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Waseem A. Toraubally†

Abstract

We augment the Shapley–Shubik (1977) market game to include a spatial dimen-
sion à la Hotelling (1929). Taking firms’ locations as given, we study and characterise, 
through several propositions, lemmata, and a theorem, the main equilibrium predic-
tions of this new model. When both firms locate in the centre and there is no product 
differentiation at all, we derive a counterexample in which both firms charge a price 
that is greater than marginal cost. Intriguingly, we show that even when both firms 
are in the same location, it is possible for the Law of One Price (LOOP) to fail, i.e., the 
exact same good sells at different prices across two platforms that are a priori identical. 
We derive similar (equal- and unequal-price) counterexamples in the context where 
the firms locate at the extreme ends of the city. Now, it is well known that in the tradi-
tional Hotelling model, a pure-strategy Nash equilibrium (PSNE) fails to exist when 
the two firms are closely spaced and near the centre of the city. In our main result, we 
allow the firms to be arbitrarily close to each other, and propose two counterexamples 
in which a PSNE exists. In one, the LOOP holds, while in the other, it fails.

Keywords: Spatial Cournot oligopoly; Existence of pure-strategy equilibrium with 
closely spaced firms; Failure of Law of One Price; Strategic behaviour with a contin-
uum of players

1 Introduction

“[...] in spatial models, even in the limit of a continuum of firms, strategic
interaction remains. In that case, firms interact locally, and neighbors count,
no matter how large the economy is.”

(Mas-Colell et al., 1995: p. 400).
∗I thank Michael Zierhut for comments on an earlier version of this paper. I also thank participants of the

SAET 2023 Conference for many questions which greatly helped improve the exposition of this work. Any
errors are mine.

†Newcastle Business School, and University of Warwick, Departments of Economics. Email:
waseem.toraubally@northumbria.ac.uk.
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Cournot’s (1838) model of oligopoly is underpinned by two canons. The first is the the-
sis that agents1 compete on producing/selling quantities of a homogeneous good, and
the second presupposes the existence of an invisible auctioneer who engineers market-
clearing prices such thatwhatever is produced is bought. In his review of Cournot’s work,
Bertrand justly criticises the Cournot machinery on the grounds that its price formation
mechanism is lacking in two crucial respects: no such auctioneer exists, and firms choose
prices, not quantities, as their strategic variables. Bertrand’s (1883) postulate, and sub-
sequent model, of price competition, however, does also not constitute much progress in
terms of realism. In particular, while aesthetically appealing, it yields an unsatisfactory
outcome: a unique equilibrium at which oligopolists, no matter their number, charge a
perfectly competitive price, and make normal profits only—the so-called Bertrand para-
dox. A shortcoming common to both models is the assumption of a homogeneous good
when in the real world, consumers perceive even physically identical goods are viewed
as being different, due to transportation and search costs, time constraints, etc. Hotelling
(1929) addressed this defect to some extent by advancing an intuitively simple yet pow-
erful model of spatial product differentiation. Nonetheless, despite its allure, this model
is also susceptible to awkward conclusions such as a pure-strategy equilibrium failing to
exist when the firms locate close to the centre (d’Aspremont et al., 1979), or the Bertrand
paradox resurfacing when both firms locate exactly in the centre of the city.

If, somehow, the aforementioned theories were genotyped and their desirable charac-
teristics isolated from their shortcomings, then a marriage of the former could produce
an optimal phenotype. In this work, we put forth a spatial model of quantity competition,
and of price formation. We use a strategic market game of the Shapley and Shubik (1977)
tradition, and we augment it to include a spatial element. There are many advantages to
undertaking this enterprise. To start with, our model is genuinely decentralised. There
is no need for an auctioneer or a referee to map quantities to prices as this is done auto-
matically via agents’ buy and sell decisions. The market game furnishes an endogenous
and explicit price formation apparatus which is well-defined even out of equilibrium.
Indeed, price is a continuous, surjective function of agents’ strategies and it is derived in
such a way as to always clear markets. This is meaningful because a common critique of
Walrasian models is that they completely eschew price formation considerations outside
of equilibrium. Additionally, our framework addresses the criticism of a unique, homo-
geneous good being traded. As in Hotelling (1929), the (physically identical) good is
differentiated in the minds of consumers as they each incur a different transportation
cost to go to the respective markets/trading platforms. Moreover, our formulation cir-
cumvents the well-known problems associated with Hotelling’s (1929) model, such as
the Bertrand paradox obtaining when the markets are both located exactly in the centre
of the city, or even the inexistence of equilibrium if both platforms are located close to
the centre but at different locations (d’Aspremont et al., 1979).

In this paper, we analyse three different exogenous locational setups, and we pro-
1Throughout this paper, the terms “agent(s)”, “consumer(s)”, “player(s)”, and “trader(s)” will be used

interchangeably.
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pose two (counter)examples for each setup. In particular, we analyse the cases when: (i)
both platforms are located in the exact same spot, irrespective of where they lie along the
city; (ii) the two markets are stationed at the opposite extremes of the city, and; (iii) the
trading posts are situated arbitrarily close to the centre, but may have different locations.
For each parametrisation, we propose an example of a pure-strategy Nash equilibrium
at which both posts charge the same positive price at equilibrium, and another example
where the commodity in question trades at different prices across both platforms at equi-
librium. This is even though agents still have plenty of money left to spend and goods to
sell. The main takeaways from these scenarios are threefold. First, the Bertrand paradox,
though a valid equilibrium in each counterexample (the trivial autarkic Nash equilib-
rium), is Pareto dominated by at least another equilibrium with positive prices. Second,
evenwhen both platforms are situated in the exact same location and are a priori identical
to consumers, the LOOP can fail at equilibrium. Finally, as is now common knowledge,
d’Aspremont et al. (1979) disprovedHotelling’s (1929) so-called “Principle of Minimum
Differentiation”. In particular, they showed that if the sellers are near the centre and too
closely spaced, then no equilibrium exists in pure strategies. If a Nash equilibrium price
solution is to be reached, then it will only be through the use of mixed strategies. In
§3.3, we allow the two platforms to begin business anywhere along the city (including
near the centre), while being arbitrarily close to—or far from—each other. We exhibit,
through two counterexamples, that a pure-strategyNash equilibrium exists in such a sce-
nario. Moreover, at every equilibrium we exhibit, agents place strictly positive bids, and
are neither bindingly financially constrained nor offer-constrained, i.e., they have enough
money and enough of the commodity being traded to freely modify their buy-and-sell
decisions should they so wish. Thus, these equilibria are regular and ex-post stable—see
Peck, Shell and Spear (1992), Spear (2003), and also Toraubally (2022a). This is arguably
our most important contribution. Furthermore, the fact that firms can charge a positive
price (greater than marginal cost, which is zero in our setup), let alone different prices
at equilibrium, when they share the same location is particularly interesting given that
in the extant literature, this is possible only when firms randomise. Indeed, Baye and
Morgan (2002) and Xefteris (2013) prove that under mixed-strategy pricing, firms can
earn positive expected profits when they share the same location. Nonetheless, as Byford
(2015) shows, these mixed-strategy solutions are not always ex-post stable—see also Shy
(2022).

Now, in ourmodel prices are derived endogenously, and crucially, explicitly, through
the buy and sell strategies of every player. It is therefore natural towonder how—if agents
behave truly non-cooperatively and independently—one goes about building a suitable
link between the strategic decisions of individually insignificant players and how these
translate into themarket as awhole. Hence, wemust necessarily set up ourmodel so as to
tackle the requirements of the existence of measurable and integrable strategymappings.
Additionally, the cost of travel, while easy to incorporate in the description of the model,
nonetheless induces disconvexities in players’ budget constraints, making for ill-behaved

3



optimisation programmes. This situation represents a major obstacle that needs to be
overcome for our purposes since not only do we derive and characterise the equilibrium
properties of our model, but we also present full-blown numerical (counter)examples
which constitute Nash equilibria of our model. To attack this difficulty, we use a geomet-
ric approach which allows us transform a potentially intractable problem into a series of
simple, well-behaved optimisation problems. In particular, by understanding the geom-
etry of the problem, we are able to use simple Lagrange multiplier methods to derive
conditions that completely characterise Nash equilibria of our market game.

The past few years have seenHotelling-typemodels experience a revival of sorts, with
new lines of investigation extending the original model in many directions—applied and
theoretical. Balart (2022) provides a behavioural take on the subject matter by introduc-
ing semiorder lexicographic preferences in a Hotelling duopolistic model to incorporate
the possibility of consumers being price-oriented when products are insufficiently dif-
ferentiated yet unidentical. Kharbach and Chfadi (2022) consider a setup in which firms
bear logistics-related costs in the form of support-only and transportations costs, while
consumers incur a combination of transportation and search costs. Hinloopen and Mar-
tin (2017) consider amodel in which location is costly, andmore so as firms approach the
centre of the linear city. Our paper is perhaps most closely related to Xefteris and Ziros’s
(2015) (henceforth, XZ) in which a market game with fiat money—see Postlewaite and
Schmeidler (1978) and Peck et al. (1992)—is considered. However, our models are dras-
tically different, not only in terms of scope and results, but also with respect to our for-
mulations. XZ consider an economy with a continuum of small players only, whereas in
our setup we use a mixed measure space of agents. In XZ, markets and their locations
are formed endogenously, and various groups of agents can set up markets anywhere
along the city, i.e., there can be more than two markets. Additionally, in their model,
a one-market equilibrium generically exists. That is to say, all agents converge to a sin-
gle location at which to carry out all their trades. In our case, the locations of the two
platforms are exogenously fixed, and agents can only trade at these posts. Crucially, in
each of our examples, trade always takes place at both platforms at equilibrium—i.e., ev-
ery situation we construct showcases nontrivial two-market equilibria. Moreover, in XZ,
whenever a two-market equilibrium does exist, the LOOP fails. In our case, we establish
through our counterexamples, for each parametrisation of our model, the existence of a
two-market equilibrium at which the LOOP obtains. Last but not least, in XZ, there exists
no two-market equilibrium when the trading posts are arbitrarily close to each other. In
our case, as we demonstrate in §§3.1 and 3.3, no matter how closely spaced the posts are,
we can find examples where trade takes place at both platforms at equilibrium, with the
LOOP obtaining in some cases and failing in others. In very interesting work, Shy (2022)
deploys the so-called undercut-proof equilibrium solution concept to derive equilibrium
prices for all possible firm locations on the [0, 1] interval. This is because, as Shy (2022)
argues, in the traditional Hotelling model, a pure-strategy Nash equilibrium fails to exist
in roughly 85 percent of all possible firm locations. This observation is very helpful for
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putting things into perspective since in the current paper, especially §3.3, we present two
examples inwhich a pure-strategyNash equilibrium exists for all possible firm locations.

2 The Hotelling–Shapley–Shubik market game, Γ

There is a linear city of length 1 alongwhich there are two large players, and a continuum
of uniformly distributed individually insignificant consumers with density 1.

Formally, we take the space of agents as being defined by themeasure space (N,N , µ),
where N = [0, 1]2 ∪ {L,R}, N is the collection of all µ-measurable sets of N , and µ is an
extended real-valued, σ-additive measure defined on N . Let N[0,1]2 denote the restric-
tion of N to [0, 1]2, and N{L,R} denote the restriction of N to {L,R}. Define µ to be the
Lebesgue measure when restricted to N[0,1]2 , and the counting measure when restricted
toN{L,R}, i.e., L andR are atoms.2 The triple (N,N , µ) as defined constitutes a complete,
finite measure space of agents—see Toraubally (2018). Henceforth, the expressions al-
most all (a.a.), almost everywhere (a.e.), µ-a.e., every, and each, will be taken to mean all
traders except for a null set of players.

The city is the [0, 1] interval. The two large agents, L andR, own the markets (trading
posts) at which all consumers across all locations in [0, 1]may come and trade amounts of
a homogeneous physical good, with zero production cost, which we shall henceforth call
k. L andR also engage in trade, similarly to the consumers in [0, 1]2, by presenting arrays
of buy-and-sell strategies at their own, and/or at each other’s post. However, since L and
R own the trading platforms, they also levy a proportional service charge per unit of
(monetary) net trade on all agents who transact at their post. This proportional service
charge, 0 < c < 1, is taken to be exogenously given,3 and is the same at both trading
posts. Hence, it is easy to deduce that prior to any trade being carried out, the unique
difference between the markets owned by L and R lies in their location. Consequently,
if L and R were to set up shop at the same location, both markets would be, a priori,
exactly identical (and the goods traded, perfect substitutes) to a.e. n ∈ [0, 1]2.

For any n ∈ N , δi(n) stands for the distance between n’s location and trading platform
i, i = L,R. Letting t/2denote the transportation cost per unit of v(δi(n)), where the twice-
continuously differentiable function v(·) is such that dv

dδi(n)
> 0 and d2v

d(δi(n))
2 ≥ 0, n incurs

a transportation cost of tv(δi(n)) by travelling to, and back from, trading platform i. Note
that this specification is general enough to encompass the cases where transportation
cost varies both linearly and non-linearly with distance. To illustrate, one may choose
v(·) to be such that v(δi(n)) = δi(n), or the oft-used quadratic variant v(δi(n)) = (δi(n))

2,
amongst others—see Tirole (1988) for further details. For ease of exposition, it will also
help to define a location function ℓ : N → [0, 1], where ℓ(n) is n’s location in the linear
city. We may thus define δi(n) = |ℓ(n)− ℓ(i)|. Figure 1 exhibits ℓ(n) and δi(n) at work.

In addition to the homogeneous good k that is traded, there is also a numéraire good,
2An atom of (N,N , µ) is a set X such that µ(X) > 0, and for any Y ⊆ X , we either have µ(Y ) = 0 or

µ(X \ Y ) = 0.
3One may think of this as, among other things, a value-added tax imposed by the government.
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Figure 1: ℓ(n) and δi(n)

0 1ℓ(a)

δL(a)

ℓ(L)

δR(L) = δL(R)

δR(a) = δL(a) + δR(L)

ℓ(R)ℓ(b)

δR(b)δL(b)

m, which acts as money and yields utility in consumption.4 The consumption set of each
consumer is therefore identified with X(n) = R2

+ = {x(n) ∈ R2 : xk(n) ≥ 0, xm(n) ≥ 0}.
In this light, each n ∈ N may be described by a location ℓ(n) ∈ [0, 1], an initial endowment
of commodities e(n) ∈ R2

+, and a preference relation representable by a utility function
U : N ×X → R given by U(n, x) = Un(x). Rationality is common knowledge.

In what follows, we will rely on the following assumptions:

Assumption 1. ℓ(L) ≤ ℓ(R), and these are taken as given.5

Assumption 2. Each agent n ∈ N is endowed with a strictly positive amount of both k andm,
i.e., ek(n) · em(n) > 0 a.e. in N .

Assumption 3. Un(x(n)), whereN ×R2
+ is equipped with the σ-field generated by the product

of N and the Borel sets of R2
+, is measurable a.e. in N .

Assumption 4. For each n ∈ N , Un is concave, smooth, differentiably strictly monotone,6 and
indifference curves through the endowment do not intersect the axes.

2.1 Trading Shapley–Shubik style in Hotelling’s city

Trade in this linear city takes place at the trading platforms owned by L and R. On these
markets, players offer commodity k for sale, and distribute amounts of money (bids)
to purchase however much of k has been offered for sale. To be precise, bids (b) for
commodity k are placed in terms of the numéraire m, while sales (q) are, obviously,
made in terms of commodity k. The strategy sets of agents are described by ameasurable
correspondence S : N ⇒ 2R

2×2
+ such that

S(n) =
{(
b(n), q(n)

)
∈ R4

+ :

R∑
i=L

(bi(n) + Pi(n))+ tv(δ(n)) ≤ em(n);

R∑
i=L

qi(n) ≤ ek(n)
}
.

4See, e.g., Mas-Colell et al. (1995: p. 399).
5I.e., as inHotelling (1929) andd’Aspremont et al. (1979),L andRdonot choose their equilibrium locations.

As we explain in §2, they compete only in bid and offer strategies. We will nonetheless analyse what happens
when we exogenously vary ℓ(L) and ℓ(R).

6I.e., for all x(n) ∈ R2
++, ∂Un(x(n))

∂xk(n)
> 0 and ∂Un(x(n))

∂xm(n)
> 0.
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qi(n) stands for the amount of commodity k offered for sale by player n on market i,
i = L,R. Each n ∈ N may simultaneously place bids for (make purchases of) com-
modity k by distributing amounts of money, m, across the two trading platforms, with
bi(n) denoting the bid placed by n for good k on market i, i = L,R. tv(δ(n)) is the total
transportation cost incurred by n, and δ(n) is computed as follows (see also Figure 1):

δ(n) =


δi(n) if n travels only to one platform, i;∑R
i=L δi(n) if ℓ(L) ≤ ℓ(n) ≤ ℓ(R), and n travels to both platforms;

max{δL(n), δR(n)} if ℓ(n) ≤ ℓ(L) or ℓ(R) ≤ ℓ(n), and n travels to both posts.

∑R
i=L Pi(n) is the total premium payable by n. We next explain how Pi(n), i = L,R, is

computed, introducing some important concepts along the way.
A strategy profile consists of a pair of measurable mappings b : N → R2

+ and q :

N → R2
+ such that s(n) ≡ (b(n), q(n)) ∈ S(n) a.e. inN , i.e., a strategy profile is a measur-

able selection from the graph of the correspondence S, Gr(S). Since S : N ⇒ 2R
2×2
+

has measurable graph, b and q exist indeed, by Aumann’s Measurable Choice Theo-
rem. Consequently, for a given strategy profile (b, q) ∈ Gr(S), we may then define
Bi =

∫
N
bi(n)µ(dn) < ∞, and Qi =

∫
N
qi(n)µ(dn) < ∞. We also define, for i = L,R,

B−i,i = Bi − bi(i), and Q−i,i = Qi − qi(i).7
Final consumption allocations of k and m for any n ∈ [0, 1]2 are then determined as

follows:

xk(n) = ek(n) +

R∑
i=L

bi(n)

Bi
Qi −

R∑
i=L

qi(n);

xm(n) = em(n) +

R∑
i=L

(
qi(n)

Qi
Bi − bi(n)

)
(1 + ϑi(n)c)− tv(δ(n)),

(1)

wherewe use themarket game convention that any division by zero, including 0
0 , is equal

to zero if it appears in any of the above expressions above.
We explicate the meaning of the component parts of the allocation rule in (1). Qi is

the total amount of k offered for sale on market i, while Bi is the total amount of money
placed (bid) at platform i to purchase k. When Bi · Qi > 0, trader n, having bid bi(n)
at i, receives good k in proportion to his bids. In a similar vein, trader n, having offered
qi(n) units of k for sale at i, receives money (m) in proportion to his offers. Notice that
∂(Bi/Qi)
∂Bi

> 0, while ∂(Bi/Qi)
∂Qi

< 0. So, when Bi · Qi > 0, the fraction Bi/Qi := pi can be
naturally construed as the market-clearing price of k at platform i. Hereinafter, the price
of k on market iwill be denoted by any of pi and Bi/Qi.

Now, from the second line in (1), let qi(n)pi−bi(n) := zi(n) denote the net (monetary)
trade of player n ∈ N at market i. The function ϑi(n) in (1) may then be defined as
ϑi(n) : zi(n) → {−1, 1}. More precisely, if zi(n) > 0, then ϑi(n) = −1, while ϑi(n) = 1 if

7B−i,i and Q−i,i as described here are well-defined indeed: recall the definitions and dimensionalities of
N and µ.
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zi(n) < 0. If zi(n) = 0, following Toraubally (2018)—see ibid. for an interpretation—we
use the following rule:

ϑi(n) =

−1 if ∃ξ ∈ N , where µ(ξ ∩ [0, 1]2) > 0, such that zi(n) ≥ 0 a.e. in ξ ∩ [0, 1]2;

1 otherwise.

Accordingly, the product zi(n)(1+ ϑi(n)c) in (1) represents the monetary value of agent
n’s net trade in k at market i, zi(n), subtract the proportional premium payable, Pi(n) =

czi(n), to platform owner i, i = L,R.
Final consumption allocations of k andm for any h ∈ {L,R} are then determined as

follows:
xk(h) = ek(h) +

R∑
i=L

bi(h)

Bi
Qi −

R∑
i=L

qi(h);

xm(h) = em(h) +

R∑
i=L

(
qi(h)

Qi
Bi − bi(h)

)
(1 + ϑi(h)c)

− c

∫
n∈N

(
qi(n)

Qi
Bi − bi(n)

)
ϑi(n)µ(dn)− tv(δ(h)).

(2)

In the present paper, we shall only concern ourselves with equilibria in bid and offer
strategies, as opposed to bid-offer-location tuples. In this light, we have that:

Definition 1. A Nash equilibrium (NE) of Γ comprises players’ bid and offer strategies
such that

(i) µ-a.e. in N , n’s moves are best-responses given the expectations of other players’
moves;

(ii) The best-responses are consistent with a.a. players’ expectations of other players’
moves.

In other words, a strategy profile s∗ ≡ (b∗, q∗) ∈ Gr(S) is an NE iff:

Un

(
x
(
s∗(n), B−n, Q−n

))
≥ Un

(
x
(
s(n), B−n, Q−n

)) for all s(n) ∈ S(n), a.e. in N. (3)

Additionally, sowe avoid trivial outcomes, wewill assume, as is standard in the literature,
that agents have enoughmoney to travel to both trading posts (and back) should they so
wish. We state this formally:

Assumption 5. For each n ∈ N , em(n) > tv(δ(n)).

3 Locations, and equilibrium analysis

In this section, we will analyse the equilibrium properties of the model described in §2,
and determine the extent towhich different parametrisations of thismodel yield different
conclusions. We begin with a few key results which we will use all through our analysis.
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Proposition 1. For L and R, the price(s) for good k across the markets they own should satisfy
the following (no-arbitrage) condition at any NE:

L :
pL
pR

=

√√√√√√
B−L,LQ−L,R(1 + ϑR(L)c)

B−L,R

(
Q−L,L + c

∫
n∈N\{L}

qL(n)ϑL(n)µ(dn)

) .

R :
pL
pR

=

√√√√√√B−R,L

(
Q−R,R + c

∫
n∈N\{R}

qR(n)ϑR(n)µ(dn)

)
B−R,RQ−R,L(1 + ϑL(R)c)

.

Proposition 2. For µ-a.e., n ∈ [0, 1]2, the price(s) for good k at the markets owned by L and R
should satisfy the following (no-arbitrage) condition at any NE:

pL
pR

=
1 + ϑR(n)c

1 + ϑL(n)c
.

The proofs for the above results derive effortlessly from the relevant first-order condi-
tions which are laid out in §3.1.1. We next present and prove a few lemmata which will
be useful for constructing our examples and counterexamples. Not only do these lem-
mata embody further equilibriumproperties of ourmodel, but they also hold irrespective
of L andR’s locations—and therefore, throughout the rest of this paper. Of course, vary-
ing the locations of the trading posts is not innocuous and has important repercussions.
These will be analysed in the corresponding subsections and fleshed out in the examples.

Lemma 1. Consider two arbitrary sets ξ, σ ∈ N with µ(ξ ∩ [0, 1]2) > 0 and µ(σ ∩ [0, 1]2) >

0. For i, j ∈ {L,R}, i ̸= j, define: (a) zi(n) < 0 a.e. in ξ and zi(n) > 0 a.e. in σ, and:
(b) zj(n) > 0 a.e. in ξ and zj(n) < 0 a.e. in σ. There is no NE at which (a) and (b) hold
simultaneously.

Proof. W.l.o.g., let i = L and j = R. If zL(n) < 0 and zR(n) > 0 a.e. in ξ, then by
Proposition 2, for a.a. n ∈ ξ, we have pL < pR. Similarly, if zL(n) > 0 and zR(n) < 0 a.e.

in σ, then for a.a. n ∈ σ, we have pL > pR.

Lemma 2. If µ-a.e., n ∈ [0, 1]2, makes non-zero net trades of the same direction across markets
L and R, then at equilibrium, pL = pR. On the other hand, if µ-a.e., n ∈ [0, 1]2 makes opposing
non-zero net trades across markets L and R, then at equilibrium, pL ̸= pR.

Proof. If net trades are of the same direction, then ϑL(n) = ϑR(n) a.e. in [0, 1]2. From
Proposition 2, pL = pR. If net trades go in opposite directions, then w.l.o.g., let ϑR(n) =
−1, such that ϑL(n) = 1. From Proposition 2, we have that pL < pR, given that c > 0.

Lemma 3. Consider two arbitrary sets ξ, σ ∈ N with µ(ξ ∩ [0, 1]2) > 0 and µ(σ ∩ [0, 1]2) > 0.
For i, j ∈ {L,R}, i ̸= j, if zi(n) < 0 a.e. in ξ and zi(n) ≥ 0 a.e. in σ, then at any NE, we must
have zj(n) < 0 a.e. in ξ and zj(n) ≥ 0 a.e. in σ, such that pL = pR.
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Proof. Follows trivially from a combination of Lemmata 1 and 2.

3.1 Parametrisation 1: L and R set up shop at the same location

In this section, we will assume that ℓ(L) = ℓ(R) on the [0, 1] interval. Where exactly on
the [0, 1] interval they are located is without import (see, e.g., Figure 2).

Figure 2: Examples of L and R at any, but the same, location

0

ℓ(L) = ℓ(R)

1

ℓ(L) = ℓ(R)

0.5

ℓ(L) = ℓ(R) 0.74

ℓ(L) = ℓ(R)

0.21

ℓ(L) = ℓ(R)

And indeed, in each of our examples that will follow, L and R’s location will be left
unspecified as this will not matter for the purposes of our analysis. Our examples are
valid for when both L and R operate at 0 on the abscissa, when both operate at 1, or
anywhere in between. Importantly, the transportation cost incurred by any n ∈ N by
travelling to trade at one post is the same as the travelling cost incurred to trade at both
posts. This introduces a minimal number of points of disconvexity in agents’ holdings
surfaces, thus rendering our analysis more tractable. Nonetheless, this means that con-
trary to Toraubally (2018, 2019, 2022b), the first-order conditions that we derive here are
only necessary but not sufficient. This is not to say that no further analysis is possible.
We will show, by examining the geometry of the problem at hand,8 how this technical
obstacle can be circumvented to derive NE of Γ.

3.1.1 Good k trades at different prices across both platforms

The utility function for each n ∈ [0, 1]2, is:

Un(x(n)) = 2900 lnxk(n) + 2100 lnxm(n),

and the utility functions for L and R are as follows:

UL(x(L)) = 302 lnxk(L) + 99 lnxm(L),

UR(x(R)) = 1856 lnxk(R) + 2055 lnxm(R).

Put c = 1
3 . For µ-a.e., n ∈ N , the endowments are ek(n) = 100, and em(n) = 100 + δL(n)

100 .
We take the function v(·) to be such that v(δi(n)) = δi(n) = |ℓ(n)− ℓ(i)|, i = L,R, and
we let t = 1

100 .
At anNE, the first-order necessary (but not) sufficient conditions forµ-a.e., n ∈ [0, 1]2,

8This method is extremely helpful for simplifying complex-looking optimisation programmes. For another
example where a geometric method has been employed, see Toraubally (2022a, 2023).
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are:

∂Un(x(n))/∂xk(n)

∂Un(x(n))/∂xm(n)
=
BL
QL

(1 + ϑL(n)c).

∂Un(x(n))/∂xk(n)

∂Un(x(n))/∂xm(n)
=
BR
QR

(1 + ϑR(n)c).

For L, the first-order necessary conditions at an NE are:

∂UL(x(L))/∂xk(L)

∂UL(x(L))/∂xm(L)
=

(
BL
QL

)2

·
Q−L,L + c

∫
n∈N\{L} qL(n)ϑL(n)µ(dn)

B−L,L
.

∂UL(x(L))/∂xk(L)

∂UL(x(L))/∂xm(L)
=

(
BR
QR

)2

· Q−L,R(1 + ϑR(L)c)

B−L,R
.

Likewise, for R, the first-order necessary conditions at an NE are:

∂UR(x(R))/∂xk(R)

∂UR(x(R))/∂xm(R)
=

(
BL
QL

)2

· Q−R,L(1 + ϑL(R)c)

B−R,L
.

∂UR(x(R))/∂xk(R)

∂UR(x(R))/∂xm(R)
=

(
BR
QR

)2

·
Q−R,R + c

∫
n∈N\{R} qR(n)ϑR(n)µ(dn)

B−R,R
.

It can be verified, in light of the above, that the following profile of strategies constitutes
a candidate NE of Γ:

(
bL(n), bR(n), qL(n), qR(n)

)
= (3, 3, 3, 0) a.e. in [0, 1]2;(

bL(L), bR(L), qL(L), qR(L)
)
=
(
7, 28, 1, 1245

)
;(

bL(R), bR(R), qL(R), qR(R)
)
=
(
2, 15 , 2,

32
5

)
,

with pL = 2 ̸= 1 = pR. The final allocations of k andm to each n ∈ N are as follows:
(
xk(n), xm(n)

)
=
(
203
2 , 98

)
a.e. in [0, 1]2;(

xk(L), xm(L)
)
=
(
1057
10 , 4625

)
;(

xk(R), xm(R)
)
=
(
464
5 , 5485

)
.

Discussion of example and the spatial market game mechanism

A few points are in order. First, to alleviate the skeptical reader’s concern, a quick check
shows that for each n ∈ N, Un(xk(n), xm(n)) > Un(ek(n), em(n)), such that the strat-
egy profile we have derived above constitutes a Pareto improvement upon autarky and is
therefore anNE (see Appendix B).We remind the reader, in passing, that autarky is itself
always a trivial NE of Γ (see, e.g., Shapley and Shubik, 1977). Prima facie, the fact that
every agent can be made better off even after incurring a cost of travel, which effectively
involves some of commodity m being wasted, may appear counterintuitive. However,
this is reminiscent of the manifestation that in pure exchange economies, it is possible to
Pareto-improve on the endowments by wasting some a good inasmuch as what is wasted
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is not too large and what remains of the endowments is allocated in a way that is close
to efficient (see, e.g., Kreps, 2012). Second, both platforms for trade to take place at are
located in one and the same spot. As previously remarked, this means they are a priori
exactly identical, and their products perfect substitutes, to each n ∈ [0, 1]2. Third, note
that no agent is financially constrained at equilibrium. Certainly, it is intriguing that even
though agents still have plenty of money left to spend, and plenty of goods left to offer
for sale, the situation derived above is still sustainable as an equilibrium. In other words,
absolutely no agent, large or small, has any incentive to unilaterally deviate. Fourth, the
market is covered: every agent engages in trade of some sort, with some being net sell-
ers and others, of course, net buyers. Fifth, it is interesting to recall that in conventional
spatial models, consumers strictly prefer to, and actually do, trade at one post only. The
only outcome that never materialises is consumers trading at both platforms. Yet, in this
example, every agent (including the post owners themselves), trades at both locations.
Last but not least, even though both platforms are identical in every respect, the Law of
One Price fails at equilibrium! While surprising in its own right, this also constitutes a
substantial departure from traditional treatments, in which the only possible outcome if
both firms were to locate at the same place is for both platforms to take prices down to
marginal cost—i.e., the Bertrand paradox obtains. Hence, the model we put forth consti-
tutes another solution to the Bertrand paradigm.

We now provide more intuition to some of the above-mentioned points. We start by
noting that the market is covered because a.a. agents n ∈ [0, 1]2 travel to the trading
posts thanks to the cost of travel not being prohibitively high. What exactly counts as
“prohibitively high” in our framework is a relative—rather than absolute—conceptwhich
depends on agents’ preferences. Now, when both posts begin business in the same spot,
their products are perfect substitutes for each other. Yet, the Bertrand paradox does not
occur because it is not only the large players (atoms), but the small ones as well that
affect prices—though not individually so. Above all, in our model, the only way for any
trade at all to take place at a platform is for the price there to be positive. Next, to see
why the failure of the LOOP is supportable as an equilibrium, it suffices to look at the
allocation rules in (1) and (2) together with Propositions 1 and 2. The large players,
should they unilaterally deviate, would change the prices unfavourably against them.
For example, since L also buys and sells at R’s platform, it is tempting to think that he
could do better by only selling at his post, and buying only from platform R. Rejigging
his bids and offers in this way increases (decreases) the aggregate bids at R’s (L’s) post,
increases the aggregate offers of k at L’s (R’s) post, and therefore drives up (down)
the price at R’s (L’s) post. The end result is L being able to buy less of k as its price
soars on R’s platform, and L’s revenue from sales simultaneously falling due to k selling
at a lower price on platform L. At best therefore, L can only break even. The small
agents influence none of the aggregate bids, offers, and hence, price. Yet there exists
no profitable deviation for them either. Consider any small agent n, whose equilibrium
strategy is s(n) = (bL(n), bR(n), qL(n), qR(n)) = (3, 3, 3, 0). Reallocating, for example, all
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her bids to platformR and her offers to L’s post seems to be the most intuitive strategy to
adopt, i.e., s̃(n) = (b̃L(n), b̃R(n), q̃L(n), q̃R(n)) = (0, 3 + 3, 3, 0). Ignoring all else for now,
this indeed allows n to achieve a net trade of k of (6/1) − 3 = 3, and a net trade of m of
(3 × 2) − (3 + 3) = 0, as opposed to an initial net trade of k of (3/1) + (3/2) − 3 = 3/2,
and a net trade of m of (3 × 2) − (3 + 3) = 0. However, what this reallocation does is
increase the total premium payable by n from (3×2−3)+3

3 = 2 previously, to 6+(3×2)
3 = 4

now. Quickly plugging the new resulting allocations into the utility function for n shows
that s̃(n) in fact yields a lower level of utility than s(n). Hence, no small agent moves.

While the different parametrisations we will analyse in the ensuing sections will have
many distinct subtleties that will need to be addressed, the foregoing equilibratingmech-
anism operates in every other example which will follow in this paper. Below, we sketch
a scenario in which the LOOP obtains at equilibrium.

3.1.2 Good k trades at the same price across both platforms

The utility function for each n ∈ [0, 1]2 is:

Un(x(n)) = 361 lnxk(n) + 60 lnxm(n),

and the utility functions for L and R are as follows:

UL(x(L)) = 361 lnxk(L) + 50 lnxm(L),

UR(x(R)) = 10108 lnxk(R) + 375 lnxm(R).

Put the service charge c = 1
20 . Let v(δi(n)) := δi(n) = |ℓ(n)− ℓ(i)| , i = L,R, and t = 1

100 .
Agents’ endowments are as shown below:

(
ek(n), em(n)

)
=
(

5869
57 , 11789150 + δL(n)

100

)
a.e. in [0, 1]2;(

ek(L), em(L)
)
=
(
1904
19 , 481750

)
;(

ek(R), em(R)
)
=
(
5519
57 , 187615

)
.

Using the very same first-order conditions derived in §3.2.1, it can be verified that the
following profile of strategies constitutes a candidate NE of Γ:

(
bL(n), bR(n), qL(n), qR(n)

)
=
(
3, 1, 3, 2857

)
a.e. in [0, 1]2;(

bL(L), bR(L), qL(L), qR(L)
)
= (6, 0, 1, 0) ;(

bL(R), bR(R), qL(R), qR(R)
)
=
(
183
5 , 3, 2, 2

57

)
,

with pL = pR = 38
5 . The final allocations of k and m for µ-a.e., n ∈ N , are xk(n) =

xm(n) = 100.
Since Un(xk(n), xm(n)) > Un(ek(n), em(n)) for each n ∈ N , the strategy profile we

have derived above constitutes a Pareto improvement upon autarky and is an NE indeed.
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3.2 Parametrisation 2: L and R at the opposite extremes of [0, 1]

In this subsection, we will assume that L is located at 0, and R at 1. In line with the
traditional Hotelling (1929) model, this implies maximal product differentiation given
t > 0. InHotelling (1929),maximal product differentiation, alongside transportation cost
and covered markets, is synonymous with the unique equilibrium outcome that prices,
as well as demand functions, be the same across the two platforms at which good k is
traded. Firms make supernormal profits because they compete less fiercely for the same
market segment. Each firm has some local monopoly power and is able to extract more
rent from neighbouring consumers who become more captive simply because it costs
more to travel to the farther side of the city.

Figure 3: L and R at opposite extremes

0 1

ℓ(L) ℓ(R)

Provided the LOOP prevails, perhaps unsurprisingly, a conclusion similar to the one in
the conventionalmodel holds true forΓ aswell. And surely, as opposed to trading at both
platforms, the individually negligible consumers, as do the post owners themselves, each
trade on one platform only. Moreover, if prices are the same across both posts, then the
indifferent consumer(s) will lie exactly in the middle of the city. We illustrate this with
our first example.

3.2.1 Good k trades at the same price across both platforms

The utility function for each n ∈ [0, 1]2 is:

Un(x(n)) = 361 lnxk(n) + 60 lnxm(n),

and the utility functions for L and R are as follows:

UL(x(L)) = 361 lnxk(L) + 50 lnxm(L),

UR(x(R)) = 10108 lnxk(R) + 375 lnxm(R).

Put the service charge c = 1
20 . Let v(δi(n)) := δi(n) = |ℓ(n)− ℓ(i)| , i = L,R, and t = 1

100 .
Agents’ endowments are as shown below:

(
ek(n), em(n)

)
=
(

1999
19 , 311950 + δL(n)

100

)
a.e. in [0, 12]× [0, 1];(

ek(n), em(n)
)
=
(

5741
57 , 14221150 + δR(n)

100

)
a.e. in ( 12 , 1]× [0, 1];(

ek(L), em(L)
)
=
(
1904
19 , 481750

)
;(

ek(R), em(R)
)
=
(
5519
57 , 37523300

)
.
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Using the very same first-order conditions derived in §3.2.1, it can be verified that the
following profile of strategies constitutes a candidate NE of Γ:

(
bL(n), bR(n), qL(n), qR(n)

)
= (6, 0, 6, 0) a.e. in [0, 12]× [0, 1];(

bL(n), bR(n), qL(n), qR(n)
)
=
(
0, 2, 0, 5657

)
a.e. in ( 12 , 1]× [0, 1];(

bL(L), bR(L), qL(L), qR(L)
)
= (6, 0, 1, 0) ;(

bL(R), bR(R), qL(R), qR(R)
)
=
(
183
5 , 3, 2, 2

57

)
,

with pL = pR = 38
5 . The final allocations of k andm for each n ∈ N , are xk(n) = xm(n) =

100.
We note that Un(xk(n), xm(n)) > Un(ek(n), em(n)) for each n ∈ N , i.e., the strategy

profile we have derived above constitutes a Pareto improvement upon autarky. However,
satisfying this criterion alone is no longer sufficient for a strategy profile to constitute an
NE of Γ. We must now also verify, for L and R, whether the allocations derived above
are such that Ui(xk(i), xm(i)) > Ui(x̃k(i), x̃m(i)), i = L,R,where x̃k(i) and x̃m(i) denote
the (optimal) allocations of k andm had i chosen to trade at his post only (see Appendix
B). For L, the answer is obvious given L trades at his post only anyway. So, given the
strategies of all players other than R, we have that (x̃k(R), x̃m(R)) = (97.198, 122.052).9
A quick calculation reveals that Ui(xk(R), xm(R)) > Ui(x̃k(R), x̃m(R)) indeed, such the
strategy profile we have derived above is an NE.
Remark 1. It is interesting to note that in this scenario, while the individually insignificant
consumers trade at one post only, the large traderR trades, not only at his own platform,
but also at L’s post. This occurrence is down to two factors. For R, given the strategies
of every n ∈ N \ {R}, R incurs, at worst, “nothing” to travel and trade at L’s platform
as the cost of travel is more than offset by the premia receivable by R. Additionally, by
trading at L’s post, the market is made thicker. And as discussed in Goenka et al. (1998)
and Toraubally (2022a), thick-market equilibria can Pareto dominate thin-market ones.
Naturally, one is led to wonder whether other patterns of trade may arise at equilibrium
when the two platform owners are located at the opposite ends of the city. As we will
demonstrate through our next example, this is certainly possible.

3.2.2 Good k trades at different prices across both platforms

The utility function for each n ∈ [0, 1]2 is:

Un(x(n)) = 4000 lnxk(n) + 3000 lnxm(n),

9The exact figures are (x̃k(R), x̃m(R)) =
(

2656417031−5
√

398564585689
27297376

, 2622806689−133
√
398564585689

20801250

)
.
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and the utility functions for L and R are as follows:

UL(x(L)) = 302 lnxk(L) + 99 lnxm(L),

UR(x(R)) = 1856 lnxk(R) + 2055 lnxm(R).

Put c = 1
3 . For each n ∈ N , the endowments are:

(
ek(n), em(n)

)
=
(
103, 96 + δL(n)

100

)
a.e. in [0, 12]× [0, 1];(

ek(n), em(n)
)
=
(
94, 108 + δR(n)

100

)
a.e. in ( 12 , 1]× [0, 1];(

ek(i), em(i)
)
=
(
100, 10001100

)
, i = L,R.

We take the function v(·) to be such that v(δi(n)) = δi(n) = |ℓ(n)− ℓ(i)|, i = L,R, and
we let t = 1

100 .
It can be verified, in light of the above, that the following profile of strategies consti-

tutes a candidate NE of Γ:
(
bL(n), bR(n), qL(n), qR(n)

)
= (6, 0, 6, 0) a.e. in [0, 12]× [0, 1];(

bL(n), bR(n), qL(n), qR(n)
)
= (0, 6, 0, 0) a.e. in ( 12 , 1]× [0, 1];(

bL(L), bR(L), qL(L), qR(L)
)
=
(
7, 28, 1, 1245

)
;(

bL(R), bR(R), qL(R), qR(R)
)
=
(
2, 15 , 2,

32
5

)
,

with pL = 2 ̸= 1 = pR. The final allocations of k andm to each n ∈ N are as follows:
(
xk(n), xm(n)

)
= (100, 100) a.e. in [0, 1]2;(

xk(L), xm(L)
)
=
(
1057
10 , 4625

)
;(

xk(R), xm(R)
)
=
(
464
5 , 5485

)
.

Observe that for each n ∈ N, Un(xk(n), xm(n)) > Un(ek(n), em(n)). As before, we must
also verify, forL andR, whether the allocations derived above are such thatUi(xk(i), xm(i)) >

Ui(x̃k(i), x̃m(i)), i = L,R, where x̃k(i) and x̃m(i) denote the (optimal) allocations of k
and m had i chosen to trade at his post only. Given the strategies of all players other
than L, we have that (x̃k(L), x̃m(L)) = (102.59, 96.43). Similarly, given the strategies of
all players other than R, we have that (x̃k(R), x̃m(R)) = (93.53, 108.56).10 A quick calcu-
lation reveals that Ui(xk(i), xm(i)) > Ui(x̃k(i), x̃m(i)), i = L,R, indeed, such the strategy
profile we have derived above is an NE.

The two preceding examples illustrate a very important fact, which we will next for-
malise. Before doing so, we must derive the following crucial intermediate lemma:

Lemma 4. Let the equilibrium bids and offers of a.a. n ∈ N be given, and assume that pL < pR.

10The exact figures are (x̃k(L), x̃m(L)) =
(

70185545−100
√
248415610

668779
, 9222391−40

√
248415610

89100

)
and

(x̃k(R), x̃m(R)) =
(

1539430351−155
√
6308360349385

12296870
, 677765297−62

√
6308360349385

4808700

)
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Figure 4: L and R at opposite extremes, with pL = pR

0 0.5 1
ℓ(L) ℓ(R)

tv(0.5)

{n : ℓ(n) < 0.5}

tv(0.5)

{n : ℓ(n) > 0.5}

If for any n ∈ [0, 1]2,
∑R
i=L (bi(n) + qi(n)) > 0, and

∑R
i=Lzi(n)/pi > 0, then excluding

transportation costs, there exists q∗R(n) > 0 (with b∗R(n) = b∗L(n) = q∗L(n) = 0) which yields
the same allocations of k and m. Conversely, if for any n ∈ [0, 1]2,

∑R
i=L (bi(n) + qi(n)) >

0, and
∑R
i=Lzi(n)/pi < 0, then excluding transportation costs, there exists b∗L(n) > 0 (with

q∗L(n) = q∗R(n) = b∗R(n) = 0) which yields the same allocations of k andm.

Proof. See Appendix A.

Thanks to the above lemma, we are now able to derive the following sharp result:

Proposition 3. When ℓ(L) = 0 and ℓ(R) = 1, anyn ∈ [0, 1]2 for whom
∑R
i=L (bi(n) + qi(n)) >

0 trades at one post only at any NE.

Proof. Suppose a contradiction: that×R

i=L
(bi(n) + qi(n)) > 0, and consider the case

when pL ̸= pR. For clarity and w.l.o.g., let pL < pR. Then, by Lemmata 1, 2 and 3, and
our claim, we see that at equilibrium, the only way for this to happen is to have µ-a.e.,
n ∈ [0, 1]2, zL(n) < 0 and zR(n) > 0. But if this is the case, any n ∈ [0, 1]2 for whom∑R
i=L (bi(n)/pi − qi(n)) > 0 can profitably deviate by choosing to trade at L only, while

any n ∈ [0, 1]2 for whom∑R
i=L (bi(n)/pi − qi(n)) < 0 has an incentive to deviate to trade

at R only. This is because by Lemma 4, they can play (b∗i (n), q
∗
i (n))

R
i=L to get the same

allocations, but only incur tv(δi(n)) instead of tv(δ(n)) = tv(δi(n))+tv(δj(n)), i, j = L,R.
Hence, the initial situation cannot have been an NE.

Now, assume instead that pL = pR. In this case, there is nothing to be gained for
µ-a.e., n ∈ [0, 1]2, by trading at both posts and incurring tv(δ(n)). To prove this claim,
consider a.a. n ∈ [0, 1]2 for whom ℓ(n) = 0.5. The same bid and offer yield similar
amounts of both goods k andm across either post, and cost the same in terms of Pi(n).
In other words, the agents for whom ℓ(n) = 0.5 are indifferent between trading at L and
R. Thus, by travelling to either post L or post R but not both, they incur only tv(0.5) as
opposed to tv(1)—see Figure 4. It follows that a.a. n ∈ [0, 1]2 for whom ℓ(n) < 0.5 will
therefore choose to go to market L, while a.a. n ∈ [0, 1]2 for whom ℓ(n) > 0.5 will go to
market R.

It would indubitably be more interesting and helpful if something could be said about
which post agents n ∈ [0, 1]2 actually buy from and sell at when prices are unequal
across platforms at equilibrium. The next theorem, which concisely captures four dif-
ferent cases, does precisely this.
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Theorem1. Let pL < pR at equilibrium. Consider anyn ∈ [0, 1]2 for whom
∑R
i=L (bi(n) + qi(n)) >

0. If
∑R
i=Lzi(n)/pi ≷ 0, then as long as (pR − pL)

∑R
i=Lzi(n)/pi ≷ tv(δR(n)), n trades at R

only. However, if (pR − pL)
∑R
i=Lzi(n)/pi ≶ tv(δR(n)), then n trades at L only.

Proof. n as hereby described trades at one post only at equilibriumby Proposition 3. Now,
assume by way of contradiction, that at some equilibrium, (pR − pL)

∑R
i=Lzi(n)/pi >

tv(δR(n)), and n trades at L only such that zL(n)/pL > 0. As n sells more of k than s/he
buys, n can simply choose q∗R(n) = qL(n) − bL(n)/pL and b∗R(n) = b∗L(n) = q∗L(n) =

0, which results in the same net trade of k. However, because (pR − pL) zL(n)/pL >

tv(δR(n)), we have that q∗R(n) (pR − pL) − tv(δR(n)) > 0. In other words, a profitable
unilateral deviation exists. Hence, n in fact trades at R only at equilibrium. This same
method can be used to prove the claim for the reverse inequality.

Below we record a simple but very important point which shaped our unequal-price ex-
ample in §3.2.2, and which will again come into play in the next section.

Corollary 1. Let the bids and offers of a.a. n ∈ N be given, and assume w.l.o.g., that pL < pR.
For any n ∈ [0, 1]2 for whom ℓ(n) ≤ ℓ(L) < ℓ(R), if at equilibrium

∑R
i=L (bi(n) + qi(n)) > 0,

and
∑R
i=Lzi(n)/pi < 0, then bR(n) = qR(n) = 0. Likewise, for any n ∈ [0, 1]2 for whom

ℓ(L) < ℓ(R) ≤ ℓ(n), if at equilibrium
∑R
i=L (bi(n) + qi(n)) > 0, and

∑R
i=Lzi(n)/pi > 0, then

bL(n) = qL(n) = 0.

Proof. Suppose a contradiction: that for any n ∈ [0, 1]2 for whom ℓ(n) ≤ ℓ(L) < ℓ(R) and∑R
i=Lzi(n)/pi < 0,×R

i=L
(bi(n) + qi(n)) > 0 at equilibrium. By Lemma 4, there exists

b∗L(n) > 0 (with q∗L(n) = q∗R(n) = b∗R(n) = 0) which yields the same allocations of k
and m, excluding transportation costs. But by trading at L only, n incurs tv(δL(n)) only
instead of tv(δ(n)) = tv(δL(n)) + tv(δR(L)), i.e., a profitable deviation exists. A similar
argument can be used to prove the second part of our claim.

At this point, an extremely handy result by Koutsougeras (2003) comes to mind. This
result holds in Toraubally (2018, 2019, 2022b), but not in the present paper. We explain
why below.
Remark 2. Fact 2 of Koutsougeras (2003) states the following,mutatismutandis. Consider
any feasible strategy profile (b, q) ∈ Gr(S), where, say, bR(n) = qR(n) = 0 for some
n ∈ N , and pR > 0. Then, µ-a.e. in N , there is a budget feasible (b̂(n), q̂(n)) with b̂R(n) ·
q̂R(n) > 0, which results in the same net trades and clearing price. In our paper, with the
exception ofL andR at their own trading posts, this does not (always) hold: if, genuinely,
bi(n) = qi(n) = 0 for some n ∈ [0, 1]2, then assuming that bi(n) · qi(n) > 0 means that
agent nmust have travelled to post i, i = L,R and also incurred tv(δi(n)). The only time
this would work is if ℓ(L) = ℓ(R) and bj(n) + qj(n) > 0, i ̸= j. Whenever ℓ(L) ̸= ℓ(R),
this result cannot be applied—again, except for L and R at their own trading posts.
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3.3 Parametrisation 3: L and R close to the centre

In this section, we analyse a setup à la d’Aspremont et al. (1979), where L and R are
closely spaced, and near the centre. d’Aspremont et al.’s (1979) main contribution was
the derivation of necessary and sufficient conditions on the two firms’ locations for an
equilibrium to exist—which, when it does exist, is unique for any given pair of locations.
When both firms are located in the same spot, they make normal profits at the unique
equilibrium. Amongst others, and of particular interest is their finding that a Cournot
equilibrium fails to exist when the two firms are relatively close to each other. They show
that this non-existence problem can be circumvented if instead of linear transportation
costs, costs were assumed to vary quadratically per unit of distance.

We will show in our context, irrespective of the platforms’ locations, i.e., no matter
how closely spaced they are to each other, and regardless of the functional form of v(·)—
linear or quadratic—that we can derive an equilibrium at which trade takes place at both
platforms, with price being positive. Moreover, even in this context, it is still possible for
the LOOP to fail.

Figure 5: L and R close to the centre, at different locations

0 0.5 1

ℓ(L)

δL(0) = 0.5− ψ ψ

ℓ(R)

ϕ δR(1) = 0.5− ϕ

Proposition 4. When ℓ(L) = 1
2 −ψ and ℓ(R) = 1

2 +ϕ, 0 ≤ ψ, ϕ ≤ 1
2 , any n ∈ [0, 1]2 for whom

ℓ(L) ≤ ℓ(n) ≤ ℓ(R) and
∑R
i=L (bi(n) + qi(n)) > 0 trades at one post only at any NE.Moreover,

if pL = pR at equilibrium, then a.a. n ∈ [0, 1]2 for whom ℓ(n) = 1
2+

ϕ−ψ
2 are indifferent between

trading at L and R.

Proof. Similar to the proof of Proposition 3.

Remark 3. Each of Lemma 4, Propositions 1 and 2, Theorem 1, and Corollary 1 holds for
the current parametrisation as well.
As mentioned in the Introduction, Shy (2022) uses the undercut-proof equilibrium so-
lution concept to derive equilibrium prices for all possible firm locations on the [0, 1]

interval. This is because a pure-strategy Nash equilibrium does not exist in roughly 85
percent of all possible firm locations. In §3.1, we parametrised ourmodel such thatL and
R located in the same spot, nomatterwhere along the linear city. In §3.2, we imposed that
L andR set up shop at the extremes of the city. In the next two examples, we will present
pure-strategy NE at which L locates anywhere along [0, 12] and R locates at any point
in the [ 12 , 1] interval. We spell out three of the (uncountably) many possibilities which
these NE admit: (i) L and R both locate exactly in the centre; (ii) L and R close to the
centre but at different locations, and; (iii) only one of L orR at the centre, while the other
begins business close by. Primarily, our next examples are general enough such that once
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ℓ(L) = 1
2 − ψ and ℓ(R) = 1

2 + ϕ have been chosen, agents’ endowments can be straight-
forwardly modified accordingly such that a pure-strategy NE exists for all possible firm
locations.

3.3.1 Good k trades at the same price across both platforms

In this example, to illustrate that an equal-price NE exists no matter how close (or how
far) L andR are to the centre, we will take ψ, ϕ ∈

[
0, 12

] but let these remain arbitrary. As
with our previous examples, we will use linear transportation costs, which in the current
context are notoriously problematic in traditional models.

Thanks to Propositions 3 and 4, and Theorem 1, we can just slightly modify the ex-
ample in §3.2.1, and the conclusions will remain unaffected.
The utility function for each n ∈ [0, 1]2 is:

Un(x(n)) = 361 lnxk(n) + 60 lnxm(n),

and the utility functions for L and R are as follows:

UL(x(L)) = 361 lnxk(L) + 50 lnxm(L),

UR(x(R)) = 10108 lnxk(R) + 375 lnxm(R).

Put the service charge c = 1
20 . Let v(δi(n)) := δi(n) = |ℓ(n)− ℓ(i)| , i = L,R, and t = 1

100 .
Agents’ endowments are as shown below:

(
ek(n), em(n)

)
=
(

1999
19 , 311950 + δL(n)

100

)
a.e. in

[
0, 12 + ϕ−ψ

2

]
× [0, 1];(

ek(n), em(n)
)
=
(

5741
57 , 14221150 + δR(n)

100

)
a.e. in

(
1
2 + ϕ−ψ

2 , 1
]
× [0, 1];(

ek(L), em(L)
)
=
(
1904
19 , 481750

)
;(

ek(R), em(R)
)
=
(

5519
57 , 187615 + δL(R)

100

)
.

Using the very same first-order conditions derived in §3.2.1, it can be verified that the
following profile of strategies constitutes a candidate NE of Γ:

(
bL(n), bR(n), qL(n), qR(n)

)
= (6, 0, 6, 0) a.e. in

[
0, 12 + ϕ−ψ

2

]
× [0, 1];(

bL(n), bR(n), qL(n), qR(n)
)
=
(
0, 2, 0, 5657

)
a.e. in

(
1
2 + ϕ−ψ

2 , 1
]
× [0, 1];(

bL(L), bR(L), qL(L), qR(L)
)
= (6, 0, 1, 0) ;(

bL(R), bR(R), qL(R), qR(R)
)
=
(
183
5 , 3, 2, 2

57

)
,

with pL = pR = 38
5 . The final allocations of k and m for µ-a.e., n ∈ N , are xk(n) =

xm(n) = 100.
Notice that for each n ∈ N, Un(xk(n), xm(n)) > Un(ek(n), em(n)). We also have to

verify, forL andR, whether the allocations derived above are such thatUi(xk(i), xm(i)) >
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Ui(x̃k(i), x̃m(i)), i = L,R, where x̃k(i) and x̃m(i) are as defined previously. For L, no
further analysis is needed given L trades at his post only at our candidate NE. So wemay
move on toR. A difficulty here is that the precise locations ofL andR are unknown, such
that we cannot derive explicit values for x̃k(i) and x̃m(i), i = L,R, as we did in §3.2.1.
However, a workaround is at hand. If we take em(R) = 1876

15 , then we would have the
optimal values of x̃k(R) and x̃m(R) to be (ˇ̃xk(R), ˇ̃xm(R)) = (97.198, 122.042).11 On the
other hand, if em(R) = 37523

300 = 1876
15 + 1

100 , then given the strategies of all players other
than R, we would have the optimal values of x̃k(R) and x̃m(R) to be (ˆ̃xk(R), ˆ̃xm(R)) =

(97.198, 122.052). Since both x̃k(R) and x̃m(R) are increasing in em(R), it follows that
ˇ̃xα(R) < x̃α(R) < ˆ̃xα(R), α = k,m. As U(·) is increasing in both xk and xm, we thus
know that UR(xk(R), xm(R)) > UR(ˆ̃xk(R), ˆ̃xk(R)) > UR(x̃k(R), x̃m(R)) indeed, such
that the strategy profile we have derived above is an NE.

3.3.2 Good k trades at different prices across both platforms

Figure 6: L (blue) and R (red) arbitrarily close to the centre

0 1
2+

ϕ−ψ
2

1

net sellers

net buyers

net sellers

net buyers

In this example, we will create an equilibrium situation where different segments of the
linear city make net purchases or net sales as described in Figure 6 above.

Let ψ, ϕ ∈
[
0, 12

]. The utility function for each n ∈ [0, 1]2 is:

Un(x(n)) = 4000 lnxk(n) + 3000 lnxm(n),

and the utility functions for L and R are as follows:

UL(x(L)) = 302 lnxk(L) + 99 lnxm(L),

UR(x(R)) = 1856 lnxk(R) + 2055 lnxm(R).

Put c = 1
3 . For each n ∈ N , the endowments are:

11The exact figures are (ˇ̃xk(R), ˇ̃xm(R)) =
(

531241249−
√
398532967789

5459042
, 5245197353−266

√
398532967789

41602500

)
.

ˆ̃xα(R), α = k,m, are as defined in §3.2.1.
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(
ek(n), em(n)

)
=
(
100 + 3

1+ϕ−ψ , 100−
4

1+ϕ−ψ + δL(n)
100

)
a.e. in [0, 12 − ψ

]
× [0, 1];(

ek(n), em(n)
)
=
(
100− 6

1+ψ−ϕ , 100 +
8

1+ψ−ϕ + δR(n)
100

)
a.e. in

(
1
2 − ψ, 12 + ϕ−ψ

2

]
× [0, 1];(

ek(n), em(n)
)
=
(
100 + 3

1+ϕ−ψ , 100−
4

1+ϕ−ψ + δL(n)
100

)
a.e. in

(
1
2 + ϕ−ψ

2 , 12 + ϕ
]
× [0, 1];(

ek(n), em(n)
)
=
(
100− 6

1+ψ−ϕ , 100 +
8

1+ψ−ϕ + δR(n)
100

)
a.e. in ( 12 + ϕ, 1

]
× [0, 1];(

ek(L), em(L)
)
=
(
100, 100 + δR(n)

100

)
;(

ek(R), em(R)
)
=
(
100, 100 + δL(n)

100

)
.

We take the function v(·) to be such that v(δi(n)) = δi(n) = |ℓ(n)− ℓ(i)|, i = L,R, and
we let t = 1

100 .
It can be verified, in light of the above, that the following profile of strategies consti-

tutes a candidate NE of Γ:
(
bL(n), bR(n), qL(n), qR(n)

)
=
(

6
1+ϕ−ψ , 0,

6
1+ϕ−ψ , 0

)
a.e. in [0, 12 − ψ

]
× [0, 1];(

bL(n), bR(n), qL(n), qR(n)
)
=
(
0, 6

1+ψ−ϕ , 0, 0
)
a.e. in

(
1
2 − ψ, 12 + ϕ−ψ

2

]
× [0, 1];(

bL(n), bR(n), qL(n), qR(n)
)
=
(

6
1+ϕ−ψ , 0,

6
1+ϕ−ψ , 0

)
a.e. in

(
1
2 + ϕ−ψ

2 , 12 + ϕ
]
× [0, 1];(

bL(n), bR(n), qL(n), qR(n)
)
=
(
0, 6

1+ψ−ϕ , 0, 0
)
a.e. in ( 12 + ϕ, 1

]
× [0, 1];(

bL(L), bR(L), qL(L), qR(L)
)
=
(
7, 28, 1, 1245

)
;(

bL(R), bR(R), qL(R), qR(R)
)
=
(
2, 15 , 2,

32
5

)
,

with pL = 2 ̸= 1 = pR. The final allocations of k andm to each n ∈ N are as follows:
(
xk(n), xm(n)

)
= (100, 100) a.e. in [0, 1]2;(

xk(L), xm(L)
)
=
(
1057
10 , 4625

)
;(

xk(R), xm(R)
)
=
(
464
5 , 5485

)
.

Our strategyprofile above is such that for eachn ∈ N,Un(xk(n), xm(n)) > Un(ek(n), em(n)).
We next verify whether the allocations derived above are such that Ui(xk(i), xm(i)) >

Ui(x̃k(i), x̃m(i)), i = L,R, where x̃k(i) and x̃m(i) are as previously defined. Since the
precise locations of L and R are unknown, we cannot derive explicit values for x̃k(i) and
x̃m(i), i = L,R. Wewill therefore employ the same approach as in our previous example.
If we take em(L) = 100, then we would have the optimal values of x̃k(L) and x̃m(L) to
be (ˇ̃xk(L), ˇ̃xm(L)) = (102.589, 96.42).12 On the other hand, if em(L) = 10001

100 , then given
the strategies of all players other than L, we would have the optimal values of x̃k(L) and
x̃m(L) to be (ˆ̃xk(L), ˆ̃xm(L)) = (102.59, 96.43). Since both x̃k(i) and x̃m(i) are increasing

12The exact figures are (ˇ̃xk(L), ˇ̃xm(L)) =
(

1965005−5
√
77895601

18724
, 645505−200

√
77895601

6237

)
and

(ˇ̃xk(R), ˇ̃xm(R)) =
(

61572871−31
√

252316564081
491840

, 67771721−31
√
252316564081

480870

)
. ˆ̃xα(i), i = L,R, α = k,m, are

as defined in §3.2.2.
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in em(i), i = L,R, it follows that ˇ̃xα(L) < x̃α(L) < ˆ̃xα(L), α = k,m. Likewise, given the
strategies of all players other than R, we have that (ˇ̃xk(R), ˇ̃xm(R)) = (93.5288, 108.553),
while (ˆ̃xk(R), ˆ̃xm(R)) = (93.5299, 108.562), such that ˇ̃xα(R) < x̃α(R) < ˆ̃xα(R), α =

k,m. As U(·) is increasing in both xk and xm, we thus know that Ui(xk(i), xm(i)) >

Ui(ˆ̃xk(i), ˆ̃xk(i)) > Ui(x̃k(i), x̃m(i)), i = L,R, indeed, such the strategy profile we have
derived above is an NE.

4 Conclusion

In this paper, we have presented a quantity-competition model of spatial product dif-
ferentiation. Prices are determined endogenously and explicitly by agents’ buy and sell
decisions. Our model crytallises the fact that in spatial models, irrespective of the car-
dinality of the set of agents, strategic behaviour persists and is tremendously impactful.
Verily, we have shown that even in the presence of individually insignificant agents, it is
possible to find open sets of economies in which the LOOP obtains at equilibrium, and
others in which it fails, no matter where the two trading posts are located. Amongst oth-
ers, this finding makes our framework appealing because the latter thus constitutes an
intuitive and simple-to-understand solution to the Bertrand paradox. Crucially, in what
is perhaps our most important and intriguing result, we have demonstrated that even
when the two markets are closely spaced, non-trivial pure-strategy Nash equilibria can
be found. This represents a major departure from current models.

Admittedly, our model is cast in a static framework. In future research, it would be
interesting to see how the setup hereby considered can be extended to a sequential game
format, in which firms would choose their locations first, and then trade accordingly.
Another compelling proposition would be to analyse if and how our conclusions would
change if we were to consider more than two trading posts.
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