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Abstract

We analyse the conditions for a strategy profile to be an equilibrium in a specific buy and sell

strategic market game, with two goods, using best responses of a player against random bids from

the opponents. The difficulty in characterising mixed Nash equilbria is that the expected utility is

not quasiconcave in strategies. We still prove that any mixed strategy Nash equilibrium profile in

which every player faces only two random bids is trivial, that is, is a convex combination of some

pure strategy Nash equilibria; moreover, we show that the outcome (the price and the allocations)

is deterministic in such an equilibrium.
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1 INTRODUCTION

Randomness in economic outcomes (prices and net allocations) has been extensively studied both in

competitive and strategic models. Some of these studies are based on intrinsic uncertainty while many

examine extrinsic uncertainty. In the competitive framework, the concept of sunspot equilibrium (Cass

and Shell, 1983) models extrinsic uncertainty; in strategic models, the notion of correlated equilibrium

(Aumann, 1974, 1987) has been widely used. Shapley and Shubik (Shapley, 1976; Shapley and Shubik

1977; Dubey and Shubik, 1978, 1980) introduced and developed strategic market games as a method

of constructing a non-cooperative game from the general equilibrium framework within which there is

a rich literature on randomness in terms of both correlated and sunspot equilibria.1

In a strategic market game, players buy and sell commodities by placing orders on trading posts.

The orders are then executed at the unique market-clearing prices and added or subtracted from the

players’ initial endowments. Hence market prices and allocations are determined endogenously as the

equilibrium of the game, unlike the Walrasian model where agents take prices as given. In strategic

market games, the players can influence the prices through their buy and sell orders.2 In this trading-

post model, a specified monetary medium is used for buying and selling all the other commodities,

where the price at each single-good trading post is simply the money / good ratio at that post.

The definition of non-cooperative equilibrium in this context is simply a Nash equilibrium in pure

strategies, in which no trader, given the bids of others, can improve by deviating unilaterally. Surpri

singly however, random moves of individuals in this game are still left to be analysed.3

Shapley and Shubik, in their paper (1977, p. 948, footnote 17) remarked: “The definition of Nash

includes the possibility of mixed strategies. These have no plausible interpretation in our present model

so we shall be searching only for Nash equilibrium in pure strategies.” Shapley himself however, seemed

to have a contrary view when he (1976, p. 158) claimed: “... a well-defined game for which other types

of solution may be attempted (including the Nash equilibrium in mixed strategies).”

We agree with the view expressed in Shapley (1976) above. The strategic market game is indeed a

well-defined non-cooperative game and therefore one should consider mixed strategies in these games.

The purpose of this paper is to study the structure of possible mixed strategy Nash equilibria in such

games.

To characterise the set of mixed Nash equilibria, we consider the simplest possible framework of a

1See for example, Aumann, Peck and Shell (1988), Davila (1999), Forges (1991), Forges and Peck (1995), Maskin and

Tirole (1987), Peck (1994), Peck and Shell (1991) and Polemarchakis and Ray (2006).
2There are possible variations (“buy or sell” or “sell all”) of this game.
3To the of best our knowledge, the first and perhaps only work that considers mixed strategies in market games is by

Levando (2012); Levando and Sakharov (2018) analyses a market game with two goods and two players with a specific

utility function however they do not explicitly charactrise the structure of the mixed equilibria in their game.
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strategic market game, with two goods only (a commodity and a “money”) and n players. We apply

the concept of mixed strategies directly to the strategy sets of the players; the players are allowed

to randomise over pure strategies in their respective strategy sets. The outcome (the prices and the

allocations) is obtained on the basis of the realisations of the mixed strategies. The payoff for a player

is the expected payoff over the outcomes from the realised strategies.

The intellectual appeal of strategic market games lies in their explicit pricing mechanism. A complete

mapping from strategies to prices relaxes one of the least realistic assumption of the Walrasian model,

that is, “the need to assume that entrepreneurs cannot single-handedly influence the price structure”

(Shapley, 1976). We show that this analytical completeness comes at the cost of equilibrium under-

determinacy. In particular, the explicit pricing mechanism means the players’ payoff functions are not

concave and their best responses are not unique. The intuition behind the result is as follows. Each

player can affect the market price by varying the amount she sells and buys. Since these two variables

affect the price, they do not linearly cancel out, as would be the case in fixed-price (Walrasian) trading.

This means the player’s payoff is not concave in strategies even if it is concave in final allocations of

commodities.4 Moreover, expected utility need not even be quasiconcave in the strategy, as we show in

an example. Hence, the best response to a mixed profile of opponent’s strategies need not be unique.

This means strategic market games have a higher level of equilibrium under-determinacy than previously

thought. Not only do they have multiple pure strategy equilibria; fully mixed-strategy equilibria also

cannot be ruled out. The presence of fully mixed equilibria would have important implications in the

real-life counterparts of strategic market games, suggesting price instability in commodity markets.5

We first analyse best responses for a player in our set-up. Our first result shows that the best

response for a player is unique, apart from some degenerate cases. We prove that the outcome (price

and allocation) from a mixed strategy equilibrium profile in such a market is deterministic. However,

we can fully characterise the set of mixed Nash equilibria just for the special case in which the player

who is playing a mixed strategy is mixing only over two pure strategies. Although this profile is very

restrictive, we can prove a conclusive result and show that there is no effect of internal randomness in

this game. We find that the mixed Nash equilibria are trivial, as they are simply the convexification of

4Concavity of a utility function in the final holdings of commodities is a standard assumption which reflects the

decreasing marginal utility of those commodities.
5Payoff concavity can be restored by restricting the strategy space to only one dimension for each trading post (“buy

or sell” or “sell all” variations of the game). However, the most natural formulation of a trading game is the unrestricted

“buy and sell” variation studied in this paper. Indeed, strategy restrictions can be circumvented in real-life markets. In

particular, requiring that all goods pass through the market (“sell all”) is unrealistic wherever traders own their stocks,

while limiting a trader’s choice to either buying or selling can be sidestepped by splitting in two legal entities performing

respective operations. Hence, the unrestricted buy-and-sell market game is the most realistic model of an economy with

an explicit pricing mechanism, and characterising its equilibria can shed light on price stability in such economies.
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pure equilibria. This perhaps justifies the concerns of Shapley and Shubik (1977), as mentioned above.

2 MODEL

Consider an exchange economy with n (≥ 2) agents (indexed by i = 1, 2, ..n) and two commodities,

denoted by x and y and indexed by 1 and 2. Commodity 2 is money (the numeraire good). Each agent

i is endowed with a positive vector of goods, (wi1, wi2) >> 0 and has a concave, strictly increasing and

differentiable utility function over her final allocation of the two commodities, ui(xi, yi) : R2 → R.

In a strategic market game, each agent is a player: N = {1, ...n}. Players announce the amount of

good 1 they want to to sell, denoted by qi, and also the amount of money they want to spend on buying

back the same good (good 1), denoted by bi. Hence, (qi, bi) is player i’s pure strategy, or bid. Let

(q, b) = (qi, bi)i denote the profile of pure strategies. A player cannot bid more than her endowment;

hence, pure strategy set is given by Si = {(qi, bi) : 0 ≤ qi ≤ wi1, 0 ≤ bi ≤ wi2}.

A player’s final allocation is determined from her initial allocation (wi1, wi2), her bid (qi, bi) and the

price p (of good 1):


xi = wi1 − qi + bi/p if p > 0,

= wi1 − qi if p = 0

yi = wi2 − bi + qip,

(1)

where the market-clearing price p(q, b) is formed as a ratio of total bid to total supply (if positive):

p =
∑n
i=1 bi/

∑n
i=1 qi if

∑n
i=1 qi > 0;

= 0 if
∑n
i=1 qi = 0.

(2)

Player i’s payoff from her final allocations of the two goods is given by ui (q, b) = ui (x (q, b) , y (q, b)),

which is assumed to be concave, strictly increasing in each of its arguments and differentiable.

When it comes to mixed strategies in this game, we consider mixing over finitely many points only.

Definition 1 A mixed strategy of player i is a probability distribution µ over finitely many pure strate-

gies (qki , b
k
i ), i = 1, 2, ..K with respective probabilities µk such that

∑K
k=1 µk = 1.

Player i’s payoff from a mixed strategy profile is the usual expected payoff. The definition of

equilibrium here is standard Nash equilibrium (either in pure or in mixed strategies). A (pure or mixed)

strategy profile is said to be a (Nash) equilibrium if every player is playing a best response against

opponents’ strategies in the profile.
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3 BEST RESPONSE ANALYSIS

Suppose all players apart from i are playing a pure strategy. Let (Q−i, B−i) denote the other players’

total bid: Q−i ≡
∑
j qj , j ∈ N \ {i}; B−i ≡

∑
j bj , j ∈ N \ {i}. The set of achievable allocations by

player i, given (Q−i, B−i), can be characterised by substituting one of the equations in system (1) into

the other:

xy − (w12 +B−i)x− (w11 +Q−i)y + w11w12 + w11B−i + w12Q−i = 0. (3)

The set is closed, hence by the Extreme Value Theorem a continuous function u(x, y) attains a

maximum on the set. Moreover, the maximum (x∗, y∗) is unique.6

Player i can achieve (x∗, y∗) by a continuum of strategies (qi, bi) satisfying equation (4):

bi = qi
B−i

w11 − x∗ +Q−i
+

B−i(x
∗ − w11)

w11 − x∗ +Q−i
(4)

Equation (4) characterises player i’s best response to a pure strategy profile of her opponents,

(Q−i, B−i). Note that, given (Q−i, B−i) > 0, the final allocation and payoff of player i depends only on

the price:

 xi = wi1 +Q−i −B−i/p;

yi = wi2 +B−i −Q−ip.
(5)

Importantly, for a fixed (Q−i, B−i), player i’s utility is strictly concave in price, which we show in the

following lemma.

Lemma 1 Let ui(x, y) : R2
+ → R be strictly increasing in each of its arguments, and concave. Let

x = x(p) : R+ → R+ be a strictly concave function and y = y(p) : R+ → R+ be a weakly concave

function. Then the composition u = u(x(p), y(p)) : R+ → R is strictly concave.

Proof. Strict concavity of x(p), with weak concavity of y(p), implies that x (λp+ λ′p′) > λx (p) +

λ′x (p′) and y (λp+ λ′p′) ≥ λy (p) + λ′y (p′). The monotonicity and the concavity of u(x, y) im-

ply that u (x (λp+ λ′p′) , y (λp+ λ′p′)) > u (λx (p) + λ′x (p′) , λy (p) + λ′y (p′)) ≥ λu (x (p) , y (p)) +

λ′u (x (p′) , y (p′)). Thus, we have shown, with p and p′ distinct, λ ∈ (0, 1), λ′ = 1−λ, and p′′ = λp+λ′p′,

u (x(p′′), y(p′′)) > λu (x(p), y(p)) + λ′u (x(p′), y(p′)).

6To see why, observe that i’s set of achievable allocations is the graph of the strictly concave function y(x) = w12 +

B−i − (Q−iB−i) (w11 + Q−i − x)−1. Suppose two distinct points on the set (x, y) and (x′, y′) were maximising the

concave u(x, y), then so would their convex combination (x′′, y′′). However, the vertical projection of that point onto the

graph of y(x) would attain a strictly higher utility u(x′′, y(x′′)) > u(x′′, y′′) = u(x, y) = u(x′, y′), by strict monotonicity

of u(x, y) and strict concavity of y(x) – a contradiction; hence the maximum (x∗, y∗) is unique.
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We now analyse best responses of a player against a mixed bid from others. First, we present an

important negative result, found by numerical search. In a strategic market game with a concave (in

fact, strictly concave) utility over allocations, the resulting expected utility over strategies need not be

quasiconcave.

Consider a player i with the initial endowment of (wi1, wi2) = (1, 1) and the following utility function

over the allocation of the two commodities: ui(xi, yi) = xαi + yαi , where α ∈ (0, 1]. It is easy to verify

that this utility function is concave, strictly increasing and differentiable.

Let the player face two different total bids (Q1
−i, B

1
−i) = (0.9, 0.37) and (Q2

−i, B
2
−i) = (0.01, 0.1),

with probability 0.5 each.

Now consider the following two strategies of the player: (qi, bi) = (0.05, 0.04) and (q′i, b
′
i) = (1, 0.64),

with respective price realisations as follows:

(qi, bi) = (0.05, 0.04) with price realisations p1 = 0.04+0.37
0.05+0.9 = 41

95 ; p2 = 0.04+0.1
0.05+0.01 = 7

3 ,

(q′i, b
′
i) = (1, 0.64) with price realisations p′1 = 0.64+0.37

1+0.9 = 101
190 ; p′2 = 0.64+0.1

1+0.01 = 74
101 .

Now take the 1
2 - 12 convex combination (the average) of these two strategies:

(q′′i , b
′′
i ) = (0.525, 0.34) with price realisations p′′1 = 0.34+0.37

0.525+0.9 = 142
285 ; p′′2 = 0.34+0.1

0.525+0.01 = 88
107 .

With a linear utility function for this player: ui(xi, yi) = xi + yi, the player’s expected utility is not

quasiconcave in her strategy, since the expected utility of a convex combination of strategies is less than

the smaller of the two endpoint expected utilities, as shown below:

E (ui (q′′i , b
′′
i )) = 2.0296 < min{2.0340, 2.0309} = min{E (ui (qi, bi)) , E (ui (q′i, b

′
i))}.

The same is true for a strictly concave utility function ui(xi, yi) = x0.9i + y0.9i as well, as shown

below7:

E (ui (q′′i , b
′′
i )) = 2.0255 < min{2.0304, 2.0261} = min{E (ui (qi, bi)) , E (ui (q′i, b

′
i))}.

It therefore follows that the best response for a player against a mixed strategy profile (of others)

need not be unique. We are, nevertheless, able to characterise mixed strategy Nash equilibria in a

special case in the next Section.

In particular, we deal with a specific mixed strategy profile, as below.

Definition 2 (i) For a two-player game (n = 2), a 2-point mixed strategy profile is a profile in

which at least one player plays a mixed strategy (as in Definition 1) however no player mixes over more

than two pure strategies (that is, for either player’s mixed strategy, K ≤ 2 as in Definition 1).

7The full calculation is as follows: E (ui) = 0.5
[
(wi1 + Q1−B1/p1)0.9 + (wi2 + B1−Q1 ∗ p1)0.9

]
+

0.5[(wi1 + Q2−B2/p2)0.9+(wi2 + B2−Q2 ∗ p2)0.9]. Hence E (ui (qi, bi)) = 0.5
[(

1.9− 0.37∗95
41

)0.9
+
(
1.37− 0.9∗41

95

)0.9]
+

0.5[
(
1.01− 0.1∗3

7

)0.9
+
(
1.1− 0.01∗7

3

)0.9
] = 2.0304, while E

(
ui

(
q′i, b
′
i

))
= 0.5

[(
1.9− 0.37∗190

101

)0.9
+
(
1.37− 0.9∗101

190

)0.9]
+

0.5[
(
1.01− 0.1∗101

74

)0.9
+
(
1.1− 0.01∗74

101

)0.9
] = 2.0261 and E

(
ui

(
q′i, b
′
i

))
= 0.5

[(
1.9− 0.37∗285

142

)0.9
+
(
1.37− 0.9∗142

285

)0.9]
+

0.5[
(
1.01− 0.1∗107

88

)0.9
+
(
1.1− 0.01∗88

107

)0.9
] = 2.0255.
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(ii) For n > 2, a 2-point mixed strategy profile is a profile in which only one specific player j

mixes over two pure strategies (that is, in player j’s mixed strategy, K = 2 as in Definition 1), while

others are playing a pure strategy.

In accordance with Definition 2, in a 2-point mixed strategy profile, any player i, either faces a

deterministic (pure) total bid by the other players or a probability distribution over two pure total bids

by the other players (denoted by σ−i), say a bid (Q1
−i, B

1
−i) with probability µ and a bid (Q2

−i, B
2
−i)

with probability 1− µ.

In other words, in such a profile, each player is facing at most one mixing opponent. In a game with

more than two players, we are looking at strategy profiles where only one player is mixing (over two

points), while in a game with two players, such profiles include both players mixing over two bids.

Our main theoretical contribution is the extension of the best response analysis of a player i who is

facing a mixed total bid (denoted by σ−i) to a 2-point mixed strategy profile. The best response here

cannot be easily characterised by closed-form equations such as (3) and (4). However, the best response

to a mixed total bid has an important property, which we derive below.

Proposition 1 The best response to a mixed total bid is unique, apart from one degenerate case when

the best response lines to the realisations of the mixed bid coincide. In that case, any point in that joint

best response set is a best response to the mixed strategy.

The detailed proof of Proposition 1 is relegated to Appendix. In the proof, we show that the best

response falls into one of the three cases:

Case 1. Best response lines to realisations of the mixed bid coincide. In this case, any point on that

line is a best response against the mixed bid (the degenerate case).

Case 2. Best response lines to realisations of the mixed bid have an intersection in the player’s strategy

set. In this case, this intersection is the unique best response against the mixed bid.

Case 3. Best response lines to realisations of the mixed bid do not have an intersection in the player’s

strategy set. In this case, a point on the boundary of the player’s strategy set is the unique best

response against the mixed bid.

We provide examples, one each, of these three cases in the Appendix.

4 MIXED STRATEGY NASH EQUILIBRIUM

The definition of Nash equilibrium (in pure or mixed strategies) is standard for such a game.
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Definition 3 A 2-point mixed strategy Nash equilibrium (hereafter, denoted by just MSNE in this

paper) is a 2-point mixed strategy profile such that no player can strictly increase their expected utility

by playing a different strategy.

We now proceed to characterise the MSNE of our market game. We start by showing that the

outcome of MSNE is deterministic.

Proposition 2 If a 2-point mixed strategy profile is a MSNE, then the realised outcome (price and final

allocations) is deterministic.

Proof. First, note that any player i only mixes in response to a pure total bid of their opponents

(Q−i, B−i) if all points in i’s mixture belong to the best response line against that bid (Q−i, B−i), hence

commanding the same price and a deterministic outcome for all players.

Second, we invoke the proof of Proposition 1 to show that the best response to a mixed strategy is

either is a unique (pure) bid (Cases 2 and 3), or a continuum of bids generating the same price (Case

1).

Consider a MSNE in a game with more than two players (that is, n > 2). By Definition 2(ii), only

one player is mixing, then that player is doing so in the manner described in the previous step, resulting

in deterministic price and outcome for all players.

Now consider a MSNE in a game with two players (that is, n = 2); by Definition 2(i), two players

are mixing, then each mixing player has to be best-responding to a mixed strategy of the opponent. A

mixed strategy can only be a best response to a mixed total bid in Case 1 (coinciding best-response

lines) described in the proof of Proposition 1. This case entails the player mixing between strategies

collinear with the realisations of the opponents’ total bids, hence entailing the same price, and the same

outcome for both the players.

Before characterising MSNEs further, we introduce a useful concept.

Definition 4 A MSNE is called trivial if any realisation of the players’ strategies under that MSNE

forms a pure strategy Nash equilibrium.

Clearly, in a game with more than two players, any MSNE has exactly two pure strategy realisations

while in a game with two players, there may be either two or four possible realisations. Triviality in

Definition 4 implies a convex combination of pure strategy Nash Equilibria.

It turns out that non-trivial MSNE do not exist, as the theorem below demonstrates. In other words,

in every such MSNE any of its constituent pure-strategy profiles is by itself a pure Nash equilibrium.

Theorem 1 Consider a 2-good, n-player market game. Any MSNE of this game is trivial.

8



Proof. First note that from the proof of Proposition 2, in any MSNE, the price is deterministic.

This means that all players best-responding to a mixed total bid are playing a strategy giving rise to

the same price under both total bids in the mix. Geometrically, their strategy thus is necessarily lying

on the line connecting the two pure total bids of their opponents (implying also that this line intersects

the strategy set). Since all strategies on this line give rise to the same expected utility, they are also

best responses.

Recall that, according to Proposition 1, the best response to a mixed strategy is either a unique

point in the pure strategy space, or, in the extreme case where the best response lines to constituent

pure profiles in that mixed strategy coincide, this whole line is the best response. However we just

argued above that a unique best response cannot be part of MSNE. The only remaining possibility is

a continuum of best responses, which is only possible in Case 1, where any point in the best-response

continuum is also a best response against either constituent pure bid of the opponents.

Theorem 1 now follows from this observation. It follows that in any MSNE, all players facing a

mixed total bid are playing a strategy which would have been a best response against all constituent

pure bids within this mixed bid, which proves the Theorem.

An important implication of Theorem 1 is that Cases 2 and 3 from the proof of Proposition 1 cannot

be part of our MSNE (the cases where the best response is unique). The only remaining case is Case 1

(coinciding BR lines; hence any point on that line is a best response).

5 Conclusion

Our result shows that there are no “interesting” mixed strategy equilibria in a market game, where some

players are made indifferent between their strategies by a specific mixing probability of their opponents

(at least for the case where each player is facing a mixed bid over at most two profiles). In every

realisation of a MSNE the outcome (price and allocations) of the game and utilities of all players are

exactly the same. This result provides theoretical support to the intuitive dismissal by Shapley and

Shubik (1977) of mixed equilibria case as uninteresting.

We admit that our characterisation of MSNE is indeed valid only in a very restrictive set-up. How-

ever, given the difficulty (posed by the fact that the expected utility may not be quasi-concave), this is

the best result we could achieve. We have not managed to generalise these results, despite significant

effort.

Payoff concavity can be restored by restricting the strategy space to only one dimension for each

trading post (“buy or sell” or “sell all” variations of the game). However, we believe the most natural

formulation of a trading game is the unrestricted “buy and sell” variation studied in this paper, and

characterising its equilibria can shed light on price stability in such economies.

9



Lemma 1 for the 2-good case, that a convex combinations of actions leads to a convex combination

of prices, seems not to generalise for more than two goods. Although the price of each good is a convex

combination of its two prices, the same is not true of the price vector as a whole. So, it might be hard to

show that a player’s utility function, facing random strategies of the opponents, over actions is concave,

for more than two goods; indeed, this result might not even be true. Therefore, the possibility that

there are “interesting” MSNE, when m ≥ 3, remains open.

In market game models, pure Nash equilibria are in general, (Pareto-) inefficient (Dubey 1980, Dubey

and Shubik, 1980; Dubey and Rogawski, 1990). Our paper indicates that mixed strategies in strategic

market games may not generate new equilibrium outcomes, even if we allow mixed strategies, in a

restricted sense. It is now interesting to know whether mixed strategy Nash equilibria are efficient or

not in a more general construct.
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6 APPENDIX 1: PROOF OF PROPOSITION 1

Proof of Proposition 1. Consider player i and let one of his opponents (j 6= i) play a mixture over

two pure strategy profiles: (Q,B) and (Q′, B′). The best response sets to each of these profiles are

denoted by BR and BR′ respectively. As shown in the main text of the paper, BR and BR′ are straight

upward sloping lines in (qi, bi) space, characterised by equation (4). Finally, the player’s payoff in a

realisation of the mixed bid is denoted uQ,B(qi, bi) and uQ′,B′(qi, bi) for the cases when the total bid is

(Q,B) and (Q′, B′) respectively.

Player i’s strategy set Si is a rectangle in (qi, bi) space. Fix other players’ total bid (Q,B) and observe

that player i’s best response line passes through the point (−Q,−B), if extended to the third quadrant.8

In the analysis below, we consider these extended best response lines defined on R2, keeping in mind

that only the line segments within Si contains feasible strategies: bi = BR(qi) : [0, wi1]→ [0, wi2].

Depending on the relative position of the two extended best response lines to realisations of the

mixed bid, three cases can be considered:

Case 1. Best response lines coincide.

Case 2. Best response lines intersect in the player’s strategy set.

Case 3. Best response lines intersect outside the player’s strategy set.

We consider the three options one by one and prove that, in Case 1, the whole line is the best

response, while in Cases 2 and 3 the best response is a unique point (q∗i , b
∗
i ) in player i’s strategy set.

We also provide examples of best responses in each case for a player with the utility function ui = xy

and an endowment wi1 = wi2 = 3, unless specified otherwise.9

For a player with the utility ui = xy the best response to total bid (Q,B) can be characterised as

follows:

bi = qi

√
B(wi2 +B)

Q(wi1 +Q)
+
√
QB

√
wi2 +B

wi1 +Q
−B. (6)

6.1 Case 1. Coinciding Best Response Lines

Let BR = BR′. In this case, any point on the line is a best response, generating the same price and final

allocation for player i. Indeed, a point on the line maximises player i’s utility under either realisation

of the opponents’ mixed bid, and hence also maximises the expected utility.

Result: the best response coincides with the best response line to the realisations of the mixed bid.

8Indeed, note that (−Q,−B) satisfies the best response equation (4).
9The results in this paper hold for all admissible utility functions and endowments, rather than that specific player

only.

11



Figure 1: Example 1. Best Response Line to (1,1) and (2,2)
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q1 (good 1)
b 1

(g
o
o
d
2)

(Q′, B′) = (2, 2)
•

(Q,B) = (1, 1)
•

3

3

−2

−1

−2 −1
.......
...

.......

...

..........

..........

..............................................................................................................

......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
.

Example 1. Consider (Q,B) = (1, 1) and (Q′, B′) = (2, 2).

Using the formula (6) and substituting wi1 = wi2 = 3, we find that player i’s best response lines to

(1, 1) and (2, 2) coincide (Figure 1):

bi = qi. (7)

Any point on the line bi = qi maximises both uQ,B(qi, bi) and uQ′,B′(qi, bi), and hence also their

convex combination U = µuQ,B(qi, bi) + (1− µ)uQ′,B′(qi, bi).

6.2 Case 2. Intersecting Best Response Lines

Let BR ∩ BR′ = (q∗i , b
∗
i ) ∈ Si (that is, the best-response lines intersect within Si). By the defini-

tion of the best response, (q∗i , b
∗
i ) = arg maxuQ,B(qi, bi) = arg maxuQ′,B′(qi, bi) and hence (q∗i , b

∗
i ) =

arg max {µuQ,B(qi, bi) + (1− µ)uQ′,B′(qi, bi)}. Moreover, (q∗i , b
∗
i ) is the unique best response, since any

other point in Si lies outside either BR or BR′, hence generating a strictly lower utility in at least one

realisation of the opponent’s strategies.

Result: the best response is a unique point (q∗i , b
∗
i ).

Example 2. Consider (Q,B) = (2, 2) and (Q′, B′) = (4, 0.5).
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Figure 2: Example 2. Best Response Lines to (2,2) and (4,0.5)
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q1 (good 1)

b 1
(g
o
o
d
2)

(Q,B) = (2, 2)

•

(Q′, B′) = (4, 0.5)

(q∗i , b
∗
i ) = (2

3
, 2

3
)

•

•

3

3

−2

−0.5

−2−4
.......
...

.......

...

..........

..........

..............................................................................................................

......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
.

..............................................................
..............................................................

..............................................................
..............................................................

..............................................................
..............................................................

..............................................................
..............................................................

..............................................................
..............................................................

................................

•

It is easy to show using equation (6) that player i’s best response to (2, 2) is bi = qi, whereas her

best response to (4, 0.5) is bi = 0.25qi + 0.5. These lines intersect at the point (qi, bi) = (2
3 ,

2
3 ), which is

the best response to both (2, 2) and (4, 0.5) and hence also to any mixture between them (Figure 2).

In order to exhaust possible best response cases, we now consider a situation when best response

lines to (Q,B) and (Q′, B′) do not intersect in player i’s strategy set.

6.3 Case 3. Best Response Lines Intersecting Outside the Strategy Set

Let BR ∩ BR′ = (q∗i , b
∗
i ) /∈ Si (in words, BR lines intersect outside Si). If the best response lines do

not cross in Si, one of them passes through Si to the left of the other. Without loss of generality, let

BR denote the left best response line and BR′ the right best response line. As we show below, the best

response in this case is unique and lies on the boundary of Si.

First, we show that a player’s best response to such mixed bid lies on the boundary of her strategy

set. Second, we show that it is unique.

Claim 1 Consider a mixed total bid (µ(Q,B), (1− µ)(Q′, B′)) such that the best response lines to (Q,B)

and (Q′, B′) are distinct and intersect outside Si. A player’s best response to the bid is either a unique

point on the boundary of the strategy set Si, or all the points within Si on the line collinear with

(−Q,−B), (−Q′,−B′).
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Proof: in Section 6.4.

Claim 1 asserts that a best response in Case 3 lies on the boundary of the strategy set. Moreover, it

is either unique, or belongs to the best response set which is a line segment collinear with the realisations

of a mixed total bid. In the next claim we rule out the latter possibility.

Claim 2 Suppose the mixed total bid of player i’s opponents is (µ (Q,B) ; (1− µ) (Q′, B′)), such that

the best response lines to (Q,B) and (Q′, B′) are distinct and intersect outside Si. Then the points

within Si on the line collinear with (−Q,−B) and (−Q′,−B′) cannot all be best responses.

Proof: in Section 6.6.

As shown above, the best response in Case 3 is a unique point at the boundary. It can also be shown

that the best response lies strictly between BR and BR′ (proof available on demand).

Note that the best response can belong to either the inner or the outer boundary. Section 6.5 collects

examples of boundary best responses to a mixed total bid (Case 3).

Result: the best response is a unique point (q∗i , b
∗
i ).

6.4 Proof of Claim 1

First, observe that a function U(qi, bi, σ−i) ≡ µuQ,B(qi,bi) +(1−µ)uQ′,B′(qi, bi) is continuous. Hence, by

the extreme value theorem, it attains a maximum on a closed bounded set Si, which is a best response.

To show that a best response lies on the boundary, consider a point (q∗i , b
∗
i ) which lies in the interior

of Si.

We show that such (q∗i , b
∗
i ) cannot be a best response. For, consider contour lines of uQ,B and uQ′,B′

passing through (q∗i , b
∗
i ), denoted L and L′ respectively.

As demonstrated in the paper, given the others’ total bid (Q,B), a player’s utility is completely

determined by the price p. Fixing (Q,B), player i’s bids in Si resulting in price p satisfy the following:

bi = pqi + pQ−B. (8)

Hence, contour lines of uQ,B are straight lines passing through (−Q,−B). Moreover, since utility is

strictly concave in price, a contour line uQ,B separates the plane into lower and upper contour sets of

the points on the line.

Note that, unless L and L′ (i.e. the contour lines of uQ,B and uQ′,B′) coincide, they separate R2
+

into four areas. One of these areas is the intersection of upper contour sets of (q∗i , b
∗
i ) with respect to

uQ,B and uQ′,B′ (a double shaded triangular area in Figure 3).

It follows that, unless (q∗i , b
∗
i ) is on the boundary, the intersection of the strict upper contour sets of

(q∗i , b
∗
i ) with respect to uQ,B and uQ′,B′ in Si is non-empty:
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Figure 3: Upper Contour Sets of (q∗i , b
∗
i ) w.r.t uQ,B and uQ′,B′
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{(qi, bi) : uQ,B(qi, bi) > uQ,B(q∗i , b
∗
i )} ∪ {(qi, bi) : uQ′,B′(qi, bi) > uQ′,B′(q

∗
i , b
∗
i )} ∪ Si 6= ∅ (9)

At any point in that intersection, the expected utility is strictly greater than at (q∗i , b
∗
i ). Hence,

(q∗i , b
∗
i ) cannot be a best response.

Third, on any boundary, U(qi, bi) becomes a one-dimensional function (either Uqi(bi) or Ubi(qi)) of

the strategic variable which is not fixed on that boundary. Moreover, U(·) is strictly concave in that

variable, hence a best response which lies on the boundary is unique. To see why the one-dimensional

restriction of expected utility is strictly concave, fix opponents’ total bid (Q,B) and one dimension of

player i’s strategy (qi). Observe that i’s utility uQ,B(bi) = x(bi)y(bi) is a strictly concave function. This

follows from Lemma 1 and the fact that x(bi) = wi1 − qi + bi(qi +Q)/(bi +B) is strictly concave while

y(bi) = wi1 − bi + qi(bi + B)/(qi + Q) is weakly concave. Similarly, uQ′,B′(bi) = x(bi)y(bi) is strictly

concave. Hence, i’s expected utility Uqi(bi) = µuQ,B(bi) + (1− µ)uQ′,B′(bi) is also strictly concave as a

convex combination of strictly concave functions (the same holds for Ubi(qi)).

Fourth, if L = L′, we cannot rule out the case that a point on the line is the best response (the

upper contour sets of that point with respect to the two realised utilities do not intersect). Moreover,

by definition, both (−Q,−B) and (−Q′,−B′) lie on this line; hence, any point on the line generates the
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same price and the same outcome for player i under (Q,B) and (Q′, B′). It follows that the whole line

L = L′ is the best response.

Summing up the third and the fourth points, the best response is either unique and lies on the

boundary, or is the whole line collinear with (Q,B) and (Q′, B′), Q.E.D.

6.5 Examples of Case 3.

When best-response lines intersect outside Si, there are three possible options for the unique best

response to the mixed bid, illustrated by Examples 3, 4 and 5 below.

Example 3. Converging BR lines; unique best response on the outer boundary.

Let opponents’ total bids be (Q,B) = (5, 0.25) and (Q′, B′) = (8, 0.4). The best response to these

total bids are bi = qi
√

1.3
/

8 +
√

6.5/8 − 0.25. and bi =
√

1.87qi + 8
√

1.87 − 0.4 respectively. Figure 4

shows that these BR lines cross in the first quadrant outside Si, hence, they are converging.

Figure 4: Example 3. Best Response Lines to (5,0.25) and (8,0.4)
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Also note that when the best-response lines are converging the best response always lies on the

outer boundary. This is because, for any point on the inner boundary, the intersection of upper contour

sets of uQ,B and uQ′,B′ lies above and to the right of this point (inside the strategy set) and hence be

achievable.

In particular, in our example the unique best response to a mixed strategy can be determined from

the following equation:

µ
13
/

2− 5(b∗i + 0.25)2

(b∗i + 0.25)2
= (1− µ)

8(b∗i + 0.4)2 − 374
/

25

(b∗i + 0.4)2
, (10)

e.g. if the opponent is mixing w/p µ = 1216
/

4051, then player i’s best response is (q∗i , b
∗
i ) = (3, 0.95).
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Example 4. Diverging BR lines; unique best response on the inner boundary.

Let the opponents’ total bids be (Q,B) = (4, 0.5) and (Q′, B′) = (6.75, 4/3). The best responses to

these total bids are bi = 0.25qi + 0.5 and bi = 8/27qi + 2/35 respectively. As shown in Figure 5, these

best-response lines cross in the third quadrant; hence, they are diverging.

Figure 5: Example 4. Best Response Lines to (4, 0.5) and (6.75, 4/3)
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Note that the best response to this mixed strategy lies on the inner boundary. This is because, for

any point on the outer boundary, the intersection of upper contour sets of uQ,B and uQ′B′ lies below

and to the left of this point (inside the strategy set) and hence be achievable.

In particular, in our example the unique best response to a mixed strategy can be determined from

the following equation:

µ
−7(b∗i + 1.5)(b∗i − 0.5)

(b∗i + 0.5)2
= (1− µ)

39(b∗i + 10/3)(b∗i − 2/3)

4(b∗i + 4/3)2
. (11)

For example, if µ = 92807
/

257643, then player i’s best response is (q∗i , b
∗
i ) = (0, 0.6).

Example 5. Diverging BR lines; unique best response on the outer boundary.

Let the opponents’ total bids be (Q,B) = (4, 0.6) and (Q′, B′) = (6.75, 4/3). The best responses

to these total bids are bi = 0.3qi
√

6/7 + 1.2
√

6/7 − 0.6 and bi = 8/27qi + 2/35 respectively. These

best-response lines cross in the third quadrant; hence, they are diverging.

Unlike the previous example, the unique optimum lies on the outer boundary, by the logic similar

to that of Example 3.

The unique best response to a mixed strategy can be determined from the following equation:

µ
4(b∗i + 0.6)2 − 15.12

(b∗i + 0.6)2
= (1− µ)

169/3− 27/4(b∗i + 4/3)2

(b∗i + 4/3)2
. (12)
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Figure 6: Example 5. Best Response Lines to (4, 0.6) and (6.75, 4/3)

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.........................

.....................



qi (good 1)

b i
(g

o
o
d

2
)

(Q,B) = (4, 0.6)•

(Q,B) = (6.75, 4/3)•

•

(q∗i , b
∗
i )

3

3

6.75 4

−0.6

−4/3

..........

..........

.......

...
.......
...

. . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
.....................................................

.....................................................
..................

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . .

For example, if µ = 2163
/

6787, then player i’s best response is (q∗i , b
∗
i ) = (3, 1.5).

6.6 Proof of Claim 2

Let b∗i (qi) denote the function whose graph is a straight line connecting (−Q,−B) and (−Q′,−B′) in

R2. It is easy to derive the formula for b∗i (qi):

b∗i = qi
B′ −B
Q′ −Q +

B′Q−BQ′

Q′ −Q . (13)

The set of i’s strategies on the line is denoted S∗i ≡ {(qi, bi) : bi = b∗i (qi)} ∪ Si.

If all points in the set S∗i were best responses, then any point (qi, b
∗
i (qi)) in the set would need to be the

maximiser of Uqi(bi). Since Uqi(bi) is strictly concave (as shown in the proof of Claim 1), any point (qi, b
∗
i (qi))

on the line would need to satisfy the first-order condition:

µ
∂uQ,B

∂bi
(qi, b

∗
i (qi)) + (1− µ)

∂uQ′,B′

∂bi
(qi, b

∗
i (qi)) = 0 (14)

Applying the chain rule to (14) obtains:

µ
[
∂u(x,y)

∂x
(qi, b

∗
i (qi))

∂xQ,B

∂bi
(qi, b

∗
i (qi)) + ∂u(x,y)

∂y
(qi, b

∗
i (qi))

∂yQ,B

∂bi
(qi, b

∗
i (qi))

]
+(1− µ)

[
∂u(x,y)

∂x
(qi, b

∗
i (qi))

∂xQ′,B′
∂bi

(qi, b
∗
i (qi)) + ∂u(x,y)

∂y
(qi, b

∗
i (qi))

∂yQ′,B′
∂bi

(qi, b
∗
i (qi))

]
= 0

(15)
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Note that, at all points along S∗i the player’s final allocation of x and y is the same (under either realisation of

mixed total bid). Hence, her utility u(x, y) is the same, and, most importantly, partial derivatives of utility with

respect to x and y are the same. Rewrite (15) denoting ux ≡ ∂u(x,y)
∂x

(qi, b
∗
i (qi)) and uy ≡ ∂u(x,y)

∂y
(qi, b

∗
i (qi)):

µ

[
ux
∂xQ,B

∂bi
(qi, b

∗
i (qi)) + uy

∂yQ,B

∂bi
(qi, b

∗
i (qi))

]
+ (1− µ)

[
ux
∂xQ′,B′

∂bi
(qi, b

∗
i (qi)) + uy

∂yQ′,B′

∂bi
(qi, b

∗
i (qi))

]
= 0

The derivatives of x and y w.r.t. to bi can be easily calculated, and rearranged using the formula for b∗i (qi):

∂xQ,B

∂bi
=
B(q1 +Q)

(b1 +B)2
=

B (Q′ −Q)
2

(B′ −B)2 (q1 +Q)
; (16)

∂xQ′,B′

∂bi
=
B′(q1 +Q′)

(b1 +B′)2
=

B′ (Q′ −Q)
2

(B′ −B)2 (q1 +Q′)
; (17)

∂yQ,B

∂bi
=
−Q

q1 +Q
; (18)

∂yQ′,B′

∂bi
=
−Q′

q1 +Q′
. (19)

The first-order condition can then be rewritten as follows:

µ

[
ux

B (Q′ −Q)
2

(B′ −B)2 (q1 +Q)
− uy

Q

q1 +Q

]
= (µ− 1)

[
ux

B′ (Q′ −Q)
2

(B′ −B)2 (q1 +Q′)
− uy

Q′

q1 +Q′

]
, (20)

Rearranging (20) obtains10

[
uxB (Q′ −Q)

2 − uyQ (B′ −B)
2
]

(q1 +Q′)[
uxB′ (Q′ −Q)2 − uyQ′ (B′ −B)2

]
(q1 +Q)

=
µ− 1

µ
. (21)

Denote A =

[
uxB(Q′−Q)2−uyQ(B′−B)2

]
(q1+Q′)

[uxB′(Q′−Q)2−uyQ′(B′−B)2](q1+Q)
. Observe that A is constant w.r.t. qi (indeed, as argued

above, ux and uy are constant w.r.t. qi). Equation (21) becomes

10The expression in the square brackets on the right-hand-side of (20) is the value of the partial derivative of uQ′,B′ with

respect to bi at point
(
qi, b
∗
i (qi)

)
. It equals zero iff

(
qi, b
∗
i (qi)

)
lies on player i’s best response line to (Q′, B′). However,

recall that
(
qi, b
∗
i (qi)

)
is a point on the line connecting (−Q′,−B′) and (−Q,−B). This line intersects the best response

to (Q′, B′) at (−Q′,−B′) and not at
(
qi, b
∗
i (qi)

)
. Hence the expression in the square bracket is non-zero, and we can

divide both sides of (20) by it.
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A
q1 +Q′

q1 +Q
=
µ− 1

µ
. (22)

Denote f(qi) = A q1+Q′

q1+Q
. The derivation above implies that all points in S∗i are best responses iff f(qi) =

(µ− 1)
/
µ for all qi. In other words, f(qi) needs to be constant with respect to qi, i.e. ∂f(qi)

/
∂qi = 0:

A
Q−Q′

(q1 +Q)2
= 0. (23)

Expression (23) holds if either (i) Q = Q′, in which case the line connecting (−Q,−B) and (−Q′,−B′) does

not intersect Si and hence the points on the line cannot be best responses; or (ii) A = 0. However, if A = 0,

then f(qi) = 0 6= (µ− 1)
/
µ, i.e. the first-order condition does not hold, implying that points in S∗i are not best

responses. In either case, the points in Si collinear with (−Q,−B) and (−Q′,−B′) cannot all be best responses,

Q.E.D.
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