical predictors from Table A1 as an exhaustive set of dummy

variables, including an indicator for “missing” and replace missing values of continuous predictors

with the sample mean of the appropriate subset of the training data.

We use random forests to fit an approximation to E[φ(Yi)|Xi, Si = 1] for the various choices

of φ(·) described above, via the R package ranger in concert with tidymodels. Random forests

are an attractive choice for this problem because they can approximate complicated non-linearities

and interactions between predictor variables in a computationally efficient way, without requiring

the user to explicitly construct features that capture these nonlinear effects. They also tend to

be quite robust to over-fitting and relatively easy to tune. For the regression model, φ(y) = y,

we use variance as our regression tree splitting rule; for the classification models, binary and

multi-class, we use the Gini index.3 For both regression and classification models, we use 500

trees and tune the parameters mtry–the number of variables to consider in each recursive split–

and min n–the minimum number of observations per leaf–via cross-validation with CWTE as our

evaluation metric.4 We set all other parameters of ranger to their default values. For each of

these random forest models, regression and classification, we construct a parameter grid of 20

combinations of mtry and min n following a space-filling, Latin hypercube design via tune grid()

and grid latin hypercube() from tidymodels. We use the default parameter choices to construct

these tuning grids, but double the default number of grid points from 10 to 20 to permit some

greater granularity. Overall, our random forest models are quite insensitive to the choice of tuning

parameters. Table A2 in the Appendix presents tuning results for our winning random forest

regression model, described below.

As an alternative approach for the two two binary classification models, E[1(Yi ≥ 5)|Xi, Si = 1]

and E[1(Yi ≥ 10)|Xi, Si = 1], we additionally consider LASSO-penalized logistic regression, using

the glmnet R package. These models are considerably simpler than the random forest binary

classification models described above, as they do not include interactions or non-linear effects for

3These are the ranger defaults.
4Note that, while we use CWTE for tuning and model evaluation across all of our specifications, we do

not use it as our tree-splitting criterion within the classification or regression trees that make up our random
forests. While this could be an interesting extension to consider in future work, it would require writing our
own custom implementations of the underlying random forest algorithm. Here we prefer to rely on robust,
well-tested, off-the-shelf packages for computationally intensive tasks.
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the predictor variables listed in Table A1.5 We include the LASSO-logistic models as a “reality

check” to determine if there is anything to be gained from the more complicated, but more flexible,

random forest alternatives. The LASSO-logistic models have a single tuning parameter. We tune

this via cross-validation, using the CWTE as our evaluation metric. Because glmnet returns

parameter estimates along the entire regularization path, i.e. for all values of the LASSO penalty

parameter, there is no tuning grid as such. We carry out an exhaustive search over all possible

values of the tuning parameter.

Elevated blood levels are a comparatively rare event: fewer than 5% of children in our sample,

for example, have a BLL greater than or equal to 5µg/dl. For this reason we estimate two versions of

each of our binary classification models, both random forest and LASSO-logistic: one “plain-vanilla”

and one in which the dominant class is downsampled using step downsample() from the themis

package in tidymodels. We use the default settings for step downsample(), so that elevated and

non-elevated BLLs are equally common in the downsampled data. The cost of balancing the data

in this way, of course, is that we lose information for children with non-elevated BLLs. Whether

this is a worthwhile tradeoff depends on how the problem of class imbalance interacts with the

class of models used for estimation, and the metric used for evaluation. When we incorporate

downsampling into our pipeline, all other steps are left unchanged: tuning is still carried out as

before, for example. All of this is handled dynamically and automatically via our tidymodels

pipeline.

After tuning all of our alternative models using the 80% training sample, we compare their

performance on the 20% test sample. Results appear in Table A3. To provide a benchmark for our

machine learning results, Table A4 presents the out-of-sample CWTE for a number of extremely

simple models that do not use covariates or machine learning. For example, prioritizing children

in the holdout sample by the average IQ cost of children from the same zip code in the training

sample, yields a CWTE of 0.29. From a comparison of these tables, three features stand out.

First, all of the machine learning models from Table A3 clearly outperform the “näıve” models

from Table A4. Second, downsampling gives mixed results. While it improves the performance of

the LASSO-logistic models, it worsens the performance of their random forest equivalents. Third,

the continuous outcome random forest regression model, in which r(x) = E[Yi|Xi = x, Si = 1] is

the clear winner in terms of CWTE, with a value of around 0.40, outperforming the runner up

LASSO-logistic model. Figure A2 in the Appendix plots the proportion of children in the testing

set with BLL≥ 5µg/dL in each percentile of risk score as predicted by our winning model. Notably,

there are no children with elevated BLLs in the bottom 43 percentiles, suggesting our model is able

to discriminate well between low- and high-risk children. For the remainder of the paper we will

take r(x) to be the estimate of E[Yi|Xi = x, Si1] obtained by re-estimating the winning regression

5We exclude the four distance to provider variables, listed at the bottom of Table A1.
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random forest model using the data for all tested children with tuning parameters set according to

the cross-validation exercise described above.

To give a sense of the covariates from Table A1 that are particularly relevant for predicting Yi,

Table A5 presents variable importances for our top-performing model. These are computed using

ranger with the importance = ‘impurity’ option. Every time a particular predictor variable is

used to make a recursive split in one of the regression trees that make up our random forest, this

improves the in-sample predictive MSE. The impurity variable importance measure averages these

improvements from a given variable across all trees, and then makes relative comparisons across

variables. On the whole, the most important variables are at the neighborhood-level: measures of

the prevalence of lead exposure, characteristics of the housing stock, and socio-economic variables.

We caution that this pattern should not necessarily be given a causal interpretation. Moreover,

it does not imply that individual-level variables have no predictive power. The age of any given

house is likely highly correlated with the age of the houses that surround it, for example. This kind

of multicollinearity presents no problem for machine learning prediction, but it does mean that

variable importances should be taken with a grain of salt.

Notably absent from Table A5 are measures of lead exposure sources outside the home, including

distance to major roads, and industrial lead emissions reported to the Toxic Release Inventory

(TRI). Bearing in mind the point about multicollinearity mentioned above, we conjecture that

the low predictive power of these variables may be explained by the following factors. First, that

proximity to major roads is not as strong of a predictor of lead exposure is perhaps less surprising

in light of the recency of our sample (birth cohorts 2010-2014). Indeed, Aizer and Currie, 2019

find that the relationship between a child’s BLL and traffic on roads within 50 meters of the

child’s home for children born in the early 1990s but not for those born in 2004. The relationship

between road proximity and child BLLs has likely attenuated over time because the amount of lead

in soil has declined following the deleading of gasoline between 1979 and 1986. As for industrial

lead emissions, we are unaware of a literature discussing attenuation over time. Still, we see two

plausible explanations for the low predictive power of TRI lead emissions. First, Hollingsworth and

Rudik, 2021 note that lead from NASCAR races appears to travel up to 50 miles away. We look at

plants within two kilometers of children’s homes, and most lead is released through stacks. Thus,

it could be that there are no differences at these close distances. Second, lead emissions from TRI

facilities might be generating clusters of lead-exposed children, something that would be picked up

by the neighborhood-level counts of lead-exposed children variables we include in our model, an

example of the multicollinearity concern.
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3.3 Policy Experiments

Our main policy experiments are counterfactuals in which some of the unscreened children

from our dataset are shifted into screening while all currently-screened children remain so. Each

experiment corresponds to a different way of deciding which currently-unscreened children are

shifted. We consider a number of possibilities including targeting based on zip code, targeting based

on the risk score measure r(·) from Section 3.2, and targeting based on the screening propensity

score p(x) ≡ P(Si = 1|Xi = x). Because we use a regression-based approach rather than a

propensity-score weighting approach to address selection-on-observables, we require an estimate of

the propensity to be screened, p(x), for this latter policy experiment. We construct this propensity

score via LASSO-penalized logistic regression, where Xi contains all of the variables from Table

A1, including the four distance-to-provider variables.6

We score alternative screening policies by the total averted cost generated by shifting the

relevant children under each policy, using the IQ cost function from Figure A1 and predicted BLLs

based on covariates. We also construct intervals that show how these averted cost figures vary over

the range of predictive uncertainty in BLLs given observed covariates. Because we observe all BLLs

for the population of tested children, by definition, these uncertainty intervals treat r(x) as fixed.

Uncertainty arises because r(x) does not perfectly predict the BLL of a child with Xi = x. We

quantify this predictive uncertainty using a simple bootstrap-based procedure described below.

Our winning risk score function r(x) from 3.2 is the random forest approximation to the con-

ditional mean function E[Yi|Xi = x, Si = 1]. This approximation does the best job of prioritizing

children for screening in the out-of-sample testing data, using CWTE as the evaluation metric.

While we could in principle use r(x) directly as our BLL prediction for unscreened children Xi = x,

it is possible to improve upon this approach. Because elevated BLLs are rare, the random forest

regression model underpredicts very high BLLs and slightly overpredicts very low BLLs. Figure

3 illustrates this phenomenon, plotting a local quadratic regression of observed BLLs among the

tested on risk scores from the random forest model (solid line), and comparing it to the 45-degree

line (dashed line). Fortunately this problem is easy to fix: simply “re-calibrate” the risk score r(x)

using this local quadratic regression. This is the approach that we take below. For an untested

child with covariates Xi = x we predict that Yi = m(x) where m(Xi) ≡ E[Yi|r(Xi), Si = 1] is the

regression from the figure. Because m(·) is monotone, this has no implications for the order in

which children should be screened, given their covariates. It merely provides a way of improving

our BLL predictions for the untested, and thus our estimates of the value of a given policy.

6Our machine learning pipeline for the propensity score model is identical to that of the other LASSO-
logistic models from Section 3.2 with two exceptions. First, because there are approximately equal shares of
screened and unscreened children, there is no need for stratification when constructing training-testing and
cross-validation splits and no need for downsampling in estimation. Second, because the outcome variable
for this regression is Si, whether or not a child is screened, CWTE is inapplicable, so we use AUC as our
evaluation metric.
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To incorporate predictive uncertainty into our policy analysis, we use a simple bootstrap-based

procedure that is justified under our selection-on-observables assumption. We approximate the

distribution of Yi|Xi = x among the unscreened by computing the residuals from Figure 3 for the

50 tested children whose risk scores are closest to r(x). We then sample from these residuals and

add them to m(x) to approximate the distribution of Yi|Xi = x. This allows us to capture the

heteroskedasticity and asymmetry evident from Figure 3. In our policy experiments, we use 1000

bootstrap samples to construct uncertainty intervals for the value of each policy.

4 Results

In our sample, 18,115 tested children have a BLL≥ 5µg/dL and 3,292 tested children have a

BLL≥ 10µg/dL. We estimate substantial underdetection of lead exposure: among children born

between 2010-2014, current testing practices detected 72% of cases of BLL≥ 5µg/dL and 81% of

cases of BLL≥ 10µg/dL. Indeed, our model predicts an additional 6,626 (95%CI 6,494-6,760) of the

356,432 untested children had BLL≥ 5µg/dL (Table 3). We also predict an additional 754 (95%CI

711 to 798) of the 356,432 untested children had BLL≥ 10µg/dL.

To investigate where the hidden costs of children with undetected BLLs are highest, Figure 4

plots the distribution of costs from IQ losses related to lead exposure of untested children in high-

and low-risk zip codes. The distribution of “missed” costs of lead exposure for high-risk zip codes

is shifted to the right with respect to the one for low-risk zip codes, suggesting the most severe

undetected poisoning cases appear to be concentrated in areas already identified as high risk. This

finding is striking as these children should have been tested under Illinois’ existing screening policy.

Table 3 further illustrates this point by showing the number of and costs associated with undetected

cases of above-thresholds BLL in high-risk zip codes. While there are fewer untested children in

high-risk zip codes (119,077 vs. 237,355), 83% of untested children with predicted BLL≥ 5µg/dL

lived in high-risk zip codes (5,489) rather than low-risk ones (1,137). Our model also predicts

that 85% of children with undetected BLL≥ 10µg/dL were in high-risk zip codes (644) rather than

low-risk zip codes (110).

This unequal distribution of lead hazards, which appear concentrated in high-risk zip codes

suggests that targeted screening has merit. Figure 5 investigates whether there is scope for im-

proving targeting by plotting the distribution of costs from IQ losses related to lead exposure of all

children in different zip codes. The left panel uses the official IDPH definition of risk while the right

panel uses a model-based definition that holds constant the number of zip codes designated as high

risk. In particular, we select the zip codes with the highest predicted cost per child from IQ losses

related to lead exposure. Currently, Illinois designates 42.5% of zip codes as high-risk, that is 580

zip codes. We estimate that children in these zip codes have higher lead exposure rates, with 50%
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of children in high-risk zip codes bearing a cost of more than $19,500, that is $3,700 higher than the

median child in low-risk zip codes. As seen in the right panel of the figure, however, the risk scores

estimated by our model in Section 3.2 allow us to select a better group of 580 high-risk zip codes,

one that better yields a sharper separation, with a difference in median costs per child of $5,700.

Thus, by adjusting the definition of high-risk zip codes, which would involve reassigning 38% of

high-risk zip codes in Illinois, states may be able to detect a higher number of above-threshold

BLLs without increasing the number of high-risk zip codes.

The preceding exercise suggests that there may be gains from re-assigning some zip codes from

high- to low-risk and vice-versa. A similar exercise could be carried out at the individual level, by

asking whether our model can accurately identify low risk children among the currently-screened

solely based on the values of their covariates Xi. If so, policymakers could determine which children

should not be prioritized for screening or indeed should be shifted from screened to unscreened,

freeing up resources to target the children who are most at risk. For each percentile p of the risk

score distribution among the screened children, Figure 6 shows the average (per child) value of

screening the bottom p × 100%. The values in this figure are calculated from an out-of-sample

exercise for the screened children. In particular, we use the the 80% training sample described in

Section 3.2 to construct r(·), and then calculate the risk scores and IQ costs used to construct the

figure from the 20% test sample. For purposes of comparison, a BLL of 1µg/dL–the smallest value

that appears in our data–implies an IQ cost of around $10,500 while the average IQ cost among

the screened is around $16,000. This figure demonstrates the value of targeting based on a model

such as ours, compared to universal screening. Note that this exercise, unlike the others that we

discuss in this section, does not rely on selection-on-observables, because it is solely based on data

from children who were in fact screened.

Next, we investigate the role of compliance with screening guidelines in averting lead exposure

costs. To do so, Table 4 considers two scenarios.7 In Panel A, we examine the effect of increasing

testing rates in zip codes with low testing rates to the level of screening compliance of the median,

75th, and 90th percentile high-risk zip code under the current targeting system. These correspond

to screening rates of 61.1%, 71.4%, and 81.3% (Figure A3). In Panel B, we consider raising the

overall screening rate in Illinois to those same levels, irrespective of zip code of residence. Scenario

A takes it as given that targeting will be carried out at the zip code level–the current practice–while

scenario B imagines targeting in a centralized way across the state. We would expect Scenario B to

yield better individualized targeting, but perhaps at the cost of additional logistical complications.

The question then arises of which additional children would be tested under each scenario. We

evaluate the screening policies under different priority systems: randomly sampling among untested

children, screening based on the propensity scores–highest or lowest–from Section 3.3, considering

7Table 4 uses predictions from our preferred model. Results are qualitatively similar for the runner-up
model, the Lasso-penalized logistic model that predicts the probability that a child has a BLL≥ 5µg/dL.
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children with high vs. low lead exposure risk scores as predicted by our preferred regression random

forest model, and considering children who are closer vs. farther away from screening providers, a

factor that influences the likelihood of getting tested (Gazze, 2022). Importantly, we remain agnos-

tic as to the logistical feasibility of each prioritisation system. In other words, we do not attempt to

quantify the costs of prioritizing children for screening in a particular way. For example, it might

be extremely costly to induce children with the highest risk scores to be screened. Figure 7 shows

that the correlation between predicted BLLs and screening propensity scores is non-monotonic, and

therefore it is plausible that targeting based only on risk scores might not yield the desired screen-

ing rates. For each different policy, we report the average averted cost per newly-tested child–this

reflects costs for children with BLL< 5µg/dL–as well as the same average restricted to those whom

we predict to have BLLs≥ 5µg/dL.

Panel A of Table 4 shows that a de jure universal screening regime such that all zip codes

achieved the same screening compliance as the median high-risk zip code under Illinois’ existing

regime could avert between $15,388 and $15,533 per child screened in costs associated with IQ

losses from lead exposure, depending on the prioritization rule (confidence intervals are very tight).

If we assign an averted cost of zero to children with BLLs below 5µg/dL, the averted cost per child

screened ranges from $1,086 to $1,218. Interestingly, because screening rates are lowest in low-risk

zip codes (Figure 8), prioritization rules that operate within a given zip code do not appear to make

much of a difference relative to random screening. Nevertheless, prioritization based on our risk

score measure yields the highest benefits and prioritization based on closest distance to providers

yields the smallest benefits. Raising compliance to the 75th or the 90th percentile of current high

risk zip codes would only result in average averted costs between $15,772 and $15,824 and between

$15,869 and $15,914, respectively. On the whole, increasing screening rates in every zip code to

match that of the top high-risk zip codes provides benefits only insofar as it leads to detecting more

cases of lead exposure in zip codes already designated as high-risk.

Whereas panel A of Table 4 considers the effect of testing additional children in zip codes

with screening rates below the median zip code, Panel B considers the effect of raising the overall

screening rate in the state of Illinois to the same level by prioritizing children across zip codes. In

this exercise, targeting provides considerable benefits over randomly sampling additional children

to test.8 Regardless of whether we score all BLLs according to Figure A1 or treat those below

5µg/dL as zeros, averted costs are highest when children are prioritized based on our risk score

measure from Section 3.2 (27,559 and $8,703 respectively when screening 61% of children, the

median screening rate in high-risk zip codes). It is also worth noting that in this case prioritizing

8Note that, when prioritizing children across the entire state rather than within zip codes, random
screening by definition produces the same average averted cost at the 50%, 75% and 90% screening compliance
rates. When prioritizing within zip codes, however, this is no longer the case because changing the compliance
rate changes the set of zip codes from which the random sample is drawn.
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children with the highest screening propensity or those that are closest to providers also yields

higher benefits than random sampling, suggesting that there is a relationship between predicted

BLLs and propensity or ability to be screened that could be leveraged with the right policies (see

e.g., Figure 7).

Together, these estimates suggest that careful targeting is crucial for the effectiveness of any

expansion of existing childhood lead screening. Screening need not be universal to be effective,

and de jure universal screening that is not de facto universal may be ineffective. A potential

benefit of de jure universal screening that our analysis does not capture is lower communication

and logistical costs. For example, providers would not need to check a child’s zip code of residence

under a universal screening policy, and this might increase compliance. Such gains in compliance,

however, are far from assured. All zip codes in Chicago are high-risk, implying that every child

in the city should be screened. If this city-wide universal screening policy lowered communication

costs and increased compliance, we would expect to see higher compliance in Chicago compared

to other high-risk zip codes that are more dispersed. But this does not appear to be the case:

average screening rates in Chicago were 62.6%, compared to 62.9% in high-risk zip codes outside

of Chicago.

In previous work some of us have shown that the relative importance of different lead exposure

sources shifts as the intervention threshold is lowered, which may make it more difficult to identify

children with elevated BLLs using proxies for lead exposure (Abbasi, Pals, and Gazze, 2020). This

pattern may explain why we estimate almost 9 times as many undetected cases of BLL≥ 5µg/dL

relative to ≥ 10µg/dL when there were approximately 6.5 times as many observed cases of BLL≥
5µg/dL as BLL≥ 10µg/dL during the study period. In spite of this, the current definition of high-

risk zip codes appears to cover most undetected cases of both BLL≥ 5µg/dL and BLL≥ 10µg/dL

cases. Because a higher share of BLL≥ 5µg/dL cases than BLL≥ 10µg/dL cases go undetected, our

results highlight the importance of relying on data to identify children most at-risk within areas

already flagged for higher screening.

As we have seen from Table 4, the benefits of targeted screening are large. We would like to

assess whether increasing screening rates among the currently-untested using our risk score measure

passes the cost-benefit test. Carrying out a full cost-benefit analysis, however, requires estimates

of the costs of alternative screening policies as well. The price of private tests in Illinois ranges

up to $43.9 This gives a rough approximation of the marginal direct cost of testing an additional

child. Targeting children based on risk also increases the direct costs of a screening program, by

requiring additional data linkages and analysis. These costs are fixed with respect to the number

of children tested, but recur on a yearly basis as new data become available. We would estimate

that these costs are modest: perhaps in the range of a few thousand dollars of an analyst’s time

9See https://www.luc.edu/media/lucedu/hhhci/pdf/leadsafeil/LeadSafeILDirectory061 .pdf, accessed in
November 2021).

18



per year. There may also be additional logistical and communication costs, although these are

hard to quantify. It is even more challenging to estimate the indirect costs of screening, such as

the opportunity cost of time for parents–these include travel costs to the doctor’s office and health

care service providers–and non-monetary costs, e.g., pain if a venous blood sample is taken (Gazze,

2022). As a back-of-the-envelope calculation, suppose that we only assign a positive benefit to

children with BLLs above 5µg/dL–a very conservative assumption. Then we see from Table 4,

that the average benefit per child of expanding screening from the current rate of 49% to 61%

using our risk score measure is $8,703 (Panel B – IQ Cost if BLL 5+ / Risk Score Top). It seems

implausible that total screening costs per child could even come close to this number. Even a

cost of $1,000 per child seems very high. For this reason, we consider it plausible that improving

targeted screening using our model passes the cost-benefit test. Because targeted screening appears

to have higher average benefits than de jure and de facto universal screening, and because achieving

100% universal screening would be at least as costly as targeted screening, it appears that targeted

screening should be more cost-effective than universal screening.

5 Conclusion

We estimate the extent and geographic distribution of undetected lead poisoning in Illinois

using administrative data and machine learning tools. We find that current testing practices failed

to detect 28% of BLL≥ 5µg/dL and 19% of BLL≥ 10µg/dL among children born between 2010 and

2014. Moreover, 83% of Illinois children with undetected BLL≥ 5µg/dL lived in designated high-

risk zip codes where every child should already be tested under Illinois’ current testing guidelines.

The state defines these zip codes as high-risk based on the age of their housing and the relatively

low socioeconomic status of their residents. This suggests that undetected lead poisoning might

exacerbate existing patterns of inequality.

The spatial distribution of lead hazards implies that states may see the largest gains in terms

of averted lead exposure costs from improving compliance with existing zip code-targeted screening

policies, rather than expanding to a de jure universal screening regime as currently advocated

by many. How to increase screening rates remains an open question, however. Travel cost and

inconvenient access to health care providers appear to be one barrier, together with providers’

idiosyncratic lower propensity to refer children for lead screening (Gazze, 2022). Still, we find

that predicted BLLs correlate positively with both proximity to providers and predicted screening

propensity, suggesting that low-cost interventions might shift some of these high-risk children into

screening.

Finally, we demonstrate how machine learning can improve targeted screening by leveraging

detailed demographic and exposure data and providing a more accurate estimate of each child’s
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BLL. Our risk score function could be used to categorize zip codes as high-risk in a targeted

screening program. Indeed, by adjusting the definition of high-risk zip codes using our risk scores,

which would involve reassigning 38% of high-risk zip codes, states may be able to detect a higher

number of above-threshold BLLs without increasing the number of high-risk zip codes. Moreover,

we find that an individual approach to targeting, one that is based on each child’s risk score rather

than the model-based high-risk zip code definition, would achieve even higher benefits. Importantly,

these risk scores could also be used to educate providers and patients about their risk and encourage

proactive home inspections, although response rates have been low (Potash et al., 2020).

Our approach could be adapted for other states to inform lead testing policy, evaluate the effects

of changing intervention thresholds, and identify the children at highest risk for lead exposure.

Further extensions of the model could add data on additional pathways for lead exposure, such as

lead in drinking water or toys, and parental occupational exposure. However, we note that housing

vintage likely partially accounts for the effects of lead in water because the use of lead pipes and

service lines follows historical patterns (Rabin, 2008). Additionally, the missing exposure sources

are understood to represent only a small part of total lead exposure (Zartarian, Xue, Tornero-Velez,

and Brown, 2017).
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Figures

Figure 1: High-Risk Zip Codes in Illinois (2006-Present Designation)

Notes: The figure plots the zip codes currently classified as high-risk according to guidelines by the Illinois
Department of Public Health.
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Figure 2: Constructing Cost-Weighted Targeting Efficiency

Random Screening

Infeasible Optimum

Cr

Fraction of
Children Screened

Fraction of Total
Averted Cost

0 1

1

Notes: The dotted curve gives the averted cost of the infeasible optimal screening rule as a function of the
share of children screened; the dashed line gives the value (in expectation) of random screening. The solid
curve gives the value Cr of a feasible screening policy based on risk score r(·). CWTE equals the area of
the gray shaded region divided by the area between the dotted curve and dashed line. The averted cost
from screening all children is normalized to one.
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Figure 3: Observed and Estimated BLLs

Notes: The figure plots a local quadratic regression of observed BLLs among the tested on risk scores from
the continuous random forest model (solid line), and comparing it to the 45-degree line (dashed line).
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Figure 4: Lead Exposure Costs (IQ Losses) per Untested Child in High- and Low-Risk Zip
Codes

Notes: The figures plot the unnormalized distribution of IQ costs of untested children in high-and low-risk

zip codes based on the official definition of zip code risk. Each distribution integrates to the number of

children in the relevant group. Vertical lines indicate the median costs for the two groups rounded to the

closest 100.
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Figure 5: Lead Exposure Costs (IQ Losses) per Child in High- and Low-Risk Zip Codes,
Official vs. Model-Based Definition

Notes: The figures plot the unnormalized distribution of IQ costs of children in high-and low-risk zip codes

based on the official (left) and model-based definition of zip code risk (right). Each distribution integrates

to the number of children in the relevant group. The model-based definition of high-risk designates the top

580 zip codes (the same number as the official definition) in terms of the average IQ cost loss due to lead

exposure as high risk. Vertical lines indicate the median costs for the two groups rounded to the closest 100.
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Figure 6: Opportunity Cost of Screening: Cumulative IQ Losses by Quantile of Risk Score

Notes: For each percentile p of the risk score distribution among the screened, the figure plots the per-child
value of screening the bottom p× 100%. This value is computed using the 20% holdout sample.
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Figure 7: Correlation between Predicted Screening Probability and Predicted BLL

Notes: The figure plots a fifth-degree polynomial regression of predicted BLLs on screening propensity
scores for untested children.
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Figure 8: Screening Rates in Low- and High-Risk Zip Codes

Notes: The figure plots the distribution of screening rates in low- and high-risk zip codes for Illinois

children born between 2010 and 2014.
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Tables

Table 1: Confusion Matrix for Evaluating a Hypothetical Screening Policy

Elevated BLL?
No Yes

Unscreened True − False −
Screened False + True +

Notes: The table reports the four possible outcomes of a screening policy in terms of whether a child was
screened (row dimension) and whether the child has an above-threshold BLL (column dimension).
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Table 2: Summary Statistics, by Zip Code Risk Status and Screening Status

Low Risk High Risk

Unscreened Screened Unscreened Screened

n = 237355 n = 178010 n = 119077 n = 200257

Black 0.08 0.13 0.25 0.27
(0.28) (0.33) (0.43) (0.45)

Hispanic 0.13 0.23 0.23 0.33
(0.33) (0.42) (0.42) (0.47)

Teen Mother 0.04 0.08 0.08 0.10
(0.19) (0.27) (0.28) (0.31)

Single Mother 0.24 0.43 0.44 0.54
(0.43) (0.49) (0.50) (0.50)

Mother Education: High School or Less 0.23 0.39 0.38 0.48
(0.42) (0.49) (0.49) (0.50)

Median Income in Block Group 73405.28 62309.48 53653.28 48390.36
(30583.22) (28123.35) (28702.16) (26249.25)

TRI Air Lead Emissions w/in 250m in Birth Year (x100) 0.10 0.11 0.35 0.29
(3.11) (3.35) (5.87) (5.38)

Home Built prior to 1930 0.08 0.12 0.53 0.60
(0.27) (0.32) (0.50) (0.49)

Born in Chicago 0.00 0.00 0.61 0.60
(0.00) (0.00) (0.49) (0.49)

Previous Cases of BLL 5+ at Coordinates 0.01 0.02 0.12 0.15
(0.10) (0.14) (0.32) (0.35)

Previous Cases of BLL 10+ at Coordinates 0.00 0.01 0.05 0.07
(0.06) (0.08) (0.22) (0.25)

BLL 5+ NaN 0.03 NaN 0.06
(NA) (0.17) (NA) (0.24)

BLL 10+ NaN 0.99 NaN 0.99
(NA) (0.07) (NA) (0.11)

Notes: The sample includes children born in Illinois 2010-2014. Screening status is measures by 25 months
of age.
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Table 3: Estimated Number and Costs Associated with Missed BLL 5+ in Illinois and High
Risk Zip Codes

Overall High Risk Zip Codes

N missed: BLL 5+ 6626 5489
(6494, 6760) (5371, 5607)

N missed: BLL 10+ 754 644
(711, 798) (604, 682)

IQ cost missed (million USD): BLL 5+ 485 405
(476, 495) (396, 414)

IQ cost per child missed (USD): BLL 5+ 73275 73800
(72785, 73701) (73300, 74300)

Notes: The table shows estimates from our preferred regression forest model on the number of children
with BLL≥ 5µg/dL and BLL≥ 10µg/dL missed currently in Illinois overall and in high-risk zip codes
(where all children should be screened). We also show the total and average IQ costs associated with these
undetected cases of BLL≥ 5µg/dL. In parentheses, we report confidence intervals based on 1,000
simulations of BLLs for untested children.
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Table 4: Estimated IQ Costs Avoided under Different Targeting Rules

Random Screening Propensity Risk Score Distance

Target P-tile Measure Bottom Top Bottom Top Bottom Top

Panel A: Within Zip Codes
50 IQ Cost (USD) 15489 15460 15490 15502 15533 15388 15492

50 (15453, 15526) (15397, 15524) (15427, 15558) (15437, 15568) (15465, 15605) (15324, 15454) (15424, 15560)
50 IQ Cost if BLL 5+ (USD) 1162 1134 1175 1174 1218 1086 1173

50 (1128, 1197) (1072, 1197) (1108, 1246) (1108, 1244) (1146, 1287) (1021, 1157) (1105, 1239)
75 IQ Cost (USD) 15809 15772 15819 15810 15819 15789 15824

75 (15779, 15840) (15726, 15819) (15768, 15869) (15760, 15858) (15769, 15872) (15743, 15837) (15774, 15873)
75 IQ Cost if BLL 5+ (USD) 1325 1296 1344 1324 1349 1308 1339

75 (1294, 1357) (1245, 1345) (1296, 1395) (1274, 1373) (1298, 1398) (1259, 1357) (1291, 1386)
90 IQ Cost (USD) 15879 15896 15871 15869 15869 15878 15914

90 (15851, 15908) (15857, 15935) (15831, 15912) (15829, 15909) (15832, 15911) (15838, 15917) (15875, 15953)
90 IQ Cost if BLL 5+ (USD) 1351 1356 1355 1334 1349 1356 1371

90 (1323, 1379) (1318, 1397) (1316, 1394) (1294, 1375) (1309, 1388) (1317, 1397) (1335, 1410)
Panel B: Across Zip Codes

50 IQ Cost (USD) 15929 13445 21406 12099 27559 18302 15430
50 (15901, 15957) (13407, 13486) (21287, 21526) (12084, 12113) (27397, 27719) (18209, 18395) (15369, 15492)

50 IQ Cost if BLL 5+ (USD) 1362 246 4469 0 8703 2760 791
50 (1335, 1388) (217, 275) (4337, 4602) (0, 0) (8523, 8880) (2657, 2861) (740, 845)

75 IQ Cost (USD) 15929 13465 19815 12462 22104 17820 14629
75 (15901, 15957) (13439, 13490) (19738, 19894) (12451, 12473) (22014, 22196) (17759, 17882) (14592, 14666)

75 IQ Cost if BLL 5+ (USD) 1362 212 3428 0 4518 2469 527
75 (1335, 1388) (192, 231) (3351, 3508) (0, 0) (4427, 4605) (2404, 2537) (496, 557)

90 IQ Cost (USD) 15929 13733 18183 12796 19162 17218 14590
90 (15901, 15957) (13710, 13756) (18132, 18235) (12785, 12807) (19105, 19220) (17171, 17264) (14560, 14620)

90 IQ Cost if BLL 5+ (USD) 1362 270 2491 0 2787 2136 579
90 (1335, 1388) (253, 287) (2438, 2543) (0, 1) (2731, 2841) (2085, 2185) (554, 604)

Notes: Simulated effect of increasing screening randomly and under different targeting rules among children born in Illinois 2010-2014. Panel A
considers increasing screening rates within zip codes. Panel B considers increasing targeting statewide irrespectively of zip code. Target screening
rates were chosen to coincide with the 50th, 75th, 90th, and 100th percentile, of current high-risk zip codes in Illinois where all children should be
tested, corresponding to screening rates of 61%, 71%,81%, 100%. We evaluate these screening policies under different priority systems: randomly
sampling among untested children, considering children whom we estimate to have high vs. low screening propensity using a LASSO-penalized
logistic regression, considering children with high vs. low lead exposure risk scores as predicted by our preferred regression forest model, and
considering children who are closer vs. farther away from screening providers, a factor that influences the likelihood of getting tested (Gazze, 2022).
For each different policy, we report the average monetized IQ losses from lead exposure in two ways. The first includes losses from all BLLs, even
those below the intervention threshold of 5µg/dL; the second sets any losses for children below this threshold to zero.
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Supplementary Tables and Figures
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Figure A1: Costs of Lead Exposure from IQ Loss by Blood Lead Level

Notes: The figure plots the estimated costs of having a blood lead level above 0 in terms of monetized IQ
costs. We take the average IQ point loss per 1µg/dl for different levels of exposure from Lanphear et al.,
2005 and Gould, 2009. This is 0.513 for BLLs ≤ 10µg/dl, 0.19 for BLLs 10− 19µg/dl, and 0.11 for BLLs
≥ 20µg/dl. We monetize these losses considering that one IQ point decrease for a three year old is
associated with a present value earnings loss of $20,568 in 2019 dollars (Klemick, Mason, and Sullivan,
2020). We censor the x axis at 30 for ease of visualization, but costs increase linearly after that.
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Figure A2: Share of Children with BLLs 5+ by Risk Score: Continuous Regression Random
Forest

Notes: The figure plots the proportion of children in the testing set with BLL≥ 5µg/dL in each percentile
of risk score as predicted by our winning model, the random forest continuous regression.
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Figure A3: Screening rates in high-risk zip codes in Illinois

Notes: The figure plots the distribution of screening rates by 25 months of age by zip code of birth in high
risk zip codes in Illinois for birth cohorts in our sample (2010-2014).
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Table A1: Variables in Prediction Models

Variable Variable (cted)

Birth Yr High Risk Zip Code
Gender Zip Code Neighboring High Risk Zip Code
Low Birth Weight Bins Share Rentals in Block Group
Estimated Gestation Length Share in Poverty in Block Group
Father Age Share Female-Headed HHs in Block Group
Birth Weight Median House Age in Block Group
Father Race Block Group Population
Mother Race Share White in Block Group
Mother Education Share Black in Block Group
Father Education Share Hispanic in Block Group
County Indicators Median House Value in Block Group
Twin Birth Share Urban in Block Group
Birth Order Median Income in Block Group
Single Mother Share Insured through Employer in Block Group
Apgar Score Share Directly Purchasing Insurance in Block Group
Mother Age Share on Medicare in Block Group
Father Hispanic Share on Medicaid in Block Group
Child Hispanic Share Uninsured in Block Group
Home Construction Decade Share Pre1939 Homes in Block Group
Effective Home Construction Decade (if Renovated) Share Pre1949 Homes in Block Group
House Is Single-family Share Pre1979 Homes in Block Group
Primary Road within 15m Share Post1999 Homes in Block Group
Primary Road within 30m Month of Birth Indicators
Primary Road within 50m Case of BLL 10+ within a Yr of Birth and w/in 15m
Primary Road within 100m Case of BLL 10+ within a Yr of Birth, 15-30m
Primary Road within 250m Case of BLL 10+ within a Yr of Birth 30-50m
Primary Road within 500m Case of BLL 10+ within a Yr of Birth 50-100m
Primary Road within 750m Case of BLL 10+ within a Yr of Birth 100-250m
Primary Road within 1km Case of BLL 10+ within a Yr of Birth 250-500m
Primary Road within 2km Case of BLL 10+ within a Yr of Birth 500-750m
TRI Air Lead Emissions 500-1000m in Birth Yr Case of BLL 10+ within a Yr of Birth 750-1000m
TRI Air Lead Emissions 500-1000m up to Birth Yr One Previous Case of BLL 5+ at Coordinates
TRI Water Lead Emissions 500-1000m in Birth Yr Second Previous Case of BLL 5+ at Coordinates
TRI Water Lead Emissions 500-1000m up to Birth Yr One Previous Case of BLL 10+ at Coordinates
TRI Soil Lead Emissions 500-1000m up to Birth Yr Second Previous Case of BLL 10+ at Coordinates
TRI Air Lead Emissions 250-500m in Birth Yr Share of t-1 Tract Cohort with BLLs 5+
TRI Air Lead Emissions 250-500m up to Birth Yr Share of t-1 Tract Cohort with BLLs 10+
TRI Water Lead Emissions 250-500m in Birth Yr Size of t-1 Tract Cohort
TRI Water Lead Emissions 250-500m up to Birth Yr Share of t-2 Tract Cohort with BLLs 5+
TRI Soil Lead Emissions 250-500m up to Birth Yr Share of t-2 Tract Cohort with BLLs 10+
TRI Air Lead Emissions w/in 250m in Birth Yr Size of t-2 Tract Cohort
TRI Water Lead Emissions w/in 250m in Birth Yr Distance to Closest Open Provider
TRI Soil Lead Emissions w/in 250m up to Birth Yr Distance to Closest Open Provider w/ Capillary Screening
TRI Air Lead Emissions w/in 250m up to Birth Yr Distance to Closest Open Provider, ˆ2
TRI Water Lead Emissions w/in 250m up to Birth Yr Distance to Closest Open Provider w/ Capillary Screening, ˆ2
Born in Chicago

Notes: Distance variables at the end of the table are only included in the screening prediction model. Our
pipeline creates indicators for each factor level, including missing values.
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Table A2: Tuning Results: Continuous Regression Forest

# Candidate Variables Minimum # Observations in Node CWTE

8 38 0.390

18 33 0.384

62 31 0.373

35 15 0.373

73 22 0.369

105 26 0.368

91 19 0.367

127 27 0.367

53 9 0.366

212 39 0.365

191 35 0.365

119 17 0.364

146 20 0.364

254 29 0.362

264 24 0.360

155 10 0.360

180 7 0.358

231 12 0.358

205 5 0.356

246 3 0.354

Notes: The table shows the 20 pairs of grid values for the two tuning parameters mtry, the number of
variables to consider in each recursive split, and min n, the minimum number of observations per leaf,
together with the CWTE achieved by the continuous random forest model at those parameters. Values are
ordered from top to bottom in terms of highest CWTE achieved, with the winning parameters in the first
row.
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Table A3: Model Performance: Cost-Weighted Targeting Efficiency

Model CWTE

RF: BLL 0.402

Lasso-Logit: 5+, Downsampled 0.384

RF: 1-5, 5-10, 10-20, 20+ 0.383

Lasso-Logit: 5+ 0.383

RF: 5+ 0.380

RF: 10+, Downsampled 0.373

RF: 5+, Downsampled 0.373

Lasso-Logit: 10+, Downsampled 0.372

RF: 10+ 0.356

Lasso-Logit: 10+ 0.354

Notes: This table shows the performance of each tuned model as measured by the cost-weighted targeting
efficiency (CWTE). CWTE is bounded between zero and one, and such that bigger is better, with one
indicating a ”perfect” model. CWTE penalizes ”mis-classification errors” using IQ costs. Given the ordinal
”risk score” from each predictive model that ranks kids from highest to lowest risk, CWTE compares the
model ranking to the true BLL ranking. We estimate four random forest models (RF) that predict
different outcomes: a continuous BLL outcome; the probability of a child having a BLL that falls into one
of four bins (1-5, 5-10, 10-20, 20+); the probability of a child having a BLL ≥ 5 and ≥ 5µd/L. We also
estimate two Lasso-penalized logistic regression models to predict the two latter binary outcomes. For both
RF and Lasso-logit binary models we also estimate versions in which the dominant class is downsampled so
that elevated and non-elevated BLLs are equally common in the downsampled data
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Table A4: Performance of Zip Code Benchmark Model

Ranking Variable CWTE

Average BLL 0.290

Share 5+ 0.275

Share 10+ 0.232

Average Monetized IQ Losses 0.291

Notes: The table reports the CWTE of models that prioritize screening untested children by variables
aggregated at the zip code level. Each row represents a different model.
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Table A5: Top Variables in BLL Regression Forest Prediction Model by Variable Importance

Label Relative Importance

Case of BLL 10+ within a Year of Birth and within 15m 100.0

Share of t-2 Tract Cohort with BLLs 5+ 29.5

Share of t-1 Tract Cohort with BLLs 5+ 29.1

Share Pre1949 Homes in Block Group 26.6

Share Pre1939 Homes in Block Group 24.9

Birth Weight 23.7

Median Income in Block Group 22.9

Share on Medicaid in Block Group 20.5

Share Insured through Employer in Block Group 20.4

Size of t-1 Tract Cohort 19.9

Size of t-2 Tract Cohort 19.9

Share Pre1979 Homes in Block Group 19.2

Father Age 18.6

Share of t-2 Tract Cohort with BLLs 10+ 18.5

Share of t-1 Tract Cohort with BLLs 10+ 17.9

Median House Value in Block Group 17.4

Share Post1999 Homes in Block Group 17.0

Share White in Block Group 16.1

Notes: The table reports variable importance in the continuous random forest model for the top variables
that together explain over 50% of the variation in BLLs. We normalize the importance of the top variable
to 100, and report importance of each other variable relative to it. Variable importance is computed using
ranger with the importance = ‘impurity’ option. Every time a particular predictor variable is used to
make a recursive split in one of the regression trees that make up our random forest, this improves the
in-sample predictive MSE. The impurity variable importance measure averages these improvements from a
given variable across all trees, and then makes relative comparisons across variables. All variables are
available both for children who were tested and children who were never tested.
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