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Abstract
Under Bruno De Finetti’s coherence theory of additive probability, the expected value of a sequence of
mutually exclusive bets should not expose the bettor to certain loss for any of the bets in the sequence
(i.e. no formation of Dutch books). However, decision makers (DMs) are known to have non-additive
probability preferences represented in the frequency domain. This conundrum of choice implies that
DMs are incoherent. If so, then preference reversal (PR) is more likely to occur. That is, DMs response
to choice and valuation procedures (with similar expected value) are more likely to be dissimilar or their
preferences may appear to be intransitive. We prove that even when the true states of choice experiments
are procedure invariance and transitive preferences, PR will still be observed because of: (1) phase inco-
herence between paired gambles with the same expected value–when probability cycles are incomplete,
and (2) experimenter interference in probability measurement. We introduce a utility coherence ratio for
paired gambles, and estimates from simulated phase transition from incoherent states to coherent states
in binary choice to illustrate the theory. We find that coherence measures are very sensitive to mea-
surement error, coherent states have higher frequency phase transition, and incoherent states represent
momentary lapse in judgment that eventually disappear. So, Dutch books and PR are prevented.
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“The gamble has been to decision research what the fruit fly has been to biology - a
vehicle for examining fundamental processes with presumably important implications
outside the laboratory”. Paul Slovic.

1 Introduction

De Finetti (1937, pp. 103-104) asserted the following proposition for choice coherence in a “theo-

rem of total probability”. Let E1, . . . ,En be a complete class of mutually exclusive events, only one
of which occurs; and p1, . . . , pn be their probability of occurrence evaluated by a decision maker
(DM). If one fixes the stake Si, i = 1, . . . ,n which can be positive or negative, in correspondence
with events Ei, then one has a sequence of bets (pi,Si), i = 1, . . . ,n. Let the gain Gh on a given
stake Sh (assumed won) be the difference between the stake of the bet won and the expected value
of the n outlays. So that, Gh = Sh−∑n

i=1 piSi. A necessary and sufficient condition for decision
maker (DM) coherence is ∑n

h=1 phGh = 0 with total probability ∑n
i=1 pi = 1, pi ≥ 0 ∀i.

It is known for a long time that DMs evaluate pi nonlinearly with a probability weighting
functionw(pi) such that∑n

i=1w(pi) �= 1. See, e.g. Preston and Baretta (1948);Mosteller and Nogee
(1951); Allais (1953); Kahneman and Tversky (1979).1 In particular, non additive probability in

the frequency domain2 poses a conundrum of choice because it gives the appearance that DMs

are incoherent. This paper’s contribution to the literature is a model of rational incoherence in

which sources of seeming incoherence stems from incomplete probability cycles,3 experimenter

interference with probability measures,4 and DMs return to coherent states for countably many

complete probability cycles. In that framework, DM’s seeming incoherence is a temporary state

that vanishes over the domain of nonlinear probability. So, preference reversal and Dutch books

are prevented. To the best of our knowledge, this is the first paper to resolve seemingly incoherent
1See also, Vicig and Seidenfeld (2012, p. 1116) whom credit Part IV of Bernoulli’s Ars Conjectandi with broaching the issue of

non-additive probability as far back as 1713.
2See Haven et al. (2018).
3We define a probability cycle as the greatest common divisor of the index set for the probabilities associated with a recurrent

state. Karlin and Taylor (1981, §10.4) provide several examples on the relationship between probability cycles and harmonic
representation of transition probabilities for random walks. In contrast, imprecise probability is typically modelled as the probability
induced by a deterministic preference based function with a stochastic addend. See e.g. Loomes and Sugden (1995); Butler and
Loomes (2007). In this paper, a harmonic addend is used to characterize recurrent coherent mental states. The corresponding
probabilities and behavioural Chapman-Kolmogorov equations are presented in Theorem 3.2, infra.

4See Karni and Safra (1987, p. 679) for earlier work, and Stewart et al. (2015) for more recent work on experimenter effects.
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preferences and preference reversal phenomena with incomplete probability cycles.5 We introduce

a utility coherence ratio (UCR), and show how it characterizes preference reversal and incoherence

between lottery pairs. We also show that rank dependent utility (RDU) transformation of w(•)
into linear decision weights πi such that ∑n

i=1πi = 1 (Quiggin, 1982, 1993) also fails to solve the

incoherence puzzle for a certain class of probability weighting functions almost surely.

Preference reversal (PR) is based on differences in the choice ordering and price ordering

in lottery pairs (Schmidt and Hey, 2004). That is, “people who choose gamble A over [gamble] B

often ask for less money to sell A than B.” (see, e.g. Goldstein and Einhorn, 1987, pp. 236-237).

This implies DMs may be incoherent within or between the “paired gambles”. Three popular

explanations of the PR phenomenon are: (1) intransitive preferences,6 (2) violation of procedure

invariance, i.e., subjects response vary according to which preference elicitation methods is used,

and (3) imprecise probabilistic preferences. Refer to Loomes and Pogrebna (2016) for a review of

this literature.

We rationalize the PR phenomenon in an abstract temporally spaced repeated experiment,7

with probabilistic choice characterized by a weak harmonic transitivity axiom (WHTA) dual to the

weak stochastic transitivity axiom (WSTA).8 This allows us to rationalize source(s) of imprecise

probability (Walley, 1991; Butler and Loomes, 2007) in the frequency domain. In a sense, we

provide a mathematical model that explains why preference reversal or intransitive preferences

vanish over repeated play (Lopes, 1996). Since procedure invariance and violation of the transi-

tivity axiom are often touted as sources of preference reversal (Arkes et al., 2016) we eliminate

those sources by imposing the assumption of procedure invariance, and DMs non-violation of the
5Rubinstein and Segal (2012, p. 2485) used a “nontransitive dice” approach to estimate the maximal probability that a random

sampling procedure yields a nontransitive cycle as approximately 8
27 .6In the transitivity context, PR implies that given a binary preference relation� (where� means strictly preferred and ∼means

indifferent to), a set of outcomes x,y,z such that a DM expresses x � y and y� z, if she is prepared to pay a fee ε to acquire x, and
if her elicited preferences are x� y� z� x, then that DM is vulnerable to a money pump or Dutch book that extracts an amount ε
from her at the end of each cycle (Fishburn, 1988, p. 43).

7Camerer (1989, p. 50) reports that 31.6% of subjects reversed their preferences in a temporally spaced replication of the
experiment, and 26.5% did likewise in Starmer and Sugden (1989). Arkes et al. (2016, p. 23) survey paper also found that preference
reversal is drastically reduced after repeated rounds of the same experiment. Compare, Schmidt and Hey (2004) who repeated an
experiment five (5) times with the same subjects and still found PR albeit at a reduced level.

8Let� be a preference order relation and {a,b,c}. WSTA implies that if Pr(a� b)≥ 0.5 and Pr(b� c)≥ 0.5, then Pr(a� c)≥
0.5. WSTA is motivated by Tversky (1969, p. 31) who surmised “that the observed inconsistencies reflect inherent variability or
momentary fluctuation in the evaluative process. This consideration suggests that preference should be defined in a probabilistic
fashion.” (emphasis added). The WHTA axiom extends WSTA to the class of “anchor-adjustment” models introduced in a series of
papers by Einhorn and Hogarth (1985, 1986); Hogarth and Einhorn (1990, 1992).
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transitivity axiom on the abstract experiment. So, the only possible source of PR in our model is

nonlinear probability. DMs are assumed to have rank dependent utility (RDU) preferences because

it admits transformation of nonlinear pwfs into additive linear decision weights (Quiggin, 1982,
1993) that support De Finetti’s (1937) coherence proposition.

The coherence structure function in this paper is related to the concept of coherence be-

tween two time series (e.g. Brillinger, 2001, p. 302-303), and in particular wavelet squared coher-

ence (Mallat, 1999; Lachaux et al., 2002; Aguiar-Conraria et al., 2012) between the phase functions

that characterize probability weighting in the frequency domain. Section C in the Appendix pro-

vides a very brief review of wavelet concepts used in this paper. Wavelet analysis is well suited

here because they are locally compact bump functions that control jumps and admit transitory

probabilistic behaviour. We introduce a utility coherence ratio (UCR) that constitute jumps in in-

coherence. This is distinguished from Buehler (1976, p. 1053) who referenced De Finetti (1970)

to posit that a set of preferences will be called PR-incoherent if there exist a subset whose simul-

taneous reversal gives a higher utility. In our RDU framework, higher expected utility arises from

phase incoherence when probability cycles are broken. In fact, simulation of our model shows that

imprecise probabilities have significant effects on (in)coherence measurement.
Loomes and Pogrebna (2016) conducted experiments with a model that admits WSTA.9

They elicited CEs from a set of candidate CEs for given bets. Thus, subjects underlying prefer-

ences were modeled as a probability distribution over the set of CEs. Loomes and Pogrebna find
that “when certainty equivalent values are inferred from repeated binary choices, the classic PR

phenomenon largely disappears”. This is functionally equivalent to subjects eventually complet-

ing their probability cycles for recurrent coherent states in a repeated binary choice context over

time.10

The rest of the paper proceeds as follows. In Section 2 we introduce theWHTA axiom. The

main result there is the an abstract probability weighting function (HPWF) in the frequency domain
9Let� be a preference order relation and {a,b,c}. WSTA implies that if Pr(a� b)≥ 0.5 and Pr(b� c)≥ 0.5, then Pr(a� c)≥

0.5.
10In cognitive science, Jerome Busemeyer and his colleagues resolve the preference reversal puzzle in the context of quantum

information processing which employs quantum probability tools borrowed from quantum mechanics (Busemeyer and Diederich,
2002; Busemeyer and Wang, 2007; Pothos and Busemeyer, 2009; Busemeyer et al., 2011). The lynchpin in many of those models
is Born’s rule which is based on the squared amplitude of a complex valued wave function in Hilbert space (see e.g. Basieva et al.,
2018, §4 Probabilities-and-phases).
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presented in Theorem 2.2. In section 3 we provide the main empirical specification for the HPWF
with Theorem 3.1. We show how this extends to a behavioral Chapman-Kolmogorov equation

that characterize the probabilities that correspond to recurrent coherent states in Theorem 3.2.

And resolve the preference reversal puzzle and experimenter interference issue in Section 3.2 and

Section 3.3. In Section 4 we conclude the paper.

2 A weak harmonic transitivity axiom for HPWF

In the sequel we use the usual binary preference relation� to mean strictly preferred to,≺ to mean
strictly less preferred to, and ∼ to mean indifferent to or equivalent to. The relation � and � are
weaker versions of the strict preference order that admit the possibility of indifference. We use

the disjunction ∨ to mean “or” and conjunction ∧ to mean “and”. We assume that there exists a
separable space X and binary preference relations on X . The next three axioms are standard fare
that characterize EUT in the Von Neumann and Morgenstern (1953) framework.

Axiom 2.1 (Completeness). For given A,B ∈ X , either A� B or B� A or both, i.e., A∼ B.

Axiom 2.2 (Transitivity). For given A,B,C ∈ X , if A� B and B�C, then A�C.

Axiom 2.3 (Independence). For given A,B,C ∈ X and α ∈ (0,1], if A� B, then αA+(1−α)C �
αB+(1−α)C

In what follows we reproduce the pertinent parts of Charles-Cadogan (2018) for the benefit
of the reader. Consider a DM who expresses the following binary choice preference for objects
{A,B,C}. That is, we observe the choices {A � B} on one occasion, and {B � C} on another
occasion. The dictates of logic tell us that when presented with a binary choice between A and
C on another occasion, our DM would choose {A � C}. This is an application of the strong
transitivity axiom. However, {A � C} is the conjunctive event {A � B}∧{B � C}. That is, the
event {A�C} is a theoretically constructed preference based on the conjunction of events {A�B}
and {B �C}. In probabilistic terms, given a probability measure P defined on the binary choice
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event(s), and independence of the binary choices, these imply the constructed preference

P{A�C}= P{{A� B}∧{B�C}}= P{A� B}P{B�C} (2.1)

However, the elementary laws of probability in concert with the independence Axiom 2.3 tell us

that (2.1) has the following implications:

P{A�C}= P{A� B}P{B�C}⇒ P{A�C}< P{A� B} and P{A�C}< P{B�C} (2.2)

Thus, P{A�C}<min{P{A� B}, P{B�C}} (2.3)

There are three cases posed by the constructed preference in (2.3):

Case 1 P{A � B} < P{B � C}. This probabilistic relationship implies that an observer would
expect to see more {B�C} choices than {A� B} choices.

Case 2 P{A � B} > P{B � C}. This probabilistic relationship implies that an observer would
expect to see less {B�C} choices than {A� B} choices.

Case 3 P{A� B}= P{B�C}. This probabilistic relationship implies that an observer expects to
see the same proportion of choices for {A� B} and {A� B}.

Let ε > 0 and P{B � C} = p such that in Case 1 we have P{A � B} = p+ ε , and without loss

of generality in Case 2 we have P{A � B} = p− ε .11 The probability equipoise in Case 3 is
consistent with a weak transitivity axiom. That is, P{A� B} ∼ P{B�C}⇒ P{A�C} according
to independence Axiom 2.3 (with irrelevant alternatives). This coincides with the special case

ε = 0. In which case P{A�C}= p2 in (2.1). This suggests that the transitivity axiom Axiom 2.2
may be too strong for independent binary choices since it does not permit a margin of error. For the
11Costello and Watts (2014) also employ “symmetric error” in their “probability theory plus noise” model. Bayrak and Hey

(2017) argue that DMs have imprecise probability judgments represented by a range of probabilities symmetrically distributed
around the observed probability. Bikhchandani and Segal (2020) consider transitivity for outcomes that are near and far apart.
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very act of independent binary choice induces the theoretically constructed probabilistic preference

P{A�C}= P{{A� B}∧{B�C}}= P{A� B}P{B�C} (2.4)

= (p± ε)p= p2± ε p= P{A�C}± ε p (recall P{A�C}= p2 in (2.1)) (2.5)

This implies that limε→0 (P{A�C} ± ε p) = P{A�C} for weak transitivity to hold. That is, the
oscillating addend must disappear for weak transitivity to hold.12

2.1 Anchor-adjustment process and weak transitivity

Hogarth and Einhorn (1990) described a quantity similar to the addend±ε p in (2.5) as an “anchor-
adjustment process” which they liken to mental simulation. Cubitt et al. (2004) also report sym-
metry around probability equivalents in their experiments involving, inter alia, probability evalua-
tion tasks. Anchor-adjustment type processes were also observed in neuroscience experiments in

Kalenscher et al. (2010). More on point, our theory implies that the anchor-adjustment process for

subjective probability vanishes over time as subjects learn about the underlying event and arrive

at its true probability.13 Thus, (2.5) implies the existence of a vanishing or periodic event, call

it ϕ , such that P{{A � C}⊕ϕ} = P{A � C} where ⊕ is a “conjoint” or attachment operation.

The notion of “conjoined space” is consistent with that in Krantz et al. (1971, Ch. 6). That is, the

binary choice space E×E (where A,B,C ∈ E), and ϕ , cannot be readily concatenated but they can

be treated as composite objects that preserve transitivity. Alternatively we can think of⊕ as a joint
receipt operation for binary choice {A �C} and its accompanying mental state ϕ in accord with

Hogarth and Einhorn (1990) mental simulation hypothesis. Thus we derive the following

Axiom 2.4 (Weak Harmonic Transitivity Axiom). If A� B and B�C, then P{{A�C}⊕ϕ} ∼
P{A�C} almost surely for some periodic event ϕ and attachment operation ⊕.
12In their QPTmodel, Yukalov and Sornette (2015, p. 3) refers to objects like ε p as “attraction factors” that satisfy an “alternating

property” −ε p+ ε p= 0.
13There is a very large literature, outside the scope of this paper, on how subjects learn. The interested reader is referred to ??.

Suffice to say that MacCrimmon (1968, pp. 14-15) and Kalenscher et al. (Suppl. pp. 2-3 2010) conducted post experiment debriefing
of subjects who violated transitivity, and found that the violation was a local phenomenon and that subjects were unconscious of the
violation. Moreover, most of the violators indicated that they would have chosen in accord with transitivity if they were conscious
of the error.
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2.2 Kolmogorov representation of mental states over P-measure zero noise

Suppose that P is linear and additively separable on {{A�C}⊕ϕ} so that

P{{A�C}⊕ϕ}= P{A�C}+P(ϕ) (2.6)

In order for Axiom 2.4 to hold in (2.6) the set ϕ must have P-measure zero. Thus, we assign
P(ϕ) = 0. In that case, the attachment operator ⊕ in (2.6) satisfies the joint receipts hypothesis
summarized in Luce (1995, p. 73). We state this “joint receipt hypothesis” more formally as

Lemma 2.1 (Joint receipts). The WHT axiom is robust to joint receipt of binary choice and its
accompanying mental state.

Proof. The proof is based on Luce (1995, p. 73) characterizations of mental accounting rules
attributed to Thaler (1985) and D. von Winterfeldt, and the classical probability of the union of

events, respectively, which we write as follows:

P{{A�C}⊕ϕ}=max{P{{A�C}+ϕ},P{A�C}+P(ϕ)} (2.7)

P{{A�C}⊕ϕ}= αP{{A�C}+ϕ}+(1−α)[P{{A�C}}+P(ϕ)] (2.8)

P{{A�C}⊕ϕ}= P{{A�C}}+P{ϕ}−P{{A�C}∩ϕ} (2.9)

It is easy to see that under the WHT Axiom 2.4 each of the representations in (2.7)-(2.9) are

equivalent to P{{A�C}⊕ϕ}= P{A�C} when P(ϕ) = 0 and P{{A�C}∩ϕ} = 0. The latter
follows from the completion of the P-measure on ϕ .

Implicit in Lemma 2.1, is a covering criterion for some ε > 0. That is, there are countably many

(separable) points in ϕ each of which is covered by an interval of length |In|= ε.2−n for n= 1,2, . . .,
such that ϕ ⊆ ∪∞

n=1In. Thus, P(ϕ) ≤ ∑∞
n=1P(In) ≤ ∑∞

n=1 ε.2−n = ε . Since ε is arbitrary, we can

make it as small as we like. Thus, ϕ is a weakly compact space (Loève, 1978, p. 181).

Kolmogorov’s representation theorem (see e.g. Gikhman and Skorokhod, 1969, pp. 107-

108) tells us that there exist a real valued function g that maps into ϕ and characterizes the distri-

butions supported by ε . Specifically, let an interval length ε , e.g. [0, ε] for imprecision or noise, be
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decomposed into dyadic sub-intervals {I j}nj=1 of length |I j|= ε.2− j, i.e., I j = [ε.2− j, ε.2−( j−1)),

and Ω be a sample space of cognitive states, F be the σ -field of Borel measurable subsets of Ω,

and (Ω,F ,P) be a probability space. Furthermore, let X be a space of consequences such that
g : X ×Ω → ϕ . So that for x j ∈ X and ω ∈ Ω, g(x j,ω) = ε j. Thus, the joint distribution of

(g(x1,ω),g(x2,ω), . . . ,g(xn,ω)) on the product space X (n) (n-copies of X ) coincides with the joint
distribution of (ε1,ε2, . . . ,εn) over I1× I2×·· ·× In in the n copies space ϕ(n). For example, if the

x’s are rank ordered, and g is indexed by the x’s, then g(x,ω) is a random field that is mapped into
ϕ . In particular {(Ω,F ,P), g(x)} represents a random field on I1× I2× ·· ·× In in ϕ(n). In the

empirical literature g is stochastic by virtue of its “coordinate mapping” on ε j’s which are typically

assumed to be joint normal distributed. The previous arguments from Kolmogorov’s representation

theorem leads to the following14

Theorem 2.2 (Random fields of HPWF). Let X and ϕ be two disjoint spaces, Ω be a sample space
of cognitive states, P a probability distribution over X, A ⊂ X a closed subset, x ∈ A, and gh be
a continuous function such that gh(x) ∈ ϕ . In the attached space X ⊕ϕ , generate an equivalence
relation R by x ∼ gh(x) for each x ∈ A. The quotient space (X ⊕ϕ)/R is said to be X attached
to ϕ by gh and is written X ∪gh ϕ with attaching map gh. There exist a mapping (w◦P) : X/A→
X ∪gh ϕ into the attached space X ⊕ϕ . In particular, the weak harmonic axiom contemplates a
harmonic map gh(x)→ [0,ε] ⊂ ϕ with the composite mapping (w ◦P)(x,ω) = P(x)⊕ gh(x,ω)
where {(Ω,F ,P), gh(x)} is a random field defined on ϕ .

The key point in this exercise is that ϕ is a periodic set (that includes mental states) with

P-measure zero, and it is attached to the space of outcomes X . It supports both harmonic (gh) and
stochastic (gs) representations of g. The literature on noise neglects the harmonic representation gh
in favor of its dual stochastic representation gs. For example, Wakker’s (2010) neo-additive family
of pwfs, operationalized in Dierkes et al. (2020, p. 5), satisfy the notion that gs is a distortion. Thus,
according to Theorem 2.2 the HPWF is a sample function from a random field.15 It depends on
the mental states of DMs as they evaluate a distribution of outcomes (cf. Conte et al., 2009).16 The

HPWF has an axiomatic fixed point e−1–the same as the axiomatized fixed point in Prelec (1998).
14See Dugundji (1966, pp. 127-128) for definition of attaching map.
15If (w ◦P)(x,ω) is additively separable in P(x) and gh(x,ω), then HPWF admits (first order) stochastic dominance if gh is

locally monotonic.
16In Hogarth and Einhorn (1990), the pwf is: w(p) = pA+ k(•) where pA is an anchor probability, the mental simulation or ad-

justment factor is a function k(σ ,θ , pA,v(x)) where σ is a measure of outcome uncertainty, θ is the perceived ambiguity parameter,
and v(x) is a value function for outcome x. To accommodate Hogarth and Einhorn (1990) descriptive theory in Theorem 2.2, we can
assign gh(sss) = k(sss) where sss = [σ ,θ , pA,v(x)] is a vector of state variables. To account for ambiguity Einhorn and Hogarth (1985,
p. 437) proposed that w(p) = p+θ (1− p− pβ ) where p is an anchor probability and β is an attitude towards ambiguity parameter.
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Yukalov and Sornette (2015) also introduce a quasilinear probability weighting function. However,

their model is based on quantum decision theory, in Hilbert space with a trace class measure, for

nonlinear probability which is decomposed into a linear part they call a “utility factor”, and an

addend part they call “attraction factor” which represents behavioural biases. In contrast our model

is based on classic probability space of the kind used in EUT and the addend part mimics mental

states.

3 Rank dependent utility and preference reversal over probability cycles

In this section we employ Quiggin (1993, §5.2, p. 57) RDU model and the quasilinear HPWF

to resolve the PR puzzle. For internal consistency we assume exchangeability17 of probability

measures implied by RDU. That is, RDU transformation of nonlinear probabilities are sufficient
to satisfy De Finetti’s (1937) coherence postulate. We provide some preliminaries that include

definition of the probability cycle concept. In subsection 3.1 we decompose the decision weights
obtained from the HPWF by using Quiggin (1982) transformation procedure. In subsection 3.2

we introduce a model in which procedure invariance is imposed on an experiment and show how

the HPWF resolves PR in that context. In subsection 3.3 we provide analytics which show that

experimenters interference with a DM’s probability cycle lead them to misperceive PR.

Preliminaries

In the sequel we employ the quasilinear specification of the HPWF introduced in Charles-Cadogan
(2018, Thm 4.1) which we restate here without proof.

Theorem 3.1 (HPWF–Harmonic Probability Weighting Function). Let xxx= [x1, . . . ,nn] be a vector
valued statistical ensemle of ranked outcomes, and zzz be the corresponding vector of Z-scores for
the ranked outcomes such that x j = μx+ z jσx where μx and sigmax are the mean and standard
deviation of xxx, respectively. The coherent HPWF of a DM is quasilinear and given by

w(p,x) = η0p+η1 tan(ψ(z)) (3.1)

where ψ(z) is a phase function and −η0
η1 ≤ tan(ψ(z))≤ 1−η0p

η1 .
17Refer to Section B.1 for definition of exchangeability.
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Consider the probabilistic rank dependent expected utility (RDU) specification18 in Wakker
(1994, pg. 10) for a simple rank ordered lottery p1,x1; . . . ,xn, pn. For utilityU(x j) of outcome x j
we have

RDU(p1,x1; . . . ,xn, pn) =
n
∑
j=1

π jU(x j) (3.2)

π j = w(p1+ . . .+ p j)−w(p1+ . . .+ p j−1) (3.3)

π1 = w(p1), ∑
j

π j = 1 (3.4)

where w : [0,1]→ [0,1] is a probability transform function, and π j is a decision weight. In this case,
we let w be our inherent HPWF. Since tan(ψ(z)) is cyclic in Theorem 3.1, we have the periodic

relationship

tan(ψ(k)(z))) = tan(ψ(z)), k = 1,2, . . . where ψ(k)(z) = (2k−1)π +ψ(z) (3.5)

ψ(k)(z) = (2k−1)π k = 1,2, . . . when ψ(z) = 0 (3.6)

Without loss of generality, when η0 = 1 and (3.6) holds, we generate recurrent fix points and
their corresponding probabilities. Notation. Unless otherwise stated in the sequel π without

sub(super)scripts is measured in radians. π with sub(super)scripts is a decision weight. This leads

to the following

Definition 3.1 (Probability cycle). Kemeny et al. (1976, p. 144). Let w(p,x) be as in Theo-
rem 3.1 and K = {k| ψ(k)(z) = (2k− 1)π +ψ(z)} be an index set of periodic phase functions.
The probability cycle for w(p,x) is the greatest common denominator d(k) ofK for the probabil-

ities associated with recurrent states indexed byK . �

We characterize the recurrent states and their probabilities as follows.

Theorem 3.2 (Behavioural Chapman-Kolmogorov equation and recurrent coherent states). Let
I be an index set of coherent states and T be an index set for transient incoherent states. Let
Pmik be the transition probability of moving from state i ∈ I to k ∈ T in m steps, and Pnki be the
18In order not to overload the paper with issues pertaining to framing effects in decision weights, we did not employ cumulative

prospect theory (CPT). Compare Tversky and Wakker (1995, pg. 1259).
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corresponding probability of transitioning from state k back to state i in n steps. We assume that
transition probabilities are drawn from a 1-step Markov transition probability matrix [Pri j] where
m+n= r. Then

w(Prii) =
∞

∑
k=0

w(Pmik )w(Pnki) = Pm+nii = Prii (3.7)

In particular, if state i has period d(i) ∈K , then r = b+ s.d(i) where s is the number of periods
in r for integers r,s,b.
Proof. See Section D

The identity Φ(z j) = p j from Theorem 3.1, implies that there exist Z̃ j such that Φ(Z̃ j) = p̃ j =
∑ j
k=1 p j. It follows from Theorem 3.1 that for some pair of values (Z̃ j−1, Z̃ j) to be determined, we

have for some function f , the decision weight

pi(k)j = f (Z̃ j−1, Z̃ j; k) = w
(
p1+ p2+ . . . p j

)
−w

(
p1+ p2+ . . .+ p j−1

)

= η0
(
p1+ p2+ . . . p j− p1− p2− . . .− p j−1)

)
+η1

(
tan(ψ(k)(Z̃ j))− tan(ψ(k)(Z̃ j−1))

) (3.8)

= η0p j+η1
(
tan(ψ(k)(Z̃ j))− tan(ψ(k)(Z̃ j−1))

)
︸ ︷︷ ︸

harmonic component of decision weight

(3.9)

Thus, the decision weight π(k)
j is cyclic by virtue of (3.5) and the harmonic addend term in (3.9).19

Even if it was not cyclic, it depends nonlinearly on Z̃ j−1 and Z̃ j as indicated. Additionally, if k is
not an integer in (3.5), i.e. the cycle is incomplete, equality does not hold so probabilistic choice is

different for the same set of stimuli. The results above extend naturally to Tversky and Kahneman

(1992) cumulative prospect theory (CPT) because the latter employs the same decision weight

scheme as RDU. We note that in (3.9) the harmonic component of decision weights vanishes when

Z̃ j = Z̃ j−1 so π(k)
j = π j and RDU collapses to EUT due to η0p j. We say more on that next.

19Equation (5) in Karni and Safra (1990, p. 491) also depends on a harmonic component like the one in (3.9).
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3.1 Decomposition of decision weights obtained from HPWF

By virtue of (3.9), we decompose π(k)
j as follows. Let

ψ(k)(Z̃ j) = ψ(k)(Z̃ j−1)+Δψ(k)(Z̃ j), Z̃ j = Φ−1
( j

∑
r=1

pr
)
= Φ−1

( j
∑
r=1

Φ(zr)
)
,

Δψ(k)(Z̃ j) = ψ(k)(Z̃ j)−ψ(k)(Z̃ j−1)

(3.10)

So that

tan(ψ(k)(Z̃ j))− tan(ψ(k)(Z̃ j−1)) = tan(Δψ(k)(Z̃ j))
[
1+ tan(ψ(k)(Z̃ j)) tan(ψ(k)(Z̃ j−1))

]
(3.11)

= sin(Δψ(k)(Z̃ j))sec(ψ(k)(Z̃ j))sec(ψ(k)(Z̃ j−1)) (3.12)

Substitution in (3.9) gives us

π(k)
j = η0p j+η1 sin(Δψ(k)(Z̃ j))sec(ψ(k)(Z̃ j))sec(ψ(k)(Z̃ j−1)) (3.13)

So (3.9) is reduced to (3.13) where the decision weight is decomposed into a part (η0p j) that
reflects DM confidence (due to elevation η0) about the inherent probability p j associated with
outcome x j, and curvature parameter η1 controlled by a harmonic part, which is in turn controlled

by the jump in phase function Δψ(k)(Z̃ j) at x j based on the Z-scores z1, . . . ,z j that comprise Z̃ j .

Because sin(Δψ(k)(Z̃ j)) is cyclic, the decision weight is cyclic. Let that cyclic factor be

ϕ(k)(xxx j|μx,σx) = ϕ(k)(zzz j) = sin(Δψ(k)(Z̃ j))sec(ψ(k)(Z̃ j))sec(ψ(k)(Z̃ j−1)) (3.14)

where xxx j = (x1, . . . ,x j) and zzz j = (z1, . . . ,z j). Now rewrite (3.2) and (3.13), respectively, as

π(k)
j = η0p j+η1ϕ(k)(xxx j|μx,σx) (3.15)

RDU(xxx,ppp) =
n
∑
j=1

π(k)
j U(x j) = η0EU(xxx,ppp)+η1WU (k)(xxx,ppp) (3.16)

where EU(xxx,ppp) =
n
∑
j=1

p jU(x j) and WU (k)(xxx,ppp) =
n
∑
j=1

ϕ(k)(xxx j|μx,σx)U(x j) (3.17)
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and EU is Von Neumann and Morgenstern (1953) utility functional andWU (k) is a weighted utility

expression (Chew andWaller, 1986, pg. 59, eq (2.6)) that depends on the k-cycle for ϕ(k)(xxx j|μx,σx)
in (3.14). When Δψ(k)(Z̃ j) = 0, ϕ(k)(xxx j|μx,σx) = 0 andWU (k) = 0 so there is no weight given to

the inherent distribution of outcomes and RDU is reduced to EU . Note that dividing both sides of
(3.15) by η0 makes EU(xxx,ppp) more transparent. Thus, we have just proven the following

Theorem 3.3 (Inconsistent probabilistic preferences). Let x j, j = 1,2, . . . ,n for n≥ 3 be a statis-
tical ensemble of outcomes, and Φ(•) be the cumulative normal distribution function. Let

w(p) = η0p+η1 tan(ψ(z))

be the specification in Theorem 3.1 for standardized score z and monotone phase function ψ(z),
where tan(ψ(z)) is a weighting function for outcomes satisfying Theorem 3.1. So that w(•) operates
on a “k-cycle” for tan((2k− 1)π +ψ(z)) = tan(ψ(z)), k = 1,2, . . . . As in (3.15), define
decision weights

π(k)
j = η0p j+η1ϕ(k)(zzz j)

Suppose that probabilistic preferences are represented by rank dependent utility (RDU) so that for
von-Neuman utility U(x j) and inherent prior probability p j = Φ(z j), we have, for the correspond-
ing gamble or lottery,

RDU(xxx,ppp) =
n
∑
j=1

π(k)
j U(x j)

Then subjects will make different probabilistic choices when faced with the same stimuli because
decision weights are cyclic unless their choices coincide with a probability k-cycle. Furthermore,
we have the decomposition RDU(xxx,ppp) = EU(ppp)⊕WU(xxx). �

Remark 3.1. The RDU decomposition result above was anticipated by Wakker (1994) who axiom-
atized decomposition of RDU preferences into probabilistic risk attitude and utility based compo-
nents. The neo-additive feature of π(k)

j drives the decomposition in our case.
Theorem 3.4 (Almost sure inconsistent probabilistic preferences). Probabilistic preferences in-
duced by non-expected utility decision weights are different for the same stimuli almost surely.
�

Proof. According to Theorem 3.3 probabilistic preferences are consistent iff π(k)
j = π j for every j

in a “k-cycle”. However, for fixed j the Lebesgue measure of the level setZ j = {k : π(k)
j = π j,∀k∈

R+} is zero, that is measZ j = 0. Thus, for each j probabilistic preferences are inconsistent except
on a set with Lebesgue measure zero.

If probabilistic preferences are cyclic, then subjects will make different choices with different

probabilities when presented repeatedly with the same or similar stimuli over time by breaking

the cycle. In which case, choice depends on subjects’ location in the probability cycle and not
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so much on stimuli. This point was made by Regenwetter et al. (2011, pg. 43) who introduce a

mixture model in which choice vary because DMs are in different mental states.

3.2 Resolution of preference reversal in otherwise identical procedurally invariant tempo-
rally spaced repeated experiments

In this section we show how PR is characterized and rationalized in an abstract experiment based

on the lottery pairs method (Jacquemet and l’Haridon, 2018, p. 291), and in which preferences

are in accordance with RDU and HPWF. Specifically, we employ a two stage lottery experiment
(Segal, 1990) without reduction of compound lotteries (Assumption 3.8) and order indifference

(Assumption 3.9) (cf. Segal, 1993, p. 375). In Section 3.2.1 we show that probability cycles are

broken by incoherence in utility of outcomes in binary choice. Coherence is a measure familiar to

time series analysis in the frequency domain (Brillinger, 2001; Bloomfield, 2004). In Section 3.2.2
we show that PR is due to momentary fluctuations in DMs evaluative processes.

Let xxx = {x,y,z} be a set of non negative outcomes, U(•) be a utility function that satis-

fies Von Neumann and Morgenstern (1953) axioms, and ppp = {px, py, pz} be the corresponding
probability distribution of xxx. We make the following assumptions.

Assumption 3.5 (Experimental tasks). E1 and E2 are identical but temporally spaced experiments
that elicit preferences.

Assumption 3.6 (Procedure invariance). The same procedure is used to elicit preferences in each
temporally spaced experiment.

Assumption 3.7 (Preference reversal). In E1 our DM expresses the preference x � y � z, and in
E2 she reverses preference such that y� z� x.

Assumption 3.8 (No reduction of compound lotteries). No reduction of compound lotteries imply
that DMs are not interested in product probabilities.

Assumption 3.9 (Quasi order indifference). DMs are indifferent about the order of two stage
lotteries.

Assumption 3.10 (Risk neutrality). DMs are risk neutral.
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Remark 3.2. Assumption 3.6 is biased against preference reversal. It is much stronger than the
standard assumption which only require that different admissible procedures should identify the
same preference.

Let π ij, i = 1,2; j = x,y,z be the decision weights computed via Quiggin’s transformation
procedure in each experiment. For example, π1x and π2x are a DM’s decision weights for x in
E1 and E2, respectively. In principle, DMs choose under E1, and under E2, from each of three

lotteries which can be displayed as follows:

L1 ≡ (x, px; y, py; 0,1− px− py) (3.18)

L2 ≡ (y, py; z, pz; 0,1− py− pz) (3.19)

L3 ≡ (x, px; z, pz; 0,1− px− pz) (3.20)

There are 3!= 6 ways in which the lotteries can be ordered. A simple experiment design20 for our

purposes may be to select the following choice experiment E1 as a baseline:

E1≡ {As, pE ; L,1− pE} (3.21)

where As is a reward with probability pE conveniently chosen (see infra), and L ≡ {L1,L2,L3}
is a lottery to be played out sequentially (from left to right) if selected with probability 1− pE .
In a sense this is like the Becker et al. (1964) procedure in which “[a] subject is told that he has

been given a particular gamble [L], which he may keep and play out. Alternatively, he may try to
sell the gamble back to the experimenters” (Loomes et al., 1991, p. 426) (emphasis added) at the

reservation price As. In our case pE is the probability that the subject exercises the option to sell.
Thus, E1 is a “paired gamble” method (Farquhar (1984, p. 1285), Jacquemet and l’Haridon (2018,
p. 291)).

We assume that there is no probability associated with choosing Li, i= 1,2,3. That is, there
is no compound invariance (cf. Segal, 1990, p. 353). So if L is chosen, then DMs choose x� y in L1;
choose y� z in L2; choose x� z in L3. This choice pattern is consistent with transitivity. Let Av =
20See Harrison and Rutström (2008) for a comprehensive survey and taxonomy of experimental designs and econometric ap-

proaches.
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xpx+ ypy+ zpz be the actuarial value of the lottery so that the probability pE = Av
Av+As equalizes

the expected value of DMs choices between As and the lottery L. This choice of probability is
consistent with coherent preferences (see e.g. Buehler, 1976, §3, p 1053). Thus, in E1 we elicit
a transitive order for outcomes. We assume that for E2, which is temporally spaced, seemingly
intransitive preferences are reported as indicated below.

In E1 and the temporally spaced experiment E2, up to rewards scaled by a common factor
c, subjects are randomly assigned to any of the following “paired gamble”:

E2≡ {cAs, pE ; cL̂,1− pE} (3.22)

where L̂ (below) represents the 3!= 6 possible permutations of (3.18) (3.19) and (3.20).

L̂ ∈
{
{L1,L2,L3}, {L1,L3,L2}, {L2,L1,L3}, {L2,L1,L3}, {L3,L1,L2}, {L3,L2,L1}

}
(3.23)

cL̂means that the outcomes are scaled by c. So possible choice pairs are {cAs, pE ; c{L1,L2,L3},1−
pE}, {cAs, pE ; c{L1,L3,L2},1− pE} and so on. The lotteries in L (in (3.21)) were randomized
in (3.23) to remove order effects. Since a constant scale does not affect transitivity, E2 will be
effectively “identical” to E1 up to scale and randomization.21 For the purpose of exposition, we
assume that for a given realization of L̂ in E2, (some) DMs reverse the choices they made in L3 in
(3.20), i.e., they choose such that z � x. The analysis that follow applies only to those DMs that
choose L in E1 and L̂ in E2. In principle, preference reversal is also manifest if a DM choose As in
E1 and cL̂ in E2 or vice versa. We address the latter scenarios in (3.25) and (3.27) below. It turns
out that the result is unchanged.

3.2.1 The case of incoherent binary choice and compound lotteries

For notational convenience, we suppress the standardized distribution z for outcomes in (3.18)-

(3.20), (3.21) and (3.22), and write DMs probability weighting function as w(pE) and (1−w(1−
pE)) for binary choice (Quiggin, 1993, p. 57). The expected value of each element of the choice
21Holt and Laury (2002) report an increase in risk aversion when stake size is scaled.

16



pair in (3.22) is the same by hypothesis. If not, then we would have a built in bias in the experiment

that confounds the result. Thus, under Assumption 3.10 we would expect22 pEU(cAs) = (1−
pE)U(cL̂). However, to account for probability weighting in the RDU generalization of EUT,

under Assumption 3.10 we must also have

w(pE)U(cAs) = (1−w(1− pE))U(cL̂) (3.24)

where w(pE) = η0pE +η1 tan(ψ(z)) for the neo-additive HPWF and z pertains to the suppressed
outcomes xxx. Substitution for w(pE) in (3.24) and rearrangement of terms produces

η1[tan(ψ(ZcAs))U(cAs)− tan(ψ(ZcAv))U(cL̂)] = η0[pEU(cAs)− (1− pE)U(cL̂)] (3.25)

Assumption 3.10 implies that

pEU(cAs) = (1− pE)U(cL̂) (3.26)

This causes the right hand side (RHS) in (3.25) to vanish. So we are left with the result on the left

hand side (LHS):

tan(ψ(ZcAs))U(cAs)− tan(ψ(ZcAv))U(cL̂) = 0⇒ tan(ψ(ZcAv)) = cu tan(ψ(ZcAs)) (3.27)

where cu=U(cL̂)/U(cAs). This implies pE = cu/(1+cu). Under the “paired gamble” formulation
with procedure invariance, the amounts elicited by probability equivalence CE(P) and certainty
equivalence CE($) should be coherent. In that case, cu =U(CE($))/U(CE(P)) = 1. So cu is a
utility coherence ratio (UCR).

Theorem 3.11 (Coherent utility ratio). A DM is coherent if the utility ratio cn = 1. In particular,
under Assumption 3.6 for $-bet and P-bet with certainty equivalentCE($) andCE(P), respectively,
we have cn =

U(CE($))
U(CE(P)) and tan(Ψ2) = cn tan(Ψ1) where Ψi, i = 1,2 are phase functions for the

HPWF.
22Recall that the “paired gamble” formulation of E1 contemplates the choice {1− pE ,cL̂} being sold for cAs with probability

pE .
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The case of incoherence

For cu fixed, the harmonic relationship in (3.27) implies that the LHS and RHS are jointly in-
fluenced by the same frequency ω . In particular, cu is a utility coherence ratio (UCR) factor. If
cu = 1, then our DM is coherent in (3.27), i.e. U(cL̂) =U(cAs) and ψ(ZcAν ) = ψ(ZcAs). If cu� 1,
then our DM is incoherent and the angles are far apart except for when cycles are complete. The
relation ψ(ZcAs)(ω) =ψ(ZcAv)(ω)+ωπ holds for complete probability cycles when ω is divisible
by d(k) according to Definition 3.1. If that cycle is broken, then the equality in (3.27) does not
hold, and we would expect PR in E2. In the context of the intermediate Chapman-Kolmogorov
equations in Theorem 3.2 cycles are complete for recurrent states i ∈I with probabilities Prii, and
they are broken for k ∈ T for Pmik and Pnki for r = m+n. Implicit in this argument is the existence
of a suitable transition probability matrix, that the underlying ranked outcomes can be represented
as a Markov chain, and repeated experiments generate renewed but similar states.

*** Insert Figure 1 and Figure 2 about here ***

Figure 1 depicts a probability cycle scenario for eight (8) different UCRs for the coherent
states ω ∈ π{0,1/2,1,3/2,2} ∼= I = {0,1,2,3,4} where I is the set of fixed points that corre-
spond to recurrent states, i.e. I = {i |W(Pii) = Pii, i = 0,1,2,3,4}. For example, assume n-step
recurrent fixed point states i, where (n> 1). Let w̃(p,x) = 1/η0 �w(p,x), so the probability Pnii of
returning to state i after n-steps23 is given by w̃(Pnii ,x) = Pnii+ η̃1 tan(ψ(i)(•)) where tan(ψ(i)(•) = 0
for ψ(i)(•) = iπ , i = 0,1,2, . . . and (•) is the Z-score for outcome x. The latter implies that for
some fixed P, i.e. a fixed point, w(P) is weakly ergodic.24 We note in passing that consistent with
Theorem 2.2, the set I of coherent mental states has Lebesgue measure 0.

For 2Ψ(i)
2 =ψ(i)(•)we have w̃(Pnii ,x) = Pnii+ η̃1 tan(2Ψ(i)

2 )which generates the correspond-
ing fixed point probabilities or relative frequencies Pnii = |ω|/2π . So, Pn00 = 0,Pn11 = 1/4,Pn22 =
1/2,Pn33 = 3/4,Pn44 = 1 for ω ∈ π{0,1/2,1,3/2,2}. These results are depicted in Figure 1. Fig-
ure 2 is a refinement of Figure 1 and the same arguments hold as before. Except that now
ω ′ ∈ π{0,1/4,1/2,3/4,1,5/4,3/2,7/4,2} ∼= I ′ = {0,1,2,3,4,5,6,7,8} and Pnii = |ω ′|/2π ∈
23In textbooks like Parzen (1999, p. 221) a state k is recurrent if the probability is fkk = 1 that the underlying Markov chain will

eventually return to k having started at k, and fkk = Pkk+∑ j∈I , j �=k Pk j. So, Pkk = 1−∑ j∈I , j �=k Pk j.
24Suppose we average over P and Ψ with NP and NΨ, respectively. So that, ∑P w(P)/NP = η0∑P P/NP + η1 tan(Ψ) and

∑Ψw(P)/NΨ = η0+η1∑Ψ tan(Ψ)/NΨ. If tan(Ψ) = 0 and P= ∑P P/NP = P, then w(P) is weakly ergodic over the fixed points P.
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{0,1/8,2/8,3/8,4/8,5/8,6/9,7/8,8/8}. By induction we have Pnii ∈ {0,1/N,2/N, · · · ,N/N}.
So that for limN→∞Pnii = Pnii ∈ [0,1], complete coherence w(Pnii) = Pnii is attained over the interval
[0,1] in the limit. The key take away here is that higher frequencies for probability cycles im-

ply greater coherence, and shorter transition/momentary lapse in judgment as shown in Figures 1

and 2.

We calibrated a coherence structure function ψ2(ω) = tan−1 (cu tan(ψ1(ω))) over values

of ψ1(ω) in the range (0,360] for a partition of [0,1] in 1/360 chunks. So, cu(k) = k/360 for
k = 0,1, . . . ,360. The closer cu is to 1 the less preference reversal is observed as transition to
coherent states become smaller when the waves flatten. For example, when cu = 0.85 we have

approximate coherence since the line almost coincides with the diagonal. Figure 3 depicts the

peaks of the phase functions that characterized the UCRs cn. There, we see that 0≤Ψ1 < 2.1 and

0≤Ψ2 < 2.5, approximately, and that the peaks are concentrated around 1.5 radians or 90 degrees.

This coincides with a completed probability cycle at π/2 in Figure 1. The other completions are

multiples of π/2, i.e. 4×π/2= 2π .

*** Insert Figure 3 about here ***

Figure 5 depicts the magnitude squared coherence25 (MSC) for deterministic phase functions Ψ1

andΨ2, and for deterministicΨ1 and noisyΨ2 for select utility coherence factors cu = 0.1225 and
cu = 0.7225.26 Except for very low frequencies, the MSC for deterministic phase functions are

relatively high. However, once noise is added to the equation the MSC falls dramatically. This

implies that noisy experiments lead analysts to overestimate the amount of preference reversal.

This point was recently emphasized by Loomes and Pogrebna (2016).

*** Insert Figure 5 and Figure 6 about here ***

Figure 7 depicts the wavelet coherence induced by the HPWF when Ψ1 is deterministic, cu =
0.1225, and Ψ2 is noisy. Roughly, it depicts coherence between the diagonal and the cu = 0.125
curve in Figure 1 with a random error addend drawn from the standard normal N(0,1). The phase
25This metric is based on a correlation between wavelet transformation of phase functions (characterized by the UCRs) in the

“time” and frequency domain. See Aguiar-Conraria et al. (2012) for a non-technical introduction. Here, the angle interval [0,360]
or [0,2π] substitutes for “time”.
26Implicit in this example is the idea that Ψ1 is nonstochastic, and that Ψ2, which is a function of Ψ1, is measured with error.
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functions appear to be in phase at low frequencies and phase angles less than π/2. However, there

are pockets of anti-phase near the completion of the cycle around 360 degrees for frequencies

around 64.

*** Insert Figure 7, Figure 8 and Figure 9 about here ***

Figure 8 shows the wavelet coherence for the field of utility ratios that satisfy (3.27). It re-
flects the decomposition in Figure 1. Between frequencies 2 and 32, for 0 ≤ Ψ1 < π/2 and

π ≤ Ψ1 < 3π/2 the system is in anti-phase state. That is, DMs move at the same time but in

opposite directions. In contrast, for π/2≤Ψ1 < π and 3π/2≤Ψ1 ≤ 2π the system is in in-phase

state. DMs move at the same time and in the same direction. Figure 9 is a refinement of Figure 8.
It reflects Figure 2. The same arguments hold as before except that this time the frequency is
doubled so 0 ≤Ψ1 < π/2 and 0≤ 2Ψ1 < π/2⇒Ψ1 ∈ [0,π/4)∪ [π/4,π/2] and so on. One im-
plication of those phenomena for probability weighting functions is that probabilistic risk seeking

in convex-concave region represents anti-phase behaviour. In contrast, probabilistic risk aversion

characterized by concave-convex regions constitutes in-phase behaviour.

3.2.2 The case of DMs momentary fluctuations in evaluating compound lotteries

In this subsection our attention shifts to resolution of seemingly intransitive preferences. Under

the transitivity axiom hypothesis, DMs ordinal selection in L1 should be preserved in L̂. So we
can set the coherence factor c = 1 without loss of generality. Under RDU, we assume that the

decision weights for the seemingly intransitive preferences in E1 : x� y� z and E2 : y� z� x are
computed as follows:

π1z = wE1(pz); π1y = wE1(pz+ py)−wE1(pz); π1x = 1−wE1(pz+ py) (3.28)

π2x = wE2(px); π2z = wE2(pz+ px)−wE2(px); π2y = 1−wE2(pz+ px) (3.29)

The subscripts in wE1 and wE2 refers to the source of the probability weighting function (Abdel-
laoui et al., 2011). According to received theory, under the principle of procedure invariance (Tver-

sky et al., 1990, p. 204) the RDU for E1 and E2 should be the same by virtue of Assumption 3.6
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since the same temporally spaced experiments are run. Let RDU1 and RDU2 be the valuation for
rank ordered choices in E1 and E2 respectively. Thus, we have

RDU1(xxx,ppp) = π1xU(x)+π1y (U(y)+π1zU(z) (CE1 $-bet)

RDU2(xxx,ppp) = π2xU(x)+π2y (U(y)+π2zU(z) (CE2 P-bet)

Procedure invariance under Assumption 3.6 required that RDU1 = RDU2. If this relationship is
violated, then under Assumption 3.7, preference reversal implies RDU1 �= RDU2. In which case

(π1x −π2x )U(x)+(π1y −π2y )U(y)+(π1z −π2z )U(z) �= 0 (3.30)

Since U preserves ordinal preferences, under E1 we can normalize U by setting U(y) = 0 and

U(x) = 1 to simplify the analysis. See e.g. Anscombe and Aumann (1963, p. 201), Karni and

Safra (1990, p. 493) and Quiggin (1993, p. 63). Thus, (3.30) reduces to

(π1x −π2x )+(π1z −π2z )U(z) �= 0⇒U(z) �=−(π1x −π2x )
(π1z −π2z )

> 0 (3.31)

Since the underlying probabilities px and pz do not change in E1 and E2, for given k-cycle in
(3.15), we have either

(a) : (π1x < π2x and π1z > π2z ) or (b) : (π1x > π2x and π1z < π2z ) (3.32)

This reduces to:

(a) : π1x = η0px+ϕ(k)
1,x (Zx)< π2x = η0px+ϕ(k)

2,x (Zx) ⇒ ϕ(k)
1,x (Zx)< ϕ(k)

2,x (Zx) (3.33)

(b) : π1z = η0pz+ϕ(k)
1,z (Zz)> π2z = η0pz+ϕ(k)

2,z (Zz) ⇒ ϕ(k)
1,z (Zz)> ϕ(k)

2,z (Zz) (3.34)

where ϕ(k)
1,x (Zx), ϕ(k)

1,x (Zx), ϕ(k)
1,z (Zz), ϕ(k)

2,z (Zz) are the cyclic components of decision weights π(•) in

Theorem 3.3, and PR is driven by those components. In (3.13), the decision weight is controlled

by ϕ(k) through the jump sin(Δψ(k)(Z̃ j)). So under Theorem 3.4 and the inequalities in (3.33),
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(3.34) we have

sin[Δψ(k)
i, j (Z̃ j)] �= sin[Δψ(k)

i, j ((2k−1)π + Z̃ j)], i= 1, 2; j = x,y,z (3.35)

According to (3.35) probability cycles are broken, e.g. d(k) is not a gcd of k ∈ K in Defini-
tion 3.1. Because we assumed procedure invariance between E1 and E2, the preference reversal
supported by (3.32) is due to incomplete probability cycles. Moreover, for sufficiently small jumps
sin[Δψ(k)

i, j (Z̃ j)]≈ Δψ(k)
i, j (Z̃ j) and sin[Δψ(k)

i, j ((2k−1)π + Z̃ j)]≈ Δψ(k)
i, j ((2k−1)π + Z̃ j)). So the PR

phenomenon is a momentary fluctuation in the evaluative process, which is eventually resolved as
Δψ(k)

i, j (Z̃ j)→ 0 and the cyclic components in (3.33) and (3.34) vanish. Figure 4 provides a plot of

vanishing cyclical components albeit for phase functions. We summarize the results above in

Theorem 3.12 (Temporal PR). Preference reversal is due to momentary fluctuations of the evalu-
ative process and it is resolved when probability cycles are complete. �

3.3 Experimenter interference in HPWF and misperception of preference reversal

In practice, the experimenter assigns an observed probability distribution to xxx. Call it pppo. In which
case we have poj = p j+eoj where DMs assign an unobserved probability p j (hereinafter referred to
as “inherent probability”) which is disturbed by eoj . Cf. Busemeyer et al. (2011, p. 193)(“drawing
a conclusion from one judgment changes the context, which disturbs the state of the cognitive

system”). Substitution of the observed values in the equations above do not alter the analysis

since we simply substitute p j = poj − eoj . In Section 3.2.1 we showed that presenting incoherent
utility for binary choice disturbs probability cycles. In this subsection we claim that when DMs

inherent probability distribution is disturbed it causes experimenters to report PR when there is
none (Regenwetter et al., 2011, p. 44). To evaluate that hypothesis we make the following

Assumption 3.13 (Transitivity). The transitivity axiom holds.

The choice of poj induces an observed Z-score different from the unobserved (or inherent) z j.

That is, poj = Φ(zoj) for some Z-score zoj �= z j. Thus, the HPWF in Theorem 3.1 is altered by
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imposition of ex ante probabilities poj as follows (with xxx suppressed)

w(p j) = η0p j+η1 tan(ψ(z j)) (3.36)

w(poj) = η0poj +η1 tan(ψ(zoj)) (3.37)

Let πoj be the observed decision weight, and π j be the true unobserved decision weight. In the se-

quel superscript (k) implies that k-cycles are in play for a given variable. According to Theorem 3.3
and (3.37) we have

π(k)
j = η0p j+η1ϕ(k)(zzz j) (3.38)

πo
(k)
j = η0poj +η1ϕ(k)(zzzoj) (3.39)

⇒ πo
(k)
j = π(k)

j +η1(ϕ(k)(zzzoj)−ϕ(k)(zzz j))+η0eoj (3.40)

Let πo1j , πo2j , j = x,y,z be the observed decision weights in E1 and E2 respectively. Under
Assumption 3.13 for a given k we have π1(k)j = π2(k)j so there is no preference reversal. By (3.40),

the corresponding relationship for observed decision weights is

πo1
(k)

j −η1(ϕ
(k)
1 (zzzoj)−ϕ(k)

1 (zzz j))−η0eoj = πo2
(k)

j −η1(ϕ
(k)
2 (zzzoj)−ϕ(k)

2 (zzz j))−η0eoj (3.41)

where ϕ1 and ϕ2 are the corresponding phase functions in E1 and E2. Under Assumption 3.13

π1
(k)
j = π2

(k)
j ⇒ ϕ(k)

1 (zzz j) = ϕ(k)
2 (zzz j) (3.42)

After η1ϕ
(k)
1 (zzz j) terms cancel, (3.41) reduces to

πo1
(k)

j = πo2
(k)

j +η1
(

ϕ(k)
1 (zzzoj)−ϕ(k)

2 (zzzoj)
)

(3.43)

Because of experimenter interference, there is no guarantee that the expression in brackets in the

right hand side of (3.43) is 0.27 In fact, Theorem 3.4 implies that more often than not ϕ(k)
1 (zzzoj) �=

27Figure 4 shows that the expression will eventually converge to 0 but before then the expression is not zero.
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ϕ(k)
2 (zzzoj). Thus, our experimenter will report preference reversal because she observes

πo1
(k)

j �= πo2
(k)

j (3.44)

even though the true but unobserved relationship in (3.42) is based on the transitivity axiom As-

sumption 3.13. Thus we conclude with

Theorem 3.14 (Observer effect of experimenter misperception of PR). Experimenter assignment
of ex ante probabilities to the elements of a statistical ensemble or random field of outcomes inter-
feres with the inherent PWF for those outcomes, and induces observed PR when the true state is
no PR.

Theorem 3.14 manifests the “uncertainty principle” or “observer effect” articulated in Von Neu-

mann (1955, pp. 418-420). Specifically, “we must always divide the world into two parts, the one
being the observed system, the other the observer. In the former, we can follow up all physical pro-

cesses (in principle at least) arbitrarily precisely. In the latter, this is meaningless. The boundary

between the two is arbitrary to a very large extent,” ibid p. 420.

4 Conclusions

This paper began with De Finetti’s (1937) classic definition of a decision maker’s (DM’s) co-
herence in the context of a sequence of mutually exclusive bets with additive linear probability.

However, in practice, DMs exhibit nonadditive nonlinear probability preferences in choice exper-

iments, and that gives the appearance that DMs are incoherent, engage in intransitive preference

ordering, and preference reversal (PR). The latter occurs when DMs prefer one lottery in a lottery

pair to the other but request a higher price to sell the less preferred lottery compared to the price

they request to sell the more preferred lottery. This paper’s contribution to the literature stems from

its resolution of De Finetti’s incoherent preferences postulate in the context on nonlinear probabil-

ity. Specifically, it resolves DMs’ PR, and seemingly intransitive preferences, with a quasi-linear
probability weighting function with addend in the frequency domain, i.e. a harmonic probability

weighting function (HPWF). We prove that even though DMs may appear to be incoherent, they

have recurrent coherent states and transitory incoherent states characterized by novel behavioural
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Chapman-Kolmogorov equations controlled by probability cycles. Intermediate transition states

represent momentary lapse in coherence or judgment. Recurrent coherent states prevent money

pumps and Dutch books from being built against DMs. We introduce a utility coherence ratio

(UCR) that establishes a nexus between phase functions that control the size of jumps in DMs’

transition states and momentary lapse in coherence. This sets the stage for wavelet analysis of

paired gambles in the angular and frequency domain. Model simulation shows that even small

measurement error in phase functions is enough to generate large wavelet squared (in)coherence

numbers.

In another contribution, we decompose rank dependent utility (RDU) probability transfor-

mation in into a part due to linear probabilities and an addend part due to harmonic weighting of

outcomes. This sets the stage for the identity RDU = EU⊕WU where EU is expected utility due

to linear probability part, and WU is weighted utility (due to addend part) that supports a utility

(in)coherence ratio (UCR). We show how wavelet (in)coherence between the phase functions from

HPWF addends is controlled by jumps in UCR. When probability cycles are completed UCR→ 1,

and RDU collapses to EU asWU → 0. We find that experimenters interfere with DMs’ inherent
HPWF when they assign probabilities to outcomes ex ante. That interference breaks the probability
cycles of subjects in an experiment, and causes experimenters to report PR or intransitive prefer-

ences contrary to true states of procedure invariance and transitive preferences. Thus, we provide

some new analytic tools for further research on probability weighting in the frequency domain.

APPENDIX

A Order relations
The material in this section is drawn from Willard (1970, p. 5). A binary relation R on a set A is
any subset of A×A. The relation (a,b) ∈R is denoted aRb. A relationR is reflexive iff aRa for
a ∈ A, symmetric iff aRb implies bRa for all a,b ∈ A, antisymmetric iff aRb and bRa implies
a= b for all a,b ∈ A, and transitive iff aRb and bRc implies aRc for all a,b,c ∈ A.
Partial order. A relation R on A is a partial order provided R is reflexive, antisymmetric and
transitive. Thus, � is a partial order on R.
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B Exchangeability of probability measures
B.1 Exchangeability of probability measures
The following exchangeability assumption is technical. It allows us to take expectations with re-
spect to the same probability measure under rank dependent utility and other generalized expected
utility theory specifications. Refer to Berger (1985, p. 105) for further details on exchangeability
concept.

Assumption B.1 (Exchangeability). Let Q = (q1,q2, . . . ,qn) be a ranked probability measure
which characterizes rank dependent utility and P= (p1, p2, . . . , pn) be a probability measure that
characterize a lottery {(x1, p1),(x2, p2), . . . ,(xn, pn)} over generalized expected utility models. We
assume that there exist a nonlinear probability weighting function w(Q) transformed by rank de-
pendent utility decision weights Π = {π j}1≤ j≤n such that the realization Π coincides with P and
∑n
j=1π j = ∑n

j=1 p j = 1.
Remark B.1. Heath and Sudderth (1976, p. 189) show that exchangeability can fail in finite se-
quences. However, our assumption is in the spirit of Heath and Sudderth Lemma on mixture of urn
sequences which holds for finite sequences, and extends to infinite sequences.

C Wavelet and wavelet squared coherence defined
The definitions below are taken fromMallat (1999) and present the bare minimum requirement for
the terminology in this paper. The interested reader is referred to Crowley (2007); Aguiar-Conraria
et al. (2012) for surveys and applications to economics.

Windowed Fourier Transform
Let g(t) = g(−t) be a real and symmetric window, translated by u and modulated by the harmonic
basis function eiφt with frequency φ (Mallat, 1999, p. 69). So that

gu,φ (t) = eiφtg(t−u) (C.1)

Normalize ‖g‖= 1 so that ‖gu,φ‖= 1 for any (u,φ) ∈ R
2. The resulting windowed Fourier trans-

form for a signal in the space of square integrable function, i.e. f (t) ∈ L2(R) is given by

S f (u,φ) =< f ,gu,φ >=
∫ +∞

−∞
f (t)g(t−u)e−iφtdt (C.2)

The transformation in (C.2) depends on the basis function over the entire real line. So all coeffi-
cients are included in the integral.

Wavelet Transform
A wavelet is a square integrable function ψ ∈ L2(R) with zero average

∫ +∞

−∞
ψ(t)dt = 0 (C.3)
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centered at t = 0 and normalized ‖ψ‖= 1. A family of functions ψu,s with locally compact support
(Daubechies, 1992, p. 178) with scale factor s and translation u is defined by

ψu,s =
1√sψ

(t−u
s

)
(C.4)

Locally compact wavelet implies a local bump function that vanishes outside the local window–
unlike the windowed Fourier which exist over the entire real line. For more on bump functions the
interested reader is directed to Stein (1993). A wavelet transform is given by

W f (u,s) =< f ,ψu,s >=
∫ +∞

−∞
f (t) 1√sψ�

( t−u
s

)
dt (C.5)

where ψ�(•) is the conjugate of ψ(•). The scale factor s or dilation controls the width of the
wavelet. Whereas, u controls its location in time. Because of the locally compact support for ψs,u
the edges of the wavelet transform are sharper than that for Fourier transform. Since “residual”
elements vanish locally compared to the Fourier transform where they do not vanish. The Fourier
transform is supported over the entire real line.

Wavelet squared coherence
For two signals x(t) and y(t) the wavelet squared coherence (WSC) is given by

R2xy(u,s) =
|Wxy(u,s)|2

|Wxy(u,s)||Wxy(u,s)| (C.6)

The phase angle for a wavelet transform with real (R) and imaginary (I) parts is given by φx =

tan−1
(
I(Wx(u,s))
R(Wx(u,s))

)
. The phase difference φx(u,s)−φy(u,s) between the wavelet transform for

x(t) and y(t) is given by φxy(u,s) = tan−1
(
I(Wxy(u,s))
R(Wxy(u,s))

)

D Proof of Theorem 3.2 behavioural Chapman-Kolmogorov equations for
transition probabilities from incoherent to coherent states

Proof. We begin with the Champan-Kolmogorov equation for a 1-step Markov transition probabil-
ity matrix [Pri j] where Pri j is the probability that a process goes from state i to state j in r transitions,
and Pm+nii = ∑∞

k=0Pmik Pnki. In our case, for phase functions ψ(m)
ik and ψ(n)

ki the HPWF implies that
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w(Pmik ) = η0Pmik +η1 tan(ψ(m)
ik ), w(Pnki) = η0Pnki+η1 tan(ψ(n)

ki ) (D.1)

w(Pm+nii ) =
∞

∑
k=0

w(Pmik )w(Pnki) (D.2)

=
∞

∑
k=0

((
η0Pmik +η1 tan(ψ(m)

ik
)(

η0Pnki+η1 tan(ψ(n)
ki

))
(D.3)

=
∞

∑
k=0

(
η20Pmik Pnki+η0η1(Pmik tan(ψ(m)

ik )+Pnki tan(ψ(n)
ki ))+η21 tan(ψ

(m)
ik tan(ψ(n)

ki )
)
(D.4)

In coherent states I , tan(ψ(m)
ik ) = tan(ψ(n)

ki ) = 0, i.e. ψ(m)
ik = ψ(n)

ki = kπ , k = 0,1,2, . . .. In other
words, there is infinite fluctuations of size 0. This is the diagonal in Figure 4. So, (D.4) reduces to

w
(
Pm+nii

)
= η20

∞

∑
k=0

Pmik Pnki = η20Pm+nii = η20Pm+nii (D.5)

Without loss of generality we can set η0 = 1 and m+n = r so that w(Prii) = Prii in coherent states.
In particular, if state i has period d(i) ∈K , then r/d(i) is the number of periods in r. If b is the
remainder of that division, then r = b+ s.d(i) where s is the number of periods in r for integers
r,s,b.
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E FIGURES
E.1 Probability cycles for utility coherence ratio cu

Figure 1: Probability cycles for coherent
states and utility coherence ratio cu

Figure 2: Probability cycles for double coherent
states and utility coherence ratio cu

For the purpose of exposition we let ψ2 = ψ(ZcAv) and ψ1 = ψ(ZcAs). To estimate ψ2 for given cu in
(3.27) and 0≤ ψ1 ≤ 2π , we use the following method.

1. ψ2 = arctan (cu tan(ψ1)) , 0≤ ψ1 ≤ π/2

2. ψ2 = π/2+ arctan (cot(−cu tan(ψ1))) , π/2< ψ1 ≤ π

3. ψ2 = π + arctan (cu tan(ψ1)) , π ≤ ψ1 ≤ 3π/2

4. ψ2 = 3π/2+ arctan (cot(−cu tan(ψ1))) , 3π/2 < ψ1 ≤ 2π

Figure 1 depicts the frequency (ω) and coherence structure for select values of cu(k) = k/360 where
k = 0,1, . . . ,360 in the equally partitioned interval [0,1]. For example, c(10) = 0.1225 ≈ 0.12.
Probability cycles are complete when ψ2 coincide with the diagonal. Preference reversal is reported
for ψ2 off diagonal. Preference reversal disappears when cu = 1, i.e. probability cycles are complete
(up to a phase disturbance) and preferences are coherent. Figure 2 refines Figure 1 to showcase
increased frequency of coherence and lower transition/momentary lapse in judgment. Assume n-step
recurrent fixed point states i, where (n> 1). Let w̃(p,x) = 1/η0 �w(p,x). So, in Theorem 3.2 the
probability Pnii of returning to state i after n-transitions is given by w̃(Pnii ,x) = Pnii + η̃1 tan(ψ(i)(•))
where ψ(i)(•) = iπ, i= 0,1,2, . . .. For 2Ψ(i)

2 = ψ(i)(•) we have w̃(Pnii ,x) = Pnii + η̃1 tan(2Ψ(i)
2 ) which

admits the synthetic fixed point probabilities or relative frequencies Pnii = |ω |/2π . So,
Pn00 = 0,Pn11 = 1/4,Pn22 = 1/2,Pn33 = 3/4,Pn44 = 1 for ω ∈ π{0,1/2,1,3/2,2}. A similar argument
hold for ω ∈ π{0,1/4,1/2,3/4,1,5/4,3/2,7/4,2} and
Pnii ∈ {0,1/8,2/8,3/8,4/8,5/8,6/9,7/8,8/8}, i= 0, . . . ,8 in Figure 2.
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E.2 Peak phase for Ψ1 and Ψ2 = tan−1(cn tan(Ψ1)) and phase transition from incoherent to
coherent states

Figure 3: Peak phase for Ψ1 and Ψ2 = tan−1(cn tan(Ψ1))

The peak phase in Figure 3 occurs at multiples of π/2.

Figure 4: Phase transition from incoherence to coherence

Incoherent states in Figure 4 vanish eventually when the phase functions converge to 0.
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E.3 Magnitude squared coherence (MSC) for deterministic phase functions Ψ1 and noisy
Ψ2 for probability weighting in frequency domain

Figure 5: Magnitude squared coherence and utility coherence ratio: low frequency

Figure 6: Magnitude squared coherence and utility coherence ratio: high frequency

In the upper plots, deterministic phase functions Ψ1, Ψ2 for the HPWF are relatively coherent. However,
when we add noise ε to Ψ2, ε ∼ N(0,σ 2ε ), σ 2ε = 0.0025, the magnitude squared coherence between Ψ1 and
noisy Ψ2 is significantly reduced in the lower plots. The sample functions are indexed by k = 1, . . . ,360
where Ψ2(k) = tan−1 (cu(k) tan(Ψ1(k))) controlled by UCR jumps cu(k). Figure 6 depicts the double fre-
quency 2Ψ2(k). So it is a high frequency refinement of Figure 5.
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E.4 Wavelet coherence for deterministic phase function Ψ1, and noisy phase function Ψ2
for a field of UCRs

Figure 7: Wavelet coherence for
deterministic Ψ1, utility coherence ratio
for cu = 0.1225, and stochastic Ψ2

Figure 8: Wavelet coherence for field of
deterministic Ψ1 over all utility coherence

ratios cu, and stochastic Ψ2

Figure 9: Wavelet coherence for field of deterministic 2Ψ1 over
all utility coherence ratios cu, and stochastic Ψ2

Interpreting the arrows: −→ implies “in phase”; ←− implies “anti phase”; ↑ implies “Ψ1 leads Ψ2 by
π/2”; ↓ implies “Ψ2 leads Ψ1 by π/2”. Here, Ψ1←Ψ1 and Ψ2←−Ψ2+ ε2 where ε2 ∼ iid N(0,1). The
white dashed lines depict the cone of influence where edge effects from the wavelet should be considered.
For example, it rejects frequencies less than 2 in Figure 8 and Figure 9. The cone typically enclose areas
of statistically significant coherence (p < 0.05) (cf. Mallat, 1999, p. 174). The heatmap identifies high and
low coherence. A Morlet wavelet (Aguiar-Conraria et al., 2012, p. 506) was used to compute the numbers.
Figure 7 depicts the wavelet coherence (WC) for a special case of low UCR. Figure 8 presents the WC for
all UCRs for the coherence frequency in Figure 1. Figure 9 presents the WC for all UCRs for the high
frequency coherence in Figure 2.
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