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Abstract

We lay down a simple (game-theoretic) model of a state-of-anarchy involving

three players. We focus attention on the following question: Which subset of

players (if any) will agree to cooperate amongst each other? Will all three

players agree to do so, or only two of the three players (and if so, which two

players)? Or will no player agree to cooperate with any other player? We show

that the socially optimal outcome is for all three players to agree to cooperate

with each other. We also show that due to the presence of positive externalities,

in equilibrium, cooperation may only be established between two of the three

players (which is sub-optimal).
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“. . . there is no such thing as perpetual tranquillity while we live here because

life is but motion and can never be without desire or without fear, no more

than without sense . . . there can be no content but in proceeding.” Thomas

Hobbes, Leviathan, 1651.

1 Introduction

Cooperation amongst countries on a variety of matters - especially during (and post) the

pandemic - is critical for peace and prosperity. In a context of a world that can be charac-

terised as being in a (sort of) “state of anarchy”, it is hard to secure such cooperation. We

make three contributions motivated, in part, by this issue.

First, we lay down a simple (game-theoretic) model of a state of anarchy, with three

players. Each player is endowed with some productive and fighting skills. Their interaction

commences with a game of “coalition formation”, in which they discuss whether or not

to cooperate with each other. An outcome of this game generates a coalitional structure.1

Once a coalitional structure is determined, the players then simultaneously and indepen-

dently choose how much costly resource (time) to allocate to productive work. Then, after

observing the output levels produced by each player (and given the coalitional structure

that has previously been determined), each player decides whether or not to “fight” any

other player who does not belong to the coalition to which he belongs (if any), in order to

steal his output.

Much of the large literature in cooperative game theory and, with the exception of a few

papers, the small literature on noncooperative games of coalition formation are concerned

with the analyses of coalitional games in characteristic function form. A basic property of

such games is that the payoff to a coalition or to a player in a coalition — depending on

whether the game allows or does not allow for transferable utility — does not depend on

what coalitions the other players do or do not form. In contrast, the coalitional game that is

derived from the primitives of my model does not share this property: the payoff to a player

when the other two players form a coalition is strictly greater than his payoff when they do

not form such a coalition. Indeed, my coalitional game is a game with “positive spillovers”.

It is a game in partition function form, where the payoff to a player in a coalition depends

on the entire coalitional structure. Key contributions to such games include Bloch (1996),

Ray and Vohra (1997, 1999) and Maskin (2003).

In the context of our simple model, we establish two main results. First, we show that

the socially optimal (or first-best) outcome is one in which the grand coalitional structure

1There are five possible coalitional structures. The grand coalition is one possible outcome, in

which cooperation is established amongst all three players. At the other extreme is the degenerate

coalitional structure, in which cooperation is not established at all. Finally, one of the three possible

partial coalitional structures could emerge, in which a pair of the players agree to cooperate between

themselves, while the third player is not party to any such agreement.
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emerges. Second, applying Ray and Vohra’s (1997) “Equilibrium Binding Agreements” solu-

tion concept, we show that under some circumstances, the equilibrium coalitional structure

will be a partial coalitional structure. In particular, the grand coalition is not a stable

coalitional structure. This arises because for such parameter values, each player has an

individual incentive to break away from the grand coalition, and free-ride on the other two

players as they would continue to have an incentive to maintain the cooperative agreement

between the two of them.

2 A Simple Model of a State-of-Anarchy

The model has three stages, operating at three dates.

Date 1 (Coalition Formation): Three players, 1, 2 and 3, engage in a process of

coalition formation. There are five possible outcomes of this process corresponding to the

five possible coalitional structures: G denotes the grand coalitional structure (i.e., G =

{{1, 2, 3}}), D the degenerate coalitional structure (i.e., D = {{1}, {2}, {3}}), and ij the

partial coalitional structure in which i and j form a coalition, with k in a coalition on his

own (i.e., ij = {{i, j}, {k}} where i 6= j 6= k and i, j, k = 1, 2, 3).

After the coalitional structure is determined at date 1 - which defines which player has

agreed to cooperate with whom - we move to:

Date 2 (Production): The players simultaneously and independently choose the quan-

tities of time that they respectively engage in productive work. If i works for Li units of time,

where 0 ≤ Li ≤ T (with T being the total time endowment), then it produces fi(Li) units

of output. The twice differentiable production function fi satisfies the following (standard)

conditions: fi(0) = 0, f ′i(0) = +∞, f ′i > 0 and f ′′i ≤ 0.

All players now observe the quantities of output produced by each player, and then, we

move to:

Date 3 (Fights?): Depending on the coalitional structure that was determined at date

1, a “fighting” process may take place in which players fight each other in order to steal

each others’ outputs.2 If the grand coalition formed, then no fight occurs and each player

consumes what he produced; that is, cGi = fi(Li) (for all i = 1, 2, 3). Otherwise, three fights

take place, one over each player’s output. A player will not be involved in the fight over

another player’s output if and only if they belong to the same coalition.

If the degenerate coalitional structure is in place, then each player is involved in all

three fights. The outcome of each fight depends on the players’ respective fighting skills.

Let zi > 0 denote i’s fighting skill. The outcome of the fight over each player’s output is

such that the share of that output obtained by i is zi/(z1+z2+z3). Hence, if the degenerate

2“Fighting” may also be interpreted as non-violent, predatory behaviour, such as trade wars,

which indirectly can lead to extraction of some of the other player’s output.
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coalitional structure is in place, then i’s consumption level is:

cDi =
zi

z1 + z2 + z3

[
f1(L1) + f2(L2) + f3(L3)

]
.

If the ij coalitional structure is in place, then while k will be involved in all three fights,

i and j will be involved in only two fights (one over k’s output and one when they fight

with k over their own output). Hence, if the ij coalitonal structure is in place, then the

consumption levels of i, j and k (i 6= j 6= k, with i, j, k = 1, 2, 3) are respectively:3

ciji =
zi

zi + zk
fi(Li) +

zi
zi + zj + zk

fk(Lk)

cijj =
zj

zj + zk
fj(Lj) +

zj
zi + zj + zk

fk(Lk)

cijk =
zk

zi + zk
fi(Li) +

zk
zj + zk

fj(Lj) +
zk

zi + zj + zk
fk(Lk).

The (von Neumann-Morgenstern) utility to i is Ui(c, l), where c and l are respectively

his levels of consumption and leisure. I assume that Ui takes the following (quasi-linear)

form: Ui(c, l) = c + vi(l), where vi satisfies the following (standard) conditions: vi(0) = 0,

v′i(0) = +∞, v′i > 0 and v′′i < 0.4

3 The Socially Optimal Outcome

Before establishing the socially optimal (i.e., the first-best) outcome, we first determine the

equilibrium levels of work chosen by each player under each of the five possible coalitional

structures. This is straightforward to establish, and the following lemma states the desired

results:

Lemma 1. Letting LG
i , LD

i , Lij
i , Lik

i and Ljk
i respectively denote i’s equilibrium work level

under the five possible coalitional structures (where i 6= j 6= k, with i, j, k = 1, 2, 3), we have:

LG
i is the unique solution to the first-order condition

f ′i(Li) = v′i(T − Li),

LD
i is the unique solution to the first-order condition

zi
z1 + z2 + z3

f ′i(Li) = v′i(T − Li),

3Notice that I am implicitly assuming that fighting does not lead to any loss (or destruction) of

a player’s output. I adopt this assumption partly because it makes cooperation (i.e., the formation

of coalitions) that much harder. I should also emphasize that a key cost of fighting is that it affects

the players’ ex-ante incentives to work. This cost of fighting — which is indirect but fundamental

— is a key element of my model and analysis.
4I adopt this particular utility function partly to simplify the analysis (the additive separability

feature), and partly to capture the assumption that each player has risk-neutral preferences over

consumption.
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Lij
i is the unique solution to the first-order condition

zi
zi + zk

f ′i(Li) = v′i(T − Li),

Lik
i is the unique solution to the first-order condition

zi
zi + zj

f ′i(Li) = v′i(T − Li),

and Ljk
i is the unique solution to the first-order condition

zi
zi + zj + zk

f ′i(Li) = v′i(T − Li).

Notice that

LG
i > Lij

i , L
ik
i > Ljk

i = LD
i .

Thus, for each player, the amount of work done when the grand coalition is in place

strictly exceeds the amount of work done under any partial coalitional structure, which, in

turn, exceeds the amount of work done under the degenerate coalitional structure. This, of

course, results from the fact that a player’s marginal return from work — which comprise the

left-hand sides of the above first-order conditions (the right-hand sides being the marginal

cost of work) — is increasing in the extent to which his output is protected from theft. Under

the grand coalitional structure it’s protected from theft from both players, while under two

of the three partial coalitional structures it’s protected from theft from only one player;

under the third partial coalitional structure and the degenerate coalitional structure both

of the other players will try to steal his output. Not surprisingly, “productive efficiency” is

achieved if and only if the grand coalitional structure is in place.

It will be helpful to state the unique equilibrium payoff to each player under each

coalitional structure. Letting ΠG
i , ΠD

i , Πij
i , Πik

i and Πjk
i respectively denote i’s unique

equilibrium payoff under the five possible coalitional structures (where i 6= j 6= k with

j, k = 1, 2, 3), we obtain (given the results stated above and noting that Ljk
i = LD

i ):

ΠG
i = vi(T − LG

i ) + fi(L
G
i ) (1)

ΠD
i = vi(T − LD

i ) +
zi

z1 + z2 + z3

[
fi(L

D
i ) + fj(L

D
j ) + fk(LD

k )

]
(2)

Πij
i = vi(T − Lij

i ) +
zi

zi + zk
fi(L

ij
i ) +

zi
zi + zj + zk

fk(LD
k ) (3)

Πik
i = vi(T − Lik

i ) +
zi

zi + zj
fi(L

ik
i ) +

zi
zi + zj + zk

fj(L
D
j ) (4)

Πjk
i = vi(T − LD

i ) +
zi

zi + zj
fi(L

jk
j ) +

zi
zi + zk

fk(Ljk
k ) +

zi
zi + zj + zk

fi(L
D
i ). (5)

These equilibrium payoffs are the players’ payoffs in the absence of any intra-coalitional

(or inter-coalitional) transfers of output. The solution concept defined below is aimed
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for an analysis of coalition formation under this non-transferable utility (NTU) setting.5

Notice that since Πjk
i > ΠD

i , my coalitional game is a game with positive spillovers (or

externalities). That is, i strictly prefers the other two players (j and k) to form a coalition

than not to form one. This is because i can then effectively “free-ride” on the agreement

reached by j and k not to steal each others’ outputs — since i would then be the only

one trying to steal both j’s and k’s outputs. The following proposition establishes that the

grand coalitional structure is the socially optimal coalitional structure:

Proposition 1 (The Grand Coalition is the Socially Optimal Outcome). For any

i, j, k (where i 6= j 6= k and i, j, k = 1, 2, 3):

ΠG
1 + ΠG

2 + ΠG
3 > Πij

i + Πij
j + Πij

k > ΠD
1 + ΠD

2 + ΠD
3 .

Proof. I first establish the second inequality. After substituting for these expressions using

(2)-(5), and then re-arranging terms, the difference

[Πij
i + Πij

j + Πij
k ]− [ΠD

i + ΠD
j + ΠD

k ]

can be written as the sum of the following three terms:

[vi(T − Lij
i ) + fi(L

ij
i )]− [vi(T − LD

i ) + fi(L
D
i )]

[vj(T − Lij
j ) + fj(L

ij
j )]− [vj(T − LD

j ) + fj(L
D
j )]

[vk(T − Lij
k ) + fk(Lij

k )]− [vk(T − LD
k ) + fk(LD

k )].

Since Lij
k = LD

k , the last of these terms is zero. Furthermore, since Lij
i > LD

i and Lij
j > LD

j ,

each of the first two terms is strictly positive. Hence, we have established the second

inequality in the proposition. The first inequality can be established by a similar algebraic

manipulation (and then appealing to the fact that each player works more under the grand

coalitional structure than under the ij partial coalitional structure).

Proposition 1 implies that the players’ collective incentive is to establish the grand coali-

tional structure over any partial coalitional structure, and any partial coalitional structure

over the degenerate coalitional structure.

4 The Equilibrium Coalitional Structure

The solution concept which we adopt is essentially the concept of “Equilibrium Binding

Agreements” introduced and studied in Ray and Vohra (1997). Definition 1 (below) states

5I will however later on briefly discuss coalition formation on the assumption that intra-coalitional

transfers of output are possible; this additional instrument seems natural and may enhance the

likelihood of the stability of the grand coalitional structure, which, as established below, maximizes

the sum of the players utility payoffs. The idea is that players may agree to cooperate (join a

coalition) only if they are bribed to do so (by having some other player transfer some of his output).
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the conditions that are required to be satisfied in order for the grand coalition to be a stable

coalitional structure. The first condition, G.1, states that no single player can unilaterally

and profitably deviate (by breaking away from the grand coalition) anticipating the rational

responses of the other two players to such a deviation. The second condition, G.2, states that

a joint deviation by a pair of players is not profitable to at least one of them (anticipating

their rational responses after they have conducted the joint deviation). The final condition,

G.3, states that the three players cannot all (collectively) benefit from collectively agreeing

to break up the grand coalition).6

Definition 1 (Stability of the Grand Coalitional Structure). The grand coalitional structure

is stable if and only if the following three conditions hold:

G.1 [Unilateral deviations]. For each i = 1, 2, 3 and i 6= j 6= k (j, k = 1, 2, 3)

ΠG
i ≥

Πjk
i if Πjk

j ≥ ΠD
j and Πjk

k ≥ ΠD
k ,

ΠD
i otherwise.

G.2 [Pairwise Deviations]. For any pair of players i and j (i 6= j and i, j = 1, 2, 3),

either ΠG
i ≥ Πij

i or ΠG
j ≥ Πij

j if Πij
i ≥ ΠD

i and Πij
j ≥ ΠD

j ; otherwise, either ΠG
i ≥ ΠD

i or

ΠG
j ≥ ΠD

j .

G.3 [The Collective Deviation]. Either ΠG
1 ≥ ΠD

1 or ΠG
2 ≥ ΠD

2 or ΠG
3 ≥ ΠD

3 .

The notion of stability that underlies Definition 1 — that a coalitional structure is

stable if it is immune to “credible fragmentation” — implies that the degenerate coalitional

structure is (trivially) stable, by definition. I now turn to the conditions that are required

to be satisfied in order for an arbitrary partial coalitional structure to be stable. These

conditions are stated in Definition 2. They state that neither of the two players in a partial

coalition can unilaterally and profitably deviate.

Definition 2 (Stability of the three Partial Coalitional Structures). The partial coalitional

structure ij = {{i, j}, {k}} (where i 6= j 6= k and i, j, k = 1, 2, 3) is stable if and only if the

following condition holds:

P.1 [Unilateral Deviations]. Πij
i ≥ ΠD

i and Πij
j ≥ ΠD

j .

The above definitions provide the conditions under which each of the five possible coali-

tional structures is stable. The question then is which one of these coalitional structures

can emerge in equilibrium of the (unspecified) coalition formation process at date 1. We

6Notice that this definition of stability of the grand coalition allows for any subset of players to

consider breaking away from the grand coalition, but it does not allow for players to break up and

then subsequently form new coalitions. It is also based on the notion that players when considering

to deviate anticipate the subsequent rational responses by themselves and by the other players (on

further potential break-ups). Implicit in this view is that splitting up or fragmentation (i.e., breaking

away from a coalition) is costless relative to forming new coalitions.
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adopt the following viewpoint. The three players first consider forming the grand coalition.

If it’s stable, then it is the unique equilibrium coalitional structure. If, on the other hand,

the grand coalitional structure is not stable, then the players consider forming one of the

three partial coalitional structures. If at least one of them is stable, then the equilibrium

coalitional structure will be a partial coalitional structure. Of course, if more than one of the

partial coalitional structures is stable, then which one is the equilibrium coalitional struc-

ture is left unspecified. Finally, if neither the grand coalitional structure nor any one of the

partial coalitional structures are stable, then the unique equilibrium coalitional structure is

the degenerate coalitional structure (which, as noted above, is stable, by definition).

I now derive the equilibrium coalitional structure in the case when the players are

identical: that is, they have identical productive skills, identical fighting skills and identical

preferences. Formally, for all i = 1, 2, 3, fi = f , zi = z and vi = v.

It follows from Lemma 1 that for all i = 1, 2, 3, LG
i = LG and LD

i = LD, where

f ′(LG) = v′(T − LG) and f ′(LD)/3 = v′(T − LD). Furthermore, for all i 6= j, Lij
i = LP ,

where f ′(LP )/2 = v′(T − LP ). Finally, note that for all i 6= j 6= k, Ljk
i = LD. Notice,

as is expected, that LG > LP > LD. It might also be convenient to state here the unique

equilibrium payoffs to each player under each coalitional structure, which follow from a

straightforward application of (1)-(5). The equilibrium payoffs to each player under the

grand coalitional structure and the degenerate coalitional structure are respectively:

ΠG = v(T − LG) + f(LG) (6)

ΠD = v(T − LD) + f(LD) (7)

Under any partial coalitional structure, the equilibrium payoff to the player who is in a

coalition on his own is

ΠNP = v(T − LD) + f(LP ) +
f(LD)

3
, (8)

while the equilibrium payoff to each of the two coalitional partners is

ΠP = v(T − LP ) +
f(LP )

2
+
f(LD)

3
. (9)

The following observations will prove helpful in studying the stability or otherwise of each

of the possible coalitional structures. Note that ΠG > ΠD, by definition. Furthermore, it is

straightforward to establish that ΠG > ΠP and that ΠNP > ΠP — where, it may be noted,

that the latter inequality means that in any partial coalitional structure, the player who

is not party to any agreement obtains a higher payoff than that obtained by the players

who have agreed to be part of a coalition between themselves.7 The following proposition

characterizes the equilibrium coalitional structure in this case of identical players:

7First, I establish that ΠG > ΠP . Since LP > LD, it follows that η(LP ) > ΠP , where η(L) =

v(T −L)+f(L). Hence, since η(LG) > η(LP ) — by definition, since η is maximized at L = LG — it

follows that ΠG > ΠP . Now I establish that ΠNP > ΠP . By definition, LD is the unique maximizer
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Proposition 2 (Equilibrium Coaltional Structure). Assume the players are identical.

(a) Inefficient Equilibria. If ΠP ≥ ΠD and ΠG < ΠNP , then there are three equilibrium

coalitional structures, namely the three partial coalitional structures.

(b) Unique Efficient Equilibrium. If either ΠP < ΠD or ΠG ≥ ΠNP , then the unique

equilibrium coalitional structure is the grand coalitional structure.

Proof. In order to establish this proposition, I begin by checking whether the grand coali-

tional structure is stable; that is, whether or not conditions G.1-G.3 are satisfied when

the players are identical. G.3, which is satisfied if and only if ΠG ≥ ΠD, is satisfied, by

definition. G.2 is satisfied if and only if

ΠG ≥

ΠP if ΠP ≥ ΠD,

ΠD if ΠP < ΠD.

This is satisfied, since (as noted above) ΠG > ΠP (and since ΠG > ΠD). Finally, note that

G.1 is satisfied if and only if

ΠG ≥

ΠNP if ΠP ≥ ΠD,

ΠD if ΠP < ΠD.

By definition ΠG > ΠD, and so I need to check that whenever ΠP ≥ ΠD, it must be the

case that ΠG ≥ ΠNP . This statement is not always correct; and hence, in summary, the

grand coalitional structure is stable if and only if either ΠP < ΠD or ΠG ≥ ΠNP .

I now turn to examine the potential stability of an arbitrary partial coalitional structure;

since the players are identical, the three possible partial coalitional structures are essentially

“identical”. Condition P.1 is satisfied if and only if ΠP ≥ ΠD.

The proposition is now an immediate consequence of these results, and the definition of

what constitutes an equilibrium coalitional structure.

The intuition for why the grand coalitional structure is not stable if ΠG < ΠNP and

ΠD ≤ ΠP is as follows. Under these circumstances (when these two inequalities hold),

each player has a unilateral incentive to deviate and break away from the grand coalition.

This is because by doing so a player obtains a payoff of ΠNP , which, given the supposition

that ΠG < ΠNP , strictly exceeds his payoff ΠG that he obtains under the grand coalitional

structure. It should be noted that his payoff from this unilateral deviation is ΠNP and not

ΠD, since he rationally and correctly anticipates that if he unilaterally deviates and breaks

away from the grand coalition then (because, by supposition, ΠD ≤ ΠP ) the other two

players have an incentive to form a partial coalition.

of v(T − L) + [f(L)/3], and hence, ΠNP ≥ v(T − LP ) + [4f(LP )/3]. The right-hand side of this

inequality exceeds ΠP (since LP > LD), and hence the left-hand side of this inequality exceeds ΠP ,

as desired.
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Since, by Proposition 1, the grand coalitional structure maximizes aggregate (or social)

surplus, the question is whether or not it could emerge in equilibrium if intra-coalitional

transfers of output are entertained? In addressing such a question, the basic point to note

is that ΠNP > ΠG implies that even when intra-coalitional transfers are allowed, it will

not be possible to make the grand coalitional structure stable — since at least some player

will receive a payoff that is less than ΠNP , who would have an incentive to break away.

Essentially, the instability of the grand coalition under such circumstances is made possible

because under any partial coalitional structure the player who is not party to any agreement

free-rides on the other two players who are in a coalition and hence have agreed not to steal

each others’ outputs. This means that there is more for the third player to steal from these

two players.

The message that is emerging here is that in a world with three identical players, a

partial coalitional structure entails free-riding by one player over the good behaviour of

the other two. This makes sense. But it implies that under some circumstances the grand

coalition would not emerge even if intra-coalitional transfers are entertained. We leave it

for future research to characterize the equilibrium coalitional structure when the players

can differ in some respects such as in their productive skills and/or in their fighting skills.

There is furthermore much scope to extend the model in various interesting ways such as

by allowing for players to inflict damage on each others’ productive and/or fighting skills.
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