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Abstract

We develop an equilibrium model of the labor market to investigate the joint
evolution of gender gaps in labor force participation and wages. We do this
overall and by task-based occupation and skill, which allows us to study distri-
butional effects. We structurally estimate the model using data from Mexico
over a period during which women’s participation increased by fifty percent.
We provide new evidence that male and female labor are closer substitutes in
high-paying analytical task-intensive occupations than in lower-paying manual
and routine task-intensive occupations. We find that demand trends favored
women, especially college-educated women. Consistent with these results, we
see a widening of the gender wage gap at the lower end of the distribution,
alongside a narrowing at the top. We derive own and cross-occupation wage
elasticities of labor supply varying with skill, gender and time, and our counter-
factual estimates demonstrate that ignoring the countervailing effects of equilib-
rium wage adjustments on labor supplies, as is commonly done in the literature,
can be misleading. We find that increased appliance availability was the key
driver of increases in the participation of unskilled women, and fertility decline
a key driver for skilled women. The growth of appliances acted to widen the
gender wage gap and the decline of fertility to narrow it. We also trace equi-
librium impacts of growth in college attainment, which was more rapid among
women, and of emigration, which was dominated by unskilled men.
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1 Introduction

A secular increase in the labor force participation of women (FLFP) is one of the

most salient features of the labor market over the last century (Killingsworth and

Heckman 1987; Costa 2000; Goldin 2006; Fogli and Veldkamp 2011; Fernández 2013;

Goldin and Olivetti 2013). Nevertheless, there is limited evidence of how this mas-

sive change in the size and composition of the labor force has altered the wage

distribution. Economic theory suggests that, as long as men and women are imper-

fect substitutes in production, increases in women’s labor supply will create greater

downward pressure on the wages of women than on the wages of men, and hence

widen the gender wage gap. The size of this effect will depend upon the elasticity of

substitution between male and female labor. We argue that this elasticity is likely to

depend on the task content of the occupation. If occupations are ordered across the

wage distribution, the impacts of a rise in women’s labor supply on the gender wage

gap (and on wage inequality within gender) will vary across the wage distribution.

We structurally estimate an equilibrium model that extends the canonical

labor demand-supply model discussed in Katz and Autor (1999) (also see Katz and

Murphy 1992; Murphy and Welch 1992; Card and Lemieux 2001), allowing male

and female labor to be imperfect substitutes, with the degree of substitution vary-

ing with occupational task content. Our model provides a unified framework in

which four key channels through which FLFP and the gender wage gap are related

are studied simultaneously. In addition to imperfect substitutability between types

of labor, this includes gender- and skill-biased technical change (that shifts rela-

tive demand), trends in marriage, fertility, uptake of home appliances, legislative

protection of women’s economic rights (non-wage variables that shift relative labor

force participation), and skill-upgrading and emigration (changes in demographic

composition that shift potential relative labor supplies). In contrast to much of the

related literature providing partial equilibrium (PE) estimates, we provide general

equilibrium (GE) estimates, allowing labor supplies to respond to changes in the

equilibrium wage structure, see Section 2. This appears to be the first attempt to

analyze the distribution of gender wage and participation gaps considering demand

and supply channels simultaneously in an equilibrium framework.

To capture distributional effects on the gender wage gap, we allow the elastic-

ity of substitution between male and female labor to vary by task-based occupation.

We similarly allow the elasticity of substitution between skilled and unskilled labor

to vary by occupation. Following Autor, Levy, and Murnane (2003), we categorize

occupations as intensive in analytical, routine, or manual tasks. We demonstrate

that our synthesis of the traditional labor demand-supply model with the task-

based approach is a useful way to analyze distributional effects. This literature has

investigated differences in substitution of new technology or capital for labor across

task-based occupations. We instead investigate how the arrival of new female labor
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substitutes for male labor in different occupations, also allowing for occupational

demand shifts that vary by gender and skill.1

Our equilibrium approach contrasts with a large literature on women’s labor

supply that typically takes demand as given, see Keane, Todd, and Wolpin (2011) for

a survey. At the other end, most studies of the wage structure assume labor supply is

inelastic to wages, an assumption inconsistent with the evidence (Killingsworth and

Heckman 1987; Blundell and Macurdy 1999; Keane 2011; Bargain and Peichl 2016),

though Johnson and Keane (2013) is one exception in this regard.2,3 We contribute

to the literature on gender gaps in wages and participation by endogenizing labor

force participation. We derive own and cross-occupation wage elasticities of labor

supply for skilled and unskilled men and women, and study their variation over time.

We find that the aggregate elasticity conceals meaningful differences by occupation.

Our counterfactual analysis shows that accounting for countervailing labor supply

responses to equilibrium wage adjustments (at the gender-occupation-skill level)

helps explain the observed distributional patterns.

Our third contribution is that we detail a model-based approach to identifi-

cation with potentially wide applicability (see Section 5.3) and provide an efficient

computational algorithm that encourages re-use and scalability of the framework.4

Leveraging the tractability of our model we implement Monte Carlo simulations

to analyse the performance of the estimator under demand shocks of varying size

(Appendix Section C Figures D.6 to D.8). This is relevant to recent debates concern-

ing the validity and robustness of supply and demand model estimates (Ottaviano

and Peri 2008; Card 2012; Ottaviano and Peri 2012; Manacorda, Manning, and

Wadsworth 2012; Dustmann, Schönberg, and Stuhler 2016; Havranek et al. 2022).

We are also able to evaluate the OLS and IV estimators compared to true elasticity

parameter values.5

We apply this framework to investigate the joint evolution of women’s labor

1. Many studies of the allocation of female vs. male labor assume they are perfect substitutes
(e.g., Hsieh et al. 2019; Morchio and Moser 2021). Only a small handful of studies has estimated
the elasticity of substitution by gender and in none of these studies does it vary by task-based
occupation. Among studies with nested-CES systems, Cunha, Heckman, and Schennach (2010) is
an example of a study that allows heterogeneity in the elasticity of substitution within the same
layer across human capital input types in the formation of non-cognitive and cognitive skills.

2. For instance, see, Katz and Murphy (1992), Katz and Autor (1999), Card and Lemieux (2001),
Borjas (2003), Ottaviano and Peri (2012), Manacorda, Manning, and Wadsworth (2012), and Borjas,
Grogger, and Hanson (2012).

3. A meta-analysis by Havranek et al. (2022) showed that, of 59 published studies that estimate
a skill substitution parameter within the supply and demand framework, 79.7% did regression
analysis based on demand-side optimality conditions only, using an OLS or fixed effects estimator.
Restricting to studies published in top-5 journals, this share is 87.5%.

4. The solution and estimation code is available for other users on our project website and a
comprehensive discussion is in Appendix B.

5. Previous discussions have focused on the robustness of the elasticity estimate to specific mod-
eling choices, like the functional form assumption on relative demand trends (Borjas, Grogger, and
Hanson 2012).
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force participation and the wage structure in Mexico. Between 1990 and 2014,

Mexico experienced one of the largest increases in the FLFP rate in the world (Ñopo

2012; The World Bank 2012) from close to 35% in 1989 to about 58% in 2014,

rising from 4.7 to 14.7 million (Figure 1). A motivation for our analysis is that

changes in the gender wage gap over this period varied dramatically across the wage

distribution (Figure 2). The unconditional gap widened by more than 30 percentage

points (pp) at the 5th percentile of the wage distribution, while narrowing by 18

pp at the 95th percentile. This cannot be explained by compositional changes- we

conduct a decomposition of the gender wage gap across percentiles of the distribution

(Firpo, Fortin, and Lemieux 2009, 2018), which suggests that changes in the gap

are primarily wage structure changes (Figure 3).6

Our structural estimates are able to explain the distributional patterns in the

data. Our first result is that male and female labor are closer substitutes in high-

wage analytical task-intensive occupations (elasticity of 2.94) than in lower-wage

manual or routine task-intensive occupations (elasticities of 1.09 and 1.28, respec-

tively). This is a new channel through which gender-specific supply and demand

shocks within and across occupation and skill groups can impact the male and fe-

male wage distributions. It contributes to explaining why the increase in women’s

LFP exerted greater downward pressure on wages at the lower than at the upper

end of the distribution (Figure 6).

We also find that the elasticity of substitution between skilled and unskilled

labor is smaller in analytical and routine tasks (1.43) than in manual tasks (elasticity

of 3.82). This implies an erosion of the skill premium, although primarily for men

because our estimates indicate that changes in relative demand favored women.

Indeed, an increase in the relative demand for women has a larger impact on the

gender wage gap than any other factor we consider; see the counterfactuals in Figure

10. The increase holds across occupation and skill groups but is skill-biased and

thus has significant distributional effects, helping to explain the contraction of the

gender wage gap at the top of the wage distribution. Relative demand trends may

reflect, inter alia, the impacts of structural change (Goldin 1994; Akbulut 2011;

Ngai and Petrongolo 2017; Olivetti and Petrongolo 2016), non-neutral technological

change (Galor and Weil 1996; Blau and Kahn 1997; Weinberg 2000; Rendall 2017;

Black and Spitz-Oener 2010; Pitt, Rosenzweig, and Hassan 2012; Aguayo-Tellez et

al. 2013; Rendall 2013), growing demand for non-cognitive skills, in some of which

women may have an advantage (Deming 2017; Cortes, Jaimovich, and Siu 2018),

the marketization of home production (Lup Tick and Oaxaca 2010; Akbulut 2011;

Olivetti and Petrongolo 2014; Ngai and Petrongolo 2017), or declining discrimination

6. This does not imply that educational upgrading did not play a role. The decompositions are
conducted in partial equilibrium, with wages assumed as fixed. However, we shall show that in the
equilibrium model, which allows wages to respond to labor supplies, the female-biased increase in
college completion rates plays an important role through the wage structure.
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against women (Hsieh et al. 2019).

Our finding of skill-biased technical change is in line with findings elsewhere,

including in the U.S., where it has been argued to explain rising income inequality

(Katz and Autor 1999; Acemoglu and Autor 2011). However, Mexico experienced

a compression of wage inequality among men (a decline in the college premium)

(Lustig, Lopez-Calva, and Ortiz-Juarez 2013; Messina and Silva 2018), with skill

upgrading more than offsetting the increasing demand for skill. Our analysis con-

tributes two new insights. First, that increased participation of skilled women was

a driver of the compression of male inequality. Second, that there was no marked

decline in the college premium for women despite their (more) rapid skill acquisition.

Turning to the supply side, we confirm earlier results that the aggregate wage

elasticity of labor supply is higher among women than men (especially among the

unskilled), and that female (but not male) aggregate wage elasticities have decreased

over time, in line with women’s growing labor market attachment. In fact, forces

such as trade and technological change will tend to affect relative wages across task-

based occupations. We provide new evidence showing the extent to which this sparks

occupational mobility. To take one example, while the aggregate wage elasticity for

men is small, male mobility across occupations is significantly influenced by wages

in one occupation relative to others. We document considerable heterogeneity in

the wage elasticity by occupation, skill and gender (see Figure 9), and demonstrate

that accounting for this is relevant to understanding equilibrium outcomes. Overall,

we find that the greater flexibility we allow on the demand and the supply side is of

substantive relevance in accounting for the distributional patterns in the data.

Our fourth set of findings pertains to non-wage determinants of participa-

tion, see Figures 11 and 12. We choose the non-equilibrium series to include most

factors discussed in the PE literature. These include fertility (Katz and Goldin

2000; Costa 2000; Cruces and Galiani 2007), marriage (Grossbard-Shechtman and

Neuman 1988; Fernández and Wong 2014; Greenwood et al. 2016), improvements

in technology and capital used for home production (Costa 2000; Greenwood, Se-

shadri, and Yorukoglu 2005; Cavalcanti and Tavares 2008; Coen-Pirani, León, and

Lugauer 2010) and attitudinal changes towards women’s work (Rindfuss, Brewster,

and Andrew 1996; Costa 2000; Fernández, Fogli, and Olivetti 2004; Goldin 2006;

Fernández 2013), which are often reflected in legislation protective of women’s eco-

nomic rights (Doepke and Zilibotti 2005; Platteau and Wahhaj 2014). We analyze

these factors within a single framework, showing how they affect the evolution of

the wage and occupational structure, jointly with demand trends and under partial

vs general equilibrium constructs.

Our GE estimates indicate that these variables jointly explain about a third

of the reduction in the gender participation gap. However, our PE estimates put this

figure at 85%. This suggests that previous estimates, which emerge primarily from

PE models, are likely to be biased upwards by virtue of ignoring equilibrium wage
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adjustments that generate countervailing impacts on labor supplies. The estimates

differ markedly by skill, with household appliances being the main driver of partici-

pation among unskilled women, and fertility the main driver for skilled women. The

counterfactual analysis shows that appliance availability hastened divergence of the

gender wage gap at the bottom of the wage distribution, and that fertility decline

muted convergence of the gap at the top. The decline of marriage and progressive

realization of women’s economic rights had smaller though, in cases, notable effects.

This is not always analyzed, but we find non-negligible responses of male labor to

the supply shifters.

Our final set of findings concerns demographic factors that shifted the size

and gender-skill composition of the labor force. These are emigration, which was dis-

proportionately of unskilled men, and skill upgrading, which occurred more rapidly

among women. Emigration reduced the gender participation gap and, on account of

female labor supply being more wage elastic, and an imperfect substitute for male

labor at the unskilled end of the distribution, it led to a widening of the gender

wage gap. The increasing share of women with a college degree among potential

workers widened the gender participation gap, and narrowed the gender wage gap.

In discussing this counterfactual (Section 7.2), we identify the mechanisms by which

allowing GE effects magnifies (about threefold) the PE effect on the gender wage

gap, and reverses the PE effect on the participation gap. Although skill upgrading

and immigration characterize trends in many countries, we provide new evidence

that considers not only how these trends feed through labor supplies to the wage

structure but, importantly, how this then propogates through an equilibrium pro-

cess. Our discussions illustrate the importance of allowing imperfect substitution of

labor across gender, skill and task-based occupation, and the relevance of similarly

disaggregated wage-elasticities of labor supply in propagation of feedback from the

equilibrium wage structure.

As both elasticity of substitution parameters and labor supply elasticities play

an important role in many strands of the literature, our equilibrium approach to anal-

ysis (and decomposition) of the wage distribution can be used for other purposes,

including the study of immigration or declining labor force participation (Krueger

2017; Abraham and Kearney 2020). For example, Dustmann, Schönberg, and Stuh-

ler (2016), discussing the range of estimates on the effects of immigration on wages,

argue that the assumption that the labor supply elasticity is homogenous across

different groups of natives can be problematic as it ignores differential employment

responses. Our framework can be applied to carry out those types of analyses.

The rest of the paper is organized as follows. Section 2 provides a brief

overview of the model structure to profile the main forces at work. Section 3 dis-

cusses the data and stylized facts. Section 4 presents a decomposition of changes

over time in the gender wage gap across the wage distribution, showing that these are

driven by wage structure changes. In Section 5, we formulate an equilibrium model
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of the labor market and describe the estimation strategy. We discuss model fit,

estimates of demand- and supply-side parameters, and wage elasticities in Section 6.

In Section 7, through counterfactual exercises, we investigate the relative contri-

bution of non-wage determinants of labor supply, demographics, and gender- and

skill-biased technological changes to the evolution of gender wage and participation

gaps under both PE and GE assumptions. Robustness exercises using alternative

specifications of the model and different measures of labor supply are in Section 8.

Section 9 concludes. A comprehensive discussion of identification and estimation is

in Appendix Section B. Monte Carlo simulations assessing the performance of the

equilibrium estimator alongside that of OLS and IV is in Appendix Section C.

2 Framework

We discuss a simplified version of the full model from Section 5 to fix ideas. We

highlight the role of gender substitutability in demand, the relevance of endogenizing

occupational participation in supply, and how demographic changes, net migration,

and labor supply shifters enter the model.

At time t, given a CES production function that aggregates labor across males

and females (gen ∈ {k, f}) of some skill level within three task-based occupation

sub-nests (o ∈ {o1, o2, o3}), demand optimality in a competitive equilibrium requires

that:

log

(
Wo,k,t

Wo,f,t

)
= log

(
αo,t

1− αo,t

)
− 1

σρo
log

(
Lo,k,t
Lo,f,t

)
, (2.1)

where Lo,k,t and Lo,f,t are labor inputs from male and female workers respectively,

Wo,k,t and Wo,f,t are the wages of male and female workers respectively, αo,t is the

‘share’ parameter that varies over time due to gender-biased demand changes, and

ρo ∈ (−∞, 1] is a function of the elasticity of substitution (σρo) between male and

female labor: σρo ≡ 1
1−ρo . In a departure from most previous related work, all

values are specific to the three task-based occupations. In the full model, we also

allow for skill- and occupation-biased technological change, and for heterogeneity in

substitutability between skilled and unskilled labor by occupation groups.

On the supply-side, male and female workers choose among three market

occupations and home production. In a setting with random utility, the labor supply

functions are:

Lso,gen,t = Lpopgen,t × Fo
({
ψWô,gen,t + π′ôBgen,t

}3

ô=1

)
, (2.2)

where supply Lso,gen,t is occupation- and gender-specific. Lpopgen,t is the gender-specific

number of potential workers at time t. Bgen,t is a vector of observed variables that

shifts the relative utility of occupations for each gender and across occupations.

While many studies focus on a single determinant, in the full model, we consider all
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of the main factors discussed in the literature. Specifically, we incorporate time-series

of fertility, marital status, women’s economic rights, and appliance availability as

shifters of LFP and occupation-skill-specific labor supplies. We additionally analyze

gender-skill upgrading and net migration as drivers of demographic change, which

affect the number of potential workers Lpopgen,t.

What we wish to communicate with this brief sketch of the model is that

this simple structure is general enough to contain four key channels through which

FLFP and the gender wage gap are related: imperfect substitutability of female for

male labor (σρ), non-neutral (gender-biased) technological changes (αt), shifters of

occupational (and overall LFP) participation rates (π), and demographic composi-

tional changes (Lpopgen,t). In contrast to large sections of the related literature, we will

model these channels as operating in a context in which labor supply is allowed to

respond to changes in the wage structure via ψ.

As discussed in the previous section, much of the literature on women’s labor

supply takes demand as given. Among those papers that apply the supply-demand

framework, most estimate some variation of Equation (2.1) under the assumption of

predetermined inelastic short-run labor supply. This often implies a fixed probabil-

ity for Fo (·), which shuts down π and ψ. In our setting, non-zero π allows supply

shifters to affect participation and occupation decisions, for both genders. Non-zero

ψ, on the other hand, allows LFP and occupation participation rates to respond

to changes in the wage structure, arising from either supply-side (Bgen,t, L
pop
gen,t)

or demand-side (αt) forces. Finally, the magnitude of equilibrium effects and their

propagation across occupations depend on occupation-specific gender substitutabil-

ity and the substitutability of task-based occupations themselves.

Consider the elasticity of substitution between male and female labor in Equa-

tion (2.1). If male and female labor are not very substitutable in occupation o, that

is, if σρo is small, a large increase in female labor supply will impose downward pres-

sure on female wages in occupation o and, to a much lesser extent, on male wages,

leading to an increase in the gender wage gap. Now, when ψ is positive, the greater

downward wage pressure on female wages depresses female labor supply, attenuat-

ing the impact of FLFP on the gender wage gap. Furthermore, changes specific to

one occupation are amplified, through equilibrium, to all occupations and worker

groups, and they can have distributional effects. By endogenizing labor supply, our

framework allows us to study these general equilibrium effects.

Our framework for equilibrium labor force participation and wage analysis

introduces parameters on the demand- and supply-side that have to be pinned down

by time-series variation in observed equilibrium labor quantities (L) and wages (W)

across gender, occupation, and skill groups. The data series needs to have sufficient

variation to distinguish the separate effects on L and W of i) supply- vs. demand-side

parameters, and ii) demand trends and elasticities of substitution by gender, skill,

and occupation. Building on standard assumptions on the demand-side (polynomial
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restriction on trends) and supply-side (multinomial discrete choice), we characterize

the equilibrium solution, discuss identification challenges as the time-series of avail-

able quantities and prices expands, and provide a scalable and efficient empirical

equilibrium estimation routine, see Section 5.3. The modeling and estimation are

potentially of value in formulating and addressing questions beyond the question at

hand in this paper.

3 Data and Descriptive Statistics

We use thirteen rounds of the nationally representative Mexican Household Income

and Expenditure Survey (ENIGH) from 1989 to 2014. We restrict attention to

individuals aged 25-55 (prime-age workers). Wages correspond to real hourly labor

earnings for full-time workers. Using the 18 groups in the Mexican occupation

classification, we construct three groups defined by whether the activities performed

on the job are predominantly manual, routine, or analytical (Autor, Levy, and

Murnane 2003), see Appendix A.3. The occupational groups each represent about a

third of the workforce, and are also aligned across the wage distribution, see Table 1.

The Table shows substantial occupational sorting by gender. Appendix A explains

sample construction and provides data sources and definitions for all variables used

in the analysis.

Labor force participation. In 1989, the labor force participation rate7 of

the entire prime-age population in Mexico was 64.2%, the female participation rate

(FLFP rate) was 35%, and women accounted for 29% of the workforce. By 2014

this picture had changed dramatically: overall participation was 76%, the FLFP

rate was 58%, and women represented 41% of the workforce (see Panels (a) and (c)

Figure 1). This increase in FLFP in 25 years was one of the largest in the Latin

American region (Ñopo 2012), and among the largest in the world (The World

Bank 2012). The preceding statistics are from the ENIGH survey. Using decadal

census data allows us to go further back in time, to 1960, and it corroborates these

trends (Panels (b) and (d) of Figure 1). Bhalotra and Fernández (2023) provide a

descriptive analysis of the longer time series.

Three stylized facts characterize the evolution of labor force participation

during this period (Table 2). First, the absolute increase was larger among low-

skilled women (defined as women with at most secondary education), their LFP

rate rising from 35.7 to 55.4% between C.1992 and C.2012. LFP among high-skilled

women (defined as college educated) rose from 71.7 to 77.4%. While the volume

of the increase in FLFP came from low-skilled women, the proportional change in

7. We define the labor force participation rate as the proportion of prime-age individuals (25-
55 years old) who either worked or sought employment in the previous month relative to the
total number of individuals within this age bracket. Our definition of work includes all sectors,
occupations, and the informal economy, irrespective of the nature of the activities or if the work
complies with the country’s formal labor laws and protections (i.e. if the job is formal or informal).
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participation of high-skilled women was large because the initial share of the female

workforce with a college-education was only 14.5% in C.1992, rising to 24.0% in

C.2012 (Table D.1). Second, there was a substantial increase in participation across

all age groups within the 25-55 range. Third, the LFP rate of prime-age men was

stable at about 94% across the period.

Potential workers. The number of workers of any gender and skill emerging

on the labor market depends not only on the labor force participation rate, but

also on population growth and changes in the gender and skill composition of the

population. Between 1989 and 2014, the Mexican prime age population—individuals

born in and remaining in Mexico—increased by 90%, from 25.2 million to 48.0

million. There were two significant trends that altered the gender-skill composition.

One was gender-biased educational (skill) upgrading. The share of skilled

women among potential female workers increased from 6.4% to 19.7%, corresponding

to an addition of 4.2 million women (Panel (a), Figure D.3). This led to convergence

with the share of skilled men among potential male workers, which increased from

15.9% to 21.3%, an increase of 3.0 million. The share of women within the prime

age population was stable at around 53% between 1989 and 2014.

The other was the trend in emigration. During 1989–2014, the Mexican-

born prime age population increased by 101%, from 27.3 to 54.9 million. The share

that emigrated increased from 8% to 13%, with most of the increase representing

unskilled males (Panel (c), Figure D.3). The share of emigrants increased for all

groups other than skilled women Brücker, Capuano, and Marfouk (2013). We ana-

lyze these trends by implementing counterfactuals that shut down their growth over

time.

Wage structure. At the same time that women were increasingly joining

the workforce, the wage structure changed substantially. Figure 2 (Panel a) shows

a striking pattern whereby the wages of men evolved more favorably than the wages

of women at the lower end of the wage distribution, while the reverse was the case

at the upper end. This is a motivating fact for the analysis in this paper.

The following stylized facts underpin it. First, there was an overall tendency

for real wages to decline on account of the ‘Tequila Crisis’ of 1994 and the Great

Recession of the late 2000s. Second, the male wage distribution contracted sharply

over the period, driven by male wage growth in the lower-tail of the distribution

being higher than in the upper-tail, a pan Latin America phenomenon (López-Calva

and Lustig 2010; Levy and Schady 2013; Lustig et al. 2016; Acosta et al. 2019;

Fernández and Messina 2018). Third, we do not see a similar compression of the

female wage distribution. Wage growth for women was ever so slightly u-shaped,

with wages at the bottom and the top performing better than in the middle.

Figure 2 (Panel b) shows how the unconditional gender wage gap evolved
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across the wage distribution.8 The gender gap increased by 10 to 32% among workers

with below median wages, and declined by 5 to 20% among workers above the 80th

percentile. These pattern are replicated using the 1990 and 2010 Mexican Census

(Panel b).

Determinants of women’s participation. We now consider how the four

observable non-wage determinants of FLFP that we analyze evolved over the sample

frame. The trends are in Figure D.2. Fertility, defined as the percentage of women

with at least one under-5 child, declined sharply, by about 20 pp, and more sharply

among skilled (relative to unskilled) women. The share of women who were married

or partnered fell 3 to 10 pp and, again, the decline was sharper among skilled women.

The share of women who had a home appliance (refrigerator or washing machine)

rose by more than 30 pp for the unskilled to reach close to 90% availability by the end

of the period, whereas availability among skilled was more or less constant at about

95%. The Women in Business and Law (WBL) index, which measures women’s

economic rights as captured by legislation facilitating women’s work participation,

increased by close to 20 pp.9 In contrast to the first three variables for which we

have data by gender and skill group, WBL naturally only varies in the aggregate

time series. Overall, there was substantial variation in predictors of FLFP over the

period studied, consistent with the large increase in FLFP.

4 Unconditional Quantile Decomposition of the Gender Wage Gap

Changes in the gender wage gap following increases in FLFP could reflect changes in

the skill composition of women vs men, or changes in returns to the skills of women

vs men (i.e., wage structure changes). In this section, we use the pooled decomposi-

tion method of Oaxaca and Ranson (1994), extended to quantiles by Firpo, Fortin,

and Lemieux (2009, 2018) to illuminate this question. Figure 2 (Panel b) shows

how much the change in the gender wage gap varied across the wage distribution,

underlining the importance of conducting the decomposition at different percentiles.

The lower Panel of Appendix Table D.1 documents changes in the education

and age composition of the workforce. It shows, as discussed in the preceding section,

that college attainment rose more rapidly among women than men, and this could

in principle explain convergence of the gender pay gap at the top of the distribution.

We also observe that the average worker is becoming older, and more so among

women (because of the increase in married women’s FLFP). If the gender wage gap

increases with age (Barth, Kerr, and Olivetti 2017; Adda, Dustmann, and Stevens

8. The series in Panel (b) of Figure 2 is calculated by subtracting the values of the male and
female series, shown in Panel (a).

9. It rose from 61.3 in 1989 to 80.6 in 2014. As a point of reference, the average score in high-
income OECD countries is 94.7 points, while the countries with the lowest WBL are found in the
Middle East and North Africa (MENA) region, where the average score is 49.6 points (Hyland,
Djankov, and Goldberg 2020).
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2017), this could be a factor behind the widening of the mean gender gap.

We first estimate separate regressions per gender-period of the re-centered

influence function (RIF) of qτ,gen,t—the τ ’th quantile of the corresponding wage

distributions—on a vector Xgen,t of socio-demographic characteristics.10 Denoting

γ̂gen,t as the estimated parameter vector, differences over time between the initial

(t = C.1992) and final (t = C.2012) period of the estimated wage quantile can be

expressed as:

∆tq̂τ,gen =
(
X ′gen,C.2012 −X ′gen,C.1992

)
γ̂gen,P︸ ︷︷ ︸

∆tq̂X,τ,gen

+X ′gen,P (γ̂gen,C.2012 − γ̂gen,C.1992)︸ ︷︷ ︸
∆tq̂S,τ,gen

,

(4.1)

where overbars represent averages, and γ̂gen,P and Xgen,P correspond to the esti-

mated vectors of parameters and the explanatory variables from a regression that

pools observations across the two periods. Here, ∆tq̂X,τ,gen corresponds to the com-

position effect and ∆tq̂S,τ,gen is the wage structure effect.

Since we are interested in the effects of composition and price changes on the

gender wage gap, we estimate the difference between males (gen = k) and females

(gen = f) of each component at 19 different percentiles:

∆tq̂τ,k −∆tq̂τ,f︸ ︷︷ ︸
Overall

= (∆tq̂X,τ,k −∆tq̂X,τ,f )︸ ︷︷ ︸
Composition

+ (∆tq̂S,τ,k −∆tq̂S,τ,f )︸ ︷︷ ︸
Wage Structure

. (4.2)

The decomposition results are shown graphically in Figure 3, which plots

the estimates at all 19 percentiles. At all percentiles, wage structure effects are

quantitatively more important than compositional effects. They contribute 63% of

the observed rise in the gender wage gap at the 5th percentile, and close to 90%

at the 25th. They over-predict the fall in the gap at the 95th percentile (-22.5 log

points observed vs. -34.7 log points attributed to the wage structure). Moreover,

wage structure effects line up remarkably well with observed relative wages across

the distribution.

The Figure also shows that if the wage structure had remained constant at its

average level over the two periods, compositional effects would have led to a larger

gender wage gap. Thus changes in the skill and age of the workforce contributed to

a widening of the gap at the lower tail, and have impeded further convergence at

the top of the distribution.11

10. The vector includes dummies for seven education categories, six age categories in five-year
intervals, and all possible interactions of education and age levels

11. As women’s participation increases, selection implies that the average wage of women will fall,
other things equal. If unobservables driving selection into the labor force scale with observables
then our finding here that observables (gender, education, and ages) do not account for much of the
change in the wage structure suggests that unobservables are unlikely to drive the distributional
changes that we document.
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The results from this section motivate our equilibrium analysis, which illu-

minates the factors driving wage structure changes. Our equilibrium model endoge-

nously generates the wage structure.12 Although education as a worker characteristic

does not play an important role in the decomposition exercise which takes wages as

given, we show that once we allow wages to respond to labor supplies, the female-

biased increase in college completion rates play an important role through the wage

structure.

5 Theoretical Model

5.1 Demand Side

Aggregate production in the economy is a function of labor, we abstract from capi-

tal.13 Labor is divided into four types according to gender and skill (college). The

technology is described by a three-level nested constant elasticity of substitution

(CES) function, with nests corresponding to occupation, skill, and gender.14 At the

top level, output is produced by a CES combination of labor in the three types of

market occupations by task-content:

Yt = Zt

[
α1,tL

ρ1
a,t + (1− α1,t)

(
α2,tL

ρ2
r,t + (1− α2,t)L

ρ2
m,t

)ρ1/ρ2]1/ρ1

, (5.1)

where Yt is total output at time t; Zt is a scale parameter that is allowed to vary

over time to capture neutral productivity changes;15 La,t, Lr,t, and Lm,t are the

total demand of labor in analytical, routine, and manual task-intensive occupations,

respectively; ρ1 ∈ (−∞, 1] is a function of the elasticity of substitution (σρ1) between

labor in non-analytical (routine and manual) vs. analytical task-intensive occupa-

tions (σρ1 ≡ 1
1−ρ1 ); ρ2 ∈ (−∞, 1] is a function of the elasticity of substitution (σρ2)

between labor in routine vs. manual task-intensive occupations (σρ2 ≡ 1
1−ρ2 ); and

the α’s are time-varying ‘share’ parameters that we discuss below.

In the second level of the production technology, labor in each occupation is

12. This is influenced by skill upgrading, emigration, and shifters of labor supply and relative
demand by gender, skill, and occupation.

13. In the nested CES production function with constant returns to scale, and assuming capital
is not fixed and can fully adjust, changes to the capital stock can be equivalently represented by
changes in the share parameters. Since we are not primarily interested in capital-skill or capital-
gender complementarities, we simplify the model by omitting capital altogether. For a discussion
on the role of fixed capital in nested CES production functions, see Ottaviano and Peri (2008), Card
(2012), Ottaviano and Peri (2012), and Manacorda, Manning, and Wadsworth (2012).

14. We test how sensitive the results are to the ordering of the levels in the production technology,
we discuss results using alternative model specifications in the robustness checks.

15. Zt captures changes in neutral (aggregate) productivity as well as all non-labor inputs, includ-
ing capital, residually. In CES demand systems where aggregate labor is combined with non-labor
inputs, the relative demand optimality among labor inputs in gender, skill and occupation sub-
groups is not a function of the prices and productivity parameters of non-labor inputs contained
residually in the Zt term.
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divided into two groups, skilled (s) and unskilled (u), using a CES combination:

Locc,t =
[
α3,occ,tL

ρ3,occ
s,occ,t + (1− α3,occ,t)L

ρ3,occ
u,occ,t

]1/ρ3,occ
for occ = a, r,m, (5.2)

while at the third level labor is disaggregated in each occupation-skill group between

female workers, indexed by f , and male workers, indexed by k:

Ledu,occ,t =
[
α4,skl,occ,tL

ρ4,occ
k,skl,occ,t + (1− α4,skl,occ,t)L

ρ4,occ
f,skl,occ,t

]1/ρ4,occ
for edu = s, u,

and occ = a, r,m.

(5.3)

The parameters in the second and third levels have an analogous interpretation to

those in Equation (5.1). An innovative feature of our model is that the elasticities of

substitution between male and female labor, and between skill groups, are allowed

to vary based on the task-content of occupations.

Our set-up is related to Johnson and Keane (2013), who also model labor

demand based on nested-CES aggregation, allowing differences by gender, skill, and

occupation. They consider ten 1-digit occupations directly rather than task-based

occupation groups. Importantly, within occupations, they assume that the elastici-

ties of substitution across gender and education groups are homogeneous—meaning

that ρ3,occ = ρ3 and ρ4,occ = ρ4 for all occ groups. By allowing the elasticities to

vary within each occupation, we introduce a new transmission mechanism of gender-

specific demand and supply shocks within and across occupation and skill groups.

Our results show this is empirically relevant in explaining the evolution of the gender

wage gap (see Section 6.2).

The share parameter (α) for each CES sub-nest can be interpreted as indexing

the share of work activities allocated between different types of labor within each

CES combination (Katz and Autor 1999). They are allowed to vary over time

to capture non-neutral technical change and other factors that shift relative labor

demand. As discussed in Section 1, we depart from previous studies in allowing

demand shifts to be gender and skill-biased and to vary by occupational category.

We allow for demand shifts between occupations (α1,t and α2,t), capturing forces like

technical change that differentially affect jobs depending on their task-content;16

between skilled and unskilled labor within occupations (α3,occ,t), capturing skill-

biased technical change that can be general or occupation-specific;17 and between

men and women within occupation-skill groups (α4,skl,occ,t), capturing gender-biased

16. See Autor, Levy, and Murnane (2003), Autor, Katz, and Kearney (2008), Acemoglu and
Autor (2011), Goos, Manning, and Salomons (2014), and Burstein, Morales, and Vogel (2019) and
automation Acemoglu and Restrepo (2018, 2019, 2021).

17. As in Katz and Murphy (1992), Machin, Reenen, and Van Reenen (1998), Berman, Bound,
and Machin (1998), and Katz and Autor (1999).
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demand changes.18 It may also capture changes to the aggregate capital stock and

to relative labor demand due to changes in Beckerian taste discrimination over time

(Hsieh et al. 2019).19

The demand-side of the model has two types of parameters that we need

to estimate: 8 parameters that are functions of the elasticities of substitution (ρ1,

ρ2, ρ3,a, ρ3,r, ρ3,m, ρ4,a, ρ4,r, and ρ4,m); and a group of time varying demand shift

parameters that vary by gender, skill, and occupation (Zt, α1,t, α2,t, α3,a,t, α3,r,t,

α3,m,t, α4,s,a,t, α4,s,r,t, α4,s,m,t, α4,u,a,t, α4,u,r,t, and α4,u,m,t). As argued by Johnson

and Keane (2013) and as we discuss in Appendix Section B.2, it is possible to fit

the trends in relative wages perfectly if we do not impose any restrictions on the

evolution of the relative demand parameters, but this would mean that we would

not be able to identify the parameters capturing the elasticities of substitution. We

impose a 3rd order polynomial restriction on the trends for the share parameters.

For example, the parameter α1,t is allowed to change according to

logα1,t = a1,0 + a1,1t+ a1,2t
2 + a1,3t

3. (5.4)

Additionally, to flexibly account for neutral technological changes, we allow for t-

specific Zt values without parametric restrictions.

As is clear from Equation (2.1), any changes in relative wages that are not

explained by movements in relative supplies are absorbed by the relative demand

parameters. In total, there are 65 elasticity and share parameters on demand-side

that we need to estimate.20 Identification and estimation are discussed below.

5.2 Participation and Occupational Choice on the Supply Side

Male and female workers of different skill (education) levels sort into different mar-

ket occupations based on time-invariant preferences and wages. The model allows

gender-specific comparative advantage associated with differences in physical, sen-

sory, motor, and spatial aptitudes.21 Comparative advantage will reflect in marginal

productivity, and hence influence occupational sorting through wages.

18. See Acemoglu, Autor, and Lyle (2004), Black and Spitz-Oener (2010), Pitt, Rosenzweig, and
Hassan (2012), and Burstein, Morales, and Vogel (2019).

19. In a Beckerian taste discrimination framework, the marginal utility of an employer from hir-
ing a female worker can be lower due to utility loss associated with discriminatory tastes (Hsieh
et al. 2019; Morchio and Moser 2021). Given labor participation and wage data, we trace out differ-
ential gender labor demands. We cannot distinguish demand differences due to discrimination from
real productivity differences. Thus the α4,skl,occ,t share parameter we estimate could be capturing
changes in discrimination over time or changes in real productivity. Empirically, real productiv-
ity and discrimination are also entangled: recent research literature has found that gender-based
discrimination (harassment) has real productivity impacts (Folke and Rickne 2020; Cici et al. 2021).

20. This include (3 + 3 + 2) = 8 elasticities of substitution, (6 + 3 + 2) × 4 = 44 coefficients
associated with the third order polynomials of α shares, and 13 t-specific Zt parameters.

21. See for instance, Galor and Weil (1996), Black and Juhn (2000), Rendall (2017, 2013), Baker
and Cornelson (2018), and Ngai and Petrongolo (2017).
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We model occupational choice using a random utility framework. The utility

a worker receives from choosing to enter the workforce in one of the three market

occupations at time t is

U(occ | gen, skl, t) =ψgen,skl,occ + ψ1 log (Wgen,skl,occ,t) + εgen,skl,occ,t, (5.5)

where ψgen,skl,occ is a time-invariant parameter capturing non-pecuniary rewards

(such as occupational job flexibility, or the mission-orientation of a job) from choos-

ing occupation occ; and ψ1 measures the weight in utility terms that a worker gives

to wages (Wgen,skl,occ,t) in log units.22 εgen,skl,occ,t is an idiosyncratic taste shock

assumed to be independent and identically distributed extreme value. The assump-

tion about the distribution of the taste shock generates a tractable multinomial logit

form for the choice probabilities.23

The utility from staying in home production is modeled symmetrically for

men and women. The literature has linked movements of women into the labor

market to changes in contraceptive technology and fertility, marriage markets, social

norms and attitudes towards women’s work, and improvements in technology and

capital (e.g., appliances) used for home production. The utility from choosing home

production, denoted by h, takes the form:

U(h | gen, skl, t) =π1,gen + π2,gen,sklPr(child = 1 | gen, skl, t)

+ π3,gen,sklPr(married = 1 | gen, skl, t)

+ π4,gen,sklPr(appliance = 1 | gen, skl, t)

+ π5,gen,sklWBLt + εgen,skl,h,t.

(5.6)

π1,gen are gender-specific intercepts.24 Pr(B = 1 | gen, skl, t) are time- and group-

specific proportions of individuals with young children, a proxy for fertility (child),

in stable partnerships (we label this married), and who own household appliances

(appliance). WBLt is the score on a work-related legislation index, and εgen,skl,h,t

is a idiosyncratic taste shock assumed to be independent and identically distributed

extreme value.

22. The log wage assumption allows the relative odds of choosing to work over leisure to approach
zero as the wage tends toward zero. We model two skill levels, but the framework can be extended
to a finer classifications of labor skills. In settings where labor demand is specific to gender and
occupation but not skill, wages are sometimes more restrictively assumed to be log-additive given
some base efficiency wage unit (Böhm et al. 2019).

23. Given this assumption on the error distribution, occupational selection is driven by individual-
and occupation-specific random factors that do not impact productivity. Alternatively, one might
assume that the error terms come from individual- and occupation-specific productivity draws that
generate heterogeneous earnings given occupation-specific skill-prices (Burstein et al. 2020). Prefer-
ence and productivity draws might both drive occupational selection, but are difficult to empirically
disentangle. We model only preference shocks given the perceived importance of idiosyncratic non-
wage factors in determining women’s labor participation decisions.

24. We normalize ψgen,s,m = 0 in Equation (5.5). Since π1,gen in Equation (5.6) vary by gender
but not by skill, all the constants are uniquely pinned down.
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Given the assumed distribution of the taste shocks, the probability that a

worker chooses one of the market occupations or home production is

Pr(dO = 1 | gen, skl, t) =
exp(Û(O | gen, skl, t))∑

occ=a,r,m,h exp(Û(occ | gen, skl, t))
for O = a, r,m, h ,

(5.7)

where Û is equal to U without the idiosyncratic shocks. We use these probabilities

to find the total labor supply of each type in each occupation. For example, the

total supply of female workers with college education in analytical task-intensive

occupations is

Lsf,s,a,t = Lpopf,s,t × Pr(da = 1 | f, s, t) , (5.8)

where Lpopf,s,t is the number of in-Mexico prime-age potential female workers with

college education at time t. More generally, Lpopgen,skl,t changes over t due to increases

in population, gender-specific skill upgrading, and gender- and skill-specific patterns

of net migration. We refer to Pr(dO = 1 | gen, skl, t) as the gender- and skill-

specific occupation participation rate. Thus the gender- and skill-specific labor force

participation rate is LFPgen,skl,t =
∑

occ∈{a,r,m} Pr(docc = 1 | gen, skl, t).
A key feature of our counterfactual analysis is that we consider the potentially

countervailing effects on FLFP from equilibrium wage adjustments due to shifts in

the supply curves associated with demographic composition (Lpopgen,skl,t), or changes

in the supply shifters Pr(dO = 1 | gen, skl, t),25 see Equation 5.8. The importance

of these countervailing effects will depend on the wage elasticity of labor supply,

which is heterogeneous across gender-skill groups and can vary over time.

Beyond wages and time-invariant preferences, participation in the labor mar-

ket depends on a linear combination of supply shifters that we take as exogenous.

Moreover, the skill-gender composition of employment, which determines the num-

ber of potential workers, is also taken as given. A long-standing structural literature

on female labor supply studies dynamic responses of education, fertility, marriage,

and labor market choices to changes in the costs and returns of human capital ac-

cumulation and the paths of earnings, taxes, and transfers using partial equilibrium

(PE) models that do not allow for endogenous adjustments of skill prices.26 PE mod-

els can handle greater choice complexity and dynamics because only an “inner-loop”

for the dynamic life-cycle problem needs to be solved, and there is no need to worry

25. Additionally, we refer to Pr(dO = 1 | gen, t) =
∑
skl∈{s,u}

(
Lpopgen,skl,t/L

pop
gen,t

)
× Pr(dO = 1 |

gen, skl, t) as the gender-specific occupation participation rate, and the gender-specific labor force

participation rate is LFPgen,t =
∑
skl∈{s,u}

(
Lpopgen,skl,t/L

pop
gen,t

)
× LFPgen,skl,t.

26. See reviews in Blundell and Macurdy (1999), Keane (2011), Keane, Todd, and Wolpin (2011),
and Blundell (2017).
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about a potential multi-dimensional “outer-loop” of market clearing conditions.27

Recently, Hsieh et al. (2019), Burstein et al. (2020), and Morchio and Moser

(2021) have explored equilibrium wage responses in papers that do not focus on

FLFP changes over time, but that allow for gender-specific labor supplies. However,

in these papers, occupational selection in gender and education cells is based on

unobserved shocks. Possibly most closely related to our framework, Johnson and

Keane (2013) build an equilibrium model of male and female labor supply with

endogenous education and occupation choices. However, since FLFP is not a focus

of their paper, they do not consider changes in supply shifters, instead they account

for changes in LFP over time with indirect utility time trends.

By linking occupational choices to a rich array of observables, we allow for

direct counterfactual comparisons among the different predictors identified in the

literature. Since our focus is on the distributional impacts of FLFP, and how demand

and supply elasticities shape the propagation mechanisms within an equilibrium

framework, we abstain from endogenizing supply-side observables and educational

choices. With this simplification, we can differentiate labor types flexibly while

maintaining the model computationally feasible and with a tractable equilibrium.

Importantly, in the setting of Mexico, we observe strong secular trends in

the time series of education28 and our supply shifters (see Figures D.2 and D.3), so

allowing these choices to depend upon future wages may not be as relevant. For

example, the college premium declined, and mean real wages fluctuated strongly

during the analysis period (Lustig, Lopez-Calva, and Ortiz-Juarez 2013; Messina

and Silva 2018). If the wage premium for going to college were the main driver of

college attendance, we would expect a decline instead of an increase.

5.3 Equilibrium and Estimation

The equilibrium model generates a prediction of wages and labor supply for the

four worker types in the three market occupations in every time period. With 13

years of data, there are (12 + 12)× 13 = 312 predictions in total that are a function

of the 94 parameters of the model, including 29 on the supply-side and 65 on the

demand-side.

27. In PE and reduced-form models with treated and untreated local labor markets, sometimes
GE of policy treatments on local wages can be estimated (Attanasio, Meghir, and Santiago 2012;
Breza and Kinnan 2021). However, a GE model is required to predict equilibrium effects of changes
beyond the domain of policy treatment variations. As an exception to this literature, Lee and
Wolpin (2006) build a GE model with occupational selection among blue, white and pink collar
jobs, and allow for endogenous education and experience accumulation. However, Lee and Wolpin
(2006) take the fertility process as given, do not consider marital status, and, more importantly,
they do not consider gender.

28. The percentage of potential workers with a college education increased among women from
6.4 to 19.7, and among men from 15.9 to 21.5 between 1989 and 2015. A linear regression of the
share of women with a college education on calendar year produces a linear coefficient of 0.0053
(0.53 percentage points increase per year), with an R2 of 0.986, almost a perfect fit. For men, the
linear coefficient is 0.0025, with an R2 of 0.898.

17



Appendix Section B.1 defines and characterizes the equilibrium as a system of

equations for male and female wages; Appendix Section B.2 clarifies variations in the

data that pin down share and elasticity parameters across nests, and discusses the

potential benefits of equilibrium estimation; and Appendix Section B.3 delineates an

estimation strategy that pins down reasonable estimator starting values for the large-

dimensional parameter space. The analysis we provide in Appendix Section B.2 can

be used to evaluate whether existing papers use the appropriate polynomial order

and, accordingly, whether they are appropriately identified.

We describe the broad approach here. To provide analytical clarity to the

equilibrium problem, we consider the overall nested-CES problem in separate nest

groups. We discuss the de-nesting in Appendix Section B.1.1. Within one period

and for one skill group, the equilibrium wage for women in an occupation is a

function of the equilibrium wages of men across the different occupations (analytical,

routine, and manual). The equilibrium wage relationships across genders generate

a system of nonlinear equations for female wages that characterizes the equilibrium,

see Appendix Sections B.1.2 and B.1.3. In Appendix Section B.1.4, we solve for the

equilibrium explicitly via nested root search as well as via a faster but less stable

contraction algorithm.

While the nested-CES demand system is commonly estimated in the labor

economics literature, it is less common to estimate both demand and supply param-

eters in an equilibrium context. We develop an estimation framework that allows us

to do this. Given the large number of parameters involved in estimating the model,

we discuss the key identification challenges and solutions that arise. In Appendix

Section B.2.1, we discuss the identification of parameters across nests using relative

wages within and across nests. The lowest nest directly faces observed wages and

labor quantities, higher nest layers generate aggregate wages and quantities based

on lower level parameters and observables. In Appendix Section B.2.2, we discuss

the necessary data requirements for jointly identifying ρ and α (the elasticity and

share parameters on the demand-side) via equilibrium supply-shifters. In Appendix

Section B.2.3, we discuss the data requirements for possibly identifying variations

in the α parameter over time under polynomial restrictions. We show that iden-

tification is based on the concept of time-invariance in demand parameters after

differencing. In our equilibrium setting where labor supply is elastic to wages, we

show in Appendix Sections B.2.4 and B.2.5 that estimation relying only on supply-

side participation equations suffers from the potential endogeneity of wages, and

estimation relying only on demand-side optimality equations can suffer from bias

due to mismeasurement and shocks to relative demand trends. Finally, in Appendix

Sections B.2.6 and C, we discuss the benefits and examine the performance of our

equilibrium estimator.

Estimation proceeds by searching for the set of demand- and supply-side

parameters that generates the best fit between equilibrium predictions and the cor-
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responding observed values in the data. However, it is computationally challenging

to directly search for minimizing parameters in a 94-dimensional parameter space

globally. We estimate the model by first performing a preliminary round of linear

and nonlinear least squares estimation of different components of the model to gen-

erate reasonable starting values to initialize equilibrium estimation. We generate

different starting values as we explore alternative values of the eight ρ (elasticity)

parameters. We discuss details of the estimation parameter space in Appendix Sec-

tion B.3.1. We discuss how parameter values are initialized conditional on ρ in

Appendix Section B.3.2. We discuss the error structure and weight matrix from the

score of the log-likelihood function in Appendix Section B.3.3.

6 Model Fit and Estimates

6.1 Model Fit to the Data

In general, the model predictions consistently track long-term trends and short-

term variations in the data. Figure 4 shows the skill-weighted relative (i.e., male to

female) wage and relative supply series by occupation group, and aggregate LFP by

gender. Figure 5 Panel (a) shows relative wages by occupation and skill. It shows

the overall decline in male relative to female wages for skilled workers and the flat

or rising gender wage gap for unskilled workers. Panel (b) shows declining shares of

men relative to women in analytical (skilled and unskilled), unskilled manual, and

unskilled routine occupations. Appendix Table D.2 shows observed and predicted

mean wages and occupation shares for all groups at the start and end of the period,

showing a good fit across all cells.

6.2 Demand Side Elasticity of Substitution

By Occupation and Gender. The elasticities of substitution between male

and female labor are estimated to be around 1.1 and 1.3 in manual and routine task-

intensive occupations, respectively, and 2.9 in analytical task-intensive occupations

(Table 3). Thus, consistent with our starting premise, male and female labor are

closer substitutes in occupations that rely more on analytical skills, and which tend

to lie towards the upper end of the wage distribution (Table 1).

Using these estimates we performed back-of-the-envelope calculations using

Equation (2.1). Taking the actual occupation-specific increase in the supply of fe-

male relative to male labor, the estimated substitution elasticities imply a widening

of the gender wage gap across occupations, but most in manual and least in ana-

lytical task-intensive occupations. The actual widening of the gender wage gap in

all occupations (and most of all analytic) was smaller than predicted by the esti-

mated elasticity. This is consistent with another result we report below which is

that demand trends favored women (especially in analytic occupations).
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The key channel through which gender labor substitutability impacts equi-

librium outcomes is through its effects on the wage elasticity of demand for female

and male workers.29 Holding all else constant, consider a rise in the female wage.

If female and male labor are closer substitutes, this will induce more substitution

of female by male labor than if they were not. Thus, the higher the elasticity of

substitution between male and female labor, the larger (more negative) is the elas-

ticity of female labor demand with respect to the female wage. By virtue of allowing

gender-substitutability to vary by occupation, we allow the wage elasticity of de-

mand for female (and male) workers to vary across occupations. Holding all else

constant, in occupations with higher gender-substitutability, female wages will fall

more slowly when female labor force participation increases. Figure 6 traces out the

female wage elasticity of demand for female labor by varying female wages in one

skill and occupation group at a time, holding all else constant. Using the estimated

elasticities of substitution, the left panel column shows that the wage elasticity of

demand in analytical occupations is substantially larger than in manual and rou-

tine occupations. In the right column, we find nearly identical wage elasticities of

demand acorss occupations after setting ρ4,a and ρ4,m equal to the estimate for ρ4,r.

By Occupation and Skill. We provide among the first estimates of elastic-

ities of substitution between skilled and unskilled labor by task-based occupation.

Our estimates are 1.4 in analytical, 1.4 in routine and 3.8 in manual task-intensive

occupations (Table 3). Consistent with intuition, the unskilled are closer substitutes

for skilled workers in manual occupations. Our estimates are not out of line with

existing estimates of substitutability of skilled and unskilled labor that average over

occupations: 1.25 to 3 in Latin America (Fernández and Messina 2018; Manacorda,

Sánchez-Paramo, and Schady 2010) and 1.5 in the U.S. (Katz and Murphy 1992;

Ciccone and Peri 2005; Johnson and Keane 2013).

6.3 Demand Trends by Occupation, Gender and Skill

Figure 7 shows model predictions for the evolution of the log relative share param-

eters, log
(

α
1−α

)
, see Equation (5.4). We show the evolution of demand by nest and

the estimated aggregate output to productivity trends related to the neutral aggre-

gate productivity Zt term. We find evidence of both gender-biased and skill-biased

29. The elasticity of occupation- and skill-specific female labor demand, Lf,skl,occ,t, with respect
to occupation- and skill-specific female wage, Wf,skl,occ,t, is:

dLf,skl,occ,t
dWf,skl,occ,t

=

(
−1

1− ρ4,occ

)
·

 1

1 +
(

1−α4,skl,occ,t

α4,skl,occ,t

)
·
(
Wk,skl,occ,t
Wf,skl,occ,t

· 1−α4,skl,occ,t

α4,skl,occ,t

) ρ4,occ
1−ρ4,occ

 .

The demand-wage elasticity asymptotes toward
(

−1
1−ρ4,occ

)
as Wf,skl,occ,t increases.
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technical change.30

Relative demand for female labor. The most striking pattern is that

demand evolved to favor female relative to male labor in every skill-occupation

group (Panels a and b), with the largest increase among college-educated (skilled)

women (Panel b). Analytical task-intensive work did not exhibit the largest increase

in relative female demand due to a high starting value but it maintained the highest

level throughout, approaching parity by 2014. The effect size is large: for skilled

workers in analytical occupations, the model predicts that demand trends alone

would have led the gender wage gap to narrow by 39 log points.

Our results line up with a literature showing that structural change has fa-

vored female labor. As discussed in the Introduction, some studies emphasize la-

bor reallocation from goods to service industries (Lup Tick and Oaxaca 2010; Ak-

bulut 2011; Ngai and Petrongolo 2017), others the changing skill requirements of

the economy with the role of brawn declining and cognitive and social skills rising

(Galor and Weil 1996; Blau and Kahn 1997; Weinberg 2000; Rendall 2017; Black

and Spitz-Oener 2010; Aguayo-Tellez et al. 2013; Rendall 2013; Juhn, Ujhelyi, and

Villegas-Sanchez 2014; Deming 2017; Cortes, Jaimovich, and Siu 2018). The es-

timated increase in the relative demand for female labor is also consistent with a

decline in employer discrimination reflected through wages. A fall in discrimination

will additionally be captured by the estimated impacts of growth in the WBL index

of legislative protection of women’s economic rights on female labor supply.

Relative demand by skill and occupation. Abstracting from gender,

relative demand trends evolved to favor skilled relative to unskilled labor, see Panel

(c) of Figure 7. Potential drivers of skill-biased demand shifts in Mexico are trade

and investment liberalization (Feenstra and Hanson 1997; Hanson 2003; Sánchez-

Páramo and Schady 2003; Behrman, Birdsall, and Szekely 2007; Caselli 2014) and

the growth of foreign direct investment (Feenstra and Hanson 1997) in this period.

In Panel (d) of Figure 7, we see no change in relative demand in analytical task-

intensive occupations (which had higher female shares at baseline), but a slight

increase in the first decade in routine relative to manual task intensive work.

The results confirm that Mexico experienced skill-biased technical change,

a phenomenon argued to explain rising income inequality in developed economies.

However, Mexico experienced a decline in wage inequality among men, largely driven

by a fall in the college premium (Lustig, Lopez-Calva, and Ortiz-Juarez 2013;

Messina and Silva 2018). Our counterfactual analysis demonstrates that this is

because educational upgrading, compounded by increased labor force participation

among skilled women, more than offset the increased demand for skill. We believe

we are the first to uncover this specific channel in the literature studying the fall

30. Since we do not explicitly model capital, the variation in the aggregate capital stock might be
reflected in the evolution of these shares.

21



in earnings inequality in Latin America during the 2000s (López-Calva and Lustig

2010; Levy and Schady 2013; Lustig et al. 2016; Acosta et al. 2019; Fernández and

Messina 2018).

Total labor requirement scaled by productivity. Panels (e) and (f) of

Figure 7 show that the aggregate output to productivity ratio Yt
Zt

approximately dou-

bles from 1989 to 2014, which matches closely with a doubling of real GDP per capita

in Mexico in this time span. This implies a relatively flat, but slightly downward

trending pattern in Zt, which captures changes in neutral aggregate productivity.31

6.4 Supply Side Wage Elasticities

While there is one wage parameter ψ1 across gender and skill groups, the effects

of wages on occupational choices, including the participation margin, can be het-

erogeneous and evolve over time. These wage elasticities of labor supply are key

to understanding the countervailing effects on FLFP from equilibrium wage adjust-

ments. We conduct the analysis at three levels. We first analyze the effects of

increasing wages in all occupations on aggregate labor supply. We then deviate

from most existing work in estimating impacts of increasing the occupation-specific

wage on aggregate labor supply; and then on labor supply to that and the other

occupations. The occupation-specific own- and cross-wage elasticities are important

ingredients for the counterfactual analysis. The top panel of Table 4 presents the

average marginal effects (AME) of wages on aggregate labor supply by gender and

skill, in percentage point (pp) units, while the bottom panel presents the respective

wage elasticities.32

Aggregate gender- and skill-specific labor supply responses to an

increase in wages across occupations. Consider a simultaneous increase in wages

in all occupations (column 1). In line with previous work (Killingsworth and Heck-

man 1987; Blundell and Macurdy 1999), we find that female LFP is more sensitive

to wages than male LFP, particularly among the unskilled. We estimate an elasticity

of 0.529 and 0.341 for unskilled and skilled female workers, respectively, the corre-

sponding estimates being 0.060 and 0.062 for men. These numbers are close to the

averages reported in meta-analyses (Evers, Mooij, and Vuuren 2008; Keane 2011;

Bargain and Peichl 2016). Figure 8 shows that female (but not male) aggregate

wage elasticities have decreased over time, consistent with women’s increasing en-

gagement and attachment to the labor market. A similar tendency has been shown

31. In Appendix Section B.1.1, we show that the optimal labor demand in constant-returns CES
problems is a function of the Yt

Zt
ratio. In Appendix Section B.2.1, we discuss that Zt cannot be

separately identified from Yt
Zt

. Yt
Zt

captures a total (labor) factor productivity re-scaled output term
that captures the total labor/output requirement from aggregating across skill-, occupation- and
gender-specific labor units.

32. For AME, we evaluate the total derivative of aggregate LFP with respect to wages in the
direction of equidistance increases for all wages. For elasticity, we divide the percentage increase in
labor supply by a percent increase in wages that is common across occupation-specific wages.
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for America Heim (2007) and Blau and Kahn (2007). Our counterfactual analysis

will discuss potential drivers of this.

Aggregate gender- and skill-specific labor supply responses to an in-

crease in occupation-specific wages. Changes in LFP can be better understood

by considering the sum of occupation-specific supply responses to their respective

wage changes. Columns 2-4 of Table 4 decompose the results in column 1, where

all wages are changing, by the separate effects of wages in manual, routine, and

analytical occupations. Trade or technological change may move the wage in one

occupational class and not in the others.33 The aggregate of unskilled women and

men is most responsive to the manual-task wage and least to the wage in analytical

occupations. Conversely, participation of skilled workers is most responsive to the

analytical task-wage.

Occupation-, gender- and skill-specific labor supply responses to an

increase in occupation-specific wages. We now decompose the net effects just

discussed to consider how changes in occupation-specific wages influence own- and

cross-occupation labor supply. See Figure 9 and Appendix Tables D.4 and D.5. All

own-wage elasticities are positive, and cross-wage elasticities negative. Elasticities

specific to gender-skill-occupation-year are in the Figures. Here we summarize the

main patterns. Changes in analytical task wages produce labor supply responses

that are actually similar between men and women, but differentiated by skill, being

larger among skilled workers. When manual wages change, unskilled men are the

most responsive group, and skilled women the least. When routine wages change,

the patterns are broadly similar except that now skilled women are more responsive

and the own- vs cross-wage elasticity indicate that they will move between analytical

and routine task jobs as a function of the relative wage. Notably, while aggregate

male labor supply is not very elastic to occupation-specific wages (Table 4), male

mobility across occupations is influenced by the wage in one occupation vs another.

Overall, our finding of large (and time-varying) occupation-skill-gender spe-

cific labor supply responses to the equilibrium wage structure underlines the rel-

evance of accounting for these responses in a general equilibrium model. These

results are important beyond the context of this study. Within the supply and

demand framework, the most common strategy to estimate an equation like (2.1)

is to assume that labor supply is inelastic, include a low-order polynomial for the

relative demand trend, and use an OLS or fixed effects estimator. If labor supplies

are elastic, the results from this type of exercises can be misleading (see Appendix

Section C).

Moreover, the finding that elasticities are heterogeneous and time-varying is

also important. In a survey of the literature on the impact of immigration on native

33. For AME, values in columns 2-4 are partial derivatives that sum up to the total derivative
value in column 1.
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wages, Dustmann, Schönberg, and Stuhler (2016) argue that the range of estimates

found in the literature can be partly accounted for by the assumption that the labor

supply elasticity is homogeneous across different groups of natives. The reason is

that by making this assumption researchers are bypassing employment responses.

6.5 Supply Side Non-Wage Determinants of Labor Force Participation

We now discuss estimates of average marginal effects (AME) of the four supply-side

shifters on gender-skill-occupation specific labor supply, see Table 5 and Appendix

Table D.6).34 In contrast to many existing studies, we provide estimates by skill

and for men and women. We summarize the results here but consider them again

in the counterfactual analysis, where we provide an accounting of the importance of

these factors for the evolution of gender gaps in LFP and wages. Fertility. The per-

centage of skilled women with young children (fertility) declined by 20 pp over the

sample period. We estimate that a 10 pp decrease in fertility increases participation

of skilled women by 6 pp. Fertility decline decreases LFP of unskilled women and

men (0.63 pp and 1.3 pp), consistent with parenthood increasing the higher earnings

target. Skilled male labor supply is almost perfectly inelastic to fertility, consistent

with the strong labor market attachment of this group. Stable partnerships. The

decline in cohabitation rates has insignificant effects on women’s participation but

raises male LFP, with larger impacts on unskilled men. Household appliance

availability. Reducing appliance availability in 1989 by 10 pp for unskilled (from

63.0%) and skilled (from 95.6%) women respectively, FLFP would decrease by 5

and 18pp, respectively. However, as the skilled group had close to complete uptake

at baseline, the growth in appliance uptake was among unskilled women (see Fig-

ure D.2.). Appliances also increase LFP of skilled men, but reduce LFP of unskilled

men. Women’s economic rights. Improvements in gender and work related laws

and regulations, captured by the WBL index, have a small positive effect on FLFP,

twice as large for skilled as for unskilled women. A 10 pp increase in the WBL from

1989 is estimated to lead to an increase in FLFP of 2.5 pp for skilled and 1.3 pp for

unskilled women. The marginal effects of an increase in the WBL on male LFP are

close to zero.

7 Counterfactuals

Using the estimated parameters of the equilibrium model, in this section we evaluate

and compare, in one internally-consistent framework, various factors considered by

34. AME is calculated by taking the numerical derivative of the probability of choosing home
production with respect to the given variable. The margins are interpreted as the percentage point
(pp) changes in the probability of leisure conditional on skill and gender given a one pp increase in
the respective supply-side variable (and, thus, the signs are reversed for occupation-specific labor
supply).
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different strands of the literature as important for changes in gender wage and partic-

ipation gaps. We evaluate non-wage predictors of LFP, changes in the gender-skill

composition of the potential workforce, and skill and gender-biased technological

change by occupation.

We compute general equilibrium (GE) wage responses given counterfactual

changes in demand and supply over time. Where relevant, we compute supply-side

partial equilibrium (PE) results given observed wages in each year. Comparisons

of GE with PE estimates illuminate the role of endogenous wage responses. We

demonstrate that PE tends to over-state the contribution of supply shifters by virtue

of ignoring equilibrium wage adjustments that generate countervailing impacts on

labor supplies. This is important because research that estimates structural models

of female labor supply has typically taken wages (and labor demand) as given and

provided PE counterfactuals (Keane, Todd, and Wolpin 2011; Böhm et al. 2019). In

the case of changes in demographic composition, we document a case of GE reversing

the sign of the PE effect.

Our main findings are as follows. The baseline model predicts an overall nar-

rowing of the aggregate gender participation gap of 19.9 pp, driven solely by the

increase in FLFP. A narrowing is evident across all occupation and skill groups.

Our counterfactual analysis indicates that increasing appliance availability, which

increased unskilled FLFP, was the largest contributor, accounting for 28% of the

overall narrowing of the LFP gap. Fertility decline was the main driver of FLFP

growth among skilled women, but it had a smaller effect on the overall gap because

of higher baseline participation rates and relative group size. Interestingly, we find

that the increasing share of skilled women in the population acted to widen the

participation gap. This is explained by the countervailing effect of wages on partic-

ipation and how the compositional change impacts wages and occupational sorting

across all groups.35

Alongside a narrowing of the gender participation gap, there was a narrowing

of the overall gender wage gap by 6.3 log points. But underlying this number are

substantial distributional changes: the gender wage gap declined by 10.4 log points

among skilled workers and increased by 9.6 points among the unskilled. The narrow-

ing of the skilled gender wage gap reflects favorable demand trends that dominated

the increased labor supply in this group. The latter results from increasing college

completion rates and higher participation due to declining fertility. The increase

in the unskilled gender wage gap reflects the opposite: relative labor supply of un-

skilled women, driven by appliance availability and the emigration of unskilled men,

dominated the rising demand for women in this group.

35. The rising share of skilled women dampened wage growth for skilled women, which, in turn,
cramped further rises in their participation. It also crowded out some of the potential increase
in the share of unskilled women joining the labor force, essentially because growth in the relative
demand for women’s labor was skill-biased.
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Overall, across skilled and unskilled women, the single largest influence on the

aggregate gender wage gap in this period was the growing demand for female labor.

This outward shift in the demand for female labor explains why the participation

gap and the wage gap move in the same direction. We estimate that, if there were no

increase in the relative demand for women then, rather than decreasing, the overall

gender wage gap would have grown by 17.6 log points.

Our estimates are potentially sensitive to the fact that we do not endogenize

college completion. The extent to which this would modify our estimates here de-

pends on the elasticity of college choices to expected wages. As discussed in Section

5.2, Mexico exhibits a secular increase in college completion in the analysis period.

That this occurred even though the college premium decreased, and mean real wages

exhibited substantial fluctuations in this period suggests that endogenous responses

of college attendance to wages may be small. Moreover, any impact on our estimates

from counterfactuals that vary non-wage determinants of LFP and relative demand

trends will be muted by offsetting effects on wages and quantities.

We now elaborate on each result. In each counterfactual exercise, we fix the

variable or parameter of interest to its value in 1989, and keep it constant across the

years. We then compare the predicted equilibrium wages and labor supplies under

the counterfactual scenario with the baseline model predictions. In Tables 6 and

7, each cell reports changes over time in the gender differences in labor supply and

wages by skill and by occupation-skill groups. The first column shows the prediction

of the baseline model, successive columns present results from counterfactuals that

shut down the mechanism indicated in the column header. Thus if a mechanism in

column 5 (for example) has a large impact on the outcome, this is reflected in a large

difference between the estimate in column 5 and the estimate in the first column.

For ease of exposition, the counterfactual results are also visualized in Figures 10,

11, and 12.

7.1 Non-Wage Determinants of LFP

The gender participation gap. The estimates are in the first block of

Table 6. The headline result is that the rapid rise in household appliances among

unskilled women was the main driver of their LFP, while fertility decline was the

main driver of the LFP of skilled women. Male labor supply is not substantially

impacted by either. See Figure 11.

Under PE, in the absence of any increase in appliances, FLFP of unskilled

women in routine task-intensive occupations would have increased from 10% to

12%, whereas in fact this rate increased to 16%. In the absence of fertility decline,

FLFP of skilled women in routine occupations would have increased from 8.5%

to 14.5%, but in fact this rate increased to 18%. In contrast, the counterfactual

and the actual participation paths largely overlap for unskilled women under the
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fertility counterfactual, and for skilled women under the appliance counterfactual

given more muted changes in the shifters, see Figure D.2. This pattern of results

holds by occupation too. Visualizations are provided in Panels (b-d) of Figure 11.

The GE estimates additionally account for the fact that, as more women are driven

into work, women’s wages fall, and this inhibits further increases in women’s labor

supply. The PE-GE difference is large, for example, it halves the positive impact

of appliance availability on the FLFP of unskilled women. Since a larger number of

unskilled women participate, equilibrium wage effects are larger in this group.

In aggregate, the model predicts a narrowing of the gender gap in LFP in

favor of women by 19.9 pp. Without the observed increase in household appliances,

the gap would have narrowed by 14.3 pp (28% of 19.9 pp) under GE, and 7.5 pp (62%

of 19.9 pp) under PE. Without fertility decline, it would have narrowed by 17.9 pp

(10% of 19.9 pp) under GE and 16.5 pp (17% of 19.9 pp) under PE. The relatively

small share of skilled women in the population reduces the aggregate effects of the

fertility counterfactual. Increasing WBL contributed to reducing LFP gaps in all

skill and occupation groups, and the decreasing share of stable partnerships slightly

widened the LFP gap among the unskilled. The time-series of aggregate LFP gap

changes is shown in Panel (a) of Figure 11 and changes between end-points are

visualized along the x-axis of Appendix Figure D.4.

The gender wage gap. Under both GE and PE, increasing appliance avail-

ability increases the gender wage gap, while decreasing fertility reduces it. Marriage

and women’s rights have relatively small impacts. See Panel (a) of Figure 10, and

Panel (a) of Appendix Figure D.4.

The baseline prediction is a narrowing of the aggregate gender wage gap of

6.3 log points. The PE counterfactual shows that, absent the rise in appliance avail-

ability, the wage gap would have narrowed by 10.6 (68.2% more than the baseline),

which establishes that rising appliance availability has tended to increase the wage

gap. The PE effect works by changing the skill composition of the workforce—

appliances increase the relative supply of unskilled women who earn lower wages.

The GE estimate is a narrowing of the wage gap by 12.2 log points (93.6% more than

in baseline). GE additionally allows that, as the supply of unskilled female labor

increases, their relative wage falls and this leads to further divergence of women’s

wages relative to those of men.

The PE counterfactual shows that, absent fertility reduction, the gender wage

gap would have narrowed by 3.3 points. The corresponding GE estimate is 5.6 log

points. Both numbers are smaller than the baseline of 6.3 points, indicating that

fertility reduction decreased the wage gap. The PE effect is again compositional,

but now lower fertility increases the participation of skilled women who earn higher

wages, with little effect on unskilled women. The additional channel in the GE

effect is that increased participation of skilled women generates downward pressure
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on skilled female wages, leading to a smaller reduction of the wage gap compared to

PE.

The extent to which changes in labor supply affect the gender wage gap is

determined by ρ4,occ, or the elasticity of substitution between male and female labor.

Our finding that this elasticity is small in lower-paying manual and routine task-

intensive occupations, which employ a disproportionate share of unskilled workers,

acts to sharpen the relative wage effects of the appliance counterfactual. The greater

ease with which women can substitute men in analytical tasks, which are more likely

to be occupied by skilled workers, blunts the relative wage effects of the fertility

counterfactual. In particular, downward wage pressure from higher skilled female

participation is transmitted to male wages, moderating the downward pressure on

the gender wage gap. Previous studies analyzing the role of, for example, appliances,

and fertility, have not studied their important distributional effects.

The skill premium. Our baseline model predicts a log (skilled/unskilled)

wage ratio among women that is fairly stable (-1.4 log points decline). Beneath the

surface though, are some large movements that happen to offset one another. In the

absence of fertility decline, the female skill premium would have increased by 7.5

pp, while in the absence of increased appliance ownership, it would have decreased

by 6.4 pp. These counterfactuals demonstrate that evolution of the skill premium

depends on labor supply responses ofskilled and unskilled workers.

Changes in women’s participation can also impact the skill premium for

males, a phenomenon largely ignored in the literature on wage inequality, whether

in the U.S. or in Mexico. The size of this impact will depend on the elasticity of sub-

stitution between male and female labor. The baseline model shows that the male

skill premium declined over the period by 21.5 log points. The counterfactuals show

that, if not for appliance growth, it would have declined by 20.5 points and, if not

for fertility decline, it would have declined 18.3 points. Fertility decline had a larger

impact on the male skill premium because of the higher substitutability of men and

women in skill-intensive occupations, which transmits more readily the downward

pressure on skilled female wages to skilled male wages. However, the magnitude of

the fertility effect is limited by the relatively small number of skilled women.

7.2 Demographic Changes

Relative skill upgrading. College completion rates rose more rapidly among

women than men over the analysis period. We construct a counterfactual in which

we fix the gender composition of the skilled population at its 1989 level. We do

this by allowing the number of skilled males and the gender-specific population to

increase as observed, maintaining the female share among the skilled at 31.2%, its

initial level. By 2014, under this counterfactual, there are 2.2 million skilled women

rather than the actual 5.0 million, and the difference is added to the number of
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unskilled women.

As the share of skilled female workers increases, since they earn higher wages

and have higher LFP rates (see Panel (b) of Figure D.3), under PE, the compositional

impact is to reduce the gender gap in participation and wages. Thus under the

counterfactual that shuts down the actual increase in skilled women among potential

workers, the gender wage gap increases by 5.3 log points in contrast to the baseline

decline of -6.3 log points, see the second block of Table 7. The gender participation

gap declines by 17.8 pp instead of the baseline of 19.9 pp, see Table 7 (first block).

Under GE, there is feedback from equilibrium wages to labor supplies. This

counterfactual illustrates nicely the role that the substitutability of male and female

labor, the substitutability of skilled and unskilled labor, and the wage elasticity of

supply play in the propagation of this feedback. This highlights the relevance of

allowing variation in these elasticities by occupation.

We now elaborate the mechanisms at play. An increase in skilled female labor

supply pushes down skilled female wages. Given high substitutability of male and

female labor in analytical task-intensive occupations (ρ4,a), where skill is concen-

trated, skilled labor demand moves in favor of women and the demand for skilled

men contracts, driving down skilled male wages. At this stage, the high degree

of substitutability of skilled vs unskilled labor in manual task-intensive occupation

(ρ3,m) plays a role: as skilled wages are lower, there is a contraction in demand

for male and female unskilled workers. This contraction is stark due to the sharp

growth in the relative productivity of skilled female workers (decreasing α4,skl,occ,t

and increasing α3,occ,t). Overall, there is a reduction in wages across gender and skill

groups.36

Now consider the GE effect of skill upgrading on the gender LFP gap, which

is to widen it (by -24.2 pp, which exceeds the baseline of -19.9 pp), see Panel (a) of

Figure 12. This is the reverse of the PE effect. The reason is essentially that the

overall fall in wages has a larger impact on female than on male LFP, given that the

aggregate wage elasticity is larger for females (see Panel (b) of Figure 12).

While accounting for GE effects reverses (widens) the direction of changes in

the gender LFP gap implied by PE (a narrowing), GE magnifies the narrowing of

the gender wage gap that was established under PE—the counterfactual coefficients

are +9.6 (GE) and +5.3 (PE) log points instead of the baseline -6.3 log points—see

the third block of Table 7. This holds for skilled and unskilled workers but the

relative wage effects on unskilled workers dominate because they are a much larger

share of the population.

The GE feedback effects from wages also have implications for the skill pre-

mium. Consider the fourth Panel of Table 7, which shows the impact of holding

36. The demand-driven fall in unskilled male wages is unambiguous. However, the demand con-
traction for unskilled female workers is counteracted by the concurrent contraction in female un-
skilled labor supply. It turns out that, on balance, unskilled female wages fall as well.
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fixed the gender composition of skilled workers on the gender-specific skill premium.

On its own, the increased share of skilled women significantly decreased the female

skill premium by 42.2 log points (from +40.8 under the counterfactual to -1.4 at

baseline).

Emigration. There was an increase in emigration rates over the analysis

period, led by unskilled men. Emigration affects the occupational and wage struc-

ture by changing the number of potential workers in each skill-gender group (e.g.,

changing Lpopf,s,t in Equation (5.8)). We explain the mechanism in detail in Appendix

Section A.2.1. We conduct a counterfactual in which we fix the share of emigrants in

the Mexican-born population by gender and skill at its 1989 level. Rising emigration

created upward pressure on wages, especially among the unskilled, increasing their

participation rates. Unskilled women reacted more than unskilled men given their

larger aggregate wage-elasticity, and this led to a narrowing of the overall gender

participation gap.37 Since the labor supply of men adjusts less than that of women,

male wages absorb most of the impact, and there is an increase in the unskilled and

the overall gender wage gap. The magnitude of this effect is similar to that of the

appliances counterfactual.

7.3 Demand Side Share Parameters

To quantify the impact of relative demand trends, we run two counterfactuals

in which we fix either the gender-skill-occupation shares (α4,skl,occ,t) or the skill-

occupation shares (α3,occ,t) to their 1989 values. We find that increasing female-

demand-share (1−α4,skl,occ,t) had the largest impact on the narrowing of the gender

wage gap of all the mechanisms that we analyze counterfactuals for (see the second

block of Table 7). As shown in Section 6.3, relative demand trends strongly favored

women across occupation and skill groups. Absent this, the gender wage gap would

have increased by 17.6 log points instead of declining by 6.3 points as predicted

in the baseline. In fact, the growing demand for women’s labor counteracted the

downward pressure on female wages arising from rapid increases in FLFP.

Even when we shut down α4,skl,occ,t, the labor supply of women increases

substantially, closing the participation gap with men, albeit at a slower pace relative

to the baseline (see the overall row in the first block of Table 7 and Panels (c) and

(d) of Figure 12). But with the growth in relative female demand shut down, the

relative female wage adjusts downward (see the overall row in the second block of

Table 7).

Fixing the gender-skill-occupation shares (α4,skl,occ,t) also has significant dis-

tributional effects. The gender wage gap increases in both skill groups, but more

among the skilled, reversing the observed pattern. This demonstrates that the actual

contraction of the gender wage gap at the top of the wage distribution was primarily

37. The counterfactual, phrased in the inverse, is -16.7 pp compared with the baseline -19.9 pp.
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driven by stronger labor demand for skilled women (see Figure 7). The latter also

translates into an increase in the skill premium for women, and a decrease for men.

In our final counterfactual, we fix the skill-occupation shares (α3,occ,t) at their

initial value. What is strongly affected now is the skill premium. The counterfactual

shows a decline relative to baseline predictions (see the last block of Table 7). This

confirms that skill-biased technical change raised the skill premium.

8 Robustness Checks

The baseline estimates defined earnings for full-time workers, see Appendix A. We

re-estimated the model including earnings of part-time workers. Including part-time

worker income reduces the elasticity of substitution between male and female labor

in manual and routine task-intensive occupations to 0.80 and 0.97, respectively.

Replacing the head count measure of labor supply with total hours leaves the es-

timates unchanged. We restricted the α share parameters to follow a cubic trend

in their natural logarithm. The cubic trends provided the best fit. We confirmed

that quadratic polynomials did not allow sufficient flexibility, while the coefficients

associated with the quartic polynomials were not statistically significant in most

cases. Importantly, the estimates are not sensitive to functional form. We checked

robustness to switching the order of the second and third nests of the production

technology, and to varying which of the two occupational groups has the common

elasticity. The rank order of the values of the elasticities of substitution between

male and female labor is maintained in all cases: the manual and routine task-

intensive occupations elasticities lie between 0.7 and 1.2, while the analytical task

elasticity lies between 1.9 and 2.6. The corresponding estimates of the parameters

from the supply-side of the model remain essentially unchanged. These additional

results are available on request.

9 Conclusions

We develop a model that allows that demand and supply forces to interact in equilib-

rium and jointly explain the observed paths of wages by gender, skill, and task-based

occupation. Our approach marks a departure from most previous work on women’s

labor supply, which takes labor demand as fixed. It also marks a departure from

the standard labor supply-demand model often used, for instance, to analyze immi-

gration, by virtue of endogenizing labor supply. Our estimates suggest that, even

in settings where total labor supply is fixed, it is relevant to consider the sorting of

labor across occupations, in response to equilibrium wages. We quantify the relative

importance of demand, supply, and demographic factors and their distributional

consequences, within and between genders and across the wage distribution.

While our empirical results speak specifically to the experience of Mexico as it
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entered the twenty-first century, the demand, supply, and demographic mechanisms

are of general interest in contemporary richer and poorer countries. Our equilib-

rium framework and associated solution, identification, and estimation results are

applicable in other gender settings and in non-gender settings where a nested-CES

production function is appropriate for describing input aggregation, and multino-

mial discrete choice assumptions can sufficiently capture the relative tradeoffs for

participating in alternative occupations.
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Tables and Figures

Figure 1: Labor Force Participation by Gender

Absolute Numbers

(a) Survey Data (b) Census Data

Gender-specific Participation Rates

(c) Survey Data (d) Census Data

Notes: The labor force participation rate is defined as the proportion of prime-age individuals
(25-55 years old) who either worked or sought employment in the previous month relative to the
total number of individuals within this age bracket. Our definition of work includes all sectors,
occupations, and the informal economy, irrespective of the nature of the activities or if the work
complies with the country’s formal labor laws and protections (i.e. if the job is formal or informal).
Sample weights are used in all calculations. See Appendix Section A.1 for details on the construction
of the series.
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Figure 2: Distribution of Changes in Log Hourly Wages by Gender between C.1992 and
C.2012

(a) Males and Females by Percentile

(Log) Gender Wage Gap by Percentile

(b) ENIGH (c) Census

Notes: The series in Panel (a) are constructed by computing the change in real log hourly wages
between C.1992 and C.2012 at each percentile of the male and female distribution, respectively.
Panel (b) shows the change in log (male/female) hourly wages by percentile between C.1992 and
C.2012, calculated using the survey data from ENIGH. Panel (c) replicates the exercise using
information on monthly labor earnings and hours worked from the 1990 and 2010 Mexican CENSUS.
The sample was restricted to the prime-age population working more than 35 hours a week. To
increase the sample size in ENIGH, we joined surveys from 1989, 1992, and 1994 (C.1992), and
from 2010, 2012, and 2014 (C.2012).
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Figure 3: Decomposition of the Gender Wage Gap by Percentile of the Distribution

Notes: The Figure shows results of the Oaxaca-Blinder decomposition of the unconditional change
in the log (male/fermale) wage ratio between C.1992 and C.2012 by percentile. The estimation
is done separately for 19 percentiles. Confidence intervals are estimated via bootstrap with 500
replications. Sample weights used in all calculations. The wage structure effect dominates, tracking
the data. The composition effect is fairly constant across the distribution and close to zero. See
discussions in Section 4.
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Figure 4: Model Fit
Data and Model Predictions for Relative Wages, Relative Supplies and Participation Rates

Analytical Occupations

(a) Log (Male/Female) Wage Ratio
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(d) Log (Male/Female) Relative Supply
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(e) Log (Male/Female) Wage Ratio
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(f) Log (Male/Female) Relative Supply
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Notes: The different panels depict the series of log (male/female) relative wages, log (male/female) relative labor
supplies (= demands), and LFP rates from both the raw data and as predicted from the model, showing a close
fit. See discussions in Section 6.1.
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Figure 5: Model Fit
Data and Model Predictions for Male to Female Relative Wages and Male and Female Occupation Par-
ticipation Rates Differences

(a) Log (Male/Female) Wage Ratio
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(b) (Male - Female) Occupation Participation Rates
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Notes: The panels depict log (male/female) relative wages and (male - female) occupation participation rates
differences (See Footnote 25 for definition). The skill- and occupation-specific results from the first block of the
model columns of Tables 6 and 7 show the differences between the averages of the first three years and the final
three years based on the Model Prediction lines in the present Figure. See discussions in Section 6.1.
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Figure 6: The Elasticity of Demand for Female Workers to Female Wages by Occupations
and Skills.

Estimated Gender Elasticities by Occupations Homogeneous Gender Elasticities (All=Routine)
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Notes: In this figure, we show the wage elasticity of demand. For each skill- and occupation-
specific female wage, we hold all else constant, and vary only the female wage in one skill and
occupation group to derive the skill- and occupation-specific demand curves. We then compute the
skill- and occupation-specific wage elasticities of demand. In the two subfigures on the left, we use
wages and estimated parameter values from 2002. Elasticity curves across occupations differ due
to heterogeneous occupation-specific gender elasticity of substitution. In the two subfigures on the
right, we set the manual and analytical gender elasticities to the estimated value for routine task-
intensive occupations (which is in between the estimated manual and analytical elasticities). The
figure demonstrates that the assumption of homogeneous gender elasticity of substitution across
occupations in effect imposes the restriction that the wage elasticity of demand is similar across
occupations. Given that the gender elasticities of substitution do not vary over time, results are
similar across years. See discussions in Section 6.2.
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Figure 7: Estimates of the Relative Demand Indexes and Total Factor Productivity

Production Technology: α Share Parameter

(a) Level III, Unskilled
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(c) Level II
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Notes: Panels (a)-(d) show the estimated relative demand indexes captured by the natural logarithm
of the ratio of α and 1− α. Panel (e) shows the estimated output to productivity ratio Y

Z
, plotted

along real GDP per capita relative to 1989 using FRED data. Panel (f) is the natural logarithm of
the ratio of real GDP per capita by the Y

Z
ratio. See discussions in Sections 6.3 and 7.3.
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Figure 8: Estimates of Aggregate Wage Elasticity
The Elasticity of Gender- and Skill-specific Aggregate Labor Supply with Respect to Wages
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Notes: The panel depicts elasticities. It shows the ratio of a percentage change in the aggregate
labor supply—for each gender and skill group—over a percentage increase in wages. The same
percentage increase in wages is applied to all occupation-specific wages concurrently. Year-specific
elasticities are computed. The first column in the bottom panel of Table 4 shows the averages of the
elasticities over time. See Figure 9 for the own- and cross-elasticities of occupation-specific labor
supplies with respect to occupation-specific wages. See discussions in Section 6.4.
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Figure 9: Estimates of Own and Cross Wage Elasticity
The Elasticity of Occupation-specific Labor Supply to Occupation-specific Wage

(a) Own and Cross-Elasticities of Manual Wages
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(b) Own and Cross-Elasticities of Routine Wages
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(c) Own and Cross-Elasticities of Analytical Wages
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Notes: The panels depict elasticities. It shows the ratio of a percentage change in occupation-specific labor
supply—for each gender and skill group—over a percentage increase in an occupation-specific wage. Triangle,
circle, and diamond lines represent the elasticity of manual, routine, and analytical labor supplies with respect
to different wages. See Figure 8 for aggregate elasticities. See Appendix Table D.5 for average own- and cross-
elasticities across the years. See discussions in Section 6.4.
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Figure 10: Counterfactual Exercises
Effects of Non-wage Determinants of LFP, Demographics, and Demand Side Parameters on Changes in the
Gender LFP and Wages Gaps between C.1992 and C.2012.

(a) Changes in Gender Participation and Wage Gaps: (C.2012 - C.1992)
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Top-Right Quadrant Points:

- Reduces Gender LFP Gap

- Reduces Gender Wage Gap

Bottom-Right Quadrant Points:

- Reduces Gender LFP Gap

- Increases Gender Wage Gap

Bottom-Left Quadrant Points:

- Increases Gender LFP

- Increases Gender Wage Gaps

Top-Left Quadrant Points:

- Increases Gender LFP Gap

- Reduces Gender Wage Gap

Notes: The Table reports the difference between C.1992 and C.2012 of i) the log (male/female) wage ratio and ii) the
change in the (male - female) LFP and occupation rates under different counterfactual scenarios. Figure (a) visual-
izes results from the “Overall” row in the first two blocks of Tables 6 and 7. Figure (b) visualizes results from the
skill/occupation-specific rows in the first two blocks of Tables 6 and 7 (Skilled-manual and unskilled-analytical results
are not shown for conciseness). Black-dashed lines mark model predictions, and points indicate predictions under key
counterfactual scenarios. Points to the right of the vertical dashed-line reduce gender LFP and occupation participation
gaps; points to the top of the horizontal dashed-line reduce the gender wage gaps. Under the counterfactuals, we set
the share with under-5 children (Fertility), the share with refrigerator or a washing machine (Appliance), the skilled
population female share (Skilled Female), the gender/skill-specific emigrant shares (Emigrant), the skill/occupation-
specific demand gender share α4, and occupation-specific demand skill share α3 at their 1989 values, respectively. See
discussions in Section 7.
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Figure 11: Counterfactual Exercises
Non-wage Determinants of LFP and Occupation Participation Rates

(a) (Male - Female) LFP Gap, Change from 1989
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(b) Women Analytical Participation Rates
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(c) Women Routine Participation Rates
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(d) Women Manual Participation Rates
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Notes: We set observables for non-wage determinants of LFP at their 1989 values, one at a time. In Panel (a), appliance
had the largest effect on the aggregate gender participation gap. In Panels (e)-(d), more appliance and less fertility
increased LFP for unskilled and skilled women, respectively. In partial equilibrium, we hold wages as observed. In
general equilibrium, we resolve for equilibrium wages given supply curve shifts. See discussions in Section 7.1.
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Figure 12: Counterfactual Exercises
Demographics, Demand Parameters, and LFP in General Equilibrium

(a) Demographics: LFP Gap Change vs. 1989
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(b) Demographics: Gender-specific LFP
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(c) Demand: LFP Gap Change vs. 1989
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(d) Demand: Gender-specific LFP

    

  
    

  
  

    
  

    
  

    
        

            
  

Female Male

G
e

n
e

ra
l E

q
u

ilib
riu

m

19
90

19
95

20
00

20
05

20
10

19
90

19
95

20
00

20
05

20
10

30%

40%

50%

60%

70%

80%

90%

100%

Years

G
e

n
d

e
r−

s
p

e
c
if
ic

 L
F

P
 R

a
te

s

Notes: Panels (a) and (c) show differences between the gender LFP gap in 1989 and each subsequent year under various
counterfactuals. Panels (b) and (d) show variations in gender-specific LFP rates over time. In the counterfactuals here,
we set the skilled population female share and the gender/skill-specific emigrant shares, and the skill/occupation-specific
demand gender share (α4) and occupation-specific demand skill share (α3) parameters at their 1989 values. Figures D.3
and 7 present changes in these variables and parameters over time. See discussions in Sections 7.2 and 7.3.
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Table 1: Occupation Groups
Task Structure, Gender Composition, Employment Share, Wage Rank

Median Percentile of the Task Measure

ENIGH Principal Group Analytical Routine Manual Group
Av. Share

(x100)
Av. Male

Share (x100)
Av. Wage
Percentile

Managers 90.0 17.0 27.5 Analytical 2.9 71.3 85.4

Crafts and Trades (Supervisors) 84.0 42.0 62.0 Analytical 1.8 84.2 72.3

Education 83.0 11.0 65.0 Analytical 4.5 38.2 80.2

Professional 83.0 42.0 46.0 Analytical 4.1 62.4 82.3

Technical 71.0 69.0 43.0 Analytical 4.0 59.3 68.6

Arts/Entertainment 66.0 35.0 48.0 Analytical 0.6 76.4 70.4

Sales 61.0 22.5 15.0 Analytical 12.7 46.3 47.5

Crafts and Trades (Laborers) 40.0 82.0 73.0 Routine 14.3 76.4 47.4

Clerical (Supervisors) 61.0 63.0 51.5 Routine 2.5 65.0 77.9

Crafts and Trades (Helpers) 10.5 62.0 60.5 Routine 5.8 80.4 34.8

Machine Operators 16.0 62.0 51.0 Routine 3.6 62.4 48.4

Clerical (Laborers) 41.5 53.0 12.0 Routine 6.6 37.3 60.4

Transport 19.5 21.0 96.0 Manual 5.8 99.0 46.9

Agriculture 32.0 27.0 82.0 Manual 13.2 78.6 20.9

Protective Services 24.5 5.5 76.5 Manual 2.3 93.1 44.4

Domestic Service 9.0 8.0 76.0 Manual 4.1 7.6 27.0

Street Sales 38.0 13.0 64.0 Manual 3.4 44.0 30.3

Service 28.0 25.0 63.0 Manual 7.4 43.4 40.2

Notes: The three task measures were originally constructed for three-digit occupational codes of the U.S. CENSUS by Autor, Levy,

and Murnane (2003). For each measure, we first organize the three-digit occupations by percentiles, and then calculate the median

percentile within the broader 18 occupational groups of the ENIGH. Each of the 18 occupations is assigned to the group in which the

median percentile was highest. See Appendix Section A.3.
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Table 2: Labor Force Participation Rates
by Gender, Education and Age: C.1992 and C.2012

C.1992 C.2012

Female
Share
(x100)

Male
Share
(x100)

Female
Share
(x100)

Male
Share
(x100)

Overall 38.59 96.49 59.59 95.82

Education

Secondary 35.75 96.58 55.47 95.89

College 71.73 96.00 77.42 95.59

Age

25-34 40.54 96.82 59.18 95.73

35-44 39.52 97.53 62.63 97.29

45-55 33.52 94.42 56.61 94.26

Notes: The cells report the (conditional) share of the

respective column group. For instance, 35.75 percent of

the prime-age female population with secondary educa-

tion (unskilled) participated in the labor force in C.1992.

We joined together surveys from 1989, 1992, and 1994

(C.1992), and from 2010, 2012, and 2014 (C.2012) to in-

crease the sample size of the ENIGH data survey. Sample

weights used in all calculations.
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Table 3: Production Technology Parameter Estimates

Elasticities of Substitution

Estimate [SE]
Implied Elasticity

(1/(1− ρ))
95% Conf. Int.

(1/(1− ρ))

Gender

ρ4,m: male, female (manual) 0.084 [0.066] 1.091 [0.955, 1.273]

ρ4,r: male, female (routine) 0.218 [0.067] 1.278 [1.093, 1.540]

ρ4,a: male, female (analytical) 0.660 [0.078] 2.941 [2.022, 5.389]

Education

ρ3,m: skilled, unskilled (manual) 0.739 [0.036] 3.831 [3.010, 5.271]

ρ3,r: skilled, unskilled (routine) 0.301 [0.110] 1.431 [1.091, 2.078]

ρ3,a: skilled, unskilled (analytical) 0.302 [0.125] 1.433 [1.058, 2.220]

Occupation

ρ1: analytical, routine and manual 0.031 [0.092] 1.032 [0.869, 1.271]

ρ2: routine, manual -0.154 [0.159] 0.867 [0.681, 1.192]

Notes: The table reports the point estimates and standard errors of the elasticities of substitution from

the production technology. See estimates discussions in Section 6.2, and estimator discussions in Appendix

Section B.3.3.
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Table 4: Labor Supply Responses to Wage Changes, Marginal Effects and Elasticities

Average Marginal Effects and Elasticity Over Time

Increase Wages in Increase Occupation-specific Wages:

All Occupations Manual Wage Routine Wage Analytical Wage

Average Marginal Effects on LFP Rates:

values are in percentage points

female, unskilled 0.107 0.060 0.026 0.020

female, skilled 0.036 0.003 0.009 0.025

male, unskilled 0.023 0.013 0.008 0.002

male, skilled 0.008 0.001 0.002 0.005

Elasticity of Labor Supply with Respect to Wages:

values are elasticities

female, unskilled 0.529 0.099 0.071 0.067

female, skilled 0.341 0.009 0.044 0.160

male, unskilled 0.060 0.025 0.022 0.010

male, skilled 0.062 0.005 0.012 0.041

Notes: Given log wage coefficient ψ1 = 0.966, we show in the top panel the Average Marginal Effects of

wages on the gender- and skill-specific LFP rates. In the bottom panel, we show the average elasticities

of gender- and skill-specific labor supply with respect to wages. We average over year-specific values.

Column 1 shows the the effects of changing all three occupation-specific wages jointly: We evaluate

the marginal effects given equi-distance increases in all wages; We evaluate the elasticity given equal-

percentage increases in all wages. Columns 2–4 present results when only the wage for one of the three

occupations increases. See discussions in Section 6.4.
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Table 5: Occupational Choice Parameter Estimates

Estimate SE Average Marginal Effect

Fertility

π2,f,u: female, unskilled -0.257 0.135 -0.063

π2,f,s: female, skilled 2.735 0.810 0.602

π2,k,u: male, unskilled -2.281 0.097 -0.132

π2,k,s: male, skilled -0.044 0.016 -0.003

Marriage

π3,f,u: female, unskilled -0.265 0.247 -0.065

π3,f,s: female, skilled 0.267 0.355 0.059

π3,k,u: male, unskilled 3.017 0.115 0.178

π3,k,s: male, skilled 0.916 0.050 0.055

Appliance

π4,f,u: female, unskilled -2.075 0.144 -0.508

π4,f,s: female, skilled -8.348 0.218 -1.808

π4,k,u: male, unskilled 0.845 0.440 0.049

π4,k,s: male, skilled -3.031 0.025 -0.178

WBL

π5,f,u: female, unskilled -0.514 0.296 -0.126

π5,f,s: female, skilled -1.151 0.211 -0.252

π5,k,u: male, unskilled 0.712 0.522 0.042

π5,k,s: male, skilled 1.102 0.105 0.066

Notes: For the fertility (share having under-5 children), marriage (share married

or having a permanent partner), appliance (share having a refrigerator or a washing

machine), and WBL (an index measuring laws and regulations that restrict women’s

economic opportunities) variables, the Average Marginal Effect is the percentage

points increase in leisure probability—averaged across years—given 1 percentage

point increase in the respective supply variables, holding all else the same. See

estimates discussions in Section 6.5 and estimator discussions in Appendix Sec-

tion B.3.3.
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Table 6: Counterfactual Exercises with Non-wage Determinants of Labor Supply

Change in Gender Participation and Wage Gaps: C.2012 - C.1992

Partial Equilibrium
Path of Wages as Observed

General Equilibrium
Wages Adjust as Supply Curves Shift

(1)

Model

(2)

Fertility

(3)

Marriage

(4)

WBL

(5)

Appliance

(6)

Fertility

(7)

Marriage

(8)

WBL

(9)

Appliance

100 × ∆ (Male - Female) LFP and Occupation Participation Rates

Overall -19.9 -16.5 -20.7 -17.8 -7.5 -17.9 -20.8 -18.5 -14.3

Skilled

Analytical -3.9 -2.2 -4.0 -3.5 -3.5 -2.5 -4.0 -3.6 -4.0

Routine -0.9 -0.3 -0.9 -0.7 -0.8 -0.5 -0.9 -0.8 -0.9

Manual -0.1 0.0 -0.1 0.0 -0.1 -0.1 -0.1 -0.1 -0.1

Unskilled

Analytical -4.5 -4.4 -4.6 -4.1 -1.3 -4.7 -4.7 -4.3 -2.8

Routine -2.9 -2.5 -3.2 -2.5 0.7 -2.7 -3.2 -2.6 -1.1

Manual -7.6 -7.1 -7.9 -7.0 -2.6 -7.4 -7.9 -7.2 -5.4

100 × ∆ Log (Male/Female) Wage Ratio

Overall -6.3 -3.3 -6.1 -6.3 -10.6 -5.6 -5.4 -7.1 -12.2

Skilled

Analytical -9.0 — — — — -13.2 -8.8 -9.8 -10.1

Routine -10.3 — — — — -17.7 -10.0 -11.7 -12.2

Manual -41.5 — — — — -49.6 -41.2 -43.0 -43.6

Unskilled

Analytical 3.0 — — — — 3.6 3.8 2.5 -1.8

Routine 15.9 — — — — 16.9 17.3 14.9 7.6

Manual 7.1 — — — — 8.2 8.5 6.0 -2.0

100 × ∆ Log (Male/Female) Wage Ratio

Skilled -10.4 — — — — -15.3 -10.2 -11.4 -11.6

Unskilled 9.6 — — — — 10.4 10.8 8.8 2.5

100 × ∆ Log (Skilled/Unskilled) Wage Ratio

Male -21.5 — — — — -18.3 -21.5 -21.2 -20.5

Female -1.4 — — — — 7.5 -0.5 -1.0 -6.4

Notes: The Table reports the difference between C.1992 and C.2012 of i) the log (male/female) wage ratio and

ii) the change in the (male - female) gender-specific LFP and occupation participation rates (See Figure 10 and

Appendix Figure D.4 for visualizations). The paths of wages are held as observed under PE. Wages adjust

given supply curve shifts under GE. Occupation- and skill-specific relative wages are invariant under PE; the

overall relative wage ratio shifts under PE due to compositional changes. The first column corresponds to model

predictions. The Fertility columns correspond to the counterfactual predictions once we set the gender- and skill-

specific shares of individuals having a child under the age of 5 to the values of 1989, and constant across the years.

This variable is decreasing over time (Panel (a) of Figure D.2). The Marriage columns fix the gender- and skill-

specific shares of individuals married or having a permanent partner at 1989 levels, and constant across the years.

This variable decreases slightly over time (Panel (b) of Figure D.2). The WBL columns fix the Women, Business

and the Law index at 1989 levels. This variable increases over time (Panel (d) of Figure D.2). The Appliance

columns fix the gender- and skill-specific shares of individuals with a refrigerator or a washing machine at 1989

levels. This variable increases substantially over-time (Panel (c) of Figure D.2). See discussions in Section 7.1.
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Table 7: Counterfactual Exercises with Demographic Variables and Demand Side Parameters

Change in Gender Participation and Wage Gaps: C.2012 - C.1992

Partial Equilibrium
Path of Wages as Observed

General Equilibrium

Wages Adjust as Supply/Demand Curves Shift

Demographics Demand Demographics Demand

(1)

Model

(2) Skilled

Female

(3)

Emigrant

(4)

Gender α4

(5)

Skill α3

(6) Skilled

Female

(7)

Emigrant

(8)

Gender α4

(9)

Skill α3

100 × ∆ (Male - Female) LFP and Occupation Participation Rates

Overall -19.9 -17.8 -19.6 — — -24.2 -16.7 -16.5 -16.9

Skilled

Analytical -3.9 0.9 -4.0 — — 1.1 -3.7 -3.7 -2.7

Routine -0.9 0.7 -0.9 — — 0.3 -0.9 -0.1 -0.7

Manual -0.1 0.2 -0.1 — — 0.0 -0.2 0.4 -0.1

Unskilled

Analytical -4.5 -5.8 -4.5 — — -8.6 -3.2 -4.1 -3.6

Routine -2.9 -4.3 -2.7 — — -5.7 -2.2 -3.2 -2.5

Manual -7.6 -9.5 -7.4 — — -11.3 -6.6 -5.8 -7.3

100 × ∆ Log (Male/Female) Wage Ratio

Overall -6.3 5.3 -6.3 — — 9.6 -12.6 17.6 -5.1

Skilled

Analytical -9.0 — — — — -28.6 -11.5 32.3 -9.4

Routine -10.3 — — — — -42.6 -14.7 56.2 -11.0

Manual -41.5 — — — — -76.8 -46.3 61.3 -42.3

Unskilled

Analytical 3.0 — — — — 12.6 -1.7 12.1 1.4

Routine 15.9 — — — — 32.6 7.8 21.0 13.0

Manual 7.1 — — — — 25.2 -1.8 22.9 3.9

100 × ∆ Log (Male/Female) Wage Ratio

Skilled -10.4 — — — — -31.9 -13.3 35.0 -9.8

Unskilled 9.6 — — — — 23.5 2.7 17.8 6.1

100 × ∆ Log (Skilled/Unskilled) Wage Ratio

Male -21.5 — — — — -14.6 -16.9 -6.8 -43.6

Female -1.4 — — — — 40.8 -1.0 -24.0 -27.7

Notes: The Table reports the difference between C.1992 and C.2012 of i) the log (male/female) wage ratio and ii) the change

in the (male - female) gender-specific LFP and occupation participation rates (See Figure 10 for visualization). The paths

of wages are held as observed under PE. Wages adjust given supply curve shifts under GE. Occupation- and skill-specific

relative wages are invariant under PE; the overall relative wage ratio shifts under PE for demographics counterfactuals due

to compositional changes. Participation is invariant under PE for demand counterfactuals. The first column corresponds to

model predictions. The Demographics-Skilled Females columns keep the female share among skilled population at 1989 levels,

while skilled males and gender-specific populations levels increase as observed. The share of skilled workers increased over

time, especially for women (Panel (b) of Figure D.3). The Demographics-Emigrant columns keep the gender- and skill-specific

shares of emigrants in Mexican born population at 1989 levels. The emigrant share in unskilled Mexican born population

increased over time, especially for men (Panel (a) of Figure D.3). The Demand-Gender α4 and Demand-Skill α3 columns set

the skill- and occupation-specific demand gender share and occupation-specific demand skill share parameters at 1989 values,

respectively. Demand trends favored skilled labor and women (Figure 7). See discussions in Sections 7.2 and 7.3.
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Ñopo, Hugo. 2012. New Century, Old Disparities : Gender and Ethnic Earnings
Gaps in Latin America and the Caribbean. World Bank Publications 11953.
The World Bank. https://doi.org/10.1596/978-0-8213-8686-6.

58

https://doi.org/10.2307/41219159
https://doi.org/10.1016/j.worlddev.2012.09.013
https://doi.org/10.1016/j.worlddev.2012.09.013
https://linkinghub.elsevier.com/retrieve/pii/S0305750X12002276
https://linkinghub.elsevier.com/retrieve/pii/S0305750X12002276
https://doi.org/10.1057/9781137554598_7
https://doi.org/10.1057/9781137554598_7
https://doi.org/10.1162/003355398555883
https://doi.org/10.1162/003355398555883
https://doi.org/10.1111/j.1542-4774.2011.01049.x
https://doi.org/10.1177/001979391006300207
https://doi.org/10.1177/001979391006300207
https://doi.org/10.1596/978-1-4648-1039-8
http://hdl.handle.net/10986/28682%20https://openknowledge.worldbank.org/handle/10986/28682
http://hdl.handle.net/10986/28682%20https://openknowledge.worldbank.org/handle/10986/28682
http://hdl.handle.net/10986/28682%20https://openknowledge.worldbank.org/handle/10986/28682
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=16383
https://cepr.org/active/publications/discussion_papers/dp.php?dpno=16383
https://doi.org/10.2307/2118330
https://doi.org/10.2307/2118330
https://doi.org/10.1257/mac.20150253
https://doi.org/10.1596/978-0-8213-8686-6


Oaxaca, Ronald, and Michael Ranson. 1994. “On Discrimination and the Decom-
position of Wage Differentials.” Journal of Econometrics 61(1) (1): pp. 5 –21.
https://doi.org/10.1016/0304-4076(94)90074-4.

Olivetti, Claudia, and Barbara Petrongolo. 2014. “Gender Gaps across Countries
and Skills: Demand, Supply and the Industry Structure.” Review of Economic
Dynamics 17, no. 4 (October): 842–859. https://doi.org/10.1016/j.red.2014.03.
001.

. 2016. “The Evolution of Gender Gaps in Industrialized Countries.” Annual
Review of Economics 8 (1): 405–434. https : / / doi . org / 10 . 1146 / annurev -
economics-080614-115329.

Ottaviano, Gianmarco I.P., and Giovanni Peri. 2008. Immigration and National
Wages: Clarifying the Theory and the Empirics. Technical report. Cambridge,
MA: National Bureau of Economic Research, June. https://doi.org/10.3386/
w14188.

Ottaviano, Gianmarco I.P. P, and Giovanni Peri. 2012. “Rethinking the Effect of
Immigration on Wages.” Journal of the European Economic Association 10, no.
1 (February): 152–197. https://doi.org/10.1111/j.1542-4774.2011.01052.x.

Pitt, Mark M., Mark R. Rosenzweig, and Mohammad Nazmul Hassan. 2012. “Hu-
man Capital Investment and the Gender Division of Labor in a Brawn-Based
Economy.” American Economic Review 102, no. 7 (December): 3531–60. https:
//doi.org/10.1257/aer.102.7.3531.

Platteau, Jean-Philippe, and Zaki Wahhaj. 2014. “Strategic Interactions between
Modern Law and Custom.” In Handbook of the Economics of Art and Culture,
2:633–678. Elsevier. https://doi.org/10.1016/B978-0-444-53776-8.00022-2.

Rendall, Michelle. 2013. “Structural Change in Developing Countries: Has It De-
creased Gender Inequality?” World Development 45(1) (1): pp. 1–16. https :
//doi.org/10.1016/j.worlddev.2012.10.005.

. 2017. Brain versus Brawn: The Realization of Women’s Comparative Advan-
tage. Working Paper 1424-0459. Institute for Empirical Research in Economics
University of Zurich.

Rindfuss, Ronald, Karin Brewster, and Kavee Andrew. 1996. “Women, Work, and
Children: Behavioral and Attitudinal Change in the United States.” Population
and Development Review 22 (3): 457–482. https://doi.org/10.2307/2137716.

Sánchez-Páramo, Carolina, and Norbert Schady. 2003. Off and Running? Technol-
ogy, Trade, and the Rising Demand for Skilled Workers in Latin America. Work-
ing Paper 3015. The World Bank. https://doi.org/10.1596/1813-9450-3015.

The World Bank. 2012. World Development Report 2012 - Gender Equality and
Development. World Bank Publications 4391. The World Bank. https://doi.
org/10.1596/978-0-8213-8810-5.

Weinberg, Bruce A. 2000. “Computer Use and the Demand for Female Workers.”
Industrial and Labor Relations Review 53 (2): 290–308. https://doi.org/10.
2307/2696077.

59

https://doi.org/10.1016/0304-4076(94)90074-4
https://doi.org/10.1016/j.red.2014.03.001
https://doi.org/10.1016/j.red.2014.03.001
https://doi.org/10.1146/annurev-economics-080614-115329
https://doi.org/10.1146/annurev-economics-080614-115329
https://doi.org/10.3386/w14188
https://doi.org/10.3386/w14188
https://doi.org/10.1111/j.1542-4774.2011.01052.x
https://doi.org/10.1257/aer.102.7.3531
https://doi.org/10.1257/aer.102.7.3531
https://doi.org/10.1016/B978-0-444-53776-8.00022-2
https://doi.org/10.1016/j.worlddev.2012.10.005
https://doi.org/10.1016/j.worlddev.2012.10.005
https://doi.org/10.2307/2137716
https://doi.org/10.1596/1813-9450-3015
https://doi.org/10.1596/978-0-8213-8810-5
https://doi.org/10.1596/978-0-8213-8810-5
https://doi.org/10.2307/2696077
https://doi.org/10.2307/2696077


A Data Appendix (online)

A.1 ENIGH Data and Variable Definitions

We compute from the ENIGH survey year-, gender-, skill-, and occupation-specific
wages and labor supplies. We have made these data series available for view and
download at this link https://github.com/FanWangEcon/PrjLabEquiBFW/blob/
main/PrjLabEquiBFW/ data/Dataset1.csv with associated key file.

ENIGH. We use 13 waves of the nationally representative Mexican Household
Income and Expenditure Survey (ENIGH), covering 1989-2014. For certain sum-
mary statistics, we merged surveys from 1989, 1992, and 1994 (C.1992), and from
2010, 2012, and 2014 (C.2012) to increase sample size and smooth over year-specific
changes.

Wage definition. Labor earnings data refer to the monthly monetary remu-
neration from labor, including wages, salaries, piecework, and any overtime pay,
commissions, or tips usually received, but excluding income received from govern-
ment transfers. We omit earnings of self-employed workers when calculating labor
earnings because, for this group, it is not possible to disentangle remuneration from
labor from returns to capital or profits, a common problem in the literature; how-
ever, our estimates include labor remuneration for formal and informal workers since
self-employment and labor informality are distinct categories. We add up earnings
from different occupations if the individual has a secondary job. Monthly earnings
are converted into hourly wages by dividing monthly earnings by the worker’s total
hours of work per week in all jobs multiplied by the usual number of weeks in a
month. Wage rates are transformed into real 2012 U.S. Dollars using the Mexican
Consumer Price Index and the purchasing power parity adjusted exchange rate esti-
mated by the IMF. We removed outliers (less than 1 percent in each year), restricting
to hourly rates above $0.1 and below $150. The estimates are not sensitive to this.

Full and part time work. We use the sample of workers aged 25 to 55 (prime-
age workers). This is done to ameliorate selection problems arising from changes
in the educational and retirement choices of younger and older cohorts. Since part-
time work is more common among women, to ensure comparability, the wage series
in the main analysis is calculated using full time workers only (35 hours or more in
the previous week). The share of workers working part-time is 33 to 38 percent for
female workers and 10 to 13 percent for male workers. Importantly, the increase in
FLFP over the sample period was clearly not driven by part-time work. In fact, the
ratio of female to male part-time workers was stable between 1990 and 2004, after
which it declined. Nevertheless, we include results for part-time workers and also
results accounting for changes in hours in robustness checks.

Participation. We define the labor force participation rate as the proportion
of prime-age individuals (25-55 years old) who either worked or sought employment
in the previous month relative to the total number of individuals within this age
bracket. Our definition of work includes all sectors, occupations, and the informal
economy, irrespective of the nature of the activities or if the work complies with the
country’s formal labor laws and protections (i.e. if the job is formal or informal).
The survey solely includes individuals residing in the household at the time of data
collection, thereby excluding individuals who emigrated, but including immigrants.
We have added clarifications of this definition in the updated version of the paper
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A.2 Supply Side Variables

We link women’s labor force participation decision to fertility trends, marriage pat-
terns, gender discrimination in work-related legislation as captured by the Women,
Business and the Law (WBL) index, and home appliance availability. These variables
capture potential changes in preferences and the technology of home production over
time. Additionally, using the ENIGH survey sample and survey weights, we compute
the potential prime-age worker population by gender, skill and year. These potential
worker counts are impacted by the emigration of Mexican-born workers, something
we discuss below. We have made these potential worker and supply-variable data se-
ries available for view and download at this link https://github.com/FanWangEcon/
PrjLabEquiBFW/blob/main/PrjLabEquiBFW/ data/Dataset2.csv with associated
key file. Trends in supply side variables are visualized in Figures D.2 and D.3.

Fertility and marital status. Fertility is defined as the average number of
children under the age of five across women. Marital status refers to being married
or having a stable partner. We compute these statistics from the ENIGH dataset
directly. We generate aggregate proportions by gender and skill group in each year.
The measures of fertility and marriage can only be calculated for a sample restricted
to the household head and their spouse or partner; trends for the larger sample used
in the estimation are not available. The ENIGH survey started asking the question
on marital status to all members of the household in 1996, and the question about
the number and age of children since 2004. The sample is restricted to the prime-age
population.

WBL. As a measure of women’s economic rights, which may also serve as a re-
verse proxy for discrimination, we use the Women, Business and the Law (WBL) in-
dex. The index attempts to capture inequality in legislation against women through-
out their working life. Thirty-five legislative issues that correlate with women’s eco-
nomic empowerment were identified and aggregated to construct the index, with
higher values indicating a lessening of restrictions on women’s economic opportuni-
ties. The index can range from 0 to 100 and is increasing in the relative equality
of rights between men and women. For a detailed description see Hyland, Djankov,
and Goldberg (2020).

Appliance. We compute the share of individuals having home appliances. We
consider that an individual has access to home appliance if the individual has either
a refrigerator or a washing machine.

Emigration. For purposes of the demographic counterfactual that we construct
to analyze changes in the gender-skill composition of potential workers, we use the
information on emigrant stocks constructed by Brücker, Capuano, and Marfouk
(2013). The authors collected data from 20 OECD member states on the immigrant
population aged 25 years and older by gender, educational level, and country of birth
between 1980 and 2010. Migration is defined according to country of birth rather
than foreign citizenship. The final dataset includes estimated stocks of immigrants
coming from 195 countries, including Mexico. Although the information is restricted
to migrants going to OECD countries, the Pew Research Center estimates that close
to 97.3% of Mexican emigrants go to the Unites States alone. When necessary, we
interpolate for emigrants counts in ENIGH survey years.
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A.2.1 How Net Migration Impacts Wages and Labor Supplies

Migration enters the model through the effect it has on the number of potential
workers in a year, captured by the term Lpopgen,t in Equation (2.2) and by the term
Lpopf,s,t in Equation (5.8). A condition to be included as a potential worker, both
in theory and in the data, is that the individual is living in Mexico, so emigration
reduces the number of potential workers, and immigration increases it. In particular,

Lpopf,s,t = Lnatf,s,t + Limmf,s,t − Lemif,s,t, (A.1)

where Lnatf,s,t is the number of prime-age native-born Mexicans of sex f and educa-

tion s that are alive in year t, irrespective of where they live; Lemif,s,t is number of

prime-age native-born Mexicans living abroad; and Limmf,s,t is the number of prime-age
foreign-born individuals living in Mexico.

Migration affects the wage structure in the model because overall and occupation-
specific labor supplies depend on the number of potential workers. This can be seen
in Equation (5.8), which we reproduce below:

Lsf,s,a,t = Lpopf,s,t × Pr(da = 1 | f, s, t).

For example, a decrease in the net migration of individuals of type (s, f) in year t
reduces Lpopf,s,t and, in partial equilibrium, Lsf,s,a,t. By changing relative labor sup-
plies, net migration also affects relative wages and the wage structure.

The survey data that we use in the estimation only includes individuals perma-
nently residing in the household at the time of data collection, thereby excluding
individuals who emigrated but including individuals who immigrated. Consequently,
our estimate of Lpopf,s,t is consistent with our definition of potential workers.

A.3 Division of Occupations into Manual, Routine, and Analytical Task-
Intensive Groups

The ENIGH survey uses the Mexican occupation classification system to categorize
workers according to the type of tasks they perform in the main job. The sys-
tem went trough two changes since 1989: first there was an update of the original
Clasificación Mexicana de Ocupaciones (CMO) in 1992, and then a full change to
the newly introduced Sistema Nacional de Clasificación de Ocupaciones (SINCO) in
2010. These changes make the series incompatible at high levels of disaggregation of
the occupational groups, but it is possible to homogenize the SINCO classification
to the principal group level of the CMO using the comparability tables produced
by INEGI.A.1 The principal group division has 18 distinct occupational groups that
can be consistently followed throughout the period of analysis.

The 18 principal level occupations from the ENIGH are classified into three
groups defined by whether the activities done in the jobs are predominantly man-
ual, routine (repetitive and easily codifiable tasks), or analytical intensive. The
division is based on the measures constructed by Autor, Levy, and Murnane (2003)
from different sets of variables of the 1977 Dictionary of Occupational Titles (DOT)

A.1. http://www.inegi.org.mx/est/contenidos/proyectos/aspectosmetodologicos/
clasificadoresycatalogos/sinco.aspx
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of the U.S., and then linked to the three-digit occupation codes of the CENSUS.
The DOT evaluated highly detailed occupations along 44 objective and subjective
dimensions that include physical demands and required worker aptitudes, temper-
aments, and interests. Autor, Katz, and Kearney (2006) used a subset of those
dimensions to generate a simple typology consisting of three aggregates for analyt-
ical, routine, and manual tasks. The analytical task measure corresponds to the
average from two variables of the DOT: DCP, which measures direction, control,
and planning of activities; and GED-MATH, which measures quantitative reasoning
requirements. The routine task measure corresponds to an average from two vari-
ables of the DOT: STS, which measures adaptability to work requiring set limits,
tolerances, or standards; and FINGDEX, measuring finger dexterity. Finally, the
manual task measure uses a single variable, EYEHAND, which measures eye, hand,
and foot coordination.A.2

In practice, we first create a cross-walk between three-digit CENSUS codes in
the U.S. and the 18 categories of the principal group occupational division of the
ENIGH. This task is facilitated by the fact that both the ENIGH and the U.S.
CENSUS follow similar international standards when constructing their own occu-
pation classifications. Since the three task measures are ordinal, there is no direct
way to use the actual magnitude of the variables to compare occupations across the
three dimensions. For each task measure, we first organize the three-digit occupa-
tions by percentiles and then calculate the median percentile of the measure within
the broader 18 occupational groups of the ENIGH. Each of the 18 occupations is
assigned to the group in which the median percentile was highest (see Table 1).

This procedure generated a balanced division with respect to the overall em-
ployment share of each group, and it is also consistent with the broad classification
of aggregate occupations used in the literature that follows the task-based frame-
work. Two important caveats should be stressed: First, any attempt to homogenize
occupation classification systems from different countries involves some subjective
choices. In the cases where we found occupations that do not have an immediate
correspondence between the two systems, we had to use our judgement, based on
documentation about the description of the occupation, to select a corresponding
match. Second, the task measures were created specifically for U.S. economy, and
it is likely that there are differences in the intensity in which certain skills are used
in given occupations between the U.S. and Mexico. Results should be interpreted
with these two caveats in mind.

B Solution, Identification and Estimation of the Model (online)

In this section we discuss model solution, identification and estimation. The the-
oretical model was presented in Section 5 and the labor market participation and
wage data for Mexico were described in Section 3 and Appendix Section A. First,
we characterize the labor market equilibrium and describe algorithms for the equi-
librium solution in Section B.1. Second, we discuss the identification of demand and
supply side parameters in Section B.2. Third, we provide details of the equilibrium
estimation routine in Section B.3. Additionally, we provide a Matlab companion
code package and website which provides computational examples for our paper.

A.2. See the online Appendix in Dorn (2009) for further details. Other papers that have used
this measures include Autor, Katz, and Kearney (2006), Goos and Manning (2007), Dorn (2009),
Rendall (2013), Autor and Dorn (2013), and Adda, Dustmann, and Stevens (2017).
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B.1 Equilibrium Definition and Solution

In this section, we discuss the equilibrium structure and solutions. In Section B.1.1,
we discuss denesting the nested-CES problem and solving each sub-nest as a separate
but linked demand problem. In Section B.1.2, we characterize the equilibrium solu-
tion with a system of nonlinear equations for female occupation-specific wages. In
Section B.1.3, we define the competitive labor market equilibrium. In Section B.1.4,
we solve for the equilibrium explicitly via nested root search as well as via a faster
but less stable contraction algorithm.

B.1.1 Demand Denesting

Given the demand system presented in Section 5, we consider optimal labor demand
in a particular sub-nest of the nested-CES demand system. For notational clarity,
we ignore skill subscripts in this section. Without loss of generality, the optimal
labor demand equations for routine male and female workers are:

Ld,∗k,r = Lr ·

(
αk,r + αf,r ·

(
Wk,r

Wf,r
·
αf,r
αk,r

) ρ4,r
1−ρ4,r

) −1
ρ4,r

Ld,∗f,r = Lr ·

(
αk,r ·

(
Wf,r

Wk,r
·
αk,r
αf,r

) ρ4,r
1−ρ4,r

+ αf,r

) −1
ρ4,r

, (B.1)

where αf,r = 1−αk,r and Lr is the level of aggregate labor demand for this sub-nest.
Equation (B.1) contains solutions to the expenditure minimization problem of male
and female workers in routine task-intensive occupations for a particular skill group:

minLk,r,Lf,r (Lk,r ·Wk,r + Lf,r ·Wf,r), such that Lr =
(
αkL

ρ4,r
k,r + αfL

ρ4,r
f,r

) 1
ρ4,r .

The full nested-CES problem presented in Section 5.1 can be solved separately
as eleven de-nested problems in the form of Equation (B.1).D.1 Lower- and higher-
level nests are connected via nest-specific aggregate labor demand Lr: Lr is the
output quantity requirement for lower-level nests and is the input choice for higher-
level nests. Lr captures the effects of upper-nest share and elasticity parameters on
choices.

For higher-level nests, given constant returns, the cost of acquiring aggregate
labor input is a weighted average of the underlying gender-specific wages from the
lowest nests. For example, the routine task-intensive occupation-specific aggregate
labor price Wr is equal to:

Wr =Wk,r

(
αk,r + αf,r

(
Wk,r

Wf,r

αf,r
αk,r

) ρ4,r
1−ρ4,r

) −1
ρ4,r

+Wf,r

(
αk,r

(
Wf,r

Wk,r

αk,r
αf,r

) ρ4,r
1−ρ4,r

+ αf,r

) −1
ρ4,r

. (B.2)

D.1. Six problems over male and female labor demand for each occupation and skill category, three
problems over gender-aggregated skilled and unskilled workers, and two problems over skill-gender-
aggregated occupational groups.
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B.1.2 System of Equations for Equilibrium Wages

Given the optimal labor supply problem and corresponding aggregate labor supply
equations from Section 5.2, at equilibrium, quantity demanded is equal to quantity
supplied,

Lr ·

(
αk,r + αf,r

(
Wk,r

Wf,r

αf,r
αk,r

) ρ4,r
1−ρ4,r

) −1
ρ4,r

=
Lpopk · exp

(
Ûk (r |Wk,r,Bk)

)
∑

O∈{a,r,m,h} exp
(
Ûk (O |Wk,O,Bk)

) ,
(B.3)

whereBk represents a vector of exogenous gender (and skill) specific attributes, Lpopk

is the gender (and skill) specific population level, and Lr is the aggregate quantity
of routine workers demanded of a particular skill level. For notational clarity, we
continue to ignore skill subscripts.

Applying some algebra to Equation (B.3) and a symmetric equation for quantity
of female workers demanded and supplied, we arrive at two equations where, given
aggregate labor demand Lr, the female (male) labor wage in routine occupation is
a function of male (female) wages in analytical, routine, and manual occupations:

Wf,r (Wk,a,Wk,r,Wk,m) =

((
Lr

Lsk (Wk,a,Wk,r,Wk,m;Bk)

)ρ4,r 1

αf,r
−
αk,r
αf,r

) ρ4,r−1

ρ4,r

·
αf,r
αk,r

·Wk,r

Wk,r (Wf,a,Wf,r,Wf,m) =

((
Lr

Lsf (Wf,a,Wf,r,Wf,m;Bf )

)ρ4,r
1

αk,r
−
αf,r
αk,r

) ρ4,r−1

ρ4,r

·
αk,r
αf,r

·Wf,r

(B.4)

Following Equation (B.4), similar results can be arrived at for manual and an-
alytical occupation wages. In all cases, the equilibrium wage for one gender in one
occupation is a function of the equilibrium wages of the other gender across all occu-
pations. Overall, within a year, for either skilled or unskilled workers, six equations
for the two genders and three occupational categories characterize the equilibrium
solution. The equations can be combined. For example, for female analytical work,
we have:

Wf,a = Wf,a

(
Wk,a (Wf,a,Wf,r,Wf,m) ,Wk,r (Wf,a,Wf,r,Wf,m) ,Wk,m (Wf,a,Wf,r,Wf,m)

)
.

Combining all six equations and given aggregate labor demands Lm, Lr, La, we arrive
at a system of three equations and three unknowns:

Wf,a = Wf,a (Wf,a,Wf,r,Wf,m)

Wf,r = Wf,r (Wf,a,Wf,r,Wf,m)

Wf,m = Wf,m (Wf,a,Wf,r,Wf,m)

(B.5)

The solution to the system of equations in Equation (B.5) consists of three female
wages. Equation (B.4) leads to male wages given female wages. Equation (B.3) leads
to labor quantities given wages. During each model period, we solve Equation (B.5)
at the third nest level for skilled and unskilled workers separately.D.2 The skilled
and unskilled equilibrium solutions are linked via aggregate skilled and unskilled
labor demands, Ls,m, Ls,r, Ls,a and Lu,m, Lu,r, Lu,a.

D.2. Unskilled and skilled workers have separate labor supply problems and belong to separate
nests under the demand system.
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B.1.3 Competitive Labor Market Equilibrium

In each period, given the aggregate output and productivity ratio Y
Z , demand pa-

rameter vectors α and ρ, supply parameters vectors ψ and π, the vector of gender-
and skill-specific supply characteristicsB, and the vector of gender- and skill-specific
potential worker levels Lpop, the competitive labor market equilibrium consists of
wages and aggregate labor quantities, such that,

1. Female wages {Wf,edu,occ}edu∈{s,u},occ∈{a,r,m} solve Equation (B.5) for all edu
groups.

2. Aggregate skill-occupation demands {Ledu,occ}edu∈{s,u},occ∈{a,r,m} solve Equa-

tion (B.1) given aggregate wages and occupation-specific aggregate demands.D.3

The equilibrium definition distinguishes between two separable components of
nested-CES equilibrium problems. On the one hand, only the lowest level of demand
nests directly face supply-side equations and wages {Wf,edu,occ}edu∈{s,u},occ∈{a,r,m}.
On the other hand, parameters of upper-level nests are linked to the problem at the
lowest level of nests via {Ledu,occ}edu∈{s,u},occ∈{a,r,m}.

For generalizability, in terms of demand, the solution to the equilibrium system
is scalable to alternative nested-CES demand systems with additional levels of nests
and alternative nesting structures. In terms of supply, the structure here assumes
that workers make labor supply decisions for the current period given current wages
only.D.4

B.1.4 Solving for Market Clearing Wages

Explicit Root Search The system of nonlinear equations in Equations B.5
does not have an analytical solution, but numerical root search routines can be
deployed to explicitly solve for equilibrium wages given demand and supply param-
eters. Specifically, the equilibrium problem can be solved in three nested stages. In
stage one, given Wf,r,Wf,m, we solve for the root W ∗f,a:

W ∗f,a (Wf,r,Wf,m) = arg min
Wf,a

∣∣∣Wf,a −Wf,a (Wf,a,Wf,r,Wf,m)
∣∣∣ . (B.6)

In stage two, we solve for the root W ∗f,r given Wf,m:

W ∗f,r (Wf,m) = arg min
Wf,r

∣∣∣Wf,r −Wf,r

(
W ∗f,a (Wf,r,Wf,m) ,Wf,r,Wf,m

) ∣∣∣ . (B.7)

D.3. Aggregate occupation-specific demands at higher tier successively solve Equation (B.1) given
Y
Z

, as well as successively aggregated wages at occupation and skill levels given female skill-
occupation specific wages {Wf,edu,occ}edu∈{s,u},occ∈{a,r,m}.
D.4. Under a dynamic labor supply model, households might make labor decisions based on current
wages as well as the path of future wages. Under the assumption of rational expectations, one might
iterate over parameters until expectations become self-fulfilling and the expected path of wages
conforms to the actual path of wages given aggregate labor supply. This solution concept suffers
from the curse of dimensionality when additional dimensions of equilibrium wages are added. In
our example here, if workers in 1989 consider the path of wages for the next 25 years in making
labor market decisions, Equation (B.5) would become a system of equation that requires solving
for a 150-dimensional (3 times 2 times 25) market-clearing root.
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In stage three, we arrive at one equation and one unknown:

W ∗f,m = arg min
Wf,m

∣∣∣Wf,m −Wf,m

(
W ∗f,a

(
W ∗f,r (Wf,m) ,Wf,m

)
,W ∗f,r (Wf,m) ,Wf,m

)∣∣∣ .
(B.8)

Equation (B.8) can be solved via triply-nested root-search. Given aggregate de-
mands, {Ledu,occ}edu∈{s,u},occ∈{a,r,m}, Equation (B.8) is solved for skilled and un-
skilled workers separately and satisfies the first condition for a competitive labor
market equilibrium.

Given upper level nest parameters and wage solutions of Equation (B.8), we up-
date {Ledu,occ}edu∈{s,u},occ∈{a,r,m}. The process iterates until the aggregate skill- and

occupation- specific demands are consistent with wage solutions of Equation (B.8).
This satisfies the second condition for the competitive labor market equilibrium.

Iterative Wage Contraction In practice, searching for a three dimensional
female wage root vector can be slow. To speed up the estimation procedure, we also
solve the problem via iterative wage contraction, based on a modified version of the
algorithm used in Johnson and Keane (2013).D.5

Given {Ledu,occ}edu∈{s,u},occ∈{a,r,m}, first, we solve for quantity supplied given

wages for skilled and unskilled workers following Equation (5.8). Second, given
demand-side first-order conditions from Equation (2.1), we solve for relative wages
that would be consistent with the quantity supplied. Third, given relative wages,
Equation (B.1) solves for the level of female labor demanded, which is proportional
to the quantity supplied from the second step. Fourth, given the log odds ratio
formulation of the supply equations from Equation (B.25), we solve for the wage
levels that support the level of female labor demanded from the third step. Fifth,
given female wage levels, we use the relative wages from step three to find male wage
levels. Sixth, we update {Ledu,occ}edu∈{s,u},occ∈{a,r,m} with new wages, which are the

weighted averages of initial wages and new wages computed following Equation (B.2)
from step four and five. The process iterates until quantity demanded is equal to
quantity supplied.D.6

The iterative wage contraction solution algorithm can be fast.D.7 This algorithm,
however, does not guarantee equilibrium convergence. At arbitrary starting points
for wages, wage iterations generally converge towards either zero or positive infinity.
We start wage iteration at the observed wage levels and solve for converging wages.
We check for market clearing in skilled and unskilled nests and across all years
separately. When wages do not converge, we reduce the wage updating speed in
step six by putting higher weights on wages from prior iterations. In cases where
convergence to a fixed-point still fails, we solve explicitly for equilibrium using the
explicit root search routine just described in the prior segment of Section B.1.4. On
our companion website, we provide as functions both the iterative wage contraction

D.5. Johnson and Keane (2013) does not explicitly solve for demand quantities, but iterates over
marginal products given quantities, and quantity supplied given wages.

D.6. Relative wages matter for quantity demanded, but the level of wages matters for quantity
supplied given supply parameters. In the second step, period-specific Lagrange multipliers confound
the mapping of period-specific aggregate productivity to wage levels. Given marginal products and
corresponding relative wages, steps three to five provide a consistent normalization for wage levels
given the Y

Z
ratio.

D.7. The method solves 12 equilibrium wages during 13 periods in less than one second on a home-
PC available in 2021.
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algorithm and the exact root search routine, along with associated examples and
tutorials.

B.2 Identification of Demand and Supply Parameters

While the nested-CES demand system is commonly estimated in the labor litera-
ture, it is perhaps less common to estimate both demand and supply parameters
in an equilibrium context. In this paper, we develop an estimation framework. We
discuss in the following sections key identification challenges and solutions in our
estimation framework. Specifically, in Section B.2.1, we discuss the identification
of parameters across nests through relative wages within and across nests. In Sec-
tion B.2.2, we discuss the necessary data requirement for plausibly jointly identifying
ρ and α via equilibrium supply-shifters and the challenge of this approach in our
empirical context of biennially aggregated data. In Section B.2.3, we discuss the
data requirements for possibly identifying variations in α parameter over-time un-
der polynomial restriction, a standard strategy that we adopt. In Section B.2.4, we
discuss the challenge to demand-side only estimation posed by potential mismea-
surement of equilibrium wages and number of workers as well as shocks to relative
demands. In Section B.2.5, we discuss the challenge to supply-side only estimation
in the context of our labor market participation model. Finally, in Section B.2.6,
we discuss equilibrium solution based estimation.

B.2.1 One Period Data and Relative Wages Within and Across Nests

Given one period of data, conditional on known ρ values, share parameters α are
identified given relative wages within and across nests.

Consider a constant-returns two-level nested-CES problem. Level one combines
skilled and unskilled workers, and level two combines male and female workers:

min
Lk,s,Lf,s,Lk,u,Lf,u

(Lk,s ·Wk,s + Lf,s ·Wf,s + Lk,u ·Wk,u + Lf,u ·Wf,u)

s.t.
Y

Z
=

(
αs

(
αk,sL

ρs
k,s + (1− αk,s)Lρsf,s

) ρ
ρs + (1− αs)

(
αk,uL

ρu
k,u + (1− αk,u)Lρuf,u

) ρ
ρu

) 1
ρ

(B.9)
The problem in Equation (B.9) has eight parameters: ρ = {ρ, ρs, ρu}, α = {αs, αk,s, αk,u},
and {Y, Z}. From one period of data, we observe four wages {Wk,s,Wf,s,Wk,u,Wf,u},
and four labor quantities {Lk,s, Lf,s, Lk,u, Lf,u}.

First, it is not possible to separately identify output Y from productivity Z.D.8

Given α and ρ, Y
Z is the productivity-scaled aggregate output from the produc-

D.8. It is important to note that CES production function parameters are often estimated in a
setting with panels or cross-sections of observed input and output data across many individuals,
firms or countries. In those settings, there can be individual-specific productivity shocks Z, with
various layers of subscripts. Shocks that are unobserved by the econometrician and wages that are
observed by the econometrician jointly drive individual-specific optimal choices, leading to endo-
geneity between production function inputs and the error term. The central estimation question is
to disentangle the endogeneity between inputs and the productivity shock term, which might cap-
ture productivity shocks as well as unobserved inputs. In our setting, however, we have an observed
time-series of equilibrium wage and quantity data for each occupation and skill cell. Rather than
having individual-specific productivity shocks, at each time period, there is a single aggregate pro-
ductivity shock Z shared across all occupations and all workers. This Z captures both the aggregate
productivity variation across time as well as potential unobserved non-labor inputs. Furthermore,
we rely on demand optimality conditions in Equation (B.10) to estimate the model, where the Y

Z

term does not appear.
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tion function, and it determines the levels of optimal demands. Given the output
constraint in Equation (B.9), Y

Z is known when ρ and α are known.
Second, one period of data does not allow for the joint identification of α and

ρ. However, given ρ values, α values are identified. Specifically, three optimality
conditions link respective optimal relative labor demands to relative wages:

log

(
Wk,s

Wf,s

)
= log

(
αk,s

1− αk,s

)
+ (ρs − 1) · log

(
Lk,s
Lf,s

)
︸ ︷︷ ︸
Relative wage between skilled males and females

,

log

(
Wk,u

Wf,u

)
= log

(
αk,u

1− αk,u

)
+ (ρu − 1) · log

(
Lk,u
Lf,u

)
︸ ︷︷ ︸
Relative wage between unskilled males and females

,

and log

(
Wk,s

Wk,u

)
= log

(
αs

1− αs

[
αk,s · Lρs−1

k,s ·Oρuu
αk,u · Lρu−1

k,u ·Oρss

])
+ ρ · log

[
Os
Ou

]
︸ ︷︷ ︸

Relative wage between skilled males and unskilled males

,

(B.10)

whereOs =
(
αk,sL

ρs
k,s + (1− αk,s)Lρsf,s

) 1
ρs andOu =

(
αk,uL

ρu
k,u + (1− αk,u)Lρuf,u

) 1
ρu .

The first two equations of Equations (B.10) determine αk,s and αk,u, which deter-
mine the values inside the square brackets of the third equation and identify αs.

Since log
(

α
1−α

)
: (0, 1)→ R, there exists α to fit any positive wages vectors.

Third, using Equation (B.2), αs is alternatively identifiable by

log

(
Ws

Wu

)
= log

(
αs

1− αs

)
+ ρ · log

(
Os
Ou

)
, (B.11)

where Ws and Wu are aggregate wages for Os and Ou. In problems with additional
layers of nesting, by applying Equation (B.11) iteratively upward, a α vector of up
to 2N − 1 =

∑N−1
i=0 2N−i−1 parameters can be identified given 2N pairs of wage and

labor quantity data.
In the context of our empirical problem, the literature does not provide us with

occupation-specific gender elasticities nor occupation-specific skill elasticities. If
such values existed, following the above procedure, year-specific demand share pa-
rameters might potentially be found that fit the observed data series perfectly.

B.2.2 Two Periods Data and Equilibrium Supply-shifters

Given two periods of data, if equilibrium changes in wages and labor quantities are
driven by equilibrium supply-shifters only, then demand parameters that do not
vary over the two periods can be identified. We consider estimation issues related
to shocks to relative demands in Appendix Section B.2.4.

Given data from t = τ and t = τ + 1, time-subscripted Equations (B.10) provide
six equations for identifying the six ρ and α parameters. Each pair of nest-specific
and time-invariant α and ρ values is pinned down by linearly matching the relative
wages and labor quantity in both periods. In this and the following sections, for
notational clarity, we ignore the skill and task-intensive occupation subscripts.

It might not, however, be possible to explain observed equilibrium changes with
only equilibrium supply-shifters. For any one particular nest, there exists a contin-
uum of α and ρ combinations that can explain observed relative wages and quantities
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in a period. We can express α as a function of ρ:

α̂t (ρ) =

(
Wk,t

Wf,t

)
·
(
Lk,t
Lf,t

)1−ρ

1 +
(
Wk,t

Wf,t

)
·
(
Lk,t
Lf,t

)1−ρ , (B.12)

where the hat and the time sub-script indicate that α̂t is a function of observables
at period t. Between periods t = τ and t = τ + 1, a condition for the existence of
an equilibrium supply-shifter is that there must be a ρ? ∈ (−∞, 1], where

α̂t (ρ?) = α̂t+1 (ρ?) . (B.13)

Equation (B.13) simplifies to

log

(
Wk,τWf,τ+1

Wf,τWk,τ+1

)
·
(

log

(
Lk,τ+1Lf,τ
Lf,τ+1Lk,τ

))−1

> 0 . (B.14)

Equation (B.14) is a necessary condition for the existence of equilibrium supply-
shifters,D.9 and it simply requires that relative wages must shift in the opposite
direction as relative labor quantities.

For a nested-CES problem, variations in ρ and α in any sub-nest impact demands
across all nests. Hence, to use an equilibrium supply-shifters identification strategy,
observable changes for all lowest-layer sub-nests must satisfy Equation (B.14). For
Mexico, if there are episodes of supply-only policy shifts and corresponding short-
interval ex-ante and ex-post observed equilibrium wages and labor quantities, de-
mand parameters can plausibly be identified during each episode and compared over
time without parametric assumptions.

Empirically, given our biennially aggregated data, we do not find any data seg-
ments during which changes in labor quantities and wages satisfy Equation (B.14)
across all level three sub-nests. It is perhaps natural that over the course of 2 to
4 years, there would be sufficient changes in demand-side parameters that can sub-
stantially impact equilibrium, precluding the use of supply-shifter only instruments
for identification.

B.2.3 Three and More Periods Data and Demand Share Polynomials

With three or more periods of data, we follow the literature and allow for demand-
side share parameters to vary over t under polynomial restrictions. This means both
demand and supply parameters can vary over time. Here, we consider one sub-nest.
The logic for identification across nests follows from the discussions in Section B.2.1.

We express the logarithm of αt as a M th degree polynomial:

log

(
Wk,t

Wf,t

)
= log

 exp
(∑M

i=0 ai · ti
)

1− exp
(∑M

i=0 ai · ti
)
+ (ρ− 1) · log

(
Lk,t
Lf,t

)
. (B.15)

D.9. Because Equation (B.13) is a function of relative wages and quantities, it does not relate
to how the aggregate output to productivity ratio Yt

Zt
might or might not be changing over time.

Additionally, as a necessary condition, satisfying Equation (B.14) does not mean that observed
changes in wages and quantities are only driven by supply-shifters.
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T ≥ M + 2 periods of data are needed to identify the M + 1 polynomial coeffi-
cients, {a0, a1, . . . , aM}, and ρ.D.10 In practice, polynomial coefficients can be found

by regressing {log (α̂t (ρ))}Tt=1 on the time matrix
{

1, t, t2, . . . , tM
}T
t=1

. To analyze
data requirements for identification, we provide an explicit characterization for data
variations that identifies each ai.

Polynomial coefficients can be identified via differences of log (α̂t (ρ)). With data
vector {log (α̂t (ρ))}τ+M

t=τ , starting at any τ ∈ [1, T−M ], the coefficient for the highest
polynomial term. aM , is equal to:

aM =
1

M !
·
M∑
i=0

(
(−1)i

M !

(M − i)!i!

)
︸ ︷︷ ︸

Alternating binomial coeff.

× log
(
α̂(τ+M−i) (ρ)

)︸ ︷︷ ︸
All data: α̂τ ,...,α̂(τ+M)

,
(B.16)

where the sum is equal to theM th difference over time of log (α̂t (ρ)).D.11 Specifically,
when M = 3, given T > 4 periods of data available, the coefficient for the highest
polynomial is equal to:

α3

(
ρ,

{
Wk,t

Wf,t
,
Lk,t
Lf,t

}τ+3

t=τ

)
=

1

3 · 2
· log

(
α̂τ+3 (ρ) · α̂τ+1 (ρ) · α̂τ+1 (ρ) · α̂τ+1 (ρ)

α̂τ+2 (ρ) · α̂τ+2 (ρ) · α̂τ+2 (ρ) · α̂τ (ρ)

)
︸ ︷︷ ︸

3rd difference given wage and quantities at τ,τ+1,τ+2

,

(B.17)

for any τ ∈ [1, T − 3]. The log relative ratios of the α̂t across time segments, which
are a function of relative wages and labor quantities as shown in Equation (B.12),
determine the polynomial coefficients.

Given coefficients for higher order polynomials, coefficients for the m < M lower
order polynomials are equal to, for all starting dates τ ∈ [1, T −m]:

am =
m∑
i=0

(
(−1)i ((m− i)!i!)−1

)
·

log (α̂τ+m−i (ρ))−
M−m−1∑
j=0

aM−j · tM−j


︸ ︷︷ ︸
Difference out higher than mth polynomial terms

.

(B.18)

Equation (B.18) identifies am from the mth difference over time of log (α̂t (ρ)), after
first differencing out the contribution to α̂t (ρ) from higher than mth order polyno-
mial terms as shown in Equation (B.18).

Despite the flexibility of a M th order polynomial, intuitively, identification is
potentially possible because the M th derivative of a M th order polynomial is, by
design, time-invariant. This time-invariance restriction allows for iteratively solving
for the coefficients for lower order polynomial terms through differencing.

Following the discussion in Section B.2.2 for two periods of data, in the multi-
period context, it is also possible that there exist no combinations of polynomial
coefficients, {a0, a1, . . . , aM} and ρ that could plausibly explain observed equilibrium

D.10. In Equation B.15, we assume that patterns of changes in αt are smooth and not subject to
shocks, an assumption we relax in Section B.2.4.

D.11. The first difference is (α̂t − α̂t−1), the second difference is (α̂t+1 − α̂t)−(α̂t − α̂t−1). The M th

difference is based on differencing data from over M + 1 periods. The number of occurrences of
each α̂t term in the mth difference follows the (m+ 1)th row of Pascal’s Triangle and is expressed
in Equation (B.16) as a finite alternating series with binomial coefficients.
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outcomes. The discussion in Section B.2.2 could be viewed as an analysis under 0th

order polynomial assumption with M = 0.
In the absence of mismeasurement and shocks to relative demands, if the poly-

nomial coefficients generated from Equations (B.16) and (B.18) based on different
segments of data with different τ starting points vary, that indicates a violation of
the time-invariance assumption of the M th derivative of the M th order polynomial.
Empirically, given the possibility of mismeasurement and relative demand shocks,
estimates based on different τ starting points would not be the same. However,
large deviations in coefficients computed based on Equations (B.16) and (B.18) for
different data segments might be indicative that the time-invariance assumption
given the current order of polynomial is not satisfied (or it might also be indicative
of the presence of significant mismeasurement or shocks, see the next section). An
increase in M might be needed, with requisite increase in T data availability. In
this paper, we model changes in relative demand trends in each sub-nest with 3rd
degree polynomials.

B.2.4 Demand Estimation, Mismeasurement, and Shocks

Mismeasurement and Shocks Let {Wk,t,Wf,t, Lk,t, Lf,t} and
{
Ŵk,t, Ŵf,t, L̂k,t, L̂f,t

}
represent data with and without mismeasurement respectively. Assuming that mis-
measurement is classical and log normal, we have

log(Wgen,t) = log(Ŵgen,t) + εgen,t

and log(Lgen,t) = log(L̂gen,t) + ηgen,t ,
(B.19)

where εgen,t ∼ N
(
−σ2

ε
2 , σ

2
ε

)
and ηgen,t ∼ N

(
−σ2

η

2 , σ
2
η

)
. As in prior sections, for no-

tational clarity, we continue to ignore skill- and task-intensive occupation subscripts.
Additionally, changes in αt over time might not be smooth, and there could be

relative productivity shocks νt to skill- and gender-biased technological changes:

log

(
αt

1− αt

)
= log

(
α̂t

1− α̂t

)
+ νt , (B.20)

where the log of α̂t follows a smooth polynomial over time. Given Equation (B.20),
αt is a positive fraction for any νt draws along the real line, meaning that αt (α̂t, νt) :
(0, 1) × R → (0, 1).D.12 For ease of exposition, we assume νt to be normal: νt ∼
N
(
−σ2

ν
2 , σ

2
ν

)
.

Scenario One We now consider four possible scenarios based on varying as-
sumptions on σ2

ε , σ
2
η, and σ2

ν . In the first scenario, suppose σ2
ε > 0, but σ2

η = 0 and

D.12. Given Equation (B.20), for any νt ∈ R, we have

αt (α̂t, νt) = α̂t ·
(

exp (νt)

1 + α̂t · (exp (νt)− 1)

)
∈ (0, 1) .

This is because

lim
νt→−∞

(
exp (νt)

1 + α̂t · (exp (νt)− 1)

)
= 0 and lim

νt→∞

(
exp (νt)

1 + α̂t · (exp (νt)− 1)

)
=

1

α̂t
.
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σ2
ν = 0, Equation (B.15) becomes:

log

(
Wk,t

Wf,t

)
= log

 exp
(∑M

i=0 ai · ti
)

1− exp
(∑M

i=0 ai · ti
)
+ (ρ− 1) · log

(
Lk,t
Lf,t

)
+ (εk,t − εf,t) .

(B.21)

Under Equation (B.21), mismeasurement is on the left-hand-side. The identification
discussions for ρ and polynomial coefficients is the same as before,D.13 but now there
can be gaps between model predictions and the data.

Scenario Two In the second scenario, suppose σ2
ε > 0 but σ2

η > 0 and σ2
ν = 0,

but ρ is known from prior literature, we have:

log

(
Wk,t

Wf,t

Lk,t
Lf,t

1−ρ)
= log

 exp
(∑M

i=0 ai · ti
)

1− exp
(∑M

i=0 ai · ti
)
+ (εk,t − εf,t) + (1− ρ) · (ηk,t − ηf,t) .

(B.22)

Under Equation (B.22), polynomial share coefficients remain identifiable. A chal-
lenge is that as the data-generating true ρ tends away from perfect substitution
(ρ = 1) and toward complementarity (ρ→ −∞), the mismeasurement is magnified.
Lower ρ values reduce the precision of polynomial share estimates given the same
span of data.

Scenario Three In the third scenario, suppose σ2
ε > 0, σ2

η > 0 and σ2
ν = 0, and

ρ is not known, we have:

log

(
Wk,t

Wf,t

)
= log

 exp
(∑M

i=0 ai · ti
)

1− exp
(∑M

i=0 ai · ti
)
+ (ρ− 1) · log

(
Lk,t
Lf,t

)
+

(εk,t − εf,t) + (1− ρ) · (ηk,t − ηf,t) .

(B.23)

In Equation (B.23), the log relative labor ratio is correlated with the error term.
Hence, there is standard classical errors-in-variable attenuation bias. As in the sec-
ond scenario, mismeasurement can be magnified by lower values for data-generating
true ρ.

In terms of the measurement errors, for developed economies such as the U.S.,
there might be administrative records of income and wages as well as detailed firm-
level employment data by industry and occupation. In our context, mismeasurement
is of greater concern. We compute wages and the number of workers based on
aggregating the ENIGH survey data from a full sample of 87,826 housing units. Our
focus on occupation leads to 16 occupation-skill-gender data cells. In each survey
year, for some cells (e.g., routine-unskilled-men) the sample size is substantial, but
for other cells (e.g., manual-skilled-women) the sample size is limited and suffers
from sampling error. Additionally, there might be mismeasurement in the underlying
reported wage/earning and labor market participation decisions.

D.13. Without mismeasurement, given M th order polynomial and T ≥ M + 2 periods of data, any
M+1 segment of data will generate the same exactly identified demand parameters using Equations
(B.16) and (B.18). With mismeasurement, the best-fit is in effect obtained from an averaging of
the results from each M + 1 data segment.
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Scenario Four In the fourth scenario, suppose σ2
ε > 0, σ2

η > 0 and σ2
ν > 0, and

ρ is not known, we have:

log

(
Wk,t

Wf,t

)
= log

 exp
(∑M

i=0 ai · ti
)

1− exp
(∑M

i=0 ai · ti
)
+ (ρ− 1) · log

(
Lk,t
Lf,t

)
+

(εk,t − εf,t) + (1− ρ) · (ηk,t − ηf,t) + νt .

(B.24)

In Equation (B.24), αt is a function of νt, and αt impacts the labor demand curve.
In our setting, when labor supply is elastic with respect to wages (i.e. ψ1 > 0),

the equilibrium relative labor ratio
Lk,t
Lf,t

is endogenous to νt. Hence, when directly

estimating Equation (B.24), in addition to issues related to mismeasurement, bias

can also come from the correlation between νt and
Lk,t
Lf,t

.

It is important to note that even when labor supply is inelastic with respect to
wages (i.e. ψ1 = 0), bias can still arise if demand shocks νt are correlated with
supply shocks—technological shocks might impact both demand and supply curves.
However, in both cases (ψ1 = 0 and ψ1 > 0) it might be possible to identify shocks
that only shift supply curves as instruments for estimating Equation (B.24). For
example, demographic changes might shift the x-intercepts of the labor supply curves
without impacting labor demand. One problem is that in most studies like ours that
exploit aggregate time-series variation, an IV estimator will likely perform poorly
because of the small sample sizes and the difficulty of finding variables that strongly
impact aggregate labor supplies in the short run. We compare the performance of
the Equilibrium, OLS, and IV estimators in Appendix Section C.

In discussing the four scenarios above, we have clarified the conditions under
which bias might arise when demand-side parameters are estimated from demand-
side relative optimality conditions alone. In Appendix Sections B.2.6 and B.3, we
discuss how equilibrium solution based estimation can resolve the challenges posed
by scenarios three and four.

B.2.5 Supply Estimation and Wage Endogeneity

Following Equations (2.2), (5.5), and (5.6), the difference in indirect utility from
choosing one of the three occupational categories and leisure is:

U(occ | gen, edu, t)− U(h | gen, edu, t)
= (ψgen,edu,occ − π1,gen − π2,gent)︸ ︷︷ ︸

Time-varying intercepts

− π′gen,eduBgen,edu,t︸ ︷︷ ︸
Time-varying observables

+ ψ1 log (Wgen,edu,occ,t)︸ ︷︷ ︸
Wage effects

+ (εgen,edu,occ,t − εgen,edu,h,t)︸ ︷︷ ︸
Residual

.

(B.25)

Given the extreme value aggregate probability formulation shown in Equation (5.7),
we could potentially estimate the parameters of Equation (B.25) via OLS by re-

placing the left-hand-side of Equation (B.25) with log
(
Lsgen,edu,O,t/L

pop
gen,edu,t

)
−

log
(
Lsgen,edu,h,t/L

pop
gen,edu,t

)
, which represents log differences in observed aggregate

labor shares.
In partial equilibrium discrete choice supply (or demand) estimation settings,

the potential endogeneity of prices with the error term might require the use of in-
struments. In the context of the equilibrium model here, equilibrium wage solutions
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capture all time-varying and occupation-specific share and productivity differences
from the demand-side.

B.2.6 Mismeasurement, Shocks, Equilibrium Solution, and Estimation

To conduct the counterfactual analysis of interest, we need both demand- and
supply-side parameters. For estimating demand parameters, equilibrium estimation
avoids potential bias that might arise from demand-only estimation discussed in
Appendix Section B.2.4. For estimating supply parameters, equilibrium estimation
provides wages endogenously.

At each t, given vectors of demand parameters
{
α̂4,t, α̂3,t, α̂2,t, α̂1,t,

Yt
Zt
,ρ
}

, sup-

ply parameters {ψ,π}, gender- and skill-specific supply-side variables Bt, gender-
and skill-specific total potential worker count Lpopt , and relative productivity shocks
νt (see Appendix Section B.2.4), one could solve for vectors of equilibrium wages

Ŵ and labor quantities L̂ across twelve occupation-gender-skill categories. Given
vectors of measurement error draws {εt,ηt} (see Appendix Section B.2.4), model
predictions could be matched to observed wages W and labor quantities L. In a
specific gender, skill, and occupation cell, we have, for equilibrium labor quantity,

log (Lgen,skl,occ,t) = log

L̂gen,skl,occ,t
α̂4,t, α̂3,t, α̂2,t, α̂1,t,

Yt
Zt
,ρ︸ ︷︷ ︸

Demand
Parameters

, νt︸︷︷︸
Dem.

Shocks

, ψ,π︸︷︷︸
Supply
Param.

,Bt,L
pop

t︸ ︷︷ ︸
Supply

Observed




+ ηgen,skl,occ,t ,

(B.26)

and a parallel equation for equilibrium wage.
Following the discussions in Appendix Section B.2.4, for demand only estimation

under Equation (B.23), observed relative wages are regressed on observed relative
labor quantities, leading to potential bias. Under Equation (B.26), observed wages
and labor quantities are both on the left-hand-side of Equation (B.26) and are
matched against model equilibrium predictions that are solved at given vectors and
parameters, observables, and potential shock draws.

In addition to the identification of supply- and demand-side parameters previ-
ously discussed, the variances of relative demand shocks and measurement errors
are potentially identifiable as well. On the one hand, νt impacts both L̂(νt) and

Ŵ (νt), which allows νt to help explain the residual covariance between L(νt) and
W (νt) not explained by the smooth demand trends and supply-side observables.
On the other hand, measurement errors for wages (εt) and labor quantities (ηt)
are uncorrelated by assumption and help explain uncorrelated residual differences
between model predictions and data.

To jointly identify the variances of these unobservables, given the distributional
assumptions from Appendix Section B.2.4, we could repeatedly solve for equilibrium
outcomes L̂(νt) and Ŵ (νt) given vectors of νt draws, and find the vectors of εt(νt)
and ηt(νt) draws that explain the residual differences between model predictions and
data using Equation (B.26). These residual differences can be inputs for a simulated
maximum likelihood estimator. This approach imposes high computational burdens:
given a specific set of parameter values, equilibrium solution needs to be resolved a
large number of times to construct one simulated likelihood; the simulated likelihood
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needs to be reconstructed a large number of times as the estimator searches across
the large parameter space.

In Appendix Section B.3, we solve the model along smooth polynomial trends
and set νt = 0. This means that the differences between model predictions and
observables are potentially explained by measurement (sampling) errors as well as
random demand shocks that deviate from polynomial trends. Our Monte Carlo
exercises (see Section C) demonstrate that the Equilibrium Estimator performs well
in the presence of demand shocks.

B.3 Estimation

We discuss our equilibrium estimation strategy in the following sections. We discuss
the estimation parameter space in Section B.3.1. We discuss initializing starting val-
ues for estimation in Section B.3.2. We discuss the error structure in Section B.3.3.

B.3.1 Estimation Parameter Space

Let Θ be the 94 × 1 vector of all parameters of the model. This includes 11 supply-
side ψ parameters,D.14 18 supply-side π parameters, 8 demand-side elasticity param-
eters, 44 demand-side share polynomial coefficients, and 13 year-specific demand-side
output-productivity ratios.

Let Θρ =
{
{ρ4,O, ρ3,O}O∈m,r,a , ρ1, ρ2

}
be the 8 × 1 vector of elasticity parame-

ters. Let O be some estimation objective function that is a function of the differences
in model prediction and observed data. Let p(Θ) be the 312 × 1 vector of equilib-
rium wage and labor-quantity predictions of the model. Let q be the observed vector
of wages and labor-quantity data taken from ENIGH. Finally, let subscripts i in qi
and pi denote any time, gender, skill, and occupation specific data and predictions.

The equilibrium estimation problem searches for optimal constrained elasticity
parameters, given unconstrained non-elasticity parameters that provide best fit con-
ditional on the elasticity parameters:D.15

min
Θρ ∈ (−∞, 1]8

 min
Θ \Θρ

O ({qi − pi (Θ)}i)

 . (B.27)

Given the large parameter space, it is important to initialize estimation at good
starting values. Given a particular combination of Θρ values, we initialize the esti-
mation of demand- and supply-side parameters at parameters that provide best-fit
under demand- and supply-side only estimation. Specifically, given Θρ, we minimize:

min
Θ \Θρ

O
({
qLj − pLj

(
Θ | qW

)}
j

)
, (B.28)

where pL is the combined vector of labor quantities predicted by demand and supply
equations given data wage vector qW , and qL is the data vector of labor quantities to
match. We estimate demand-side parameters via nonlinear least-square, which we

D.14. There are 13 ψ parameters, however, 2 of them can not be separately identified from gender-
specific π1,gen parameters.

D.15. Θρ values are constrained between perfect substitutability and perfect complementarity. All
other parameters can take on any positive or negative values.
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provide details for in the next section, and supply-side parameters via linear least-
square. We use the resulting estimates as starting parameter values for equilibrium
estimation in Equation (B.27).

B.3.2 Initializing demand-side parameters

We discuss here the estimation routine to generate starting values for all 56 non-
elasticity demand-side parameters. The strategies here follow from the identification
discussions in Section B.2.

Given our parametric assumptions on share parameter trends from Equation (5.4),
Equation (B.1) for optimal male and female labor demand can be rewritten as:

Ld,∗k =L

1 +

1− exp

 3∑
j=0

ajt
j



Wk

Wf
·

1− exp
(∑3

j=0 ajt
j
)

exp
(∑3

j=0 ajt
j
)


ρ
1−ρ

− 1



−1
ρ

Ld,∗f =L

1 + exp

 3∑
j=0

ajt
j



Wf

Wk
·

exp
(∑3

j=0 ajt
j
)

1− exp
(∑3

j=0 ajt
j
)


ρ
1−ρ

− 1



−1
ρ

.

(B.29)

Conditional on the elasticity parameter ρ and given data on relative prices{
Wk,t

Wf,t

}T
t=1

and gender-specific labor demands {Lg,t}Tt=1, the share trend parame-

ters of Equation (B.29) can be estimated via Equation (B.30):

min
{aj}3j=0,{Lt}

T
t=1

T∑
t=1

∑
g∈{k,f}

τg,t ·
(
Lg,t − Ld,∗g,t

(
Lt, {aj}3j=0 , ρ; t,

Wk,t

Wf,t

))2

, (B.30)

where τg,t are potential estimation weights.D.16

In Equation (B.30), in addition to unknown share trend parameters, time-varying
aggregate labor demand {Lt}Tt=1 for the sub-nest under consideration are also un-

known. These {Lt}Tt=1 values can first be found as best fitting proportional scalars:

slopes estimates with the origin as the y-intercept. Let Ωg,t

(
{aj}3j=0 , ρ

)
= Ld,∗g,t /Lt,

at each t, the best fitting Lt value is:

L̂t =
Ωk,t · Lk,t + Ωf,t · Lf,t

Ω2
k,t + Ω2

f,t
. (B.31)

Given Equation (B.31) and ignoring weights, the optimization problem from Equa-
tion (B.30) can be rewritten as:

min
{aj}3j=0

T∑
t=1


Lk,t − Lf,t

(
Ωk,t
Ωf,t

)
1 +

(
Ωk,t
Ωf,t

)2


2

+

Lf,t − Lk,t
(

Ωf,t
Ωk,t

)
1 +

(
Ωf,t
Ωk,t

)2


2 , (B.32)

D.16. For example, τg,t =
Qg,t∑T

t̂=1

∑
ĝ∈{m,f} Qĝ,t̂

.
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where {Ωg,t}g∈{k,f} are only functions of the share trend parameters {aj}3j=0. Equa-

tion (B.32) assumes a parametric functional form for share parameters, nonparamet-
rically fits Lt, and assumes that ρ is fixed over time. Equation (B.32) is estimated
via non-linear least square.D.17

The {Lt}Tt=1 generated initially from Equation (B.32) are best-fitting for the
current sub-nest, however, they are not consistent with parameters from higher layer
nests. To generate consistent aggregate outputs requirements at lower nests, we
repeat the just described estimation procedure but now perform it at higher layers
of the nested-CES demand system: we use aggregate wages generated following
Equation (B.2) and fit higher layer nest aggregate labor choice predictions against
the {Lt}Tt=1 just generated from lower layer nests.

In this fashion, we estimate Equation (B.32) repeatedly as we move iteratively
upwards along each branch of the nested-CES problem. This generates polynomial
share parameters along each branch of each nest layer. At the highest nest layer, esti-

mating Equation (B.32) generates best-fitting predictions for the aggregate
{
Yt
Zt

}T
t=1

ratios. Equipped with all demand-side parameters, we generate {Lt}Tt=1 aggregate
output requirements for the lowest nest layer. This overall procedure can be repeated

several times until the
{
Yt
Zt

}T
t=1

ratio across iterations converge. The demand-side

estimation routine discussed in this section is linearly-scalable to nested-CES prob-
lems with additional layers and branches. Conditional on Θρ, we use the estimates
from this section as the starting parameter values for equilibrium estimation under
Equation (B.27).

B.3.3 Error Structure, Weight Matrix, and Standard Errors

In this section, we discuss the estimation objective function O. We assume a simpli-
fied error structure to facilitate estimation. The presence of the error term follows
from our discussions in Section B.2.4 on potential mismeasurement due to misre-
porting or sampling errors. For any given prediction i, we assume that the error
term, ei, at the true parameter vector, Θ∗, follows a normal distribution centered at
zero that is independent across i.D.18 That is,

ei = qi − pi(Θ∗) , (B.34)

where f(ei) = 1√
2πσ2

i

exp
(
e2i

2σ2
i

)
. The log-likelihood function takes the form

logL(Θ) =
∑
i

log f(ei) =
∑
i

log f(qi − pi(Θ)) , (B.35)

D.17. Given ρ, for the nest-specific nonlinear data-fitting procedure, starting values for polynomial
share coefficients is obtained by estimating the following linear equation:

log


(
Wk
Wf

)
·
(
Lk
Lf

)1−ρ
1 +

(
Wk
Wf

)
·
(
Lk
Lf

)1−ρ
 = α0 + a1t+ a2t

2 + a3t
3. (B.33)

This follows from the discussions in Section B.2.3.

D.18. The normality assumption for the error terms follows from the Central Limit Theorem. We
compute sample averages from the micro-data. All but 5 of the gender-skill-occupation-year sub-
nest have at least 35 observations based on which sample means are computed.
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and the respective score function, s(Θ), is:

s(Θ) =
∂ logL(Θ)

∂Θ
=
∑
i

∂ log f(qi − pi(Θ))

∂Θ
=
∑
i

1

σ2
i

∂pi(Θ)

∂Θ
(qi − pi(Θ)) , (B.36)

which we can write more compactly in vector form as

s(Θ) = W ′(Θ)(q − p(Θ)) . (B.37)

Here, W (Θ) is 312 × 94 weight matrix that depends on the derivatives of the
vector of predictions with respect to each of the parameters, and the variance of
each prediction error σ2

i .
Note that m(Θ) = q − p(Θ) is a vector such that, at the true parameter values,

E(q− p(Θ∗)) = 0. We can use these moment conditions in the estimation. Suppose
W (Θ) = W is fixed. We can obtain a consistent estimator of Θ∗ by GMM:

g(Θ̂gmm) = W ′(q − p(Θ̂gmm)) = W ′m(Θ̂gmm) = 0 , (B.38)

In our setup, we have more moment conditions (312) than parameters to be
estimated (94), so Equation (B.38) will usually not be satisfied. We then find the
values that minimize the weighted square sum of prediction errors,

Θ̂gmm = argmin m(Θ)′Ωm(Θ), . (B.39)

with Ω ≡WW ′ being a positive definite weighting matrix.
W is not known. An efficient GMM estimator can be obtained by choosing a

weight matrix that is asymptotically equivalent to the one that would result from
the maximum likelihood estimator using the score vector in Equation (B.37). We
follow an iterative process. We start from a plausible set of initial values of the
parameters (Θ0) and use them to estimate the vector of partial derivatives ∂p̂i(Θ0)

∂Θ0
.

The estimates of the variance of each error, σ̂2
i,0, are calculated as the square of the

estimated error from this initial set of parameter values. Both of these estimates
are then used to construct an initial weight matrix, which allows us to solve the
minimization problem.D.19 The estimates obtained after this first iterationD.20 are
used to update the weight matrix, and the process continues until the parameter
vector converges to a stable point.

Finally, the standard errors of the parameter estimates are calculated by applying
the method of moments formula. We presented standard errors of demand- and
supply-side parameter estimates in Tables 3 and 5 as well as Appendix Table D.6.
Let Γ be the matrix of partial derivatives of the sample moments m̄(Θ̂gmm) with
respect to the parameters. The ith row correpsonds to:

Γi(Θ̂gmm) =
∂m̄i(Θ̂gmm)

∂Θ̂gmm

, (B.40)

so the variance-covariance matrix can be calculated using:

ˆV ar(Θ̂GMM ) =
[
Γ(Θ̂gmm)′ ˆV ar[m̄(Θgmm)]−1Γ(Θ̂gmm)

]−1
. (B.41)

D.19. The parameter search is done using the interior-point algorithm in Matlab.

D.20. Note that even though the weight matrix is a function of the parameters, it remains fixed
during the parameter search.

79



C Equilibrium Estimator Monte Carlo Exercises (online)

C.1 Monte Carlo Simulations with Demand Shocks

In Appendix section B.2.4, we discussed measurement errors and demand shocks
as two potential drivers of the differences between model predictions and observed
outcomes. In this section, we describe Monte Carlo exercises designed to evaluate
the equilibrium estimator. We estimate the model parameters with simulated data
generated with varying magnitudes of demand shocks. We demonstrate that even
small demand shocks lead to bias in OLS estimation, which proceeds by regressing
relative wages on relative quantities. We confirm that IV is median unbiased but has
very high variance, such that the mean is not close to the true value. We highlight
the poor finite-sample properties of IV and the likelihood of weak instruments. Given
the equilibrium data-generating process, we can evaluate the OLS and IV estimators
compared to true elasticity parameter values. Previous discussions have focused
on the robustness of the elasticity estimate to specific modeling choices, like the
functional form assumption on relative demand trends (Borjas, Grogger, and Hanson
2012).

By demand shocks (νt), we mean shocks that induce random variations in the
patterns of relative demands across occupation, skill, and gender cells that devi-
ate from the patterns that would be generated by the smooth polynomial assumed
under Equation 5.4. Following the formulation from Equation B.20, the demand
shocks induce random normal proportional deviations from the polynomial share
parameters.

The Monte Carlo exercises proceed in the following steps. First, for each simu-
lation, we draw (11× 13) i.i.d. demand shocks across subnests and years and solve
for equilibrium outcomes; we use estimated model parameters for all simulations.
Second, we draw different sets of shocks to generate 300 simulated datasets. Third,
we repeat these equilibrium simulations under four scenarios with increasing mag-
nitudes of demand shocks in standard deviations (σν). The four scenarios map to
demand-side share parameters that are, on average, the same as share parameters
under polynomial trends, but with proportional deviations that have 0.2, 2, 4, and
9 percent standard deviations respectively.E.1 Fourth, for each of the (300× 4) sim-
ulated datasets under the four scenarios, we estimate model parameters following
Appendix Section B.3 by matching model equilibrium predictions based on polyno-
mial demand trends to the “observed” simulated data.

C.2 Equilibrium Estimator Performance

For each demand shock size, we compute parameter-specific statistics using the 300
estimates for each one of the 94 parameters. First, we compute the proportional de-
viation, which is the ratio of the estimated sample-mean for each parameter and the
true parameter value, minus one. Second, we compute the standardized bias, which
is equal to the distance between the estimated sample mean and the true parameter
value in units of the standard deviation of the sample estimate distribution. Third,
we construct indicators for whether each true parameter value falls within the con-
fidence interval around the estimated sample mean. Given the differing scales of the
94 parameters that we estimate, these three statistics jointly provide information on
the performance of the equilibrium estimator.

E.1. These are the effects of the demand shocks on the gaps between model and predictions.
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The distribution of parameter estimates for all parameters from the Monte Carlo
exercise with the second and third highest magnitudes of demand shocks in Figures
D.6 and D.7. The vertical line marking the middle of the estimates distribution is
generally close to the vertical line marking the true parameter value both in levels
as well as in units of the standard deviation of each parameter’s estimates. There
is a general widening of the estimates distribution in Figure D.6 compared to Fig-
ure D.7. In addition, all parameter-specific statistics for each scenario is available
at at this link: https://github.com/FanWangEcon/PrjLabEquiBFW/blob/main/
PrjLabEquiBFW/ esti/mc ee esti stats.csv.

For most parameters, estimated sample means are close to the true parameter
values, with the gap increasing as the standard deviation of demand shocks increases.
Specifically, first, under the four scenarios with rising demand shocks, proportional
deviations are less than 1 percent for 100, 83, 54, and 38 percent of parameters,
and are less than 10 percent for 100, 94, 88, and 87 percent of the parameters,
respectively. Second, under the four scenarios and focusing on standardized bias, 74,
57, 29, and 23 percent of estimates-sample-means are within 0.1 standard deviations
of the true parameter values. Additionally, 91 (98), 81 (100), 62 (96), and 51 (89)
percent are within 0.2 (0.5) standard deviations of the true values. Third, given the
magnitudes of the standardized bias and a sample size of 300, we find that 71 (84), 57
(68), 41 (52), and 22 (37) percent of the true parameter values are within the 90 (99)
percent confidence intervals constructed around estimated sample means. Overall,
the equilibrium estimator performs well for most parameters, and there is evidence
for statistically significant but small bias for a substantial subset of parameters,
especially at larger levels of demand shocks.

An exception is that the equilibrium estimator performs relatively poorly in
estimating ρ1 (substitutability between aggregate analytical labor and the routine
and manual labor aggregate), ρ2 (substitutability between aggregate routine labor
and aggregate manual labor), ρ3,a (substitutability between skilled and unskilled
analytical workers). At the extreme, from the scenario with the largest demand
shocks, the estimated sample median and mean for ρ1 (true value 0.031) are -0.135
and -1.410 (s.d. 3.17). The estimates-sample median and mean for ρ2 (true value
-0.154) are -0.084 and -6.613 (s.d. 62.0). The estimates-sample median and mean for
ρ3,a (true value 0.302) are -0.118 and -0.493 (s.d. 1.50). Additionally, the estimates
for α1,0, α1,1, α1,2, and α1,3 (the vector of polynomial share parameters for aggregate
analytical labor vs. the routine and manual labor aggregate) to have 26%, 63%, -
52%, and -17% percent proportional deviations from the true share parameters. As
discussed in Appendix Section B.2, the identification of higher-level CES demand
parameters relies on variations in aggregate relative prices and quantities, which
are functions of lower nest estimated parameters and observed lowest-layer facing
wages and quantities. In our setting, these Monte Carlo results indicate that there
is insufficient aggregate variation to provide precise estimates for the highest-layer
CES parameters at high levels of demand shocks. We do not expect this to have
major implications for our results since variation in the data is very limited at this
aggregate level, and our focus is on lies at the occupation-specific parameters for
elasticity and labor share that lie at lower nests, which are well estimated. The
aggregate relative productivity across occupations is of less importance.
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C.3 Comparison of the Equilibrium Estimator with the OLS and IV
Estimators

In this section, we use our Monte Carlo simulations to compare the distributions
of gender substitutability parameters ρ4,r, ρ4,m, and ρ4,a from the equilibrium esti-
mator (EE) and from OLS and IV estimators. Our overall finding is that, in our
empirical setting and given the simulation scenarios, OLS results suffer from high
bias, IV results suffer from high variance, and equilibrium estimator results have a
comparative low bias as well as low bias. The comparison of estimation results are
visualized in Figure D.8.

As discussed in the main text, there is a long tradition of estimating the elasticity
of substitution across worker types (e.g., male or female workers, immigrants, and
native workers) based on the log-linear CES demand optimal equation. Equation
B.24 offers the possibility of obtaining gender-elasticity parameters by regressing the
time series of log relative wages and log relative labor quantities. In this setting, to
account for shifts in relative demands over time, researchers commonly control for
time polynomials of different orders. As discussed in Appendix Section B.2.4, IVs
can also be used in this setting, although far less frequently (Havranek et al. 2022),
to correct for bias arising from demand shocks that are not captured by relative
demand time-trends or attenuation bias due to mismeasurements on quantities.

For the OLS and IV estimations, for each occupation group, we run separate
regressions to estimate the occupation-specific gender elasticities using relative wages
and labor quantities across time. For the IV, we use the level of gender- and skill-
specific potential prime-age workers (see Figure D.3) as the instrument. Under
the equilibrium data generating process, the population size and composition are
exogenous inputs.

An important aspect of the reduced-form estimation is the polynomial order used
to approximate relative demand trends. The reduced-form econometrics literature
has found that the elasticity of substitution estimates are sensitive to assumptions on
the order of polynomials that is used to approximate the time trend (Borjas, Grogger,
and Hanson 2012). In our setting, we use the simulations from the scenario with the
smallest amount of demand shocks to explore the order of polynomials under which
mean elasticity estimates are the closest to the true parameter values of the data
generating process. We found this to be a fifth order polynomial time trend, which
we use in all OLS and IV estimations.E.2

In panel (a) of Figure D.8, we show the distributions of ρ4,r, ρ4,m, and ρ4,a

estimates from the scenario with the lowest magnitudes of demand shocks (0.1%
s.d.). Unsurprisingly, estimated sample means from IV, OLS, and EE are all close
to the true parameter values. However, as can be seen in the figure, even with this
very small magnitude of demand shocks, OLS and IV estimates have larger variance,
and their sample means are relatively further away compared to EE.

In panels (b) and (c) of Figure D.8, under scenarios with higher magnitudes of
demand shocks, we find a similar pattern where the distributions of EE estimates
are more centered around the true parameter values. In panel (b), with 2% s.d.
demand shocks, the difference in OLS sample means and true gender-substitutability
parameter values are between 0.09 to 0.10. These are between 13 to 61 larger than
the corresponding sample bias gaps for EE estimates. At the same time, while

E.2. We should note that although we used third order polynomials to model the log of the demand
share parameters, the log relative demand shares—the intercept term in Equation B.24—is not itself
a third order polynomial but a function of third order polynomials.
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IV and EE estimates have similar bias, IV estimates are less precise, with sample
standard deviations that are between 2.4 to 3.2 times larger than those for EE. In
panel (c), at 5% s.d. demand shocks, OLS sample bias increases to 0.43, 0.47, and
0.40 for ρ4,r, ρ4,m, and ρ4,a, while EE sample bias remains less than 0.06. At the
same time, the variability for IV estimates widens further, and IV sample standard
deviations are now between 3.5 to 7.7 times larger than EE.

In panel (d) of Figure D.8, at the highest level of demand shock scenario, the
IV and OLS estimates both retain very limited information due to exploding range
of estimates. Approximately 25, 50, and 90 percent of the OLS estimates for ρ4,m,
ρ4,r, and ρ4,a are higher than the perfect substitutability threshold of 1, respectively.
At the same time, IV estimates for ρ4,m, ρ4,r, and ρ4,a have standard deviations of
14.8, 6.1, and 7.7 along with minimum to maximum ranges of -21 to 119, -40 to
181, and -79 to 54, respectively. In contrast, the EE estimates for ρ4,m, ρ4,r, and
ρ4,a have means (s.d.) of 0.289 (0.270), 0.148 (0.193), and 0.639 (0.201), which fall
comparatively much more tightly around the true parameter values.E.3

It is important to point out that the improved performance of the EE estimator
comes at the cost of additional equilibrium assumptions required to generate equi-
librium wages and labor quantities as outcomes of the structural equilibrium model.
The elasticity interpretation of the IV and OLS estimations also requires the struc-
tural assumptions of CES aggregation between male and female labor, but OLS and
IV estimations do not require the specification of a full equilibrium model. However,
as we have demonstrated, the structure of the equilibrium model, in particular, the
elasticity of LFP on equilibrium wages as well as the source of deviation between
first-order optimality predictions and observed data are important determinants of
whether reduced form strategies can be usefully applied in empirical settings.

E.3. We include additional distributional statistics for the OLS, IV, and EE estimates across the
four scenarios and for the three gender-substitutability parameters at this link: https://github.
com/FanWangEcon/PrjLabEquiBFW/blob/main/PrjLabEquiBFW/ esti/mc ee iv ols.csv.
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D Additional Figures and Tables (online)

Figure D.1: Share of Part-Time Workers by Sex

Notes: An individual is defined as working part-time if he/she reported working less than 35 hours
a week. See discussions in Section 8.
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Figure D.2: Trends in Fertility, Marriage, Appliances and Norms Regarding Women’s Work

(a) Fertility (b) Marital Status

(c) Women, Business and the Law (WBL) index (d) Household Appliances

Notes: Panel (a) depicts the share of each group with children under the age of 5, Panel (b) depicts
the share of each group that is married or has a permanent partner, Panel (c) shows the value of
the Women, Business and the Law (WBL) index, Panel (d) shows the share of each group that has
both a refrigerator or a washer in the household. The measures of fertility and marriage can only
be calculated for a sample restricted to the household head and their spouse or partner; trends for
the larger sample used in the estimation are not available. The ENIGH survey started asking the
question on marital status to all members of the household in 1996, and the question about the
number and age of children since 2004. The sample is restricted to the prime-age population. See
discussions in Section 3, Section 7.1, and Appendix Section A.2.
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Figure D.3: Share of Each Gender-Skill Group in the Prime-Age Population, Gender-Skill
Specific Participation Rates, and Share of Emigrants in the Mexican Born Prime-Age Pop-
ulation

(a) Share of the Gender-Skill Group in Prime-
Age Population

(b) Gender-Skill Specific LFP Rate

(c) Share of Emigrants in Mexican Born Popu-
lation

(d) Potential Workers (Excluding Emigrants)

Notes: Panel (a) depicts the share of each gender-skill group in the prime-age population. Panel
(b) depicts the gender-skill specific participation rates. Panel (c) depicts the share of emigrants in
the total Mexican born population, conditional on gender, skill group, and being prime-age. Panel
(d) depicts the total number of potential prime-age workers by gender and skill group (excluding
emigrants). The number of emigrants by skilled group are taken from Brücker, Capuano, and
Marfouk (2013). See discussions in Section 3, Section 7.1, and Appendix Section A.2.
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Figure D.4: Counterfactual Exercises
Effects of Non-wage Determinants of LFP on Changes in the Gender LFP and Wages Gaps between C.1992
and C.2012.

(a) Changes in Gender Participation and Wage Gaps: C.2012 - C.1992
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Notes: The Table reports the difference between C.1992 and C.2012 of i) the log (male/female) wage ratio and ii) the
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(a) visualizes results from the “Overall” row in the first two blocks of Table 6. Figure (b) visualizes results from the
skill- and occupation-specific rows in the first two blocks of Table 6 (skilled-manual and unskilled-analytical results
are not shown for conciseness). Black-dashed lines mark model predictions, and points indicate predictions under key
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washing machine (Appliance) at their 1989 values, respectively. Figure D.2 presents changes in these variables over time.
See discussions in Section 7.1.
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Figure D.5: Counterfactual Exercises, General Equilibrium Log (Male/Female) Wage Ratio by Skill

(a) Non-Wage Determinants of LFP
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Notes: Panels (a), (b), and (c) show variations in the log (male/female) wage by skill groups under non-wage determinants
of LFP, demographic, and demand counterfactuals, respectively. In the counterfactuals, we set the share with under-5
children (Fertility) and with a refrigerator or a washing machine (Appliance), the gender-specific skilled worker share
(Skilled Female) and the gender/skill-specific emigrant (Emigrant) shares, and the skill/occupation-specific demand
gender share (α4) and occupation-specific demand skill share (α3) parameters at their 1989 values. Figures D.2, D.3,
and 7 present changes in these variables and parameters over time.
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Figure D.6: Equilibrium Estimator Monte Carlo Exercise with 2% Demand Trend Proportional Shocks
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Figure D.7: Equilibrium Estimator Monte Carlo Exercise with 4.5% s.d. Demand Trend Proportional Shocks
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Notes: Given observables and estimates, we draw 300 sets of i.i.d. demand shocks (4.5% s.d. demand trend proportional
shocks) and solve for 300 sets of equilibrium data. For each simulated dataset, we estimate 94 parameters using the equilibrium
estimator. Each subplot presents the sample distribution of 300 estimates for one parameter. Black vertical lines mark sample
averages, red dashed lines mark the true parameter values. See discussions in Section C.2. See link for label translations.
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Figure D.8: OLS, IV, Equilibrium-Estimator Monte Carlo Comparisons

(a) 0.1% s.d. Demand Trend Proportional Shocks
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(b) 2% Demand Trend Proportional Shocks
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(c) 4.5% s.d. Demand Trend Proportional Shocks
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(d) 7.5% s.d. Demand Trend Proportional Shocks

Routine Gender Elasticity

Manual Gender Elasticity

Analytical Gender Elasticity

−10 −5 0 5 10

−10 0 10 20

−10.0 −7.5 −5.0 −2.5 0.0 2.5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

Estimated Parameter Values

D
e

n
s
it
y

IV

OLS

Equi−Esti

Notes: Given observables and estimates, we draw 300 sets of i.i.d. demand shocks. We do this four times, with 0.1%,
2%, 4.5% and 7.5% s.d. of demand trend proportional shocks. We solve for (4× 300) sets of equilibrium data. With
each simulated dataset, we use OLS and IV to estimate ρ4,m, ρ4,r, and ρ4,a. We compare these with estimates for the
same parameters provided by the equilibrium estimator. Each subplot presents the distribution of estimates for one
parameter from the three estimators. Colored vertical lines mark sample averages for each estimator, black dashed
lines mark the true parameter values. Given large variance for results in panel (d), for visibility, we cut out the top
1 and bottom 1 percentile of estimates. See discussions in Appendix Section C.3.
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Table D.1: Changes in the Composition of the Labor Force between C.1992 and C.2012

C.1992 C.2012 Dif. in Dif.

Female
Share
(x100)

Male
Share
(x100)

∆c.1992

(Male - Female)

Female
Share
(x100)

Male
Share
(x100)

∆c.2012

(Male - Female) ∆c.2012 - ∆c.1992

Prime-Age Population

Participation Rate 38.59 96.49 57.89 59.59 95.82 36.24 -21.66

Education

Secondary (unskilled) 92.09 84.27 -7.82 81.24 79.05 -2.18 5.64

College (skilled) 7.91 15.73 7.82 18.76 20.95 2.18 -5.64

Age

25-34 44.63 43.61 -1.02 35.74 36.36 0.62 1.64

35-44 32.34 32.84 0.50 34.16 33.97 -0.20 -0.69

45-55 23.02 23.55 0.52 30.09 29.67 -0.42 -0.95

Prime-Age Workforce

Education

Secondary (unskilled) 85.48 84.37 -1.11 76.00 79.19 3.19 4.29

College (skilled) 14.52 15.63 1.11 24.00 20.81 -3.19 -4.29
Age

25-34 46.48 43.58 -2.90 34.96 36.03 1.08 3.97

35-44 33.31 33.38 0.07 36.18 34.72 -1.46 -1.53

45-55 20.21 23.04 2.83 28.87 29.25 0.39 -2.44

Notes: The table reports participation rates of the prime-age population in the first row. The following rows show shares of the

prime-age population (first panel) and shares of the prime-age work force (second panel) in each gender-education and gender-age

group. For example, in C.1992, 92.09 percent of the female population had at most a secondary schooling, and 7.91 percent had a

college degree. As fractions of the work force these shares were 85.45 and 14.52 percent. Sample weights used in all calculations. See

discussions in Section 4.
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Table D.2: Model Fit
Data and Model Predictions for Occupation Participation Rates and Wages

C.1992 C.2012

Female
Data

Female
Model

Male
Data

Male
Model

Female
Data

Female
Model

Male
Data

Male
Model

Mean Wages

College

Analytical 7.17 6.16 10.25 8.77 6.26 6.37 8.11 8.17

Routine 6.11 4.33 8.29 5.47 4.84 5.58 5.59 6.11

Manual 3.17 2.55 5.23 4.30 3.17 3.70 3.39 4.10

Secondary

Analytical 3.94 3.21 4.66 3.77 2.73 3.43 3.30 4.15

Routine 3.40 2.58 3.11 2.34 2.41 2.88 2.55 3.05

Manual 1.92 1.59 2.16 1.85 1.74 1.73 2.21 2.16

Occupation Shares (x100)

College

Analytical 1.61 2.24 5.00 5.31 5.24 5.14 6.36 6.16

Routine 0.41 0.62 1.23 1.26 1.65 1.60 1.92 1.83

Manual 0.08 0.05 0.65 0.39 0.35 0.42 0.85 0.89

Home Production 2.05 1.24 0.53 0.45 2.52 2.60 0.65 0.90

Secondary

Analytical 5.19 5.47 6.75 6.45 6.31 6.24 5.64 5.62

Routine 5.29 4.87 13.76 13.55 6.74 6.62 13.64 13.38

Manual 7.59 6.82 17.21 17.58 9.44 9.84 15.28 15.05

Home Production 30.69 31.60 1.96 2.11 20.71 20.50 2.70 3.21

Notes: The table reports average wages and occupation participation rates (among all potential workers) in C.1992

and C.2012 both from the raw data and predicted by the model. For this table, the occupation participation rates

are not conditional on gender and skill groups, i.e. the female and male columns sum up to 100. See discussions in

Section 6.1.
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Table D.3: Levels and Changes of Real Hourly Wages
by Sex, Education, and Occupation. C.1992 and C.2012

C.1992 C.2012 Dif. in Dif.

Female
Wages

Male
Wages

Log
Gap

Wages

Log
Gap

Supplies
Female
Wages

Male
Wages

Log
Gap

Wages

Log
Gap

Supplies

∆
Log Gap
Wages

∆
log Gap
Supplies

Education

Skilled 7.03 9.81 33.31 86.54 5.74 7.01 20.08 19.62 -13.23 -66.92
[0.17] [0.16] [2.97] [0.00] [0.10] [0.13] [2.54] [0.00] [3.91] [0.00]

Unskilled 3.11 2.95 -5.34 77.88 2.25 2.48 9.85 37.96 15.19 -39.92
[0.04] [0.02] [1.44] [0.00] [0.02] [0.02] [1.39] [0.00] [2.09] [0.00]

Occupation

Analytical 5.34 7.59 35.12 41.75 4.70 5.84 21.58 2.87 -13.55 -38.88
[0.11] [0.12] [2.59] [0.00] [0.09] [0.11] [2.47] [0.00] [3.68] [0.00]

Rotuine 3.81 3.64 -4.61 98.93 3.00 2.89 -3.66 60.21 0.95 -38.73
[0.07] [0.04] [2.10] [0.00] [0.05] [0.03] [2.16] [0.00] [2.94] [0.00]

Manual 1.93 2.23 14.41 95.12 1.82 2.25 20.78 38.75 6.36 -56.37
[0.04] [0.03] [2.37] [0.00] [0.03] [0.02] [1.82] [0.00] [3.01] [0.00]

Educ.-Occ.

Skilled

Analytical 7.35 10.37 34.40 85.46 6.30 8.15 25.86 16.15 -8.53 -69.31
[0.21] [0.19] [3.36] [0.00] [0.13] [0.18] [2.96] [0.00] [4.50] [0.00]

Rotuine 6.27 8.88 34.79 70.18 4.88 5.25 7.39 13.86 -27.40 -56.32
[0.32] [0.34] [6.62] [0.00] [0.16] [0.16] [4.57] [0.00] [8.23] [0.00]

Manual 3.75 5.27 35.14 214.06 3.15 3.31 5.15 63.92 -30.00 -150.14
[0.65] [0.41] [18.96] [0.01] [0.23] [0.14] [8.31] [0.00] [20.50] [0.01]

Unskilled

Analytical 3.95 4.66 16.64 16.00 2.67 3.12 15.72 -9.71 -0.92 -25.72
[0.10] [0.09] [3.22] [0.00] [0.07] [0.08] [3.62] [0.00] [4.85] [0.00]

Routine 3.42 3.10 -9.58 102.09 2.41 2.52 4.32 68.98 13.90 -33.11
[0.06] [0.03] [1.90] [0.00] [0.04] [0.02] [1.86] [0.00] [2.63] [0.00]

Manual 1.92 2.16 11.77 93.58 1.73 2.18 23.18 37.40 11.40 -56.19
[0.04] [0.03] [2.37] [0.00] [0.03] [0.02] [1.72] [0.00] [2.96] [0.00]

Notes: The table reports the average real hourly wages, the average log (male/female) wages gap, and the log

(male/female) relative supply by skill, occupation, and year. Sample is restricted to prime-age workers. The sample

for the construction of the wages series is restricted to include only full-time workers. Standard errors are in brackets.

Sample weights used in all calculations. See discussions in Section 6.2.
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Table D.4: Aggregate Average Marginal Effects of Wages Decomposition∑T
t=1

1
T

dPr(work|gen,t)
dw Occupation-specific:

∑T
t=1

1
T

∂Pr(dO=1|gen,edu,t)
∂wO

Increase Wages in Increase Occupation-specific Wages:

All Occupations Manual Wage Routine Wage Analytical Wage

Average Marginal Effects with Respect to Gender- and Skill-specific:

LFP Rates

female, secondary 0.107 0.060 0.026 0.020

female, college 0.036 0.003 0.009 0.025

male, secondary 0.023 0.013 0.008 0.002

male, college 0.008 0.001 0.002 0.005

Manual Occupation Participation Rates

female, secondary — 0.090 -0.009 -0.007

female, college — 0.008 -0.001 -0.002

male, secondary — 0.120 -0.054 -0.017

male, college — 0.018 -0.003 -0.006

Routine Occupation Participation Rates

female, secondary — -0.015 0.041 -0.005

female, college — -0.001 0.022 -0.010

male, secondary — -0.075 0.083 -0.014

male, college — -0.004 0.024 -0.014

Analytical Occupation Participation Rates

female, secondary — -0.015 -0.006 0.033

female, college — -0.004 -0.013 0.037

male, secondary — -0.033 -0.021 0.033

male, college — -0.013 -0.020 0.025

Notes: Values are in percentage points. Given log wage coefficient ψ1 = 0.966, we compute the Average

Marginal Effects of wages over time for gender and skill groups. Average Marginal Effect in columns 2–4 are

the partial derivatives of occupation participation rates—averaged across the years—with respect to wage.

Column 1 shows the total derivative of overall LFP rates with respect to all three wages, evaluated towards

the direction of equi-distance increases in all wage levels. The table presents a decomposition: in the first

block, the values from each row in the first column is the sum of the values from columns 2 to 4; each value

from columns 2 to 4 in the first block is the sum of the values in the same cell in subsequent panels. See

discussions in Section 6.4.
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Table D.5: Elasticity of Aggregate and Occupation-specific Labor Supply to Wage

Average Wage Elasticities Over Time

Increase Wages in Increase Occupation-specific Wages:

All Occupations Manual Wage Routine Wage Analytical Wage

Elasticity of Gender- and Skill-specific Labor Supply to Wages:

Aggregate Labor Supply

female, secondary 0.529 0.099 0.071 0.067

female, college 0.341 0.009 0.044 0.160

male, secondary 0.060 0.025 0.022 0.010

male, college 0.062 0.005 0.012 0.041

Manual Labor Supply

female, secondary — 0.148 -0.015 -0.012

female, college — 0.025 -0.002 -0.007

male, secondary — 0.235 -0.106 -0.032

male, college — 0.076 -0.011 -0.027

Routine Labor Supply

female, secondary — -0.042 0.114 -0.014

female, college — -0.006 0.113 -0.051

male, secondary — -0.201 0.224 -0.039

male, college — -0.024 0.150 -0.090

Analytical Labor Supply

female, secondary — -0.048 -0.021 0.108

female, college — -0.026 -0.083 0.238

male, secondary — -0.128 -0.081 0.129

male, college — -0.111 -0.169 0.217

Notes: Values are elasticities. Given log wages coefficient ψ1 = 0.966, we compute the elasticities of

wages for gender and skill groups. Column 1 presents the ratio of a percentage change in aggregate labor

supply over a concurrent and equal-percentage increase in wages for all three occupation-specific wages.

Averages across the years are shown in the table; Figure 8 visualizes these aggregate elasticities year by

year. Columns 2–4 present occupation-specific elasticities—averaged across the years—of aggregate and

occupation-specific labor supplies with respect to wages. Appendix Figure 9 visualizes these occupation-

specific elasticities year by year. See discussions in Section 6.4.
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Table D.6: Additional Supply Side Parameter Estimates

Estimate SE

Non Pecuniary Rewards/Tastes

ψf,u,m: female, unskilled, manual 18.514 0.159

ψf,u,r: female, unskilled, routine 17.687 0.181

ψf,u,a: female, unskilled, analytical 17.453 0.170

ψf,s,r: female, skilled, manual 11.145 0.143

ψf,s,r: female, skilled, routine 12.304 0.185

ψf,s,a: female, skilled, analytical 13.338 0.168

ψk,u,m: male, unskilled, manual 9.139 0.126

ψk,u,r: male, unskilled, routine 8.690 0.118

ψk,u,a: male, unskilled, analytical 7.511 0.125

ψk,s,r: male, skilled, manual 2.446 0.078

ψk,s,r: male, skilled, routine 2.875 0.100

ψk,s,a: male, skilled, analytical 3.795 0.107

Notes: The table shows the point estimates and standard errors

of additional supply side parameters. These parameters are “in-

tercepts” that are specific to each gender and skill group for each

one of the three work occupations. See estimates discussions in

Section 6.5 and estimator discussions in Appendix Section B.3.3.
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Adda, Jérôme, Christian Dustmann, and Katrien Stevens. 2017. “The Career Costs
of Children.” Journal of Political Economy 125 (2): 293–337. https://doi.org/
10.1086/690952.

Autor, David, and David Dorn. 2013. “The Growth of Low-Skill Service Jobs and
the Polarization of the US Labor Market.” American Economic Review 103(5)
(5): pp. 1553–1597. https://doi.org/10.1257/aer.103.5.1553.

Autor, David, Lawrence Katz, and Melissa S. Kearney. 2006. “The Polarization of
the U.S. Labor Market.” American Economic Review 96, no. 2 (May): 189–194.
https://doi.org/10.1257/000282806777212620.

Autor, David, Frank Levy, and Richard Murnane. 2003. “The Skill Content of Recent
Technological Change: An Empirical Exploration.” The Quarterly Journal of
Economics 118(4) (4): pp. 1279–1333. https://doi.org/10.1162/0033553033225
52801.

Borjas, George J., Jeffrey Grogger, and Gordon Hanson. 2012. “Comment: On Es-
timating Elasticities of Substition.” Journal of the European Economic As-
sociation 10, no. 1 (February): 198–210. https : //doi . org /10 .1111/ j . 1542 -
4774.2011.01055.x.
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