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Abstract

For a strategic market game (as introduced by Shapley and Shubik), following Dubey and Ro-

gawski (1990), we provide a full explicit characterisation of the set of trading equilibria (in which

all goods are traded at a positive price), for both the “buy and sell” and the “buy or sell” versions

of this model under standard assumptions on the utility functions. We interpret and illustrate our

equilibrium-characterising conditions; we also provide simple examples of trading equilibria, includ-

ing those of non-interior strategy profiles (in which at least one trader is using the whole endowment

in at least one good or money).
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1 INTRODUCTION

The strategic market game, as introduced by Shapley and Shubik (Shubik,1973; Shapley, 1976; Shapley

and Shubik 1977; Dubey and Shubik, 1977, 1978), perhaps is the most well-analysed model to understand

the formation of market-price as a strategic mechanism, arguably, outside the realm of the general

equilibrium theory.

In this non-cooperative game, individual traders (players) can influence the market price of any good,

through their buy and sell “orders” (strategies), when a specified commodity is used as the monetary

medium (“money”) for buying and selling all other commodities1; the price of any good is simply the

ratio of the amount of money and the amount of good at that trading-post.

The strategic market game has the properties of a resource reallocation mechanism and also the

properties of a non-cooperative game. Traders select their (buying and selling) strategies to maximise

their respective utilities; these strategies form an allocation (redistribution) of the existing resources.

The definition of the non-cooperative equilibrium in this context is simply that of Nash equilibrium (in

pure strategies) of this strategic form game, in which each trader chooses a (buy and sell) bid profile

that indeed maximises the respective utility, given the bids of others. As a consequence, “no-trade”, by

all players, is an equilibrium for such a market game, because, doing nothing when the others are not

bidding is always the best response for any player.

Starting with Dubey and Shubik (1977, 1978), there is a literature on general existence and multi-

plicity of equilibria (see Peck, Shell and Spear, 1992) for such games. Although, the equilibria of such

games are typically inefficient (see Dubey and Rogawski, 1992), this simple model has generated a vast

literature over the last four decades; more complicated models and solution concepts out of this basic

game have been analysed (see survey papers by Giraud, 2003; Levando, 2012 and Dickson and Tonin,

2021).2 Moreover, these games have been used as basic set-up in different areas in microeconomics,

macroeconomics and in finance.

It is indeed well-known for some time (Dubey and Shubik, 1978; Dubey and Rogawski, 1992), that

at any fully “interior” Nash Equilibrium, (some) “gradient” of the utility function of any player must be

equal to a scalar multiple of (some) “personal” price vector for that player. A characterisation theorem

would be both fundamental and necessary to have for any current and future research in this area.

However, to the best of our knowledge, there is no explicit study of equilibrium conditions (resulting

from the utility maximisation problem of the traders) and hence no usable characterisation of the set

1Other variations of this simple “buy and sell” game are “sell-all”, in which the entire endowments for all commodities

other than money are brought to the market for sale, and, “buy or sell”, in which traders cannot both buy and sell a

particular good, that is, where, each agent, for any good, chooses either to just sell some amount of its endowment or to

buy back some of this good using some money endowment.
2As readers will appreciate, we are not listing all recent developments here.
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of (Nash) equilibria even for a simple strategic market game.3

We address this issue in this paper, by identifying conditions for trading equilibria and thereby fully

characterising the set of trading equilibria for a basic buy and sell game (under some standard assump-

tions on the utility function of each trader). The main result in this paper states that the equilibrium

price of each good is a specific ratio, a constant for all traders. We explicitly find this constant. We

interpret this characterising condition as follows: for any interior outcome to be an equilibrium requires

that for each traded commodity , the product of (i) the marginal rate of substitution between good 

and money for any agent  and (ii) the ratio of the value of the amount of good  bought and sold by

all agents other than agent , must be a constant across agents; moreover, this constant is indeed the

(equilibrium) price of good .

Our key equilibrium condition applies to any “interior” profile in which no trader brings the entire

endowment of any good (or money) to the market and thus everyone consumes at least some amount

of all the goods and money. We however provide a full characterisation involving “non-interior” profiles

where some traders might be inactive on some markets (corner solutions) by carefully studying the

complementary slackness conditions of the non-negativity constraints of the corresponding Kuhn-Tucker

method. We also derive equilibrium conditions when traders are allowed to either buy or sell but are

not allowed to do both (that is, in a “buy or sell” game).

2 MARKET GAMES

We first briefly present our game, the strategic market game, a la Shapley and Shubik (Shubik, 1973;

Shapley, 1976; Shapley and Shubik, 1977; Dubey and Shubik, 1977, 1978).

A market is denoted by a four-tuple Ξ = ().  = {1     } is a finite set of individual
traders.  = (1 ×   ×)×+1≡ ∈ <+1+ is the commodity space, where <+ is the non-negative
orthant of the real line <. The ( + 1)th commodity is the numeraire, “money” that henceforth we
denote by .  = ( = (1      ) :  ∈ ) is an indexed collection of points in  representing

the endowments of the traders. The endowment vector is assumed to be non-negative and non-zero in

at least one component for each individual.  = ( :  ∈ ) is an indexed collection of functions from

 to < representing the utility functions of the traders, that are assumed to be strictly increasing.
Consider a market Ξ = (). Let us imagine  separate trading posts, one for each of the

 commodities. Each individual  supplies  ,  ≥ 0, to each trading post  ∈ {1     }. Denote
3Perhaps as a result of this lack of an explicit characterisation, we also do not have many explanatory worked-out

examples of equilibrium profile (as in Ray, 2001, even though it is not really based on any formal characterisation); of

course, within the specific case of “bilateral oligopolies” (Gabszewicz and Michel, 1997), there are numerous studies (such

as, Busetto and Codognato, 2006, Dickson, 2013 and Dickson and Hartley, 2013) and examples in the literature (see

Dickson and Tonin, 2021 for examples derived from the first principle of Nash equilibrium behaviour in such models).
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 := (1     ). Let () =
P

∈  , for all  ∈ {1     }. Each individual trader  ∈  makes

bids by allocating amounts  of his money (that is, the -th commodity) to trading post , for each

 ∈ {1     }. We shall denote his buying strategy by the vector  = (1     ), with the constraints
(a)

P
=1  ≤  and (b)  ≥ 0. Denote () :=

P
∈  .

Given a market Ξ = (), if we assume that each trader can either buy or sell but not both,

then we have a buy or sell strategic market game. The difference between a strategic market game and

a buy or sell strategic market game is just in terms of admissible strategy profiles; while any admissible

strategy profile ( ) for a buy or sell strategic market game is also a strategy profile for the strategic

market game, the converse is clearly not true.

With slight abuse of notation, define ( ) := (( )∈ ) as an indexed collection of strategies or a

strategy profile. The “market-clearing” price ( ) is formed as a ratio of total bid to total supply (if

positive):  =
P

=1 
P

=1  if
P

=1   0;  = 0 if
P

=1  = 0.

Definition 1 Given a market Ξ = (), a strategy profile ( ) is a trading profile of the

corresponding market game if for each good , () and () both are strictly positive.

As a result, at a trading profile, the price for each good ,  = (()())  0.

At a trading profile, let us denote the vector of ’s final allocations by ( ), computed as follows:

( ) = (1( )     ( ) ( ) ∈ , where,

( ) =  −  + () for each  ∈ {1     }, and ( ) =  −
P

=1  +
P

=1  .

Now agent ’s utility maximisation problem (UMP) is to choose ( ), given (( )∈\{}) from

all agents other than , to maximise (( )) subject to  ∈ [0  ],  ≥ 0 for each  = 1     ,

and
P

=1  ≤ .

Definition 2 Given a market Ξ = (), a trading profile ( ) is a trading equilibrium of the

corresponding market game if for each agent  ∈  , given (( )∈\{}), ( ) is a solution to agent

’s UMP.

Autarky is the strategy profile ( ) with  =  = 0, for all  ∈  and all  ∈ {1     }. In
autarky, all traders are inactive in the sense that they are neither buying nor selling any commodities.

Clearly it is not a trading profile, however, it is trivially a Nash equilibrium of the market game, as, no

agent, given that all others are inactive, has any incentive to deviate and use a strategy with either sell

or buy offers being strictly positive.

Note that in any trading profile (and any trading equilibrium), we require the markets of every

single good be open with a strictly positive price, which is clearly more demanding than just being in

non-autarky.
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It is also clear that at a trading equilibrium ( ), for every trader  ∈  and all  ∈ {1     },P
∈\{}   0 holds, otherwise, an individual trader could have captured the whole quantity at the

trading post for good  with an infinitesimal amount. Hence, the number of traders with   0 at a

trading equilibrium has to be more than one.

We now make a couple of further assumptions on the strictly increasing utility functions, (( ))

for each trader  ∈  , for the rest of the paper.

Assumption 1a. (( )), for any  ∈  , is continuously differentiable.

Consider any  ∈  and fix any trading decision (  )∈\{} ∈ <2×(−1)++ for all individuals other

than , where, <++ is the positive orthant of the real line <. For each ( ) ∈ <2++, define ( ) :=
((( ) (  )∈\{})). Therefore, for any given trading decision of others, (  )∈\{} ∈
<2×(−1)++ , the associated function  : <2++ → < represents the utility that trader  can have for

different choices of ( ).

The gradient vector of the function ( ) is denoted by:

∇( ) =
³
()

1
    

()



()

1
    

()



´
.

Observe that for any ( ) (
0
 

0
) ∈ <2++, ∇( )·[(0 0)−( )] =

P
=1(

0
−)()

+P
=1(

0
 − )

()


.

Definition 3 A continuously differentiable utility function eU(( )) ≡ (( )) is pseudo-concave

in ( ) if for any given ( )∈\{} ∈ <2×(−1)++ , the associated real-valued differentiable function

 : <2 → < satisfies the following property: for all ( ) (
0
 

0
) ∈ <2++ such that

P
=1(

0
 −

)
()


+
P

=1(
0
 − )

()


≤ 0, we have (0 0) ≤ ( ).

Pseudo-concavity implies a restriction on the function ( ). As is well-known, note that, if the

utility function (( )) is twice differentiable in ( ), then the property of pseudo-concavity (foreU()) is equivalent to that of quasi-concavity (see Chapter 2, page 88 in Kall and Mayer, 2006).

Assumption 1b. eU(), for any  ∈  , is pseudo-concave.

From here onwards in this paper, we will call () pseudo-concave, for notational simplicity.

The assumption of pseudo-concavity of the utility function of any trader  in this game ensures that

the Kuhn-Tucker conditions are sufficient for each trader’s utility maximisation problem and thus will

be used to prove our results in the next section. Specifically, if the objective function is pseudo-concave

and all constraints are quasi-convex, then Kuhn-Tucker necessary conditions are also sufficient for a

maximum. One may not in general know whether the objective function in a maximisation problem

is pseudo-concave or not (see Chapter 9, pages 559 − 560 in Miller, 2011). In such a case, one has to
identify the set of solutions to the optimisation problem by trying out all the solutions generated by the

Kuhn-Tucker necessary conditions.
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For any strategy profile ( ), for any  ∈  , call −() = () −  and −() = () −  .

Abusing notations, we are going to (re-)write ( ) simply as, ( ) := (( −) ( −)), and thereby

identify the following crucial ratio for any  ∈  and any  = 1     :

∆( ) := ∆(( −) ( −)) = [−() {(( ))}]  [−() {(( ))}].
Finally, we identify a class of strategy profiles for a market game that we call interior for which the

final allocations for all traders are interior points.

For any strategy profile ( ) and any  ∈ {1     }, let Q( ) = { ∈  |  = 0 &  = } and
B( ) = { ∈  |  = 0 &

P
=1  = }.

If Q( ) is is non-empty, that is, if  ∈ Q( ), then individual  sells the whole endowment of

good  and does not spend any money to buy back that good (and hence does not consume good  in

the final allocation). Similarly, if B( ) is non-empty, that is, if  ∈ B( ), then individual  spends
the entire money endowment and does not sell good  (and thus consumes at least as much as the

endowment of good ).

Definition 4 A strategy profile ( ) is said to be an interior profile if Q( ) ∪ B( ) = ∅ for all
 ∈ {1     }.

For any non-interior strategy profile ( ), there exists  ∈ {1     } such that Q( )∪B( ) 6= ∅;
that is, in a non-interior strategy profile, at least one trader is using the whole endowment in at least

one good or money.

3 RESULTS

We first state our main result.

Theorem 1 Consider a market game with a market Ξ = (), under Assumptions 1a and 1b.

1. An interior trading profile ( ) is a trading equilibrium for this game if and only if 2 = ∆( ),

for all  ∈  and all  ∈{1     }.

2. A non-interior trading profile ( ) is a trading equilibrium for this game if and only if we have

the following for all  ∈  :

(a) 2 ≤ ∆( ), for any  for which  ∈ B( ),
(b) 2 ≥ ∆( ), for any  for which  ∈ Q( ) and

(c) 2 = ∆( ), for any  for which  6∈ [Q( ) ∪ B( )].

We prove Theorem 1 in several steps. We state a couple of lemmata about bids () and offers () at

a trading equilibrium. The first lemma is related to the offers () at equilibrium.

6



Lemma 1 At a trading equilibrium, for any  ∈  and any  ∈ {1     },

(a) if  ∈ (0 ), then 2 = ∆( ),

(b) if  = 0, then 2 ≤ ∆( ),

(c) if  =   0, then 2 ≥ ∆( ).

Similarly, we provide conditions related to the bids () at equilibrium in our next lemma.

Lemma 2 At a trading equilibrium, for any  ∈  and any  ∈ {1     },

(a) if
P

=1   , then 2 ≥ ∆( ),

(b) if   0, then 2 ≤ ∆( ).

The proofs of Lemma 1 and Lemma 2 heavily use the Kuhn-Tucker conditions for the optimisation

problem for each individual trader. These proofs have been postponed to the Appendix of this paper.

Lemma 1 and Lemma 2 together lead to the following proposition.

Proposition 1 A trading strategy profile ( ) is a trading equilibrium if and only if the following

conditions hold for any  ∈  and any  ∈ {1     }:

(K1) If  ∈ (0 ), then 2 = ∆( ).

(K2) If  = 0 and
P

=1   , then 2 = ∆( ).

(K3) If  = 0 and
P

=1  = , then 2 ≤ ∆( ).

(K4) If  =   0 and   0, then 2 = ∆( ).

(K5) If  =   0 and  = 0, then 2 ≥ ∆( ).

Proposition 1 asserts that given our Assumptions 1 and 1 and given that the constraints in the

individual maximisation problem are linear (hence, quasi-convex), the Kuhn-Tucker conditions are both

necessary and sufficient to characterise equilibrium outcomes.

Using Proposition 1, the proof of Theorem 1 is now immediate. Specifically, from (1), (2) and

(4), we get the first condition and () of the second condition in Theorem 1; from (3), we get () of

the second condition and from (4), we get () of the second condition in Theorem 1.4

4A remark mentioned in Dubey and Rogawski (1990) can be used to provide another analytical proof of the main

message of our result (for interior equilibrium profiles). From Lemma 4 in Section 21 in Dubey and Shubik (1978) and

from the second display on page 301 in Dubey and Rogawski (1990), one can deduce the following: given a collection

of strategies (( )∈\{}) of all agents other than , the set of vectors of ’s final allocations ( ), is a smooth

manifold of co-dimension 1 and its comprehensive hull is convex; moreover, using the normal at any (equilibrium) point

and the tangent plane at that point which locally approximates the manifold, one can conclude that at an interior Nash

equilibrium, (some) “gradient” of the utility function for any player must be equal to a suitably defined constant.
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We now interpret and illustrate our key equilibrium condition, ∆( ) = 2 , obtained for a trading

equilibrium with interior strategy profile (the first condition in Theorem 1).

A simplification of this condition is:

(( ))






= −(( ))






 (1)

Condition (1) states that, in equilibrium, the marginal rise in utility due to a rise in the consumption of

 caused by an incremental fall in  must be equal to the absolute value of the marginal fall in utility

due to a fall in the consumption of  caused by this incremental fall in  . Using 



+



= 0

and 



+ 


= 0, one can rewrite condition (1) as follows:

(( ))






= −(( ))






 (2)

Like condition (1), condition (2) has a similar interpretation in terms of  . The general requirements

that 



+



= 0 and 



+ 


= 0 ensures that we have only one equilibrium condition for

interior strategy profiles, that is, ∆ = 2 .

Consider now () of the second condition in Theorem 1, which states that, if, in equilibrium, we

have  = 0 and
P

=1  = , then either 
2
 = ∆( ) or 

2
  ∆( ). In case, in equilibrium,

we end-up with 2  ∆( ), then it is not possible to equate 
2
 and ∆( ), neither by decreasing

 (since,  = 0), nor by increasing  (since,
P

=1  = ).

Similarly, consider () of the second condition in Theorem 1, which states that, if, in equilibrium,

we have  =  and  = 0, then either 2 = ∆( ) or 
2
  ∆( ). Here as well, in case, in

equilibrium, we end-up with 2  ∆( ), then it is not possible to equate 
2
 and ∆( ), neither by

increasing  (since,  = ), nor by decreasing  (since,  = 0).

The equilibrium condition for any interior strategy profile is now quite transparent. It requires that

for each traded commodity , the marginal rate of substitution (MRS) between good  and money for

any agent  ( ) times the ratio of the value of the amount of good  bought and sold by all

agents other than  must be a constant across agents. Moreover, this constant is the equilibrium price

of good . Formally, for each commodity  ∈ {1     },

∗ =

³
−()
∗

´



−() 


=

Ã
−()
∗−()

!
 (

∗(∗ ∗)) ∀  ∈ 

We could easily rephrase our main theorem for any buy or sell market game as well, in which for all

 ∈  and all  ∈ {1     },  ≥ 0,  ≥ 0 and   = 0; that is, for all  ∈  and all  ∈ {1     },
either  = 0 (and   0: individual  is only buying good ) or  = 0 (and   0: individual  is

only selling good ). Subject to the above restriction, we can define B-profile, Q-profile and the interior
strategy profile for any buy or sell market game exactly the same way as we did for a strategic market
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game earlier. To identify the conditions for a trading equilibrium for such a buy or sell model, we have

the following result.

Theorem 2 Consider a buy or sell strategic market game with a market Ξ = (), under

Assumptions 1a and 1b.

1. An interior trading strategy profile ( ) for this game is a trading equilibrium if and only if

2 = ∆( ), for all  ∈  and all  ∈{1     }.

2. A non-interior trading strategy profile ( ) for this game is a trading equilibrium if and only if

we have the following for all  ∈  :

(a) 2 ≤ ∆( ), for any  for which  ∈ B( ) and

(b) 2 ≥ ∆( ), for any  for which  ∈ Q( ).

The proof of Theorem 2 is very similar to that Theorem 1 (using Proposition 1) above, and thus has

been postponed to the Appendix.

4 EXAMPLES

We illustrate our main result using several examples. We start with Cobb-Douglas utility functions.

Consider a specific market, denoted by Ξ−2 , with just two individuals, 1 and 2, and two goods,

 and , with the following Cobb-Douglas preferences and endowments: for individual 1, 1( ) =

1
11−1 , 1  0, 1 ∈ (0 1), 1 = (1 

1
)  0 and for individual 2, 2( ) = 2

21−2 ,

2  0, 2 ∈ (0 1), 2 = (2 
2
)  0. We have the following characterisation for any interior

equilibrium for the corresponding market game.

Proposition 2 Any trading profile ( ) with 1 − 1 = 2 − 2 =   0 (implying 1   and 2  )

for a market game with the market Ξ−2 constitutes an interior equilibrium with the equilibrium price

 = (1 + 2)(1 + 2) = 1 if and only if:

12
1
 = (1− 1)2

1
 + [12 + (1− 1)2] 

1
 ≥ 1 

1
 ≥ 1 ≥  (3)

(1− 2)1
2
 = 21

2
 + [21 + (1− 2)1] 

2
 ≥ 2 ≥  2 ≥ 2 (4)

The proof of Proposition 2 is in the Appendix. The following numerical example provides a simple

illustration of the conditions in Proposition 2.
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Example 1 Consider a market game with two individuals 1 and 2 with the following preferences and

endowments: for individual 1, 1( ) = 1
1
3 

2
3 , 1  0, 

1
 = 21 and 1 = 51 + 7 with 1 ≥ 1 and

for individual 2, 2( ) = 2
3
4 

1
4 , 2  0, 

2
 = 482 + 14 and 

2
 = 82 with 2 ≥ 1. Then the trade

vector (1 = 2 1 = 4; 2 = 10 2 = 8) is an equilibrium strategy profile with equilibrium price ∗ = 1.

One may check the conditions in Proposition 2 to show that the strategy profile (1 = 2 1 = 4; 2 =

10 2 = 8) with  = 2 and  = 1 is indeed an equilibrium. Note that this profile is in equilibrium for a

range of games with different endowments, determined by the choice of parameters, 1 ≥ 1 and 2 ≥ 1;
in particular, for 1 = 2 = 1, we have the endowment vectors (2 12) and (62 8).

Our next example is from Dickson and Tonin (2021) and it uses a “bilateral oligopoly” (Gabszewicz

and Michel, 1997) in which all agents have positive endowments in only one of the two goods.

Example 2 Consider a market game with two goods and four individuals of who individuals 1 and 2 are

identical with utility functions and endowments, respectively, ln(1+)+ and (3 0), while individuals 3

and 4 are identical with preferences and endowments given by 3− 1
2
2+  and (0 5). The trade vector

(1 = 2 =
7−√17
2

; 3 = 4 =
√
17− 3) is an equilibrium strategy profile with price ∗ =

√
17−1
4

.

The fact that the strategy profile in Example 2 is an equilibrium has been proved directly from the

first principles of maximisation in Dickson and Tonin, 2021 (Example 3 in their paper). We can check

these values with our equilibrium condition easily. To see this, let’s take the condition just for individual

1 (or 2) in this example. The allocation for individual 1 at equilibrium is given by  =
√
17−1
2

and  =
√
17− 3. At these values, our ratio ∆1( ) becomes:
∆1( ) =

4(
√
17−3)(√17−1)
8(7−√17) =

(
√
17−1)(√17−3)(√17+3)
2(7−√17)(√17+3) =

√
17−1√
17+1

=
(
√
17−1)2
16

,

which is equal to (
√
17−1
4

)2 = 2, confirming our condition obtained in the first part of Theorem 1.

Following examples illustrate non-interior profiles as equilibria, using the second part of our Theorem

1.

Example 3 Consider a market game with two goods and three individuals with utility functions and

endowments, respectively, as below:

Individual 1: utility function 1(1 1) =
√
11 and endowment (1 =  1 = ), where   1;

Individual 2: utility function 2(2 2) = 2
√
2 + 2 and endowment

¡
2 =

1
3
 2 =

1
4

¢
;

Individual 3: utility function 3(3 3) = 3+23 and endowment
¡
3 =

1
4
 3  0

¢
, where 3 

0;

The trade vector ((∗1 = ∗1 = 1);
¡
∗2 = 0 

∗
2 =

1
4

¢
;
¡
∗3 =

1
4
 ∗3 = 0

¢
) is an equilibrium strategy profile

with price ∗ = 1. The corresponding allocation vector is given by:

((∗1 = ∗1 = );
¡
∗2 =

7
12
 ∗2 = 0

¢
;
¡
∗3 = 0 

∗
3 = 3 +

1
4

¢
).
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The fact that the strategy profile in Example 3 is an equilibrium can of course be proved directly from

first principles; however, we can make use of our conditions to check for the (non-interior) equilibrium

profiles presented in this paper as below:

∆1(
∗ ∗) =

µ
∗2 + ∗3
∗3 + ∗3

¶Ã 1
1
1
1

!
=

µ
(14) + 0

0 + (14)

¶µ
∗1
∗1

¶
=

µ
(14)

(14)

¶³


´
= 1 = ∗

∆2(
∗ ∗) =

µ
∗1 + ∗3
∗1 + ∗3

¶Ã 2
2
2
2

!
=

µ
1 + 0

1 + (14)

¶Ã
1p
∗2

!
=

µ
4

5

¶Ã√
12√
7

!
 1 = ∗

∆3(
∗ ∗) =

µ
∗1 + ∗2
∗1 + ∗2

¶Ã 3
3
3
3

!
=

µ
1 + (14)

1 + 0

¶µ
1

2

¶
=

µ
5

8

¶
 1 = ∗

The above three (in-)equalities confirm that the (non-interior) profile here is indeed an equilibrium.

A careful look at the construction reveals an interesting structure of this profile. At equilibrium,

both individuals 2 and 3 are strategically choosing to only buy or sell; individual 2 is only buying the

commodity (good 1) while individual 3 is only selling it. Moreover, these two individuals (2 and 3) are

bringing their entire endowments of money and commodity, respectively (1
4
each), to the trading post.

As a consequence, individual 1 faces the total opponents’ bid as an interior point (1
4
 1
4
) and thereby

chooses the best response that also turns out to be an interior point (1 1) at the equilibrium price of

1. As if, individual 1 is serving the role of a middleman, facilitating the trade or the exchange between

individuals 2 and 3 (by buying the commodity from individual 3 and selling it to individual 2) at the

unit price.

It is easy to conjecture that the equilibrium price for such an equilibrium phenomenon need not

necessarily have ∗ = 1; one may of course obtain the above middleman structure at an equilibrium for

a market price other than unity, as shown in the following example of a market game with two goods

and three individuals.

Example 4 Consider and fix strictly positive numbers 1 2 3 such that 1  22 and 2  23. Now,

take a market game with utility functions and endowments, respectively, as below:

Individual 1: utility function 1(1 1) =
√
11 and endowment (1 = 1 1 = 21);

Individual 2: utility function 2(2 2) = 42 + 2 and endowment (2  0 2 = 23);

Individual 3: utility function 3(3 3) = 3 + 33 and endowment (3 = 3 3  0);

The trade vector ((∗1 = 2 
∗
1 = 22); (

∗
2 = 0 

∗
2 = 23) ; (

∗
3 = 3 

∗
3 = 0)) is an equilibrium strategy

profile with price ∗ = 2.

The corresponding allocations are given by:

(∗1 = 1 
∗
1 = 21), (

∗
2 = 2 + 3 

∗
2 = 0), (

∗
3 = 0 

∗
3 = 23 + 3).

11



One may check our conditions to confirm that the (non-interior) equilibrium profiles as below:

∆1(
∗ ∗) =

µ
∗2 + ∗3
∗3 + ∗3

¶Ã 1
1
1
1

!
=

µ
23 + 0

0 + 3

¶µ
∗1
∗1

¶
=

µ
23

3

¶µ
21

1

¶
= 4 = (2)2 = (∗)2

∆2(
∗ ∗) =

µ
∗1 + ∗3
∗1 + ∗3

¶Ã 2
2
2
2

!
=

µ
22 + 0

2 + 3

¶µ
4

1

¶
= 4

µ
22

2 + 3

¶
 4 = (∗)2

∆3(
∗ ∗) =

µ
∗1 + ∗2
∗1 + ∗2

¶Ã 3
3
3
3

!
=

µ
22 + 23

2 + 0

¶µ
1

3

¶
=

µ
22 + 23

22 + 2

¶
 1  (∗)2

The above three (in-)equalities confirm that the (non-interior) profile here is indeed an equilibrium.

5 REMARKS

We, in this paper, identify the conditions for trading equilibria and thereby fully characterise the set of

trading equilibria for a simple form of strategic market games. Our main result (Theorem 1) precisely

provides an explicit study of these equilibrium conditions. Note that, under the assumptions imposed,

the conditions in Theorem 1 are necessary and sufficient for identifying equilibrium profiles, if an equi-

librium exists; however, our assumptions do not imply the existence of a trading equilibrium. We are

not addressing this issue here and we doubt whether anything can be said about this from existing

results in the literature along with our assumptions.

One may view our main result as the non-competitive version of the equality between the price ratio

and marginal rate of substitution in competitive economies that resembles with the notion of “marginal

price” by Okuno, Postlewaite and Roberts (1980). One may also use our approach for wider scope. The

characterisation presented in this paper depends crucially on the fact that the price of any commodity

can be computed from strategy profiles. Our particular result presented in this paper may not apply

to other market models, such as window models, in which the price of a commodity do not necessarily

exist in the same way we have here; however, we believe, our technique can be appropriately extended

to these models as well.

Dubey and Rogawski (1990) provides comments and remarks that are qualitatively equivalent to our

main result, in particular, the statement of the first condition (for interior profiles). We also acknowledge

that the remark mentioned in Dubey and Rogawski (1990) can provide a mathematically correct proof

of the main theme of our result, by directly using certain known facts from the literature. However,

our contribution in this paper is to make such an intuitive result explicit. Our Theorem 1 precisely

characterises this constant using an explicit study of equilibrium conditions (resulting from the utility

maximisation problem of the traders).

12



There are clear benefits of having such an equilibrium characterisation. One can derive the equilib-

rium conditions for specific forms of market games, as we have demonstrated here, using Cobb-Douglas

utility functions; one can also construct specific numerical examples of equilibrium profiles even with

non-interior strategy profiles.

Our characterisation turns out to be extremely handy to check whether a profile (or an outcome)

is an equilibrium or not, using our simple condition. It can immediately help one to identify testable

restrictions (see the survey by Carvajal, Ray and Snyder, 2004), if any, for equilibria in such games,

using similar analysis by Carvajal, Deb, Fenske and Quah (2013) who provide tests for equilibria in

the Cournot model. In a parallel paper (Mitra, Ray and Roy, 2024), we address this particular issue,

complementing the results on market games presented in Forges and Minelli (2009).
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6 APPENDIX (PROOFS)

We collect the proofs of our results in this section.

Proof of Lemma 1. Given a market game with the market Ξ = (), if ( ) is a

trading equilibrium, then for each  ∈  , ( ) (given (  )∈\{}) maximises (( )) subject

to  ∈ [0  ],  ≥ 0 for  = 1     , and
P

=1  ≤ .

In general, we have



= −(1 − 
()

) ≤ 0, 



+



= 0, 


= −(1 − 
()

) ≤ 0 and





+ 


= 0.

Define  = (1     ) ∈ <+,  = (1     ) ∈ <+,  = (1     ) ∈ <+ and  ∈ <+. The
Lagrangian function for the optimisation problem of traders  ∈  is the following:

(     ) = (( ))+

X
=1

+

X
=1

 ( − )+

X
=1

+

Ã
 −

X
=1



!
 (5)

The Lagrangian function (     ) (defined above) is not complete in the sense that it

does not incorporate the fact that in equilibrium, the price  := ()(), for each , is positive.

This means that along with the Lagrangian function (     ), we must also add, for each ,

a term which is the product of () and an associated Lagrangian multiplier  ≥ 0 and another term
consisting of the product of () and another Lagrangian multiplier  ≥ 0. However, we do not need
to consider these added multipliers due to the following reason: positivity of price means that ()  0

and ()  0 and hence, from complementary slackness conditions it follows that  =  = 0 for each

. Hence, after incorporating the fact that, in equilibrium,   0 for all , the Lagrangian function

indeed reduces to (     ).

From (5) The Kuhn-Tucker conditions are the following:




=








+








+  −  ≤ 0 and 




= 0, for each good , (6)

 ≥ 0  ≥ 0 and  = 0, for each multiplier  , given , (7)

 ≥ 0  ≥  and ( − ) = 0, for each multiplier  , given , (8)




=








+








+  −  ≤ 0 and 




= 0, for each good , (9)

 ≥ 0  ≥ 0 and  = 0, for each multiplier  given , and (10)

 ≥ 0  ≥
X

=1

 and 

Ã
 −

X
=1



!
= 0 for the multiplier  (11)

Since our Lagrangian function (5) has the terms
P

=1 , with  ≥ 0, the first part of condition
(6) becomes:




= 





+ 





+  −  = 0, for each good .
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Hence,

−
µ
−()
()

¶



+ 

µ
−()
()

¶



+  −  = 0 (12)

Similarly, and from the first part of condition (9) it follows that for each good ,

1



µ
−()
()

¶



−
µ
−()
()

¶



+  −  = 0 (13)

From (12) it follows that

µ
−()
()

¶




¡
2 −∆( )

¢
= − +   (14)

If  ∈ [0 ), then given ( − ) = 0 and    we get  = 0. Hence, using  = 0,

[−()][()]  0 and 


 0, from (14) we get the following:

(R1) If  ∈ [0 ), then 2 ≤ ∆( ).

Pre-multiplying (12) by  and using  = 0 and  [ ] = 0, we get,



∙
−
µ
−()
()

¶



+ 

µ
−()
()

¶



− 

¸
= 0 (15)

If   0, then we have µ
−()
()

¶




¡
2 −∆( )

¢
=   (16)

Since  ≥ 0, −()()  0 and 


 0, (16) implies 2 ≥ ∆( ). Hence, we have,

(R2) If   0, then 2 ≥ ∆( ).

Combining (1) and (2), we get Lemma 1. ¥

Proof of Lemma 2. We prove Lemma 2 following the proof of Lemma 1.

From (13) it follows that

Ã
−()
2()

!




¡
∆( )− 2

¢
= − +  (17)

If
P

=1   , then given ( −
P

=1 ) = 0 and
P

=1    we get  = 0. Hence, using

 = 0, [−()][2()]  0 and



 0, from (17) we get Lemma 2().

Pre-multiplying (13) by  and using  = 0 and using  [ ] = 0, we get,



∙µ
1



¶µ
−()
()

¶



−
µ
−()
()

¶



− 

¸
= 0 (18)

If   0, we have, µ
1



¶µ
−()
()

¶



−
µ
−()
()

¶



−  = 0 (19)
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From (19) it follows that if   0, then

∆( ) = 2 +
2³

−()
()

´³



´  (20)

Since  ≥ 0, −()()  0 and 


 0, from (20) we get 2 ≤ ∆( ). Hence, we have

established Lemma 2(). ¥

Proof of Proposition 1. The necessary conditions stated in Proposition 1, (1)-(5), follow

immediately from Lemma 1 and Lemma 2. In particular, from Lemma 1(), we get (1); from Lemma

1() and Lemma 2(), we get condition (2). Given condition (2), from Lemma 2(), we get (3).

From Lemma 1() and Lemma 2(), we get condition (4). Given condition (4), from Lemma 1(),

we get (5).

The complete proof of Proposition 1 would thus require confirmation of the sufficiency part (that

(1)-(5) are sufficient for maximisation), using pseudo-concavity of the utility functions. To complete

the proof of this proposition, we need to check whether pseudo-concavity is sufficient for the conditions

(1)-(5).

One can verify that for any  ∈  , any trading decision (  )∈\{} ∈ <2×| |++ and any commodity

 ∈ {1     }, we have the following restrictions on the partial derivatives of the associated function
 : <2++ → <.

(i)
()


=
³
−()
()

´


−
³
−()
()

´



=
³
−()
2()

´



[∆ − 2 ] and

(ii)
()


= −

³
−()
()

´



+
³
−()
()

´



=
³
−()
()

´



[2 −∆ ].

We also have the restriction () below (that follows immediately from () and ()):

(iii) 
()


+

()


= 0.

For any  ∈ {1     } and any pair of trading decisions ((0 0) ( )) ∈ <2++ for trader , define
() := [(0 − )− (

0
 − )] [∆ − 2].

From () and () and by using 


 0, we get the following reduced condition:

If

X
=1

()

µ
−()
2()

¶
≤ 0 then (

0
 

0
) ≤ ( ) (21)

Now suppose ( ) satisfies (1)-(5), for all  ∈ {1     }.
Consider any (0 

0
)(6= ( )) and then consider the sum

P
=1()[−(){2()}].

Note that if 2 = ∆, then () = 0.
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Now, if for trader , ( ) satisfies the conditions (1)-(5), then for any (
0
 

0
)( 6= ( )), we haveP

=1()
³
−()
2

()

´
≤ 0, because, () = [(0 − )− (

0
 − )] [∆−2] ≤ 0 and

³
−()
2

()

´
 0,

for all .

Therefore, we have (
0
 

0
) ≤ ( ) from (21) which implies pseudo-concavity. Hence, the

conditions (1)-(5) are also sufficient for pseudo-concavity. ¥

Proof of Theorem 2. If ( ) is a trading equilibrium for a buy or sell strategic market game, then

for each  ∈  , ( ) (given ((  )∈\{}) maximises (( )) subject to  ∈ [0  ],  ≥ 0 for
 = 1     ,

P
=1  ≤  and  = 0.

Define  = (1     ) ∈ <+,  = (1     ) ∈ <+,  = (1     ) ∈ <+,  ∈ <+ and
 ∈ <+.
Given the Lagrangian function (     ) from (5) for the strategic market game, the La-

grangian function ̄() for the optimisation problem of traders  ∈  in the buy or sell strategic market

game is the following:

̄(      ) = (     ) +   (22)

The newly added constraint for the Lagrangian function ̄(      ) is that  ≥ 0,  ≥ 0,
 ≥ 0 and  = 0 for the new multiplier . The proof of this theorem becomes easy from the

following observations.

1. ̄


= 


+  .

2. 
̄


= 



+  = 



= 0 (since  = 0).

3. ̄


= 


+  .

4. 
̄


= 



+  = 



= 0.

Hence, by using arguments similar to the ones used earlier, one can also prove lemmata corresponding

to Lemma 1 and Lemma 2 for this buy or sell strategic market game. Specifically, one can show the

following:

(a) If  ∈ (0 ), then 2 = ∆( ).

(b) If  = 0, then 2 ≤ ∆( ).

(c) If  =  , then 2 ≥ ∆( ).

(d) If
P

=1   , then 2 ≥ ∆( ).

From ()-(), it follows that for any  ∈  and any  = 1     , the following conditions hold:

17



(k1) If  ∈ (0 ) and  = 0, then 2 = ∆( ).

(k2) If  = 0 and
P

=1   , then 2 = ∆( ).

(k3) If  = 0 and
P

=1  = , then 2 ≤ ∆( ).

(k4) If  =  and  = 0, then 2 ≥ ∆( ).

Specifically, from () we get condition (1) using the buy or sell restriction. From () and () we get

condition (2). Given condition (2), from () we also get condition (3). From (), we get condition

(4) using the buy or sell restriction. Finally, from (1) and (2), we get (1) and (2)() in the

statement of Theorem 2; we get (2)() from (3) and, from (4), we get (2)().

Given our assumption that the utility function (( )) of each trader  ∈  is continuously

differentiable and pseudo-concave and given that the constraints are quasi-convex, the Kuhn-Tucker

conditions are both necessary and sufficient to characterise the equilibrium outcomes. The arguments

for checking why pseudo-concavity is sufficient for the Kuhn-Tucker conditions (1)-(4) above is similar

to the arguments used in the proof of Theorem 1 (and Proposition 1) and hence is omitted. ¥

Proof of Proposition 2. In a market game with the market Ξ−2 , the equilibrium consumptions

of the two goods  and  for the two individuals are:

• 1 = 1 + 1− 1 so that 1 = 1 + 1 − 1 = 1 + ,

• 1 = 1 − 1 + 1 so that 1 = 1 − 1 + 1 = 1 − ,

• 2 = 2 + 2− 2 so that 2 = 2 + 2 − 2 = 2 − , and

• 2 = 2 − 2 + 2 so that 2 = 2 − 2 + 2 = 2 + .

Given the Cobb-Douglas utility function, for any  ∈ {1 2},
 =

()



()


= ((1− ))().

Equilibrium condition of the market game is:³
2
2

´
1 =

³
1
1

´
2 = 2 = 1.

From the equilibrium condition, we have the following implications.

For individual 1, we have,³
2
2

´³
1
1−1

´³
1−
1+

´
= 1 ⇒ 12(

1
 − ) = (1− 1)2(

1
 + )

⇒ 12(
1
 − ) = (1− 1)(2 + )(1 + )

⇒ 12
1
 = (1− 1)(2 + )1 + [(1− 1)(2 + ) + 12]

⇒ 12
1
 = (1− 1)(2 + )1 + [2 + (1− 1)]

⇒ 12
1
 = (1− 1)2

1
 + [12 + (1− 1)2].
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Therefore, for individual 1, we have (3) as a restriction for an interior equilibrium.

Similarly, for individual 2, we have³
1
1

´³
2
1−2

´³
2+

2−
´
= 1 ⇒ 21(

2
 + ) = (1− 2)1(

2
 − )

⇒ 21(
2
 + ) = (1− 2)(1 − )(2 − )

⇒ (1− 2)(1 − )2 = 21
2
 + [(1− 2)(1 − ) + 21]

⇒ (1− 2)(1 − )2 = 21
2
 ++[1 − (1− 2)]

⇒ (1− 2)1
2
 = 21

2
 ++[21 + (1− 2)1].

Thus, for individual 2, (4) is a restriction for an interior equilibrium. ¥
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