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Abstract: A decision-making agent is usually assumed to be Bayesian ra-
tional, or to maximize subjective expected utility, in the context of a com-
pletely and correctly specified decision model. Following the discussion in
Hammond (2007) of Schumpeter’s (1911, 1934) concept of entrepreneurship,
and of Shackle’s (1953) concept of potential surprise, this paper considers en-
livened decision trees whose growth over time cannot be accurately modelled
in full detail. An enlivened decision tree involves more severe limitations
than model mis-specification, unforeseen contingencies, or unawareness, all
of which are typically modelled with reference to a universal state space
large enough to encompass any decision model that an agent may consider.
We consider three motivating examples based on: (i) Homer’s classic tale of
Odysseus and the Sirens; (ii) a two-period linear-quadratic model of portfo-
lio choice; (iii) the game of Chess. Though our novel framework transcends
standard notions of risk or uncertainty, a form of Bayesian rationality is still
possible. Instead of subjective probabilities of different models of a classical
finite decision tree, we show that Bayesian rationality and continuity imply
subjective expected utility maximization when some terminal nodes have at-
tached real-valued subjective evaluations instead of consequences. Moreover,
subjective evaluations lie behind, for example, the kind of Monte Carlo tree
search algorithm that has been used by some powerful chess-playing software
packages. [215 words]
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Prologue

Grau, teurer Freund, ist alle Theorie;
Grün des Lebens gold’ner Baum.1

— Mephistopheles in Goethe’s Faust, Part I.2

. . . he said that to finish [the] poem he could not get along without
the house because down in the cellar there was an Aleph. He
explained that an Aleph is one of the points in space that contains
all other points.

The Aleph’s diameter was probably little more than an inch, but
all space was there, actual and undiminished. Each thing (a mir-
ror’s face, let us say) was infinite things, since I distinctly saw
it from every angle of the universe. I saw the Aleph from every
point and angle, and in the Aleph I saw the earth and in the earth
the Aleph and in the Aleph the earth; I saw my own face and my
own bowels; I saw your face; and I felt dizzy and wept, for my
eyes had seen that secret and conjectured object whose name is
common to all men but which no man has looked upon — the
unimaginable universe. I felt infinite wonder, infinite pity. . . .
for Cantor’s Mengenlehre,3 [Aleph, or ℵ] is the symbol of transfi-
nite numbers, of which any part is as great as the whole.

Out on the street, going down the stairways inside Constitution
Station, riding the subway, every one of the faces seemed familiar
to me. I was afraid that not a single thing on earth would ever
again surprise me; I was afraid I would never again be free of all I
had seen. Happily, after a few sleepless nights, I was visited once
more by oblivion.

— Excerpts from Jorge Luis Borges El Aleph (1945), translated
by Norman Thomas Di Giovanni in collaboration with the author.

1“Grey, dear friend, is all theory; green the golden tree of life.”
2The subject of this paper provided the content for my last seminar at Stanford before

retiring in early 2007. A day or two beforehand, Kenneth Arrow left me a phone message
asking if I had been inspired by this quotation from Goethe. While my answer had to be
negative, I was left feeling that this should have been the source of my inspiration.

3“Mengenlehre” is “set theory” in German.
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1 Background and Outline

1.1 Justifying Bayesian Rationality

In decision theory, Bayesian rationality is the hypothesis that a decision
making agent’s choices are those whose consequences, which are generally
lotteries with both risky and uncertain outcomes, maximize the expected
value of a Bernoulli utility function Y 3 y 7→ u(y) ∈ R defined on the non-
empty consequence domain Y . For risky consequences which emerge from
what Anscombe and Aumann (1963) describe as a “roulette lottery”, there is
by definition an “objective” or hypothetical probability π(ω) ∈ [0, 1] of each
lottery outcome ω in a non-empty finite sample space Ω. For uncertain conse-
quences which emerge from what Anscombe and Aumann (1963) describe as
a “horse lottery”, Bayesian rationality requires there to be a “subjective” or
personal probability p(s) ∈ [0, 1] of each lottery outcome or state s in a non-
empty finite state space S. A general “Anscombe–Aumann” lottery specifies,
for each possible outcome s ∈ S of a horse lottery with subjective probabil-
ities, a suitable roulette lottery with objective probabilities λs(y) over con-
sequences y in the non-empty consequence domain Y . Then the appropriate
expected utility maximand is the double sum

∑
s∈S p(s)

∑
y∈Y λs(y)u(y) in-

volving products of both objective and subjective probabilities.
Past work has offered normative justifications for Bayesian rational be-

haviour in decision trees based upon:

1. either the “consequentialist” hypothesis set out in Hammond (1988a, b;
1998a, b; 1999) requiring that the range of possible Anscombe–Aumann
consequence lotteries which result from prescribed behaviour in any
finite decision tree, including any continuation decision tree, should be
explicable as the value of a suitably defined choice function defined on
the relevant domain of non-empty finite feasible sets of consequence
lotteries;

2. or, more recently, the associated concept of prerationality (Hammond,
2022) applied to weak base preference relations % defined on lottery
consequence domains.

When either consequentialism or prerationality is assumed, justifying Bayes-
ian rationality does require one additional well known continuity axiom. This
axiom applies to preferences over each “Marschak (1950) triangle” which,
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given a triple {λ, µ, ν} of roulette lotteries of which no two are indifferent, is
defined as the set ∆({λ, µ, ν}) of all probability mixtures qλλ+ qµµ+ qνµ of
the three lotteries, where the three probability weights qλ, qµ, qν are all non-
negative with qλ+qµ+qν = 1. After suitable relabelling, one can assume that
the strict preference relation � satisfies λ � µ, λ � ν, and µ � ν. Then,
given the corresponding weak preference relation %, the continuity axiom
requires that the two sets

{α ∈ [0, 1] | αλ+ (1− α)ν % µ} and {α ∈ [0, 1] | µ % αλ+ (1− α)ν}

should both be closed subsets of the unit interval [0, 1] ⊂ R. Dropping
continuity would allow some kind of lexicographic preference relation over
lotteries which is not Bayesian rational.

Some of these earlier papers justifiying Bayesian rationality also invoked
the assumption of dynamic consistency. This assumption requires intended
or planned behaviour at the later decision nodes of a tree T to match actual
behaviour. Yet in reality actual behaviour is determined only at a decision
node of T that happens to be the initial node n0 of T . At any decision
node n of tree T that is not the initial node n0 of T , behaviour is specified by
treating n as the initial node of the continuation subtree T≥n that results from
eliminating all the nodes of tree T which do not weakly succeed n. Then, at
decision nodes n which come strictly later than the initial node n0 of T , by
specifying actual behaviour without reference to previous intentions or plans,
dynamic inconsistency between actions and plans or intentions is entirely
ruled out. In this way, dynamic consistency is satisfied by construction.

1.2 Bounded Rationality? Or Bounded Modelling?

“All models are wrong, but some are useful.”
— George Box (1919–2013)

Human ingenuity has led at least some of us to create puzzles and other
decision problems in order to amuse or instruct each other. Many children,
and some adults, derive satisfaction from solving jigsaw puzzles, or from
learning how not to lose at noughts and crosses, otherwise known as tic-
tac-toe. Other people try crossword puzzles, or sudoku, or Rubik’s cube.
Generations of students take courses in mathematics during which they are
expected to learn by solving, or understanding the solutions to, progressively
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more demanding exercises. In each of these examples the challenge is to find
a perfect solution to a well defined decision problem.

Typical decision problems, however, are not like puzzles or mathematical
exercises. Indeed, they are very often far too challenging for full Bayesian
rationality to be possible. This recognition, of course, was a key motivation
for Simon (1955, 1957) to introduce his concepts of bounded rationality and
satisficing. Yet satisficing seems hard to motivate except as the result of some
compromise which emerges when the benefits of a more intensive search for a
Bayesian optimal decision have been traded off against the additional cost of
that search. Thus, satisficing seems to apply to the choice of what decision
model to analyse rather than to the choice of what decision to make within
a given model that is being analysed. For this reason, it seems that a more
satisfactory fundamental concept may be that of a bounded model.

Yet a decision-making agent who uses a bounded model may well fail to
recognize the all too likely need to revise that model whenever it is no longer
possible to ignore the fact that some previously unmodelled pertinent event
has occurred. Amongst other possibilities, this event could simply arise from
developing an improved model of the original decision problem.

1.3 Enlivened Decision Trees

So, motivated by several examples set out in later sections, including the
game of Chess, this paper argues that past work on Bayesian rationality
in decision trees is seriously limited in its relevance. This is because of
the failure to recognize any possibility that a decision maker’s decision tree
may be subject to “enlivenment” in the sense of enriching revisions that are
needed in order to recognize events which, though they cannot be excluded
as possibilities before the end of the original tree is reached, have had to be
excluded from the original decision tree. In complicated decision problems
such as those involved in playing Chess, typically such exclusions are in
practice unavoidable because, even if the enlivening events are not entirely
unforeseeable, they have had to be neglected because of computational or
other practical modelling limitations.

In order to allow the decision tree to change, even unpredictably, a frame-
work with “enlivened” decision trees is proposed. An entirely myopic agent
who follows the old adage “Don’t cross your bridges before you come to
them” — which Savage (1963, p. 16) in particular has discussed — will act
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as though this enlivening is totally irrelevant. This leads to the agent lurching
from one model to the next, displaying hubris throughout.

Of course many future decisions and their uncertain consequences cannot
be modelled in any detail. Nevertheless, an agent with even a little sophisti-
cation should recognize that what matters for any one decision is the current
expectation of what, when viewed in retrospect, its ultimate ex post value
will be. Following ideas that Koopmans (1964) and Kreps (1990, 1992) devel-
oped in order to discuss the preference for flexibility, an agent should seek to
determine these expected valuations as reliably as possible, using whatever
limited evidence is deemed to be relevant, as well as what can be handled
within whatever bounded resources the agent can afford to allocate to de-
cision analysis. See also Dekel et al. (2001, 2005) and many successors for
related ideas in the context of decision making with unforeseen contingencies
whose possibility is, nevertheless, foreseen by an apparently omniscient and
hubristic decision analyst. See also the work on unawareness in decisions and
games by, inter alia, Schipper (2014a, b), Halpern and Rêgo (2014), Grant
et al. (2015a, b), and especially the related work on growing awareness and
reverse Bayesianism by Vierø (2009, 2021) and by Karni and Vierø (2013,
2015, 2017).4

We emphasize that the present paper differs from this earlier work on
unforeseen contingencies or unawareness by not relying on the existence of
any “augmented conceivable state space” of the kind defined in Karni and
Vierø (2017, p. 304). Instead, initially we allow the relevant state space
to grow entirely unpredictably as a result of the dynamic process that we
call “enlivenment”. Specifically, though a decision-making agent may be
aware of the possibility of their own unawareness, they are unable even to
formulate a practical model which is based, as usual, on a comprehensive
space of all conceivably possible states. This enrichment of the previous
concepts of unforeseen contingencies or unawareness, which was introduced
informally in Hammond (2007), is inspired in part on Schumpeter’s (1911,
1934) concept of entrepreneurship, as well as Shackle’s (1953) concept of
potential surprise. The concept of an enlivened decision tree was motivated
in part by the classical example of Odysseus and the Sirens discussed in
Section 3.

4Other relevant work on unawareness includes the papers published in the special issue
of Mathematical Social Sciences edited by Schipper (2014a), as well as those cited in Vierø
(2021).
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That said, a completely specified enlivened decision tree, which is never
subject to any further enlivenment, could be regarded as falling within a uni-
versal augmented conceivable state space. As discussed above, the existence
of such a universal state space raises conceptual problems. To avoid these, we
consider recursively enlivened decision trees which are fully enlivened because
their growth can never be fully described in a single universal model. Never-
theless, even a fully enlivened tree can still be reduced to a simply enlivened
tree with random outcomes that, instead of consequence lotteries, are subjec-
tive evaluations attached to the terminal nodes of a truncated decision tree.
As discussed in Section 8.3, this approach to valuing a continuation subtree
which can never be completely modelled was the basis of the successful Deep
Fritz and then Stockfish open source engines for computer chess. Eventually,
however, Stockfish has been supplanted by AlphaZero which results from a
special kind of artificial intelligence.

1.4 Outline

Section 2 briefly reviews some distinctions between unbounded and bounded
rationality, including as prominent examples of the latter Simon’s concept
of procedural rationality, as well as Manzini and Mariotti’s (2007) “rational
shortlist” method.

Next, Section 3 revisits the well known Homeric example of Odysseus
and the Sirens. Previous work such as Strotz (1956), Pollak (1968), Ham-
mond (1976) and Elster (1979) has typically regarded this as a prominent
example of changing tastes, illustrating the distinction between näıve choice
and sophisticated choice, as well as the value of commitment devices. Here,
by contrast, the example is viewed as a mythical decision tree which the
sorceress Kirke (or Circe) enlivened as the sage advice that she was offering
Odysseus progressed through several stages.5

The next two Sections 4 and 5 focus on two particular examples. The
first is a consumer who, as an investor, chooses a portfolio of financial assets
in order to maximize a two-period quadratic utility function subject to a
linear budget constraint. Enlivening this consumer’s decision problem could
merely affect parameter values, but it could also allow the possibility that
new commodities, which may even not yet have been invented, could become
relevant.

5In Homeric Greek, the spelling of her name is Kίρκη.
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The second example in Section 5 involves the game of Chess, whether
played by computers or by humans. It offers a cursory explanation of how
Monte Carlo tree simulation can allow a computer algorithm to evaluate
positions that arise after possible future moves have been analysed in detail as
far as possible. It also presents a brief case study of a particularly unfortunate
human move, described at the time as “the blunder of the century”. This
is seen as one particularly prominent player’s failure to revise his bounded
model of how the game was likely to proceed.

The main idea of the paper is set out and developed in Sections 6–8.
First, Section 6 provides a summary of the key concepts we need to describe
Bayesian rationality in classical “unenlivened” finite decision trees. A key
tool used in later analysis is the evaluation v(T ) of any decision tree T . This
is defined as the normalized expected utility generated by any consequence
lottery that can result from deciding optimally at each decision node of T .
This expected utility or evaluation can be calculated by backward recursion,
starting at each terminal node of T , which has a specified consequence.

The focus of Section 7 is on a special kind of “simple” enlivenment that
transforms an original decision tree T with finite graph (N,E) into an “en-
livened” tree T+ with an extended finite graph (N+, E+), where N ⊂ N+. A
simple enlivenment involves introducing into each directed edge n→ n′ in a
non-empty finite subset of E an extra “enlivenment” edge e−m → e+

m consist-
ing of two extra nodes. The first of these is a “pre-enlivenment” event node
e−m lying between the two nodes n and n′ on a directed edge n→ n′ at which
an uncertain deviation may or may not occur, according to the result of a
horse lottery. There, if a deviation does not occur, the node e−m is immedi-
ately succeeded by node n′ of the original unenlivened tree T . Alternatively,
if a deviation does occur, it is to the extra “post-enlivenment” node e+. This
is the initial node of an arbitrary finite continuation subtree T+

≥e+ that gets
appended to T when T is enlivened to the new tree T+.

An agent whose decisions in an enlivened decision tree T+ are fully
Bayesian rational is effectively acting as an unboundedly rational agent would
if the enlivened decision tree really were the true and complete model of their
decision problem. This complete model plays the role of the “augmented con-
ceivable state space” considered by Karni and Vierø (2017, p. 304), amongst
others, whose use was criticised in Section 1.3. Such a space seems close in
spirit to the fictional device that Borges calls the “Aleph”.

Instead, Section 8 weakens Bayesian rationality when facing an enlivened
decision tree to a much less demanding requirement. This allows an en-
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livened decision tree, which is usually impossible to model in full detail, to
be truncated at one or more “terminal evaluation nodes” where the rele-
vant continuation decision tree has been reduced to a single terminal node.
Moreover, this terminal node is given, instead of a consequence lottery, a
subjective evaluation in the form of a real number that equals the agent’s
subjectively expected evaluation that would result from the unmodelled con-
sequences of entering the truncated continuation decision tree. In this case,
even when the agent cannot avoid remaining entirely unaware of the myriad
details of the fully enlivened tree, with all its possible enlivened consequences,
the evaluation of each possible terminal node n̄ in a truncated decision tree,
which is the evaluation of the continuation tree T≥n̄ that was removed by
truncation, can be treated as a special kind of uncertain state of the world.

Section 8.6 then states the main result of the paper that characterizes
Bayesian rationality in this new setting. The subsequent Section 8.7 com-
pares the arbitrariness of utilities and subjective probabilities in our model of
Bayesian rationality with enlivened evaluations to the arbitrariness of those
concepts in the Anscombe and Aumann (1963) model of subjective proba-
bility.

The concluding Section 9 starts, in Section 9.2, by analysing briefly the
concept of “reverse Bayesianism” due to Vierø (2009, 2021) and Karni and
Vierø (2013, 2015, 2017), as was mentioned in Section 1.3. Next, Section
9.3 offers a brief discussion of recent work by Ullmann-Margalit (2006), Paul
(2014, 2015a, b, c) and other philosophers who have introduced the concept
of a “transformative experience”. Finally, Section 9.4 mentions some other
possible extensions and conclusions.

2 Beyond Unbounded Rationality

2.1 Unbounded versus Procedural Rationality

Simon’s (1955, 1957) famous concept of “bounded rationality” may perhaps
best be defined by its negation. Decision agents who are unboundedly rational
make perfect decisions based on perfect models of all the possible acts they
could choose, along with all their potential consequences. The result could be
the rather disturbing kind of complete model so artfully described in Jorges
Luis Borges’ short story “El Aleph”, from which extracts are quoted in the
prologue.
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The definition of unbounded rationality in perfect models remains the
same no matter whether the consequences are certain (determinate), or else,
using the terminology due to Anscombe and Aumann (1963): (i) risky, with
hypothetical “objective” probabilities as in a roulette lottery; (ii) uncertain,
with personal or “subjective” probabilities as in a horse lottery. Such un-
bounded rationality would threaten to make games as complicated and en-
thralling as chess or Go no more interesting than the children’s game of
noughts and crosses, also known as “tic-tac-toe”.6 And there would be no
such thing as the “law of unintended consequences”; every possible conse-
quence should be calculated, making it in some sense intentional, even as the
perhaps unfortunate outcome of a risky decision.

In addition to bounded rationality, Simon advanced the important re-
lated idea of “procedural rationality”. This recognizes that decision proce-
dures could be rational, even if they lead to decisions that are irrational in
the sense of violating unbounded rationality. He emphasized concepts like
aspiration level, along with satisficing. The latter appears to mean finding a
decision that reaches the aspiration level, and making a decision that seems
good enough rather than optimal. But optimal (or even just flexible) search
suggests that if the aspiration level is reached quickly and easily, it is too
undemanding and so should be raised.

2.2 Rational Shortlists

The normative framework we propose, by contrast, suggests that satisficing
behaviour should occur, not within a given decision model, but in choosing
how much detail to include within the model. Then ultimately behaviour
should be optimal relative to whatever bounded model has been selected for
analysis.

In the case of decision problems whose acts have only determinate con-
sequences, the idea of a bounded model is neatly captured by the “rational
shortlist” method introduced by Manzini and Mariotti (2007) to discuss the
concept of “sequential rationalizability”. Their idea is that, given a large
feasible set of options, at an first initial stage the agent could shortlist a rel-

6Note that in Chess, the “Lomonosov tablebases” that are distributed online at
http://tb7.chessok.com/ currently specify perfect play starting from any legally pos-
sible position provided that there is a total of no more than seven pieces of either colour
left on the board, including both kings. The usual game of Chess starts, of course, with
each of the two players having 16 pieces on the board.
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atively small subset for later serious consideration. Moreover, this shortlist
should be small enough to make finding a fully optimal decision amongst
those that are shortlisted a manageable decision problem. Thus, any short-
list can be thought of as a bounded model of the feasible set. Also, when
it is recognized that observation and/or computation can be costly, work
on “rational inattention” inspired by Sims (2003, 2011) and by Hansen and
Sargent (2007) considers what bounded decision model may be optimal.

The choice of shortlist can be supposed to emerge rather arbitrarily, even
randomly, from some kind of boundedly rational search procedure. Of course,
some options may be much more likely to be shortlisted than others. Also, if
the composition of the shortlist is regarded as random, the different random
variables indicating whether each option belongs to the shortlist may well be
correlated.

Once the shortlist has been determined at the first stage, however, it is
entirely reasonable to assume that, at a subsequent second stage, the agent
indeed selects an optimal element among those that have been shortlisted.
That is, choice from within the shortlist satisfies what Simon (1955, 1957)
would call “substantitive rationality”.

2.3 Other Bounded Decision Models

Shortlisting can be viewed as a particular form of procedural rationality,
involving a two-stage procedure. The main point to be made here, however,
is that whatever the shortlist may be, it represents a bounded model of the
full decision problem. Indeed, limitations like the inability of computers to
play chess perfectly apply to all difficult decision problems, including most
of those that arise in life rather than in the oversimplified models that are
typically analysed and applied by economists and other decision scientists.
For this reason, any model we use to inform our decision-making should be
flexible enough to allow graceful adaptation to potential changes that any
practical model must otherwise ignore.

Suppose an effort really is made to take Simon’s “procedural rationality”
idea as seriously as possible. Specifically, it is presumably interesting to
explore the implications of assuming that:

1. agents’ time, attention, and computational resources are far too limited
for all but simplified models;
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2. and in fact they confine themselves to bounded models which are suf-
ficiently simple that they really can find the decision that is optimal
within the confines of their bounded model.

Once one recognizes, however, that the model which an agent uses for
making decisions is bounded, then one must also recognize that events may
eventually force consideration of an expanded or “enlivened” model that
includes unmodelled changes.

3 Odysseus and the Sirens Revisited

3.1 A Näıve Sailor’s Model

As our first “classical” example of an enlivened decision tree, we reconsider
the Homeric myth of Odysseus and the Sirens. According to this epic myth,
näıve sailors whose shortest sea route passed near the Sirens’ island had
perhaps in the past used a simple decision model like the one illustrated in
Figure 1. Specifically, they acted as though they thought that their choice
was between:

• either going near the Sirens’ island and reaching their destination early
by a direct route;

• or avoiding the Sirens’ island and arriving late after a detour.

start

avoid

late

go near

early

Figure 1: Näıve Sailor

start

avoid

late

go near

go on

early

tarry

die

Figure 2: Sophisticated Sailor
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3.2 A Sophisticated Sailor’s Model

According to Homer, however, Odysseus has the sorceress Kirke as a su-
pernaturally well-informed adviser. She warned Odysseus that the Sirens’
singing had the power to lure unwary sailors to their deaths, and that the
meadows on the Sirens’ island were littered with sailors’ bones. So if any
näıve sailor came within earshot of the Sirens by choosing go near in the
decision tree shown in Figure 1, they would find themselves facing instead
the decision node marked go near of the enlivened and so expanded decision
tree shown in Figure 2. At this node in the enlivened tree, their apparent
choice would be:

• either go on home after hearing the Sirens,

• or tarry, enchanted by their singing, and die on their island, before ever
reaching their intended destination.

Of course, the added feature was that, after hearing the Sirens, no sailor
had ever exercised enough will-power to escape the island. This is the es-
sential characteristic of what, in Hammond (1976), was called “potential
addict” example of changing tastes. Faced with the decision tree of Figure 2,
a sophisticated sailor who understands the persuasive power of the Sirens’
singing would avoid their island and stay out of earshot, even at the cost of
only reaching their intended destination after a significant delay.

3.3 Kirke’s First Enlivened Model for Odysseus

Kirke’s advice was not confined to a warning, however. Rather routine and
unheroic stories about avoiding the Sirens’ island and getting back to Ithaca
somewhat late by a roundabout route do not constitute memorable epics. In-
stead Kirke drew attention to the possibility of sailing safely past the Sirens’
island, provided the precaution was taken of stopping all the sailors’ ears
with wax. Thus, after deciding to approach the Sirens’ island, but before
getting within earshot, the choice at the node go near in Figure 3 would be:

• either wax all the crew’s ears (including those of Odysseus himself), so
none of them hears the Sirens;

• or use no wax, like earlier näıve sailors whose bones now litter the
Sirens’ meadow.
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late

go near

wax

early

no wax

go on

early

stop

die

Figure 3: Kirke’s First Model

start

avoid

late

go near

wax

bind

hear

free

early

no wax

go on

early

stop

die

Figure 4: Kirke’s Final Model

3.4 Kirke’s Final Enlivened Model for Odysseus

A much more interesting epic, however, is the one that Homer has given us.
Homer had Kirke advise Odysseus on an even better course of action which
allowed Odysseus, at least, to hear the Sirens and yet escape with his life.
Indeed, Odysseus was advised that, in addition to arranging for the ears of
all his crew to be waxed, he should have himself bound tightly to the mast.
Also, his crew should be given strict instructions that, in response to any
pleas for release that they see Odysseus making, not only should these pleas
be ignored, but also the tightness of his bounds should be increased even
more. Thus, Kirke’s final model for Odysseus includes an extra choice node
marked wax in Figure 4, where the choice is:

• either bind Odysseus to the mast, with ears unwaxed so he can hear
the Sirens,

• or leave Odysseus free but with ears waxed like the rest of the crew.

3.5 Toward Enlivened Decision Trees

The earlier näıve sailors whose bones littered the Sirens’ meadow had a model
like that in Figure 1. Once they had heard the Sirens’ singing and so learned
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of their existence, they may have realized too late that a more appropriate
model would have been like that in Figure 2. Odysseus (and his crew) were
fortunate enough to be provided with a much more useful model, going even
beyond Figure 2 to Figure 3 in the first instance, then ultimately to Figure 4.

Each decision tree in Figures 1–4 is lifeless when considered in isolation.
The four trees together, however, tell an epic tale of learning. But it is
not the usual statistical model of learning more and more about the state
of the world within a fixed sample space. Rather, the set of possibilities
is expanding, as more and more possibilities are included in the enriched
model. By introducing the term “enlivened tree”, I have not resisted the
temptation to draw an analogy with a live growing tree. Nor of suggesting a
strong analogy to the works of Schumpeter (1911, 1934) on innovation, and
of Shackle (1953) on “potential surprise” — see Hammond (2007) for further
discussion.

4 A Linear–Quadratic Portfolio Problem

4.1 A Two-Period Portfolio Problem

Our first example concerns a consumer with a two-period Bernoulli utility
function that takes the quadratic form

u(x1,x2) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(x2 − a2)>Q2(x2 − a2) (1)

Here x1 and x2 denote finite-dimensional consumption vectors in the two
periods, which may possibly have different dimensions, whereas a1 and a2

are corresponding parameter vectors. Furthermore, assume that Q1, Q2 are
symmetric and positive definite square matrices of appropriate dimension.

Suppose that the consumer faces two budget constraints, one each period,
which can be written as

p>1 x1 + q>b = m1 and p>2 x2 = m2 + r>b (2)

where b denotes a finite-dimensional portfolio vector of net asset holdings at
the end of period 1, with q as the asset price vector in period 1, then r as
the gross return vector. Of course p1 and p2 denote commodity price vectors
each period, both assumed to be strictly positive, whereas m1,m2 ∈ R are
outside wealth transfers. We allow a2, r and m2 all to be uncertain, but
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treat p2 as certain, just as Hicks (1946) did when he used point expectations
of future prices in his theory of temporary equilibrium.7 For simplicity we
also assume that the symmetric matrix Q2 is known in period 1. Finally, we
assume that the random gross return vector r is stochastically independent
of both random variables a2 and m2.

4.2 The Second-Period Optimum

By the start of period 2, we assume that the parameter vector a2, the gross
return vector r, and unearned income m2 have all become known, along
with the portfolio vector b which is pre-determined by the consumer’s own
choice in period 1, Accordingly, the consumer’s second-period optimization
problem, which is independent of whatever x1 is chosen in period 1, reduces
to

max
x2

{
−1

2
(x2 − a2)>Q2(x2 − a2)

}
subject to p>2 x2 = m2 + r>b (3)

To solve this constrained maximization problem, introduce the Lagrangian

Lλ2(x2) = −1
2
(x2 − a2)>Q2(x2 − a2)− λ2(p>2 x2 −m2 − r>b) (4)

Then Lλ2(x2) is concave as a function of x2. So it is maximized at any point
x2 that satisfies the first-order condition

0 = L′λ2(x2) = −(x2 − a2)>Q2 − λ2p
>
2 (5)

Because Q2 is assumed to be positive definite and so invertible, this first-
order condition is evidently equivalent to

(x2 − a2)> = −λ2p
>
2 Q−1

2 (6)

or, after transposing and rearranging, to

x2 = a2 − λ2Q
−1
2 p2 (7)

Substituting this into the budget equation in (3) gives

p>2 x2 = p>2 (a2 − λ2Q
−1
2 p2) = m2 + r>b (8)

7For a somewhat similar idea, see Myerson (1983).
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implying that

λ2 =
p>2 a2 −m2 − r>b

p>2 Q−1
2 p2

(9)

Note that the solution λ2 exists because p2 6= 0 and Q2 is positive definite.
Finally, we can combine (9) with (7) to determine the optimal demand vector,
which is

x∗2 = a2 −
p>2 a2 −m2 − r>b

p>2 Q−1
2 p2

Q−1
2 p2 (10)

Of course, for this solution to be economically sensible, we should require
that λ2 ≥ 0, or equivalently, that p>2 a2 ≥ m2 + r>b. Because this inequality
involves the asset vector b chosen in the first period, we will return to this
issue later after deriving the consumer’s optimal decisions in the first period.

Note that this solution implies that ex post, after a2, r and m2 have all
become known and x∗2 has been chosen optimally, equations (7) and (9) imply
that the consumer’s maximized second period utility is

−1
2
(x∗2 − a2)>Q2(x∗2 − a2) = −1

2
λ2

2p
>
2 Q−1

2 Q2Q
−1
2 p2

= −(p>2 a2 −m2 − r>b)2

2p>2 Q−1
2 p2

(11)

4.3 First-Period Expected Utility

Coming back to the first period, we have assumed that p2 and Q2 are both
known in advance. So after using (11), the ex ante expected value of the
intertemporal Bernoulli utility function (1) can be expressed as the function

v(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− E(p>2 a2 −m2 − r>b)2

2p>2 Q−1
2 p2

(12)

of the first-period choice variables x1 and b. The numerator of the fraction
in the second term of the right-hand side of (12) can be expanded as

E(p>2 a2 −m2 − r>b)2

= E(p>2 a2 −m2)2 − 2E[(p>2 a2 −m2)(r>b)] + E(r>b)2 (13)

Let ā2 := Ea2, m̄2 := Em2 and r̄ := Er denote the respective means, all of
which are assumed to exist. Our assumption that r is stochastically inde-
pendent of a2 and m2 implies that the middle term on the right-hand side of
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(13) reduces to

E[(p>2 a2 −m2)(r>b)] = (p>2 ā2 − m̄2)(r̄>b) (14)

As for the last term on the right-hand side of (13), note that

(r>b)2 = (b>r) (r>b) = b>(r r>)b and so E(r>b)2 = b>Rb (15)

where R denotes the symmetric square matrix E[rr>] of second moments
of returns, which we also assume exists. The moment matrix R is positive
definite under the assumption that the second moment E(r>b)2 of the return
to any portfolio b 6= 0 is always positive.

Substituting from (14) and (15) in (13) gives

E(p>2 a2 −m2 − r>b)2 = E(p>2 a2 −m2)2 − 2(p>2 ā2 − m̄2)r̄>b + b>Rb
= c+ (b∗ − b)>R(b∗ − b)

(16)
where b∗>R = (p>2 ā2 − m̄2)r̄>, implying that b∗ = R−1r̄(p>2 ā2 − m̄2), and
also

c = E(p>2 a2−m2)2−b∗>Rb∗ = E(p>2 a2−m2)2−(p>2 ā2−m̄2)2r̄>R−1r̄ (17)

Finally, therefore, after ignoring an irrelevant additive constant, the con-
sumer’s first-period maximand can be written as the quadratic form

v(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b∗ − b)>S(b∗ − b) (18)

where S := R/p>2 Q−1
2 p2.

4.4 The First-Period Optimization Problem

The consumer’s first-period optimization is therefore to maximise the func-
tion (18) w.r.t. x1 and b, subject to the budget constraint p>1 x1 +q>b = m1.
We solve this constrained maximization problem by introducing the La-
grangian

Lλ1(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b∗ − b)>S(b∗ − b)

− λ1(p>1 x1 + q>b−m1) (19)
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which is concave as a function of (x1,b), so is maximized w.r.t. (x1,b) when
the first-order conditions

0 = L′λ1,x1
= −(x1 − a1)>Q1 − λ1p

>
1 and 0 = L′λ1,b = (b∗ − b)>S− λ1q

>

(20)
are both satisfied. Because both Q1 and S are positive definite and so in-
vertible, these first-order conditions are equivalent to

(x1 − a1)> = −λ1p
>
1 Q−1

1 and (b∗ − b)> = λ1q
>S−1 (21)

or, after transposing and rearranging, to

x1 = a1 − λ1Q
−1
1 p1 and b = b∗ − λ1S

−1q (22)

Substituting these into the budget equation gives

p>1 x1 + q>b = p>1 (a1 − λ1Q
−1
1 p1) + q>(b∗ − λ1S

−1q) = m1 (23)

implying that

λ1 =
p>1 a1 + q>b∗ −m1

p>1 Q−1
1 p1 + q>S−1q

(24)

Note that this is well defined because p1 6= 0 and q 6= 0, whereas both
symmetric matrices Q1 and S are positive definite, and so invertible. Finally,
we can use (22) and (24) in order to determine the optimal commodity and
asset demand vectors, which are

x∗1 = a1 −
p>1 a1 + q>b∗ −m1

p>1 Q−1
1 p1 + q>S−1q

Q−1
1 p1 (25)

and b = b∗ − p>1 a1 + q>b∗ −m1

p>1 Q−1
1 p1 + q>S−1q

S−1q (26)

Of course, for this solution to be economically sensible, we should require
that λ1 ≥ 0, or equivalently, that

p>1 a1 + q>b∗ = p>1 a1 + q>R−1r̄ (p>2 ā2 − m̄2) ≥ m1 (27)

Furthermore, for the second-period solution we found previously to be eco-
nomically sensible, we should require also that p>2 a2 ≥ m2 + r>b. Because
the two random variables p>2 a2 −m2 and r>b are independent, this require-
ment implies that there must be a real number α for which, given the optimal
choice of b, one has

p>2 a2 −m2 ≥ α ≥ r>b (28)

for almost all possible values of the random pair (p>2 a2 −m2, r
>b) ∈ R2.
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4.5 An Enlivened Decision Problem

To enliven this linear–quadratic decision model, we consider the possibil-
ity that unforeseeable changes occur after the pair (x1,b) has already been
chosen in period 1. In general, there could be a new second period objective

−1
2
(x+

2 − a+
2 )>Q+

2 (x+
2 − a+

2 ) (29)

in which the dimension of the vectors x+
2 , a+

2 and the corresponding dimen-
sion of the positive definite square matrix Q+

2 may have increased, perhaps
because of new commodities. Of course, the second-period budget constraint
must also change; we write it as

p+
2
> x+

2 ≤ r> b +m2 (30)

with the same asset vector b as before, since that is already determined by
the consumer’s decisions in period 1. The joint distribution of (a+

2 ,m2, r)
may also change, as indeed it must if the dimension of a+

2 exceeds that of a2.
If these changes could be known in advance, then in period 1 the consumer

would face the problem of maximizing, instead of the quadratic evaluation
function v(x1,b) defined by (18), a revised quadratic objective function

v+(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b+∗ − b)>S+(b+∗ − b) (31)

of the same choice variables x1 and b, subject to the same first-period budget
constraint p>1 x1 + q>b = m1 as in (2). What has changed, however, are the
vector parameter b+∗ and matrix parameter S+ which appear in the last term
of (31), whose changes are now entirely unpredictable. Enlivenment requires
recognizing that these parameters must be treated as themselves uncertain.
A Bayesian rational consumer who remains convinced that some quadratic
model is still appropriate will, by definition, hold some subjective proba-
bility beliefs concerning the unpredictable pair (b̃∗, S̃) of parameters that
characterize each member of the parametric family of quadratic evaluation
functions

ṽ(x1,b; b̃∗, S̃) ≡ −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b̃∗ − b)>S̃(b̃∗ − b) (32)

Rationality, in the sense of subjective expected utility maximization, requires
optimal policy in period 1 to maximize the expected value Ê[ṽ(x1,b; b̃∗, S̃)]
of the function (32) w.r.t. probabilistic beliefs concerning the parameter pair
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(b̃∗, S̃). Such an expectation, however, after ignoring an irrelevant additive
constant, can be expressed in the convenient form

Ê[ṽ(x1,b; b̃∗, S̃)] ≡ −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b̂∗ − b)>Ŝ(b̂∗ − b) (33)

This involves the appropriate subjective expected value Ŝ := Ê[S̃] of the
random matrix S̃. Note that the matrix Ŝ is positive definite, and so invert-
ible, as the expected value of the random positive definite matrix S̃. This
allows the vector b̂∗ to be chosen uniquely so that it satisfies the first-order
condition Ŝ b̂∗ = Ê[S̃ b̃∗], implying that

b̂∗ = Ŝ−1 Ê[S̃ b̃∗] = (Ê[S̃])−1 Ê[S̃ b̃∗] (34)

5 Computer Chess

5.1 Simplified Chess

Consider the decision problem faced by a chess player who has to choose a
move when confronted by a known position denoted by n0. To specify this
position requires saying whose turn it is to move, and what piece, if any,
occupies each of the 64 squares on the board.8 Then let N1 := N+1(n0)
denote the set consisting of all those positions that can be reached by a move
which is legal in position n0.

Recall that, in the game of Chess, a player’s King is in check just in case
it is attacked by an opponent’s piece, in the sense that, in the absence of an
intervening move, that piece could capture the King. A player’s move is legal
only if it does not leave that player’s King in check. If the player whose turn
it is to move has no legal move, then: (i) that player has been checkmated
and loses the game if that player’s King in check; (ii) there is a stalemate
and the game is a draw if that player’s King is not in check.

Following the famous result of Zermelo (1913), as well as von Neumann’s
(1928) pioneering analysis of maximin or minimax strategies in two-person

8Actually, even in a simplified version of chess — without either clocks that are used
to enforce limits on each player’s total thinking time, or drawing rules that go beyond
stalemate, threefold repetition, or perpetual check — the rules of chess specify that: (i)
castling is disallowed if either the king or relevant rook has ever been moved previously; (ii)
a pawn can capture an opposition pawn en passant, but only immediately after the pawn
that is about to be captured has advanced two squares from its initial position. So there
are many chess positions whose full description requires significantly more information.
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“zero-sum” games of perfect information, given best play by both the White
and Black players, there is an objective result function

N1 3 n1 7→ r+(n1) ∈ {W,D,L} (35)

This function maps each possible position n1 ∈ N1 to a determinate result
r+(n1) ∈ {W,D,L} of the game that, for the player who is about to move, is
either a win (W ), or a draw (D), or a loss (L). This result can be converted
into a payoff using a scoring rule such as 1 for a win for White, or −1 for a
win for Black, but 0 for a draw. Then, given that a subgame of Chess starts
from the position n, the result of best play by both players in the subgame
will be given by an objective evaluation function

N1 3 n1 7→ v(n1) ∈ {1, 0,−1} (36)

For the player whose turn it is to move at n0, a move from n0 to n1 is
optimal if and only if:

1. n1 maximizes the evaluation function v(n1) in case it is White’s turn
to move at n0;

2. n1 minimizes the evaluation function v(n1) in case it is Black’s turn to
move at n0.

The objective normalized valuation function in (36) can only be com-
puted, however, for a few relatively simple positions where:

• either it can be proved that, in a small number of moves, one side can
force a win due to checkmate, or else, should they wish, a draw due
to either (i) stalemate; (ii) a threefold repetition of the position; (iii)
perpetual check;

• or alternatively, there are no more than 7 pieces on the board, including
both Kings, in which case the Lomonosov “endgame tablebase” soft-
ware cited in footnote 5 of Section 2.1 will specify what is the result of
the game if both players follow maximin strategies.

Thus, in choosing what move to make at n0, and so what should be the next
position n1 ∈ N1 on the board, a player is typically forced to come up with
subjective beliefs regarding the payoff function. These beliefs can be guided
by looking ahead a few moves. But unless one can calculate with certainty
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a way to force a simple position whose evaluation is definitely known, ulti-
mately one has to assign such evaluations to many such positions a few moves
ahead. In this way, one constructs a subjective evaluation function mapping
chess positions into subjectively expected payoffs. Computer chess programs
for doing this involve algorithms that are good, even superhuman, but are
still necessarily imperfect. Currently some of the most effective software uses
an algorithm based on Monte Carlo tree search (MCTS), which is further
discussed in Section 8.3 — see Browne et al. (2012) for a general survey that
has been widely cited in the computer science literature. Applied to Chess,
in order to evaluate a given position n, MCTS considers many simulated con-
tinuation subgames that all start in position n, but then introduces a little
carefully controlled randomness into the routine for choosing each ensuing
move. Then the final evaluation of any position n is the average score over
all the simulated games that start in position n.

5.2 Real Chess

Real chess is considerably more complicated. For one thing, a player about to
move can claim a draw by demonstrating that the next move can be chosen
either to repeat the same position a third time, or so that both players will
have made at least 50 moves without either a piece being captured or a pawn
being moved. Also, the game usually ends with either: (i) one player who is
losing choosing to resign; or (ii) with both players agreeing to a draw when
both judge that they have an insufficient chance of winning.

Finally, there are time limits monitored by a chess clock, or actually a
coupled pair of clocks, one for each player, which displays how much re-
maining total time that player has available before the next time control.
Whenever either player has just made a move, they can press a lever that
simultaneously stops their own clock and starts the opponent’s. These ad-
ditional considerations make the description of any chess position n rather
more complicated, since it must include, for instance, how much more time
each player can use before they would lose on time.

5.3 Human Failure in a Bounded Model

Human chess experts exercise their skill by focusing attention on only a small
number of plausible moves in each position. Given any legal chess position
n0, consider the set N1 := N+1(n0) of all possible positions n1 that can result
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after a legal move to n1 is made from the position n0. Chess experts discern
that many members n1 of N1, though allowable, are too inferior to deserve
much, if any, consideration. Of course, human chess experts are also very
good at judging the value of any position n1 that they might think of moving
to. In this sense, they have good bounded models.

But, being merely human, even the very best players’ models and eval-
uations of different positions may sometimes be grossly deficient. Witness
how in 2006 Vladimir Kramnik, then the world champion, committed the
“blunder of the century” by overlooking a checkmate in one move, which led
to an immediate loss. This blunder was during the second game of a match
of six games played against the computer program Deep Fritz.9

Figure 5: Deep Fritz v. Kramnik, Game 2

In this game, Deep Fritz was playing with the White pieces. Its last move
before the position shown in Figure 5 was its 34th. The move was 34. Ne6×f8.
This notation signifies that White’s knight, which had been on square e6, was
used to take the Black piece, actually a rook, which had been on square f8.
In response, Kramnik (as Black) blundered horribly by playing the queen
move 34 . . . Qa7–e3, as indicated by the arrow in Figure 5, thereby reaching
the position shown in that Figure. Whereupon the computer program Deep
Fritz promptly indicated that its next move, the queen move 35. Qe4–h7,
would win at once by giving checkmate for White.

There must be thousands if not millions of chess players not nearly as
strong as Kramnik who, if they were to be shown the position immediately

9See https://en.chessbase.com/post/how-could-kramnik-overlook-the-mate-
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before the move 34 . . . Qa7–e3, would certainly notice that White was threat-
ening to make the move 35. Qe4–h7 checkmate. So how did Kramnik overlook
it?

A good clue likes in the following observation that Kramnik himself of-
fered during the press conference that was held minutes after the game ended:

“It was actually not only about the last move. . . . I calculated the
line many, many times, rechecking myself. I already calculated
this line when I played 29 . . . Qa7, and after each move I was
recalculating, again, and again, and finally I blundered mate in
one. Actually it was the first time that it happened to me, and
I cannot really find any explanation. I was not feeling tired, I
think I was calculating well during the whole game . . . It’s just
very strange, I cannot explain it.”

One way to interpret this is that Kramnik as Black, already when choosing
his 29th move, had been planning to make what turned out subsequently to
be the disastrous move 34 . . . Qa7–e3 which is shown in Figure 5. In the end
it was as if Kramnik had become so fixated on this plan that he restricted
himself to a bounded model which made no provision for the possibility of
being checkmated immediately after making that fatal move.

6 Bayesian Rationality in Decision Trees

6.1 Roulette Lotteries

Following the terminology of Anscombe and Aumann (1963), given any non-
empty set Z, let ∆(Z) denote the set of all roulette lotteries or simple proba-
bility measures. These take the form of functions Z 3 z 7→ λ(z) ∈ [0, 1] with
a finite support suppλ ⊆ Z such that

λ(z) > 0⇐⇒ z ∈ suppλ and
∑
z∈Z

λ(z) =
∑

z∈suppλ

λ(z) = 1 (37)

Then, given any z ∈ Z, let Z 3 z′ 7→ δz(z
′) ∈ ∆(Z) denote the unique

degenerate lottery that satisfies δz(z) = 1. Also, whenever Z is a finite set,
let ∆0(Z) denote the set of fully supported lotteries λ ∈ ∆(Z) that satisfy
suppλ = Z, or equivalently, λ(z) > 0 for all z ∈ Z. Finally, given any

24



λ, µ ∈ ∆(Z) and any scalar α ∈ [0, 1], let ν := αλ+ (1−α)µ ∈ ∆(Z) denote
the lottery mixture Z 3 z 7→ ν(z) ∈ [0, 1] which, for all z ∈ Z, satisfies

ν(z) = [αλ+ (1− α)µ](z) = αλ(z) + (1− α)µ(z) (38)

6.2 Anscombe–Aumann Consequence Lotteries

The hypothesis of Bayesian rationality, or subjective expected utility maxi-
mization, applies when there is a non-empty state space S of possible states of
the world s on which the subjective probability mapping S 3 s 7→ p(s) ∈ [0.1]
is defined, where

∑
s∈S p(s) = 1. Following Anscombe and Aumann (1963)

once again, we assume that S is finite. Also, following their terminology
which was described in Section 1.1, the random process of determining an
uncertain state of the world will be described as a “horse lottery”.

Bayesian rationality concerns preferences over Anscombe–Aumann con-
sequence lotteries. By definition, these may involve both risk, due to roulette
lotteries, and uncertainty, due to horse lotteries. Let Y denote a non-empty
consequence domain, and ∆(Y ) the domain of roulette lotteries over Y .
Given the finite set S of states s and the consequence domain Y , for each
state s ∈ S, let Ys be a copy of Y .10 Then let

LS(Y ) :=
∏
s∈S

∆(Ys) = {〈λs〉s∈S | ∀s ∈ S : λs ∈ ∆(Ys)} (39)

denote the space of Anscombe–Aumann lotteries, or AA lotteries, in the form
of lists 〈λs〉s∈S or mappings S 3 s 7→ λs ∈ ∆(Y ). Each such mapping
specifies a combination of, first, a horse lottery that determines a state s ∈ S,
followed second by a state-dependent roulette lottery λs that determines a
consequence y ∈ Y .

10This is the case of a state-independent consequence domain, which we assume in order
to simplify notation. The more general case of a state-dependent consequence domain
occurs when Ys depends on s. In this case, let Y ∪ := ∪s∈SYs denote the union domain
of all consequences y that are feasible in some state s ∈ S. Then there may be a state-
dependent utility function D 3 (s, y) 7→ u(s, y)→ R defined on the domain D := {(s, y) ∈
S×Y ∪ | y ∈ Ys} of feasible state–consequence pairs. Such state-dependent utility functions
have been studied in Drèze (1962), Karni (1985), and Drèze and Rustichini (2004). See
Hammond (1998b, 1999, 2022) for a unified treatment which generalizes the case when the
consequence domain is state-independent, and which derives a state-independent utility
function even when the consequence domain is state-dependent.
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6.3 Choice from Pair Sets and Base Preferences

Let F(LS(Y )) denote the family of non-empty finite subsets of the AA-lottery
domain LS(Y ). A choice function is a mapping

F(LS(Y )) 3 F 7→ C(F ) ∈ F(LS(Y )) (40)

that, for each non-empty feasible set F ∈ F(LS(Y )), determines a non-empty
choice set C(F ) ∈ F(LS(Y )) satisfying C(F ) ⊆ F .

Corresponding to any choice function F 7→ C(F ), its values when F
is a pair set with #F = 2 determine a strict preference relation �C , a
strict dispreference relation ≺C , and an indifference relation ∼C . These three
relations are defined so that for each pair λS, µS ∈ LS(Y ), one has

λS


�C
∼C
≺C

µS according as C({λS, µS}) =


{λS}
{λS, µS}
{µS}

 (41)

Underlying the choice function F 7→ C(F ) specified by (40), there is a single
corresponding binary weak preference relation %C on LS(Y ), called the base
relation. For each pair λS, µS ∈ LS(Y ), this base relation satisfies

λS %C µ
S ⇐⇒ λS ∈ C({λS, µS})⇐⇒ λS �C µS or λS ∼C µS (42)

Finally, we mention the corresponding weak dispreference relation -C defined
so that

λS -C µ
S ⇐⇒ µS ∈ C({λS, µS})⇐⇒ λS ≺C µS or λS ∼C µS (43)

Evidently both the weak preference relation %C and the weak dispreference
relation -C are complete in the sense that, for each pair λS, µS ∈ LS(Y ), one
has:

1. either λS %C µ
S or µS %C λ

S or both;

2. either λS -C µ
S or µS -C λ

S or both.

6.4 Bayesian Rationality and Expected Utility

Let F 7→ C(F ) be any choice function satisfying (40) and C(F ) ⊆ F for
all F ∈ F(LS(Y )) that corresponds to the base preference relation %C de-
fined on the space LS(Y ) of AA lotteries λS by (41). Then the mapping
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LS(Y ) 3 λS 7→ US(λS) ∈ R is a utility function which represents the prefer-
ence relation %C on LS(Y ) just in case, for all λS, µS ∈ LS(Y ), one has

λS %C µ
S ⇐⇒ US(λS) ≥ US(µS) (44)

Given the specified non-empty finite set S of uncertain states of the world,
an interior subjective probability mass function is a mapping S 3 s 7→ P(s) ∈
(0, 1] that satisfies

∑
s∈S P(s) = 1. As discussed in Section 5.4 of Hammond

(1998b) and in Hammond (2022), the restriction to positive probabilities is
to avoid the difficulties that arise in continuation subtrees of a decision tree
when zero probabilities are allowed.

Then the choice function F 7→ C(F ), together with the associated base
preference relation %C on the space LS(Y ), are both Bayesian rational just
in case there exist a probability mass function S 3 s 7→ P(s) ∈ (0, 1], as well
as a Bernoulli utility function Y 3 y 7→ u(y) → R, such that the preference
relation %C on LS(Y ) is represented by the von Neumann subjective expected
utility function defined for all AA lotteries λS = 〈λs〉s∈S by the double sum

US(λS) =
∑
s∈S

P(s)
∑
y∈Y

λs(y)u(y) (45)

in the sense that (44) is satisfied.

6.5 Normalizing Utility

Recall that, as explained in Section 6.1, for each y ∈ Y , we use δy to denote
the unique degenerate probability measure in ∆(Y ) that satisfies δy({y}) = 1.
To avoid trivialities, we assume that there exist at least three consequences
y, y0, y in the domain Y such that, for the three corresponding degenerate
lotteries δy, δy0 , δy, the base strict preference relation � satisfies the strict
preference property δy � δy0 � δy.

Consider any Bernoulli utility function Y 3 y 7→ u(y) → R and the
associated preference relation % on ∆(Y ) that satisfies

λ % µ⇐⇒ U(λS) ≥ U(µS) (46)

for the von Neumann objective expected utility function on ∆(Y ) defined by

U(λ) =
∑
y∈Y

λ(y)u(y) (47)
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As explained in Hammond (1998a, Section 2.3), assuming Bayesian rational-

ity, the ratio
u(y0)− u(y)

u(y)− u(y)
of utility differences equals, in economists’ ter-

minology, the constant marginal rate of substitution along an indifference
curve between shifts in probability: (i) from consequence y to y0; (ii) from
consequence y to y. This leads us to say that two Bernoulli utility functions
y 7→ u(y) and y 7→ ũ(y) are equivalent just in case, for every triple y, y0, y of
consequences in Y satisfying δy � δy0 � δy and so u(y) > u(y0) > u(y), the
corresponding ratios of utility differences satisfy

u(y0)− u(y)

u(y)− u(y)
=
ũ(y0)− ũ(y)

ũ(y)− ũ(y)
(48)

But (48) holds for every triple y, y0, y satisfying u(y) > u(y0) > u(y) if and
only if there exist an additive constant α ∈ R and a positive multiplicative
constant ρ ∈ R such that, for all y ∈ Y , one has

ũ(y) = α + ρu(y) (49)

Now, given any pair u, ū of real numbers with ū > u and any Bernoulli
utility function Y 3 y 7→ u(y) → R, there exist two unique constants α
and ρ > 0 such that the transformed utility function defined by (49) is a
normalized utility function that satisfies ũ(y) = u and ũ(y) = u. Indeed the
two constants we need are given by

ρ =
u− u

u(y)− u(y)
and then α = u− ρu(y) = u− ρu(y) (50)

From now on let u denote the unique Bernoulli utility function Y 3 y 7→
u(y)→ R whose expected values defined by (47) satisfy (46), and which has
been normalized to satisfy

u(y) = u and u(y) = u (51)

6.6 Finite Decision Trees

In mathematics, a graph (N,E) is a non-empty set N of vertices or nodes n
whose pairs may or may not be connected by edges e = (n, n′) with n 6= n′

in a specified set E ⊆ N ×N . The graph (N,E) is finite just in case the set
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N of nodes is finite, which implies that the set E of edges is also finite . The
graph (N,E) is directed just in case there is an antisymmetric and complete
binary relation >+1 on E — i.e., for each edge (n, n′) ∈ E, either n >+1 n

′,
or n′ >+1 n, but not both. The sequence (n1, n2, . . . , n`) of ` nodes in N is
a path of length ` ∈ N in the directed graph (N,E) just in case nk+1 >+1 nk
for k = 1, 2, . . . , `− 1.

The graph (N,E) is a directed tree just in case there is a unique initial
node n0 ∈ N (or root, or seed, or entry point) such that, for every other node
n ∈ N \ {n0} of the graph, there is a unique path (n0, n1, n2, . . . , n) which
starts at node n0 and ends at node n. In the case of a directed tree, we write
each edge (n, n′) of E in the form n→ n′, where n′ >+1 n.

Let T = (N,E) denote any finite directed tree. Given any node n ∈ N ,
say that:

1. any node n′ ∈ N (ultimately) succeeds n just in case either n′ = n, or
else there is a path (n1, n2, . . . , n`) of nodes in N such that n1 = n and
n` = n′;

2. the continuation subtree T≥n = (N≥n, E≥n) is the unique tree in which:

• N≥n is the set of all nodes in the set N that succeed n;

• E≥n is the restriction E ∩ (N≥n ×N≥n) of edges in E to directed
pairs of nodes that both succeed n;

3. any other node n′ ∈ N immediately succeeds n just in case the ordered
pair (n, n′) is a directed edge of T , and then let

N+1
≥n := {n′ ∈ N | (n, n′) ∈ E} = {n′ ∈ N | n′ >+1 n} (52)

denote the set of all the immediate successors of n.

A finite decision tree is a finite directed tree T = (N,E) in which, follow-
ing the terminology and Anscombe and Aumann (1963), the set N of nodes
is partitioned into four pairwise disjoint subsets:

1. the set Nd of decision nodes n at each of which the decision-making
agent must choose an edge n → n′ emanating from n — i.e., where
n′ ∈ N+1

≥n, as defined in (52);
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2. the set N c of chance nodes n where an edge emanating from n is de-
termined randomly by a roulette lottery N+1

≥n 3 n′ 7→ π(n′|n) ∈ (0, 1]
with the property that all specified probabilities are positive;11

3. the setN e of event nodes where an edge emanating from n is determined
by a horse lottery in which, for some non-empty set S of states of the
world, the non-empty event S≥n ⊆ S is partitioned into the collection
{S≥n′ | n′ ∈ N+1

≥n} of non-empty pairwise disjoint sub-events;

4. the non-empty set N t of terminal nodes n at which N+1
≥n = ∅, so no

edge emanates, and which are each mapped to an Anscombe–Aumann
consequence lottery γ(n) = 〈γs〉s∈S≥n

∈ LS≥n(Y ) whose outcomes y
belong to the specified consequence domain Y .

Given the consequence domain Y and state space S, let T S(Y ) denote the
collection of all decision trees T whose terminal nodes n ∈ N t are mapped
to AA consequence lotteries λE ∈ LE(Y ) which, for some non-empty event
S≥n ⊆ S, belong to LS≥n(Y ). Say that a decision tree T ∈ T S(Y ) is:

• deterministic just in case N c = N e = ∅;

• risky just in case N c 6= ∅ but N e = ∅;12

• a Savage tree just in case N e 6= ∅ but N c = ∅;

• an Anscombe–Aumann tree just in case N c 6= ∅ and N e 6= ∅.

6.7 Truncated Decision Trees and Influence Diagrams

Let T be any decision tree in the domain T (Y ), whose graph (N,E) consists
of the set N of nodes together with the set E of directed edges n→ n′ that
satisfy n, n′ ∈ N with n 6= n′. A truncation T̂ of T is a decision tree with
graph (N̂ , Ê) where N̂ is a non-empty subset of N , and

Ê = {n→ n′ ∈ E | n, n′ ∈ N̂} (53)

11See Hammond (1988b) for an explanation of why, if there is a chance node n ∈ N c and
a node n′ ∈ N+1

≥n at which π(n′|n) = 0, then all consequence lotteries must be indifferent.
12Raiffa (1968) focused on risky decision trees with pecuniary consequences in the form

of payoffs measured in dollars.
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That is, the set of edges Ê in T̂ consists of those directed edges n→ n′ in E
which join vertices satisfying n, n′ ∈ N̂ .

We have assumed that any decision tree T ∈ T S(Y ) is finite, as is the
continuation subtree T≥n for any n ∈ N . Nevertheless, each continuation
subtree can be arbitrarily large, as can the set Mn of moves n→ n′ in E that
are possible at each node n, whether node n is a decision, chance, or event
node. So generally it is impossible to represent all the nodes in a continuation
subtree T≥n in a single diagram of that subtree.

Instead of trying to represent graphically any full continuation subtree
T≥n, we follow the standard method described by Howard and Matheson
(2005), which uses influence diagrams to compress what would otherwise be
the often extraordinarily convoluted full representation of a decision tree. In
the simple cases economists usually consider, they often describe influence
diagrams as showing “time lines”, each of which represents the typical mem-
ber of what may be a large set of several paths through the tree. Instead of
ending in one specific consequence, such influence diagrams will usually end
in a variable consequence.

Truncated subtree T̂≥n: wn -
m

Mn

wnm- T̂≥nm

Figure 6: Influence Diagram for the Truncated Subtree T̂≥nm

Figure 6 shows an influence diagram for the truncation T̂≥n of any con-
tinuation subtree T≥n that follows any particular node n ∈ N . Attached to
each terminal node nm ∈ N+1

≥n with m ∈Mn of this truncated subtree, there

is a corresponding continuation subtree T̂≥nm .

6.8 Evaluations of Unenlivened Continuation Subtrees

Consider the orthodox “unenlivened” decision model which is represented by
any finite decision tree T in the domain T S(Y ) of trees with state space S
and lottery consequences in the domain LS

′
(Y ) for some non-empty S ′ ⊆ S.

Working backwards, as usual in dynamic programming, we can use a recur-
sive procedure to calculate the evaluation v(T≥n) or subjectively expected
continuation value of reaching any node n ∈ N , which is the initial node of
the continuation subtree T≥n.
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In the finite decision tree T , the backward recursion starts at any terminal
node n ∈ N t. As discussed in Section 6.6, the specified consequence of
reaching any terminal node n ∈ N t of tree T is the AA consequence lottery
γ(n) = 〈γs〉s∈S≥n

∈ LS≥n(Y ). Then the evaluation v(T≥n) of the subtree T≥n,
whose only node is the terminal node n, is specified by (45) as the double
sum

v(T≥n) = US≥n(γ(n)) =
∑
s∈S≥n

P(s)
∑
y∈Y

γs(y)u(y) (54)

At any previous node n 6∈ N t, the value v(T≥n) of reaching node n and
continuation subtree T≥n depends upon the set {v(T≥n′) | n′ ∈ N+1

≥n} of

values at all the nodes n′ ∈ N+1
≥n which immediately succeed n. There are

three cases to consider, depending upon whether n is a chance, event, or
decision node. In the first case when n is a chance node whose immediate
successors n′ ∈ N+1

≥n occur with respective specified probabilities π(n′|n), the
relevant recursion takes the form

v(T≥n) =
∑

n′∈N+1
≥n

π(n′|n)v(T≥n′) (55)

The second case occurs when n is an event node, each of whose immediate
successors n′ ∈ N+1

≥n determines which is the relevant cell of the partition

{S≥n′ | n′ ∈ N+1
≥n} of the event S≥n into pairwise disjoint sets. In this case

the objectively specified probabilities π(n′|n) that appear in (55) need to
be replaced by subjective conditional probabilities p(n′|n) derived from the
relevant subjective probabilities P(s) for different states s ∈ S≥n. Because of
our requirement that P(s) > 0 for all s ∈ S, these conditional probabilities
p(n′|n) are all well defined, and can be calculated as

p(n′|n) =
∑
s∈S≥n′

P(s) /
∑
s∈S≥n

P(s) (56)

So, when n is an event node with subjective probabilities p(n′|n) given by
(56) rather than a chance node with hypothetical or objective probabilities
π(n′|n), the previous formula (55) is changed to

v(T≥n) =
∑

n′∈N+1
≥n

p(n′|n)v(T≥n′) (57)
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In the third and final case when n is a decision node, we apply the op-
timality principle of stochastic dynamic programming. This requires any
current optimal decision n∗ ∈ N+1

≥n to be the first step toward achieving the
highest possible expected value resulting from an appropriate plan for all
subsequent decisions. Consider the induction hypothesis that, for each node
n′ ∈ N+1

≥n, the value v(T≥n′) is the maximum possible evaluation the agent
can achieve by choosing an optimal decision at each decision node of T≥n′ .
This is trivally true when n′ is a terminal node, so there is no decision to
make at node n′. If this hypothesis is true at each node n′ ∈ N+1

≥n, then any
optimal decision at node n must be to move to an immediately succeeding
node n∗ which maximizes the evaluation v(T≥n′) with respect to n′ subject
to n′ ∈ N+1

≥n. In other words, one must satisfy

n∗ ∈ arg maxn′∈N+1
≥n
v(T≥n′) (58)

So the appropriate recursion when n is a decision node is

v(T≥n) = v(T≥n∗) = max
n′∈N+1

≥n

v(T≥n′) (59)

Together, therefore, the four equations (54), (55), (57), and (59) do indeed
determine v(T≥n) by backward recurrence in the four different cases.

7 Trees with Simply Enlivened Consequences

7.1 Simple Enlivenment as Enrichment

It is time to return to the main task in the rest of the paper. This is to
explain how a relevant version of the Bayesian rationality hypothesis can be
applied even to enlivened decision trees. Given any decision tree T ∈ T S(Y ),
we begin by defining a simple enlivenment as a suitable modification of any
particular “unenlivened” continuation subtree T≥n whose initial node is n, as
defined in Section 1.1. This simple enlivenment will then result from adding
an appropriate set of extra nodes to T≥n. This, after all, is what happened
when we described the enlivened decision trees in the three examples of
Sections 3, 4, and 5.

Indeed, in the model of Odysseus and the Sirens set out in Section 3,
there were three stages of enlivenment which come from adding new nodes
one step at a time as one progresses through the succession of four trees
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illustrated in Figures 1–4. Second, in Section 4, the enlivened two-period
linear-quadratic portfolio problem which is described in Section 4.5 is the
result of adding extra dimensions to the original problem set out in Section
4.1. Third, the Chess “blunder of the century” described in Section 5.3 seems
to have resulted from Kramnik as Black calculating the likely consequences
of his planned moves using a bounded model which excludes the move 35.
Qe4–h7 that Deep Fritz, playing White, used to deliver checkmate. In this
sense, Deep Fritz was using an enlivened version of the bounded model which
Kramnik had been using, with 35. Qe4–h7 as an extra possible move which
is included in the enriched model, but not in Kramnik’s bounded model.

Suppose now that the agent’s original unenlivened continuation subtree
T≥n is simply enlivened to a new enlivened subtree T+

≥n which extends T≥n
by recognizing new possibilities that had previously been excluded. Consider
any new information which, when the agent is at n, arrives in time to change
the modelled feasible set Mn := N+1

≥n of possible immediate successors of n.
These are the nodes nm which can be reached by moves n→ nm for m ∈Mn

that are possible at the initial node n of T≥n. As a result, the set Mn is
replaced by a new expanded feasible set M+

n which is incorporated in a new
tree T+. We argue that this expansion is really a trivial enlivenment of T
because, before making a decision at node n, the agent has time to recognize
that the feasible set of moves n→ nm at node n is M+

n rather than only the
subset Mn. And this, of course, is exactly what the agent should do.

So, to conclude, a necessary condition for the agent to be able to decide to
move to a node nm with m ∈M+

n in the expanded continuation subtree T+
≥n

is that node nm must be included in the agent’s original continuation subtree
T≥n. This is also sufficient; if node nm is in the tree T+

≥n, then the agent,
when at node n, could in principle choose to move there. Accordingly, we
assume that Mn remains unaffected by any enlivenment of the continuation
subtree T≥n. Only after a chosen decision node nm ∈ Mn has already been
reached can any enlivening of the initial continuation subtree T≥n occur.

Similarly, even if the initial node n of the original continuation subtree
T≥n is not a decision node, we still insist that simple enlivenment can never
occur at node n. Instead, it must occur at a new node which belongs to T+

≥n
but not to T≥n.
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7.2 Enlivenment Edges

The focus now is on a special kind of simple enlivenment that enriches an
original continuation decision subtree T≥n with initial decision node n and
finite graph (N≥n, E≥n). As in Section 7.1, let Mn denote the set of all
possible moves m along a directed edge n → n′m in E≥n. Let M+

n denote
a non-empty subset of Mn having the property that for each m ∈ M+

n , an
extra enlivenment edge e−m → e+

m consisting of two extra nodes e−m and e+
m

is introduced into the corresponding directed edge n → nm of the original
subtree T≥n. For each m ∈ M+

n , this extra directed edge joins an earlier
pre-enlivenment node e−m to a later post-enlivenment node e+

m. Each pre-
enlivenment node e−m appears in the middle of the unique corresponding edge
n → nm, and is an event node where an uncertain deviation may or may
not occur. Then, for each m ∈ M+

n , the pre-enlivenment node e−m has two
immediate successors that belong to N+1(e−m) in the enlivened continuation
subtree T+

≥n. Specifically, at the new pre-enlivenment node event node e−m:

1. First, in case the horse lottery at e−m results in there being no deviation,
the relevant immediate successor of e−m is the node ne−m . Subsequently
the continuation subtree T+

≥n
e−m

would be a copy of the subtree T≥nm

that emanates from nm in the original unenlivened tree T , unless there
is a later enlivenment node in that subtree.

2. Second, in case the horse lottery at e−m results in a deviation, the rele-
vant immediate successor of e−m is the post-enlivenment node e+

m. This
is the initial node of a finite continuation subtree T+

≥e+m
that gets ap-

pended to T≥n at e+
m when T≥n is enlivened to the new tree T+

≥n.

7.3 Enlivened Consequences and States

Before we can explore the implications of Bayesian rationality in the en-
livened continuation subtree T+

≥n, we need to extend the domains of both the
Bernoulli utility function Y 3 y 7→ u(y) → R which has been normalized to
satisfy (51), and the finite state space S. For each move m ∈ M+

n at which
the possibility of enlivenment is modelled, and so for each corresponding
continuation subtree T+

≥e+m
, there is a finite enriched domain Y +

m of conse-

quences y and an enriched domain S+
m of possible states s that could feasibly

result from following an appropriate path from e+
m to a terminal node. Then
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the enlivened consequence domain and enlivened state space are defined as
the unions

Y + = ∪m∈M+
n
Y +
m and S+ = ∪m∈M+

n
S+
m (60)

over the finite collection of, respectively, all possible enriched consequence
domains Y +

m and all possible enriched state spaces S+
m. Let T S+

(Y +) denote
the relevant domain of possible enlivened decision trees with the enlived
consequence domain and state space. Let LS

+
(Y +) denote the relevant space

of possible enlivened AA consequence lotteries.
Suppose that we now repeat the construction set out in Section 6.5 of the

normalized Bernoulli utility function Y 3 y 7→ u(y) → R that satisfies (51),
but for the extended domain Y + rather than the original domain Y . The
result will be the enlivened Bernoulli utility function

Y + 3 y 7→ u+(y)→ R (61)

whose expectation represents the extended base preference relation %+ on the
lottery domain ∆(Y +). Moreover, because the two particular consequences
y, y used in the earlier normalization (51) are in Y + as well as in Y , we can
the impose the obvious counterpart

u+(y) = u and u+(y) = u (62)

of that earlier normalization. The resulting function (61) will then extend
Y 3 y 7→ u(y)→ R in the sense that the latter is the restriction to Y of the
former.

Similarly, the construction of the subjective probabilities P(s) of each
state s ∈ S can be extended to a construction of the enlivened subjective
probabilities P+(s) of each state s ∈ S+.

7.4 Bayesian Rationality in Simply Enlivened Trees

Let T denote any decision tree in the domain T S(Y ), Consider once again
any enlivenment T+

≥n of its continuation decision subtree T≥n with, for any

m ∈ Mn = N+1
≥n, its typical continuation subtrees T+

≥e−m
and T+

≥e+m
. Note

that both these subtrees belong to the enlivened domain T S+
(Y +) of finite

decision trees. Our assumption that T+
≥n is finite evidently implies that the

set Mn is finite.
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Subtree T+
≥n:

n
-m

Mn

ge−m -unique
move

wnm-- original subtree T≥nm

?
e+
m

w-- enlivened subtree T+

≥e+m

Figure 7: Influence Diagram for the Enlivened Subtree T+
≥n

Figure 7 shows the result of modifying the influence diagram of Figure 6
in order to accommodate the typical enlivenment edge e−m → e+

m that appears
in the enlivened continuation subtree T+

≥n, as described in Section 7.2, where:

• Mn = N+1
≥n is the set of moves m that are feasible at the node n;

• T+
≥n is truncated by detaching, for each m ∈ M+

n , all of the nodes in
both of the two alternative continuation subtrees T≥nm and T+

≥e+m
.

Note that, in the case of an influence diagram derived from a truncated
decision tree, such as that shown in Figure 7, there will be paths through the
tree that, when truncated at their penultimate node, which is either nm or
e+
m, end at the initial node of a variable continuation subtree which is equal

to either the original subtree T≥nm or the enlivened subtree T+

≥e+m
.

Consider also the evaluations v(T≥n) that were constructed in Section 6.8
by backward recurrence, using whichever of the four equations (54), (55),
(57), and (59) applies to each successive node n. Bayesian rationality implies
that exactly the same construction can be applied in order to reach enlivened
evaluations v+(T+

≥n′) at each node n′ within the enlivened continuation sub-

tree T+

≥e+m
, for each m ∈Mn.

Indeed, suppose we construct, for each m ∈Mn and corresponding event
node e−m of T+

≥n, the evaluation v+(T+

≥e−m
) of the enlivened continuation de-

cision tree T+

≥e−m
. In order to do so, we apply the refined form of Bayesian

rationality specified in Hammond (2022). It implies that, for each m ∈ Mn,
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there exists a unique subjective probability ηm ∈ (0, 1) that enlivenment
occurs at the event node e−m, and so a probability 1 − ηm ∈ (0, 1) that en-
livenment does not occur at e−m. But the original continuation subtree T≥nm

remains unenlivened, so its enlivened evaluation v+(T≥nm) equals its unen-
livened evaluation v(T≥nm). So, applying the obvious counterpart of rule (57)
for the particular event node e−m of T+

≥n tells us that

v+(T+

≥e−m
) = (1− ηm) v(T≥nm) + ηm v

+(T+

≥e+m
) (63)

Finally, in order to find the enlivened evaluation v+(T+
≥n) of the entire

enlivened continuation subtree T+
≥n, we apply the obvious modification for

this enlivened tree of whichever of the three rules (55), (57), and (59) is
relevant at node n, according as it is a chance, event, or decision node.

8 Trees with Terminal Evaluation Nodes

8.1 Difficulties in Evaluating Continuation Subtrees

The conditionally expected enlivened evaluation associated with entering any
continuation subtree T+

≥n of a simple enlivenment T+ of the original decision

tree T ∈ T S(Y ) is v+
(
T+
≥n
)
. In principle, this can be calculated by following

the procedure of backward recursion that was set out in Section 7.4.
Consider any node m ∈ M ′

n that, by definition, immediately succeeds
n and has a potential enlivenment edge e−m → e+

m inserted within the edge
n → m of the original tree T . Then the backward recursion is trivial in the
very special case when the enlivened subtree T+

≥e+m
shown in Figure 7 has

only one terminal node ntm, whose specified enlivened consequence γ+(ntm)
is a lottery over the enlivened consequence domain Y +. This, of course,
implies that v+

(
T+
≥n
)

is the enlivened expected utility Eγ+(nt
m)[u

+(y+)] of
this enlivened lottery consequence.

Carrying out the required backward recursion computation obviously be-
comes much more challenging, if not practically impossible, as at least some
of the enlivened subtrees T+

≥e+m
shown in Figure 7 become more complicated.

The set of moves m ∈M ′
n, each with its own subtree T+

≥e+m
, may also become

unmanageably large.

38



8.2 Recursive Enlivenments and Recursive Valuation

Even worse, suppose we go beyond the simply enlivened trees defined which
were the focus of Section 7. Suppose instead we allow recursively enlivened
trees that, by definition, themselves may be further enlivened. Then obvi-
ously it soon becomes practically impossible to consider all relevant possibil-
ities.

In the first simple case, the continuation subtree T+

≥e+m
starting after the

enlivening event at e−m, for any m ∈ M ′
n, is always a decision tree in which

no further enlivenment could occur. Yet in the account of the Homeric ex-
ample in Section 3, the decision tree that Kirke described to Odysseus was
enlivened in several successive stages. Indeed, there were subsequent enliven-
ings of decision trees that had emerged only after previous enlivenings. This
illustrates the possibility of recursive enlivenment. And of course anybody
who has ever played Chess at any level beyond the most basic also knows
that recursive enlivenment affects a player’s evolving understanding of the
game being played, and so of how to evaluate any position in that game.

Even more troubling, as the game of Chess illustrates, the backward re-
cursion procedure may already have become computationally infeasible when
trying to find the evaluation function v(T≥n) for subtrees T≥n of the original
unenlivened tree T . Indeed, in Chess and Go, the number of relevant trees
that ideally should be evaluated is finite, even if astronomical. Though in
the case of Chess, as discussed in footnote 5 of Section 2.1, the relevant re-
cursive calculation has been done completely for all positions that start with
no more than 7 out of 32 pieces on the board, including of course both kings.
Nevertheless, in real life, the collection of potentially relevant trees may be
too large to constitute a set, let alone a measurable space on which one can
define a probability measure. In general, however, as was already discussed in
Sections 1.2 and 1.3, an agent’s need to truncate the original unmanageable
decision model so it becomes manageable could motivate that agent to con-
sider enlivenments of that original model as its limitations become apparent
later on.

8.3 Monte Carlo Tree Search

Long before computer games became popular recreations, math-
ematicians viewed games as models of decision making. The
general understanding of decisions, however, has been impeded
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by the ambiguity of some of the basic components of game-tree
search. In particular, the static evaluation function, or deter-
mination of a node’s merit based on directly detectable features,
has never been adequately defined. The expected-outcome model
proposes that the appropriate value to assign a node is the ex-
pected value of a game’s outcome given random play from that
node on.
— from the abstract to Bruce Abramson’s (1987) Ph.D. disser-
tation, eventually published as Abramson (1991).

Exploiting Abramson’s key idea described in the quotation above helped
to inspire a generation of computer programmes that:

1. in the case of Chess, led to the Stockfish software engine that would
easily beat any human player over any sufficiently long run of games;

2. but in the case of Go, was unable to defeat the best human players.

Eventually, this generation of algorithms became superseded by Alpha-
Zero, based on the kind of genetic algorithm that has become a key part
of what has come to be known as “artificial intelligence”. Such algorithms
have proved far better at Chess than programs of the Stockfish generation,
while finally becoming able to beat the best humans at Go. The key paper
by Silver et al. (2018), however, reports that idea of Monte Carlo tree search
(MCTS) remains part of AlphaZero.

8.4 Decision Trees with Terminal Evaluation Nodes

Algorithms based on MCTS suggest a key idea for simplifying the typical
simply enlivened decision tree T+, or its typical continuation subtree T+

≥n,
that is represented by the influence diagram illustrated in Figure 7. This idea
is to truncate the representative continuation subtree T+

≥e+m
of that diagram so

it becomes simply one terminal node with, instead of a lottery consequence,

an estimate ṽ+
(
T+

≥e+m

)
of its normatively appropriate evaluation v+

(
T+

≥e+m

)
.

The result is the influence diagram shown in Figure 8, which is based on a
truncation of T+. Indeed, in essence this procedure reduces the enlivened
decision tree T+ to the trivial case mentioned in Section 8.1, with the dif-
ference that the single consequence lottery γt(ntm) at each terminal node ntm
gets replaced by a subjective evaluation ṽ+

m ∈ R. So these results allow the
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construction of a final reduced enlivened tree in which each enlivened node
e+
m is a terminal node, to which the subjective evaluation ṽ+

m is attached as
a real-valued generalized consequence.

Subtree T+
≥n:

n
-m

Mn

ge−m -unique
move

wnm-- original subtree T≥nm

?
e+
m

w-- subjective evaluation ṽ+
m

Figure 8: Influence Diagram for the Fully Reduced Subtree T+
≥n

Given any enlivened continuation subtree T+
≥n that results from such re-

cursive enlivenment, provided it is still finite, in principle one could still
employ standard backward recursion in order to calculate the appropriate
valuation attached to each continuation subtree T+

≥e+m
of T+

≥n. Yet after the

reduction of tree-valued to real-valued states, the relevant real values should
be those that emerge from any such calculation, including allowing for any
possible recursion. In this way, using the subjective evaluations ṽ+

m obviates
entirely any need for any recursive calculation, except to the extent that
such calculations may help to produce normatively superior beliefs about
what subjective evaluations ṽ+

m should be attached to at least some of the
relevant continuation subtrees T+

≥nm
of T+.

8.5 Reformulation and Generalization

The difficulties noted in Section 8.2 make it practically imperative to truncate
the agent’s decision tree, at least in some cases. This creates the need to
attach subjective evaluations to at least some of the terminal nodes of a
truncated decision tree. Indeed, in the case of games as complicated as
Chess or Go, there will be cases when the agent is forced to attach to every
terminal node a subjective evaluation rather than a consequence in the form
of a definite result. This helps explain why some form of Monte Carlo tree
search algorithm has played such a key role in improving algorithms for
playing Chess or Go.

So the time has come to reformulate and generalize our formulation of a
finite decision tree in order to accommodate terminal nodes that have sub-
jective evaluations rather than consequences attached. This can be accom-
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plished by modifying the definition of decision tree in Section 6.6 to recognize,
in addition to terminal nodes n ∈ N t that are mapped to Anscombe–Aumann
consequence lotteries γ(n) ∈ LS≥n(Y ), a new category N e of terminal eval-
uation nodes n which, like other terminal nodes, also satisfy N+1

≥n = ∅, but
which are mapped directly to subjective evaluations v(n) ∈ R.

Let T ∗S(Y S) denote the domain of finite decision trees that results when
the original domain T S(Y S) is expanded to include trees that admit this
kind of terminal evaluation node. It is evidently equivalent to the domain
T S(Y ∗S) of finite decision trees that results when the original consequence
domain Y is expanded to become Y ∗ = Y ∪ R by allowing real-valued sub-
jective evaluations to count as consequences.

Having extended the consequence domain in this way, the next step is
to extend the construction in Section 6.8 of the evaluation v(T≥n) of each
continuation subtree T≥n of each decision tree T ∈ T S(Y S). Let v∗(T≥n)
denote the result of the extended construction, which is an evaluation defined
for each continuation subtree T≥n of each decision tree T ∈ T S(Y ∗S). These
evaluations should still satisfy the four equations (54), (55), (57), and (59),
though with each v(T≥n) and each v(T≥n′) replaced by v∗(T≥n) and v∗(T≥n′)
respectively. The only new feature is that, at any terminal evaluation node n
with subjective evaluation v(n), the equation (54) should be replaced by the
obvious

v∗(T≥n) = v(n) (64)

8.6 Bayesian Rationality with Subjective Evaluations

The main conclusion of the paper can be stated in the following proposition,
which establishes Bayesian rationality with subjective evaluations:

Proposition 1. Suppose that base preferences defined on the enlivened do-
main LS

+
(Y +) of all possible Anscombe/Aumann consequence lotteries are

both prerational and continuous w.r.t. objective probabilities for the domain
T S(Y ∗S) of all possible enlivened decision trees T that include terminal eval-
uation nodes. Then behaviour at any decision node of any tree T ∈ T S(Y ∗S),
together with the subjective evaluation v∗(T≥n) attached to any continuation
subtree T≥n of any tree T ∈ T S(Y ∗S), together satisfy (54) at any terminal
evaluation node n with subjective evaluation v(n), as well as the four equa-
tions (54), (55), (57), and (59), though with each v(T≥n) and each v(T≥n′)
replaced by v∗(T≥n) and v∗(T≥n′).
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8.7 Limitations of Bayesian Rationality

A more refined concept of rationality than mere Bayesian rationality would
presumably require a rational agent to use a normatively justified Bernoulli
utility function defined on the consequence domain, together with norma-
tively justified subjective probabilities over uncertain states of the world.
Thus, this richer concept of rationality would go beyond mere prerationality.

Prerationality in enlivened trees is no less limited. Indeed, rationality
should require the agent’s subjective evaluations at terminal evaluation nodes
to be normatively justified, in addition to the agent’s normalized Bernoulli
utility function and subjective probabilities.

Of course, the agent’s estimates of the relevant subjective probabilities
and subjective evaluations may well be improved by procedures such as
Monte Carlo tree search, as considered in Section 8.3, and/or techniques
in management science such as scenario planning.

9 Extensions and Conclusions

9.1 Consequence Nodes and Menu Consequences

In Hammond and Troccoli Moretti (2024) we consider finite decision trees
which, in addition to decision, chance, event, and terminal nodes, also have
consequence nodes. Then the consequence of reaching a terminal node n is,
instead of a single consequence lottery, a lottery over the stream of conse-
quences and consequence lotteries that accumulate along the unique path
through the decision tree that ends at node n. The implications of allowing
consequence nodes are then routine unless the consequence of reaching any
consequence node depends on the continuation decision tree emanating from
that node. Even then, however, the result that continuity and prerationality
together imply Bayesian rationality remains valid; all that changes is that
the domain of relevant consequence streams becomes much richer.

For trees with consequence nodes, there is an obvious extension of the
rules set out in the four equations (54), (55), (57), and (59) of Section 6.8.
This extension treats the case when node n is a consequence node. With this
extension, the characterization in Section 8.6 of Bayesian rationality with
subjective evaluations still applies.
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9.2 Reverse Bayesianism

“Reverse Bayesianism” was described in the series of joint papers by Karni
and Vierø, as well as those by Vierø on her own, that were cited in Section
1.3. For the general finite decision trees considered here, reverse Bayesian-
ism is the result saying that, if you condition the probabilities of different
consequences in any enlivened decision tree T+ on the event that enlivening
does not occur, the result should be the corresponding probabilities in the
original unenlivened decision tree T .

9.3 Transformative Experiences

The concept of transformative experiences arose in philosophy thanks to Paul
(2014, 2015a, b, c), though similar ideas were discussed earlier in Ullmann-
Margalit’s (2006) paper on “big decisions” whose first characteristic (p. 158)
is that they must be “transformative, or ‘core affecting’ ”. As Paul (2015b,
p. 761) writes:

a transformative experience is . . . both radically new to the agent
and changes her in a deep and fundamental way; there are ex-
periences such as becoming a parent, discovering a new faith,
emigrating to a new country, or fighting in a war. . . .

An epistemically transformative experience is an experience that
teaches you something you could not have learned without hav-
ing that kind of experience. Having that experience gives you
new abilities to imagine, recognize, and cognitively model possi-
ble future experiences of that kind. A personally transformative
experience changes you in some deep and personally fundamental
way, for example, by changing your core personal preferences or
by changing the way you understand your desires and the kind
of person you take yourself to be. A transformative experience,
then, is an experience that is both epistemically and personally
transformative.

The main problem with transformative decisions is that our stan-
dard decision models break down when we lack epistemic access
to the subjective values for our possible outcomes.

As two philosophically prominent examples of transformative experiences,
she considers the decisions of whether to become a vampire (!) or to have
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a child.13 See also the discussion by Pettigrew (2015), Barnes (2015), and
Campbell (2015), as well as Bykvist and Stefánsson (2017). The claim we
make here is that any transformative experience involves a decision tree that
becomes enlivened in case it includes the agent’s decision of whether to un-
dergo the experience.

9.4 A Possible Conclusion

The widely quoted aphorism due to the statistician George Box that was
quoted at the head of Section 1.2 should remind us of the inevitable limita-
tions that will occur in any formal model of all but the most trivial decision
problems. Indeed, examples that extend in time from Homer’s Odyssey to
modern algorithms for playing chess demonstrate that, for an agent who has
one or more decisions to make, the usefulness of any model is all too likely
to be temporary. This paper has begun an investigation of what decision is
rational for an agent who recognizes this fundamental difficulty. Specifically,
it is argued that the best which such an agent can do, in effect, is to construct
a probabilistic model of what the ultimate ex post evaluation of each possible
decision could be, and then to maximize the expectation of this evaluation.

Acknowledgements: The research reported here was supported from 2007
to 2010 by a Marie Curie Excellence Chair funded by the European Com-
mission under contract number MEXC-CT-2006-041121. Many thanks also
to Kenneth Arrow, Ken Binmore, and Burkhard Schipper for their helpful
suggestions, as well as to Marcus Miller and Joanne Yoong for enlivened dis-
cussions, while absolving them of all responsibility for my errors or omissions.
Many thanks also for their patient attention and encouragement to audiences
at: the GSB/Economics Department theory seminar at Stanford University
(March 2007); the London School of Economics conference on preference
change (May 2009); the University of Warwick (November 2010); CORE
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