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Abstract

In today’s love market, swipe-based dating platforms (SBDPs) such as Tinder or
Bumble have a well-established presence, but novel platform features can add sig-
nificant complexities to the user’s search problem in ways that have been largely
under-studied in previous literature. This paper formulates a model of two-sided
search within SBDPs, where agents with heterogeneous preferences seek multiple
romantic partners whilst facing intertemporal action constraints. Using numerical
methods, I approximate stationary equilibria and perform comparative statics on
various exogenous parameters that help explain stylised empirical facts. Finally,
agent-based simulations are used to asses the structure of stationary equilibria as
well as its attainability under myopic best-response dynamics.
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Why Do Men Keep Swiping Right?

1 Introduction

It is widely acknowledged that the search for love is a complex social phenomenon, but

in today’s world, swipe-based dating platforms (SBDPs) seem to only make it trickier.

These platforms, exemplified by Tinder, Bumble, and Hinge, provide a gamified way of

browsing through potential romantic partners by swiping through a stack of suggested

candidates to indicate likes or dislikes for these, one profile at a time. In the search and

matching literature, settings like these fall under the category of decentralised two-sided

matching markets with search frictions (Kanoria and Saban, 2021) and, despite broad

differences with traditional dating sites that perform centralised static matching, SBDPs

have come to dominate the modern love market, with Tinder alone boasting 75 million

monthly active users and 9.6 million paid subscribers as of 2021 (Business of Apps, 2022).

From a theoretical standpoint, search within SBDPs involves several complexities

induced by platform-specific features, such as swiping caps, asynchronicity, and directed

search algorithms. These impose non-trivial constraints on the way utility-maximising

agents strategise their search, but they have been sparsely studied in the economics

literature due to the relative novelty of these platforms. Overall, the prevalent role of

SBDPs in shaping modern romantic interactions and their largely understudied nature

motivates many different questions. Nevertheless, exploring these requires a fundamental

understanding of how users make decisions in these platforms: to put it simply, when

should a utility-maximising user swipe right?

This dissertation will explore the above within an SBDP setting, where agents with

heterogeneous preferences on both sides of the market search sequentially for multiple

romantic partners. Crucially, I focus on explaining (what I refer to as) the ‘Fast-Swiping

Men’ puzzle: that is, the empirical observation that men in SBDPs respond with signif-

icantly higher swipe rates and face considerably worse matching outcomes than women.

This phenomenon has been both a subject of empirical research (Tyson et al., 2016) and

a contentious discussion point within mainstream media (Vice News, 2016; The Washing-

ton Post, 2016), and yet a significant gap persists within the literature for an exploration

of this through a theoretical lens1. Such analysis would add significant value since the

potential causes of this phenomenon (user patience, differential preferences, and strategic

dominance) are all systematically endogenous with one another, thus demanding a rigor-

ous model that can isolate these individual effects and trace their propagation across the

SBDP market. Fundamentally, I show how sex imbalances within the platform (which

arise due to several exogenous factors) can explain the above disparities and, expanding

on this, I outline a possible intervention under which differential swiping caps between

sexes can alleviate inefficiencies stemming from asymmetric selectiveness in the market.

1Among the surveyed literature, perhaps the only partial examination of this phenomenon is provided
by Kanoria and Saban (2021)
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This work presents two main contributions to existing literature on the topic. Firstly,

it constitutes one of a handful of attempts to model the market configurations arising

within SBDPs, which is unsurprising due to the novelty of these platforms, but important

given their current social relevance. Furthermore, it distinguishes itself from other similar

works by directly considering the ‘Fast-Swiping Men’ puzzle as well as the impact of

swiping caps both as a constraint in the agent’s search problem and a potential market

correction mechanism. Finally, this work provides an interesting case study for the use

of computational methods within game theory (a field that has traditionally emphasised

pure mathematical analysis), showing how the two approaches can be jointly applied to

complicated questions, with computational methods providing quick explorations that

can serve as an intuitive stepping stone towards formalising mathematical arguments.

The remainder of the paper is structured as follows. In Section 2, I outline the theoret-

ical framework for the model developed in this paper, and derive necessary conditions for

both the platform steady state and agent best-responses. In Section 3, I present a refined

definition for the stationary equilibrium of the model and perform computational com-

parative statics on several parameters, with the aim of explaining the ‘Fast-Swiping Men’

phenomenon and a possible market intervention. In Section 4, I utilise agent-based sim-

ulations to analyse the convergence and dynamics of my model, while Section 5 presents

concluding remarks and outlines potential avenues for future research.

1.1 Related Work

The present work draws inspiration from two key branches of economics literature: that

of search and matching theory, which studies the decision-making process of agents who

seek, for example, a job, a business partner, or a spouse, and that of mean-field game

theory, which models complex dynamic games involving a large number of players. I

discuss each of these in turn, and then contrast this work with the handful of papers that

have focused on specifically analysing SBDP markets.

Despite the abundance of papers within the search and matching literature, which

has been amply surveyed by Chade et al. (2017), I focus on works that consider the

three defining features of SBDP markets: decentralised matching, non-transferable utility,

and sequential search with frictions. A seminal paper at this intersection is that of

Burdett and Coles (1997), which studies the marriage market for ex-ante heterogeneous

agents under uniform random search, extending the work of Becker (1973) by showing

that positive assortative matching can arise in a setting with search frictions. Several

extensions follow from this, considering idiosyncratic preferences (Burdett and Wright,

1998), noisy attractiveness observations (Chade, 2006), and even convergence onto the set

of stable matchings (Adachi, 2003). The framework outlined in this dissertation is perhaps

most similar to that of Burdett and Wright (1998), with three major differences between
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the two. Firstly, the model developed in this paper extends the above by allowing for

multiple partners within an agent’s lifetime, a feature which was probably not significant

within the labour market context considered by Burdett and Wright (1998), but which

is nevertheless quintessential of SBDPs given their role in enabling casual relationships.

Furthermore, I extend the work of Burdett and Wright by allowing for sex-specific mass

differences in the platform, as well as exogenous agent arrival flows; a point that was of

noted interest for the authors themselves, and which is fundamental when considering

the effects of sex imbalances within the platform. Finally, the model in this dissertation

adopts a discrete time framework, departing from Burdett and Wright (1998) and most of

the recent matching literature. Although continuous-time models provide sharper analysis

and more flexible empirical specifications (Burdett and Coles, 1999), this modelling choice

lends itself naturally to agent-based simulations, which are used to explore equilibria

convergence and dynamics in a richer manner.

On the other hand, mean-field game theory focuses on dynamic games with a large

number of agents, for which curses of dimensionality arise due to intractable state spaces.

Mean-field models tackle this issue by conditioning gameplay on the invariant state dis-

tribution amongst players, rather than tracking and considering the individual state of

each opponent (Light and Weintraub, 2022). This simplifying assumption is cemented

by a consistency check, such that equilibria arise when rational play conditional on an

aggregate state distribution maintains this as a fixed point. This approach, perhaps first

considered by Jovanovic and Rosenthal (1988) and Hopenhayn (1992), has been success-

fully applied to settings such as network routing (Calderone and Sastry, 2017), dynamic

auctions with learning (Iyer et al., 2014) and, perhaps most relevantly, online match-

ing platforms (Kanoria and Saban, 2021; Immorlica et al., 2021). In this paper, I rely

on mean-field assumptions to abstract away from observability considerations: within

SBDPs, the market history is unknown to players, therefore concepts such as Perfect

Bayesian Equilibrium would require players to maintain and update beliefs over uncount-

able history spaces, and even beliefs over the beliefs of other players(a complication known

as nested beliefs (Brandenburger and Dekel, 1993)). This yields two central problems:

first, that agent best-responses and equilibria become virtually impossible to compute,

and, by extension, that the model assumes an unreasonable level of rationality on behalf

of agents (Iyer et al., 2014). Thus, by conditioning interactions on the stationary plat-

form state only, the model in this paper characterises equilibria that are both insightful

and representative of real-life behaviour and dynamics.

Among the few papers specifically considering SBDPs, Kanoria and Saban (2021)

propose a dynamic two-sided model with vertically-differentiated agents, and show that

platforms with unbalanced markets can improve welfare by forcing the short side to ‘pro-

pose’ in all interactions. Furthermore, Immorlica et al. (2021) focus on the problem of

designing a directed search algorithm for SBDPs by endogenising type-contingent meet-
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ing rates for agents. Finally, Arnosti et al. (2021) study the welfare losses that can arise in

congested matching markets, and propose limiting the visibility of agents as a mechanism

for overcoming this issue. All of these papers present theoretical models with similar fea-

tures, and these have largely influenced my work in several ways. Despite this, the above

papers all model settings with one-to-one matchings only, thus differing fundamentally

with my work in terms of the nature of endogeneity for agent departures. On one hand,

this modelling choice makes their work and insights applicable to a wider variety of online

matching platforms (such as AirBnb, TaskRabbit, etc.), but it also fails to capture an

essential aspect specific to SBDPs that could have significant behavioural implications.

Other than this (and some minor technical differences), the main point of distinction

between my work and theirs is mostly one of perspective: whilst the above papers fo-

cus mostly on platform mechanism design (by considering features such as information

constraints or directed search algorithms), I instead seek to explain, from first-principles,

how empirically-observed phenomena arises in SBDPs.

2 Theoretical Model

2.1 Setup

In this section, I establish the theoretical framework for the model developed through-

out this paper. Fix a non-atomic continuum of male and female agents and consider

the dynamic two-sided market formed by the SBDP, which agents can join to search for

potential romantic partners. For ease of exposition, I assume that this market is het-

eronormative such that male agents search exclusively for female agents and vice-versa.

Time is discrete and indexed by t = 0, 1, 2, ... over an infinite horizon. Each period,

masses λm, λw > 0 of new men and women enter the platform, where agents are then

paired and presented a candidate partner from the opposite side of the market.

We model agents with heterogeneous preferences (capturing the notion that ‘beauty

lies in the eye of the beholder’) and thus, after being paired, each agent observes an

idiosyncratic attractiveness value θt ∈ Θ := [0, 1] for their candidate. These values are

i.i.d according to a pair of absolutely continuous CDF’s, Fm and Fw, with corresponding

PDF’s fm, fw. Female agents draw male candidate values from Fm and vice versa but,

importantly, the value man i draws for woman j does not necessarily equal the value that

j draws for i and, for simplicity, these are modelled as independent from one another.

After observing their candidate’s attractiveness, agents then choose to swipe left (dis-

like) or right (like) on them, yielding an action space A = {1, 0}, where at = 1 indicates a

right-swipe. If either agent swipes left, then they both receive a payoff of zero; however,

if both agents swipe right, they are said to have matched and both receive a matching

payoff u(θt), where u(·) is a continuous, strictly increasing function that satisfies u(0) = 0.
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This last property stems from the fact that, in most SBDPs, users are allowed to unmatch

with each other, and therefore matching with even the least attractive individual on the

other side of the market is weakly preferred to not matching.

After payoffs have been received, agents are paired with different candidates and the

stage interaction is repeated. Given the continuum of agents, I assume that interactions

take place anonymously in the style of Jovanovic and Rosenthal (1988). Furthermore, to

the agents’ knowledge, pairings are determined in an unknown manner (since SBDPs are

generally secretive regarding the algorithms they use), effectively making their problem

one of uniform random search.

Figure 1: Sequence of events within each time period

t Arrivals Pairings Game Play Departures t+ 1

Since swiping right in the above stage game is weakly dominant for all agents, one

would not expect the repeated interaction to be massively revealing of real-life preferences,

where initiating a romanic encounter is often perceived by humans as a costly endeavour

(Dawkins and Davis, 2017). This becomes problematic since the main selling point of

SBDPs is a reduction in searching costs for individuals seeking romantic encounters, and

this is only accomplished if matches have a high likelihood of resulting in real-life romantic

attraction. Because of this, SBDPs like Tinder place a cap on the total number of right

swipes for each user, thus enabling this as a form of costly signalling. I refer to the

total number of right-swipes a user has left as its budget, b, which evolves dynamically

according to the law of motion:

bt+1 = bt − at

The budget sets for men and women are thus defined by Bs = {b ∈ Z : 1 ≤ b ≤ Bs}, for

each sex s = m,w, with budget caps Bm and Bw determined exogenously. Importantly,

agents depart from the platform in one of two ways: they can leave endogenously, if they

expend their swiping budget, or exogenously with probability (1− δ) in each time period.

This admits to the interpretation of a geometrically distributed lifetime, such that agents

discount future payments by a factor of δ ∈ (0, 1).

One final remark for this setup is that, in a continuum market with anonymous

interactions, the mean-field assumption established in subsection 2.3 effectively restricts

focus onto the set of (pure) symmetric stationary strategies. This is argued in more detail

in the following sections but, for now, denote these strategies by functions µ : Θ×Bm → A
for men and ω : Θ× Bw → A for women.

5
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2.2 The Dating Market

With the above framework in place, I now outline the platform state variables that make

up the SBDP market. Let Nmt(b), Nwt(b) denote the mass of male and female agents

(respectively) with a budget of b ∈ B in a given time period t. Since gender imbalances

can leave some agents in the long side of the market unpaired, a pairings process must also

be determined. Given the automated nature of SBDPs, I assume an efficient matching

technology and model pairings as a Bernoulli process parametrised by market tightness;

thus, the probability of being paired with a candidate is defined for both sides as:

τmt := min

{∑
b∈Bw Nwt(b)∑
b∈Bm Nmt(b)

, 1

}
, τwt :=

(∑
b∈Bm Nmt(b)∑
b∈Bw Nwt(b)

)
τmt

From the above, the platform state in time period t can be defined as Ψt = (Nmt, Nwt).

For most of this paper, I focus on characterising user behaviour and its resulting impli-

cations in a stationary setting (which is denoted by omitted time subscripts), although

some discussion of coupled strategy and market dynamics is provided in Section 4. As

a necessary requirement, the market steady state Ψt = Ψt+1 = ... = Ψ must satisfy the

balanced flow conditions 2 for our continuum model; these are presented below for the

female agents, but they apply analogously to the male side of the market. Firstly, the

entry flow of agents into the platform must equal the departure flow:

λw = (1− δ)
∑
b∈Bw

Nw(b)︸ ︷︷ ︸
Exogenous Outflow

+ Nw(1)δτw

ˆ
Θ

ω(θ, 1) dFm(θ)︸ ︷︷ ︸
Endogenous Outflow

(2.1)

Secondly, for both sides, the flow of agents into any particular budget level must equal

the outflow of agents from that same level. Thus, for all b ∈ Bw:

Nw(b+ 1)δτw

ˆ
Θ

ω(θ, b+ 1) dFm(θ)︸ ︷︷ ︸
Inflow into b

= Nw(b)
(

(1− δ) + δτw

ˆ
Θ

ω(θ, b) dFm(θ)
)

︸ ︷︷ ︸
Outflow from b

(2.2)

Finally, the entry flow of agents into the platform must equal the outflow from the

top budget level, hence:

λw = Nw(Bw)
(

(1− δ) + δτw

ˆ
Θ

ω(θ, Bw) dFm(θ)
)

︸ ︷︷ ︸
Outflow from Bw

(2.3)

Importantly, the above conditions take the strategy profile (µ, ω) as exogenously fixed.

2Formally, these conditions rely on the exact law of large numbers, which was rigorously developed
in discrete-time settings by Duffie et al. (2018), but a technical discussion of this lies outside the scope
of this paper.
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Over the next section, these are endogenously derived by characterising the agents’ best-

responses in an SDBP setting, which themselves depend on the market steady state Ψ.

2.3 The Search Problem

With the model framework outlined above, I now present the decision problem faced by

female agents in the market given some platform steady state Ψ, with analogous results

and implications for the male side. Consider now a woman i who is paired with a man

j in the platform. Since j’s swiping behaviour will depend on his own budget, which

is unknown to woman i, then (under strict rationality) she would have to compute her

expected payoff conditional on her beliefs for the market history.

This behaviour is both unreasonable and intractable in an SBDP setting, as explained

in subsection 1.1; instead, given a stationary platform and a continuum of anonymous

agents, it is reasonable to conjecture that the average swiping rate for men, µ, is also

stationary, and that any individual agent’s actions have a negligible effect on the platform

state dynamics3. As such, the expected ex-interim payoff for woman i is the following:

U(θ, a) = µau(θ)

The above imposes a mean-field assumption, such that woman i accounts for j’s

behaviour only through µ conditional on the platform state Ψ. This modelling choice,

which has been employed by Immorlica et al. (2021) and Iyer et al. (2014) among others,

simplifies the full dynamic game by collapsing it onto a pair of Markov Decision Processes

(MDPs), one for each side of the market, such that strategy ω is a best-response for women

iff it is an optimal policy for the corresponding MDP. Additionally, this also condenses

i’s state of payoff-dependent variables to include only the value θ that she observes for j

and her own budget b. Therefore, since all agents in the same side solve the same MDP,

which depends only on their individual state, this effectively justifies the restricted focus

on symmetric stationary strategies, as established in subsection 2.1.

Let the unrealized jump times of the pairing process for woman i be indexed by k.

Given that, at the time of pairing, this women has a budget of b right swipes left, she then

solves the constrained MDP presented below, captured by the value function Vw(θ, b):

Vw(θ, b) = max
{ak}∞k=0

Eθ

[
∞∑
k=0

δkU(θk, ak) | θ0 = θ, b0 = b

]
s.t. bk+1 = bk − ak

bk ∈ Bw ∪ {0},

ak ∈ A

3I also assume that µ > 0 to prune out degenerate equilibria where one side never swipes right.
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Importantly, the first two constraints, along with the exogenous departure process,

make this problem non-trivial: by limiting woman i’s right-swiping budget, the platform

imposes an opportunity cost for swiping right on j and foregoing potential future matches

with more attractive men, whilst the exogenous departure process removes the possibil-

ity of simply waiting around to swipe right on the top-Bw most attractive men in the

platform. By standard dynamic programming arguments, this problem can be captured

by two Bellman equations; one for when j is paired and another for when she isn’t:

V P
w (θ, b) = max

{
µu(θ) + δτw Eθ

[
V P
w (θ′, b− 1)

]
+ δ(1− τw)V NP

w (b− 1) ,

δτw Eθ
[
V P
w (θ′, b)

]
+ δ(1− τw)V NP

w (b)
} (2.4)

V NP
w (b) = δτw Eθ

[
V P
w (θ′, b)

]
+ δ(1− τw)V NP

w (b) (2.5)

With some straightforward algebra, the above two equations can be merged into the

full Bellman equation below. Note that the swiping budget constraint from the above

MDP imposes the boundary condition Vw(θ, 0) = 0 for all θ ∈ Θ, since agents who expend

their budget must leave the platform and can’t accumulate any additional payoffs:

Vw(θ, b) = max
{
µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, αEθ

[
Vw(θ′, b)

]}
(2.6)

Here, α is the effective discount rate accounting for the exogenous possibilities of both

departures and pairings, defined as:

α :=
δτw

1− δ(1− τw)
.

Upon inspection, it is clear that the value function is of a piecewise nature over Θ.

This is formally stated below (with the corresponding derivation included in Appendix A):

Proposition 1. Fix some b ∈ Bw. Then there exists some unique reservation value

ω̃b ∈ Θ such that Vw(θ, b) admits the following piecewise form over Θ:

Vw(θ, b) =


µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, θ ≥ ω̃b

αEθ
[
Vw(θ′, b)

]
, θ ≤ ω̃b

In the result above, all reservation values {ω̃}b∈Bw are such that woman i is indifferent

between swiping left or right. Therefore, an optimal policy for woman i’s MDP involves

swiping right for partners who exceed the reservation value for her current budget:

8
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Corollary 1. The following threshold policy ω̃, parametrised by {ω̃}b∈Bw , attains Vw(θ, b):

ω̃(θ, b) =

Swipe Right, θ ≥ ω̃b

Swipe Left, θ < ω̃b

Using both of these results, I now derive the following explicit characterisation for

reservation values {ω̃b}b∈Bw (with a corresponding proof included in Appendix A).

Proposition 2. The set of reservation values for women, {ω̃b}b∈Bw , uniquely satisfies the

recurrence relation and initial condition below, over the budget set Bw:

u(ω̃b) = αu(ω̃b)Fm(ω̃b) + αu(ω̃b−1)
[
1− Fm(ω̃b−1)

]
+

ˆ ω̃b−1

ω̃b

αu(θ′) dFm(θ′) (2.7)

u(ω̃1) = αu(ω̃1)Fm(ω̃1) + α

ˆ 1

ω̃1

u(θ′) dFm(θ′) (2.8)

This explicit characterisation allows for an improved computation of {ω̃b}b∈Bw over

traditional numerical methods such as value iteration (Bellman and Dreyfus, 2015), which

has a runtime complexity of O(|Bw×Θ|2|A|) and can become expensive for large budget

sets or fine discretisations of Θ. Using the recurrence relation in Proposition 2, the optimal

policy was computed for an arbitrary set of exogenous parameters, with results in Figure 2

showing a clear cut-off rule for swiping right. These cut-off values are decreasing in the

agent’s budget, which captures the notion that an agent’s current swipe is more valuable

than all preceding ones given the increasing opportunity cost.

Figure 2: The Optimal Swiping Rule
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3 Equilibrium & Comparative Statics

3.1 Stationary Equilibrium and Computation

Using the framework and results above, I now present a refined definition for stationary

market equilibria:

Definition 1. A Stationary Equilibrium (SE) is a triplet (µ∗, ω∗,Ψ∗) such that:

1. µ∗(θ, b) attains Vm(θ, b), for all pairs θ, b ∈ Θ× Bm, given ω∗,Ψ∗.

2. ω∗(θ, b) attains Vw(θ, b), for all pairs θ, b ∈ Θ× Bw, given µ∗,Ψ∗.

3. Ψ∗ satisfies Equations 2.1, 2.2, and 2.3 given the strategy profile (µ∗, ω∗).

Intuitively, the above definition establishes two requirements that must be satisfied

by an equilibrium market configuration. Firstly, it must be the case that µ∗ and ω∗

are mutual best responses given the platform state Ψ∗ for which, as previously outlined,

a necessary and sufficient condition would have them each solve the sex-specific MDP.

These two conditions alone demand partially rational expectations, as per Burdett and

Coles (1997), since they require agents to play optimally for some fixed steady state

Ψ∗, imposing rationality on all game aspects other than the platform state dynamics.

Furthermore, in line with other works in mean-field game theory, a consistency check is

imposed by the third condition, such that the platform state to which agents are best-

responding with (µ∗, ω∗) is sustained as a fixed point under that same strategy profile.

Although formal proofs for the existence and uniqueness of SE are outside the scope

of this paper, I rely on numerical procedures4 to approximate equilibria under various

exogenous settings. This approach has been frequently employed by related works (see

Iyer et al., 2014; Gummadi et al., 2011) as it can help uncover insights provided by mean-

field models. To compute model equilibria, I frame the recurrence relation presented in

Proposition 2, as well as Equations 2.1, 2.2, and 2.3, as a system of 2(|Bm|+ |Bw|+1) non-

linear equations, and solve this using a modified version of the hybrid Powell method,

as implemented by the MINPACK 1 routine (Moré et al., 1980). In what follows, I

present SE results for a number of comparative statics experiments. For all of these,

the exogenous settings used to calibrate the model are provided in Appendix B, and

convergence of numerical procedures was assured by computing the squared loss of the

above system, which was exactly equal to zero in all cases (although the runtime required

for convergence varied slightly across experiments).

4The code required to reproduce all the analysis presented in what follows is accessible under the
GitHub repository patohdzs/project-swipe.
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3.2 Best Response Analysis

Using the computational procedures outlined above, a number of insights can be uncov-

ered related to how exogenous parameters affect an agent’s optimal swiping behaviour.

The first parameter I analyse is the discount factor, which represents the probability of

remaining inside the platform for an additional time period, but is often interpreted as the

representative agent’s patience level. To determine the effects of changes in the discount

factor, I computed the best-response policy over a range of different values for δ (using

an arbitrary set of exogenous parameters), with results shown in Figure 3. Evidently, as

the agent becomes less patient, they ‘lower their standards’ for potential matches in the

platform, shifting their swiping curve downwards.

Figure 3: Comparative Statics on the Discount Factor

Another interesting parameter to examine is the absolute risk aversion of agents,

which I choose to interpret as their ‘desperateness’ for matching. In the platform, risk-

averse agents prefer a greater likelihood of matching (even if this yields relatively lower

payoffs), whilst risk-loving agents prefer to save their swipes for high-yield candidates. To

perform comparative statics on this parameter, I fix a CARA utility function for agents,

with parameter r corresponding to the Arrow-Pratt coefficient for absolute risk aversion.

I then compute the optimal swiping rule for various different values of r, with results

for this shown on Figure 4. From here, it is evident that as absolute risk aversion rises,

agents become ‘more desperate’ for matches, inducing them to lower their standards for

right-swiping on a candidate, and thus shifting their swiping curve downwards.

11
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Figure 4: Comparative Statics on Absolute Risk Aversion

3.3 Market Configuration Analysis

Finally, I perform comparative statics at the platform level to explore how different

exogenous factors affect market configurations. This is especially important as it considers

not only the effects on best-responses for one sex, but also how these propagate across the

market, ultimately affecting the other side’s swiping behaviour as well. More specifically,

I focus on the aforementioned ‘Fast-Swiping Men’ puzzle, investigating the discrepancies

in swiping rates and matching outcomes between men and women. There are a number of

potential explanations for this behaviour, most of which concern sex-specific differential

preferences which are compatible with my model. Indeed, it is reported that women spend

around 20% more time then men on a single Tinder session (The New York Times, 2018),

potentially indicating a higher level of patience which would induce ‘higher standards’

and a lower swiping rate, as explained above. Departing from these, I consider below a

scenario that could explain the ‘Fast-Swiping Men’ puzzle purely as a result of tightness-

induced search frictions, for which I analyse the market SE computed under a 6:1 ratio

between exogenous arrival rates λm and λw. This ratio was calibrated such that the steady

state mass of men in the platform is around ten times greater than that of women, in line

with demographic estimates for the UK (Business of Apps, 2022), and results for such

SE are shown in Figure 5.

Under the above scenario, men overcrowd the market and struggle to get paired

with female candidates, as evidenced by the top-center plot in Figure 5 which shows

that male agents are highly concentrated in the top budget levels. Due to the effect of

market tightness on the effective discount rate, male agents become more impatient than
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Figure 5: Market Configuration Under Differential Agent Inflows

women, and this shock is absorbed by their optimal swiping policy, which sits considerably

lower than the female swiping curve, effectively showing how a tight market lowers male

patience and by extension, their standards, leading them to swipe right on most women.

Ultimately, this explains the ‘Fast-Swiping Men’ puzzle given that, under this particular

SE, men swipe right with probability µ = 0.988, compared to ω = 0.491 for women, thus

replicating the observed phenomenon.

One potential intervention to correct this phenomenon would involve relaxing the

swiping cap for the shorter side of the market. To analyse such measure, the SE was

computed under the same conditions as above but with a 4:1 swiping cap ratio between

women and men; the results for this, shown in Figure 6, indicate the presence of two

separate effects that would help alleviate the above scenario. First, a larger budget set

would allow women to stay in the platform for longer by shrinking the number of en-

dogenous departures to zero (at the limit), thus leading to a larger steady state mass

of female agents that would reduce market tightness for men. This is corroborated by

the computed results, which show a 6:1 ratio between the male and female agent masses,

down from 10:1. Furthermore, because optimal reservation values are decreasing in the

agent’s budget, women in the top budget levels can now swipe right at considerably lower

thresholds, thus improving matching outcomes for men. This is highlighted in Figure 6,

which shows that female swiping policy quickly descends to a level comparable to its male

counterpart since it is allowed to extend over a larger budget set. Furthermore, under

this particular SE, men swipe right with probability µ = 0.906, compared to ω = 0.79

for women, therefore highlighting the effectiveness of this intervention, which could be
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of considerable importance given both its simplicity and its potential impact on user

experience, as research by Kanoria and Saban (2021) identifies asymmetric selectiveness

as a profound source of inefficiency in dynamic matching platforms. One potential draw-

Figure 6: Market Configuration Under Differential Swiping Caps

back of this intervention is that general selectiveness falls in the market, since the effect

prompting women to swipe more is of greater magnitude than the one prompting men

to swipe less. This could be easily avoided by lowering the swiping cap for men, instead

of raising the cap for women, to achieve the desired counterbalancing ratio, but such

intervention would be inevitably bounded as the swiping cap for men approaches zero.

4 Agent-Based Simulations

4.1 Steady State Convergence

Given the lack of accessible SBDP user data, I developed on agent-based simulation

environment to explore the evolution of both behavioural and market-level dynamics

under the above theoretical foundation. Agent-based modelling (ABM) is used to study

how “macro phenomena emerges from micro level behaviour among a heterogeneous set

of interacting agents” (Janssen, 2005), and it has been successfully applied by recent

work on matching platforms (Immorlica et al., 2021) to help identify and understand

the structure of equilibria, which can be computationally expensive to approximate (and

in some cases even non-existent). To start, I explore the convergence and stability of

the SBDP market under arbitrary exogenous settings. In particular, Figure 7 shows
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Figure 7: Agent-Based Simulation Convergence

the evolution of (sex-specific) agent masses for 10 independent simulation batches, over

300 time periods, and with a 2:1 ratio between male and female arrival flows. These

simulations were conducted under partially rational expectation conditions; that is, with

agents using optimal policies for some fixed steady state even when this is not actually

the current platform state. As evident from these results, this process converges onto the

SE computed using the procedures in subsection 3.1. Furthermore, the ABM simulations

show that the long side of the market (males) takes considerably longer to converge onto

its steady state level. One technical point worth noting is that the above simulations

involve a finite number of agents as opposed to agent masses, as per our continuum model.

Nevertheless, I examine the limiting case of these dynamics, with Figure 8 depicting how,

by the law of large numbers, stationary deviations around the steady state level become

negligible as the number of agents in the platform tends to infinity.

Figure 8: Agent-Based Simulation Convergence with Varying Sample Sizes
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4.2 Myopic Best-Response Dynamics

Finally, I simulate the SBDP market under myopic best-response dynamics (Fudenberg

et al., 1998) to explore whether if SE can be attained using a more robust process of

gameplay. For this simulation, agents re-compute their optimal policies at the start of

every time period given the current market state, unlike in the previous scenario where

optimal policies are computed once with respect to the SE for some given exogenous

settings. This process is myopic in the sense that agent policies account only for the

current platform state but not for its dynamic evolution; yet it is still more robust than

the previous experiment as echoing feedback between policy and state updates could

create outward-spiralling dynamics that prevent convergence onto SE. The results of

these simulations over 120 time periods are presented in Figure 9, showing that, both in

the case of balanced and unbalanced markets, the SE can be attained using myopic best

response dynamics.

Figure 9: Agent-Based Simulation Under Myopic Best Response Dynamics

5 Conclusion

This paper studied the strategic behaviour of users in SBDP markets by formulating a

model of two-sided search for agents with heterogeneous preferences and intertemporal

action constraints. Using mean-field assumptions that hold for large markets, I provided

an explicit characterisation of agent best-responses and used computational procedures

to approximate SSE, exploring the effects of different exogenous parameters on both in-

dividual behaviour and the aggregate SBDP market. Finally, I used ABM techniques

to asses the convergence properties of my model, as well as its robustness under my-

opic best-response dynamics, to determine if equilibria can be attained under relaxed
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gameplay conditions. I placed particular focus on explaining how the ‘Fast-Swiping Men’

phenomenon can arise in unbalanced markets due to the endogenous relation between

an agent’s patience, their swiping behaviour, and the market steady state. Crucially, I

identified that this puzzle is most likely the result of exogenous differences in sex-specific

arrival flows, which can be counterbalanced with opposite differences in their respective

swiping caps. Nevertheless, an interesting direction for future research could involve

studying why these inflow differences occur in the first place, perhaps by considering an

endogenous relation with competing SBDPs and alternative romantic search markets.

Overall, this work uncovers a number of actionable insights that could allow SBDPs to

enhance both their user experience and their profitability. The most direct application of

these probably involves subscription pricing, since the main benefits that Tinder provides

for its paid subscribers include: unlimited swipes, increased visibility, and the ability for

an agent to observe profiles that have already liked them (Tinder, 2022). These benefits

essentially equate to removing the three sources of search frictions explored by this paper:

swiping constraints, market tightness, and strategic considerations, respectively. As such,

the conclusions outlined above could provide guidance to future research, for example, by

motivating subscription pricing models that discriminate based on market tightness. On

a final note, one of the main benefits of the model presented in this paper is perhaps its

flexibility, admitting to a number of potential extensions that could be used to study more

focused aspects of SBDPs. One modification of particular interest would involve a richer

action set that allows for both multiple casual matches and a single long-term match (after

which agents leave the market permanently), which might uncover interesting insights on

romantic incompatibility and associated search frictions in SBDPs.
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A Mathematical Appendix

To simplify notation for Appendix A, I denote the continuation value at budget b by:

Kb := αEθ [Vw(θ′, b)]

A.1 Proof for Proposition 1 and Corollary 1

Proof. Fix some b ∈ Bw and, starting from Equation 2.6, consider the following:

Vw(θ, b) = max
{
µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, αEθ

[
Vw(θ′, b)

]}
= max {µu(θ) +Kb−1 , Kb }

= Kb−1 + max {µu(θ) , Kb −Kb−1 }

First, note that the difference between any two consecutive continuation values Kb

and Kb−1 must necesarily lie between 0 and µu(1). This is true since the value function

denotes the expected lifetime sum of discounted payoffs, and an additional right-swipe

can provide an agent with, at most, an additional expected payoff of µu(1) and, at least,

an additional payoff of 0. Furthermore, since u(θ) is, by assumption, continuous and

increasing over Θ (and we assume µ > 0 to prune out degenerate equilibria), then, by

the Intermediate Value Theorem, there exists a unique root, ω̃b, satisfying:

µu(ω̃b) = Kb −Kb−1

Consider now two cases. First, if θ ≤ ω̃b, then:

Vw(θ, b) = Kb−1 + max {µu(θ) , Kb −Kb−1 }

= Kb−1 +Kb −Kb−1

= Kb.

Conversely, if θ ≥ ω̃b, then:

Vw(θ, b) = µu(θ) +Kb−1.

Thus, by considering the above function over the intervals [0, ω̃b] and [ω̃b, 1] separately,

and substituting back the expressions for Kb, Kb−1, we conclude that:

Vw(θ, b) =


µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, θ ≥ ω̃b

αEθ
[
Vw(θ′, b)

]
, θ ≤ ω̃b
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Furthermore, Corollary 1 follows trivially from the above by considering a cutoff policy

over the above intervals such that Vw(θ, b) is attained.

A.2 Proof for Proposition 2

Proof. Fix some b ∈ Bw and consider the result presented by Proposition 1, which guar-

antees the existence and uniqueness of some ω̃b satisfying:

Vw(θ, b) =

µu(θ) +Kb−1, θ > ω̃b

Kb, θ ≤ ω̃b
(A.1)

µu(ω̃b) = Kb −Kb−1 (A.2)

Starting out with Equation A.2 and expanding out the expectation operator, we

can use (A.1) to substitute in the piecewise definitions of Vw(θ, b) over the appropriate

intervals:

µu(ω̃b) = Kb −Kb−1

= α

ˆ 1

0

Vw(θ′, b)− Vw(θ′, b− 1) dFm(θ′)

= α

ˆ ω̃b

0

Kb dFm(θ′) + α

ˆ 1

ω̃b

µu(θ′) +Kb−1 dFm(θ′)

− α

ˆ ω̃b−1

0

Kb−1 dFm(θ′) − α

ˆ 1

ω̃b−1

µu(θ′) +Kb−2 dFm(θ′)

(A.3)

Furthermore, Equation A.2 implies that:

µu(ω̃b) +Kb−1 = Kb

µu(ω̃b−1) +Kb−2 = Kb−1

Then, by substituting these expressions into (A.3), we arrive at (A.4):

µu(ω̃b) = α

ˆ ω̃b

0

µu(ω̃b) +Kb−1 dFm(θ′) + α

ˆ 1

ω̃b

µu(θ′) +Kb−1 dFm(θ′)

− α

ˆ ω̃b−1

0

Kb−1 dFm(θ′) − α

ˆ 1

ω̃b−1

µu(θ′) +Kb−1 − µu(ω̃b−1) dFm(θ′)

(A.4)

With some algebra, this simplifies down to the recurrence relation in Equation 2.7:

u(ω̃b) = αu(ω̃b)Fm(ω̃b) + αu(ω̃b−1)
[
1− Fm(ω̃b−1)

]
+ α

ˆ ω̃b−1

ω̃b

u(θ′) dFm(θ′) (A.5)
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Furthermore, to obtain the initial condition for the above, note that the right-swiping

budget constraint imposes Vw(θ, 0) = 0,∀b ∈ Bw. Then, (A.1) and (A.2) simplify to:

Vw(θ, 1) =

µu(θ), θ > ω̃1

K1, θ ≤ ω̃1

(A.6)

µu(ω̃1) = K1 (A.7)

Beginning with Equation A.7, we simplify until arriving at Equation 2.8:

µu(ω̃1) = αEθ
[
Vw(θ′, 1)

]
= α

ˆ ω̃1

0

K1 dFm(θ′) + α

ˆ 1

ω̃1

µu(θ′) dFm(θ′)

= α

ˆ ω̃1

0

µu(ω̃1) dFm(θ′) + α

ˆ 1

ω̃1

µu(θ′) dFm(θ′)

= αµu(ω̃1)Fm(ω̃1) + α

ˆ 1

ω̃1

µu(θ′) dFm(θ′)

=⇒ u(ω̃1) = αu(ω̃1)Fm(ω̃1) + α

ˆ 1

ω̃1

u(θ′) dFm(θ′)

B Exogenous Model Specifications

Table 1: Exogenous Model Specifications

Model Reference λm : λw Bm, Bw Fm, Fw δ u(θ)

Figure 2 – 20 Uniform(0,1) 0.95 Linear

Figure 3 – 20 Uniform(0,1) (0.87, 1) Linear

Figure 4 – 20 Uniform(0,1) 0.95 CARA, with r ∈ [−15, 15]

Figure 5 6:1 10 Beta(2,2) 0.97 Logarithmic

Figure 6 6:1 10,40 Beta(2,2) 0.97 Logarithmic

Figure 7 2:1 10 Beta(2,2) 0.97 Logarithmic

Figure 8 1:1 10 Beta(2,2) 0.97 Logarithmic

Figure 9 2:1, 1:1 10 Beta(2,2) 0.97 Logarithmic
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1 Introduction

It is widely acknowledged that the search for love is a complex social phenomenon, but

in today’s world, swipe-based dating platforms (SBDPs) seem to only make it trickier.

These platforms, exemplified by Tinder, Bumble, and Hinge, provide a gamified way of

browsing through potential romantic partners by swiping through a stack of suggested

candidates to indicate likes or dislikes for these, one profile at a time. In the search and

matching literature, settings like these fall under the category of decentralised two-sided

matching markets with search frictions (Kanoria and Saban, 2021) and, despite broad

differences with traditional dating sites that perform centralised static matching, SBDPs

have come to dominate the modern love market, with Tinder alone boasting 75 million

monthly active users and 9.6 million paid subscribers as of 2021 (Business of Apps, 2022).

From a theoretical standpoint, search within SBDPs involves several complexities

induced by platform-specific features, such as swiping caps, asynchronicity, and directed

search algorithms. These impose non-trivial constraints on the way utility-maximising

agents strategise their search, but they have been sparsely studied in the economics

literature due to the relative novelty of these platforms. Overall, the prevalent role of

SBDPs in shaping modern romantic interactions and their largely understudied nature

motivates many different questions. Nevertheless, exploring these requires a fundamental

understanding of how users make decisions in these platforms: to put it simply, when

should a utility-maximising user swipe right?

This dissertation will explore the above within an SBDP setting, where agents with

heterogeneous preferences on both sides of the market search sequentially for multiple

romantic partners. Crucially, I focus on explaining (what I refer to as) the ‘Fast-Swiping

Men’ puzzle: that is, the empirical observation that men in SBDPs respond with signif-

icantly higher swipe rates and face considerably worse matching outcomes than women.

This phenomenon has been both a subject of empirical research (Tyson et al., 2016) and

a contentious discussion point within mainstream media (Vice News, 2016; The Washing-

ton Post, 2016), and yet a significant gap persists within the literature for an exploration

of this through a theoretical lens1. Such analysis would add significant value since the

potential causes of this phenomenon (user patience, differential preferences, and strategic

dominance) are all systematically endogenous with one another, thus demanding a rigor-

ous model that can isolate these individual effects and trace their propagation across the

SBDP market. Fundamentally, I show how sex imbalances within the platform (which

arise due to several exogenous factors) can explain the above disparities and, expanding

on this, I outline a possible intervention under which differential swiping caps between

sexes can alleviate inefficiencies stemming from asymmetric selectiveness in the market.

1Among the surveyed literature, perhaps the only partial examination of this phenomenon is provided
by Kanoria and Saban (2021)
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This work presents two main contributions to existing literature on the topic. Firstly,

it constitutes one of a handful of attempts to model the market configurations arising

within SBDPs, which is unsurprising due to the novelty of these platforms, but important

given their current social relevance. Furthermore, it distinguishes itself from other similar

works by directly considering the ‘Fast-Swiping Men’ puzzle as well as the impact of

swiping caps both as a constraint in the agent’s search problem and a potential market

correction mechanism. Finally, this work provides an interesting case study for the use

of computational methods within game theory (a field that has traditionally emphasised

pure mathematical analysis), showing how the two approaches can be jointly applied to

complicated questions, with computational methods providing quick explorations that

can serve as an intuitive stepping stone towards formalising mathematical arguments.

The remainder of the paper is structured as follows. In Section 2, I outline the theoret-

ical framework for the model developed in this paper, and derive necessary conditions for

both the platform steady state and agent best-responses. In Section 3, I present a refined

definition for the stationary equilibrium of the model and perform computational com-

parative statics on several parameters, with the aim of explaining the ‘Fast-Swiping Men’

phenomenon and a possible market intervention. In Section 4, I utilise agent-based sim-

ulations to analyse the convergence and dynamics of my model, while Section 5 presents

concluding remarks and outlines potential avenues for future research.

1.1 Related Work

The present work draws inspiration from two key branches of economics literature: that

of search and matching theory, which studies the decision-making process of agents who

seek, for example, a job, a business partner, or a spouse, and that of mean-field game

theory, which models complex dynamic games involving a large number of players. I

discuss each of these in turn, and then contrast this work with the handful of papers that

have focused on specifically analysing SBDP markets.

Despite the abundance of papers within the search and matching literature, which

has been amply surveyed by Chade et al. (2017), I focus on works that consider the

three defining features of SBDP markets: decentralised matching, non-transferable utility,

and sequential search with frictions. A seminal paper at this intersection is that of

Burdett and Coles (1997), which studies the marriage market for ex-ante heterogeneous

agents under uniform random search, extending the work of Becker (1973) by showing

that positive assortative matching can arise in a setting with search frictions. Several

extensions follow from this, considering idiosyncratic preferences (Burdett and Wright,

1998), noisy attractiveness observations (Chade, 2006), and even convergence onto the set

of stable matchings (Adachi, 2003). The framework outlined in this dissertation is perhaps

most similar to that of Burdett and Wright (1998), with three major differences between
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the two. Firstly, the model developed in this paper extends the above by allowing for

multiple partners within an agent’s lifetime, a feature which was probably not significant

within the labour market context considered by Burdett and Wright (1998), but which

is nevertheless quintessential of SBDPs given their role in enabling casual relationships.

Furthermore, I extend the work of Burdett and Wright by allowing for sex-specific mass

differences in the platform, as well as exogenous agent arrival flows; a point that was of

noted interest for the authors themselves, and which is fundamental when considering

the effects of sex imbalances within the platform. Finally, the model in this dissertation

adopts a discrete time framework, departing from Burdett and Wright (1998) and most of

the recent matching literature. Although continuous-time models provide sharper analysis

and more flexible empirical specifications (Burdett and Coles, 1999), this modelling choice

lends itself naturally to agent-based simulations, which are used to explore equilibria

convergence and dynamics in a richer manner.

On the other hand, mean-field game theory focuses on dynamic games with a large

number of agents, for which curses of dimensionality arise due to intractable state spaces.

Mean-field models tackle this issue by conditioning gameplay on the invariant state dis-

tribution amongst players, rather than tracking and considering the individual state of

each opponent (Light and Weintraub, 2022). This simplifying assumption is cemented

by a consistency check, such that equilibria arise when rational play conditional on an

aggregate state distribution maintains this as a fixed point. This approach, perhaps first

considered by Jovanovic and Rosenthal (1988) and Hopenhayn (1992), has been success-

fully applied to settings such as network routing (Calderone and Sastry, 2017), dynamic

auctions with learning (Iyer et al., 2014) and, perhaps most relevantly, online match-

ing platforms (Kanoria and Saban, 2021; Immorlica et al., 2021). In this paper, I rely

on mean-field assumptions to abstract away from observability considerations: within

SBDPs, the market history is unknown to players, therefore concepts such as Perfect

Bayesian Equilibrium would require players to maintain and update beliefs over uncount-

able history spaces, and even beliefs over the beliefs of other players(a complication known

as nested beliefs (Brandenburger and Dekel, 1993)). This yields two central problems:

first, that agent best-responses and equilibria become virtually impossible to compute,

and, by extension, that the model assumes an unreasonable level of rationality on behalf

of agents (Iyer et al., 2014). Thus, by conditioning interactions on the stationary plat-

form state only, the model in this paper characterises equilibria that are both insightful

and representative of real-life behaviour and dynamics.

Among the few papers specifically considering SBDPs, Kanoria and Saban (2021)

propose a dynamic two-sided model with vertically-differentiated agents, and show that

platforms with unbalanced markets can improve welfare by forcing the short side to ‘pro-

pose’ in all interactions. Furthermore, Immorlica et al. (2021) focus on the problem of

designing a directed search algorithm for SBDPs by endogenising type-contingent meet-
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ing rates for agents. Finally, Arnosti et al. (2021) study the welfare losses that can arise in

congested matching markets, and propose limiting the visibility of agents as a mechanism

for overcoming this issue. All of these papers present theoretical models with similar fea-

tures, and these have largely influenced my work in several ways. Despite this, the above

papers all model settings with one-to-one matchings only, thus differing fundamentally

with my work in terms of the nature of endogeneity for agent departures. On one hand,

this modelling choice makes their work and insights applicable to a wider variety of online

matching platforms (such as AirBnb, TaskRabbit, etc.), but it also fails to capture an

essential aspect specific to SBDPs that could have significant behavioural implications.

Other than this (and some minor technical differences), the main point of distinction

between my work and theirs is mostly one of perspective: whilst the above papers fo-

cus mostly on platform mechanism design (by considering features such as information

constraints or directed search algorithms), I instead seek to explain, from first-principles,

how empirically-observed phenomena arises in SBDPs.

2 Theoretical Model

2.1 Setup

In this section, I establish the theoretical framework for the model developed through-

out this paper. Fix a non-atomic continuum of male and female agents and consider

the dynamic two-sided market formed by the SBDP, which agents can join to search for

potential romantic partners. For ease of exposition, I assume that this market is het-

eronormative such that male agents search exclusively for female agents and vice-versa.

Time is discrete and indexed by t = 0, 1, 2, ... over an infinite horizon. Each period,

masses λm, λw > 0 of new men and women enter the platform, where agents are then

paired and presented a candidate partner from the opposite side of the market.

We model agents with heterogeneous preferences (capturing the notion that ‘beauty

lies in the eye of the beholder’) and thus, after being paired, each agent observes an

idiosyncratic attractiveness value θt ∈ Θ := [0, 1] for their candidate. These values are

i.i.d according to a pair of absolutely continuous CDF’s, Fm and Fw, with corresponding

PDF’s fm, fw. Female agents draw male candidate values from Fm and vice versa but,

importantly, the value man i draws for woman j does not necessarily equal the value that

j draws for i and, for simplicity, these are modelled as independent from one another.

After observing their candidate’s attractiveness, agents then choose to swipe left (dis-

like) or right (like) on them, yielding an action space A = {1, 0}, where at = 1 indicates a

right-swipe. If either agent swipes left, then they both receive a payoff of zero; however,

if both agents swipe right, they are said to have matched and both receive a matching

payoff u(θt), where u(·) is a continuous, strictly increasing function that satisfies u(0) = 0.
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This last property stems from the fact that, in most SBDPs, users are allowed to unmatch

with each other, and therefore matching with even the least attractive individual on the

other side of the market is weakly preferred to not matching.

After payoffs have been received, agents are paired with different candidates and the

stage interaction is repeated. Given the continuum of agents, I assume that interactions

take place anonymously in the style of Jovanovic and Rosenthal (1988). Furthermore, to

the agents’ knowledge, pairings are determined in an unknown manner (since SBDPs are

generally secretive regarding the algorithms they use), effectively making their problem

one of uniform random search.

Figure 1: Sequence of events within each time period

t Arrivals Pairings Game Play Departures t+ 1

Since swiping right in the above stage game is weakly dominant for all agents, one

would not expect the repeated interaction to be massively revealing of real-life preferences,

where initiating a romanic encounter is often perceived by humans as a costly endeavour

(Dawkins and Davis, 2017). This becomes problematic since the main selling point of

SBDPs is a reduction in searching costs for individuals seeking romantic encounters, and

this is only accomplished if matches have a high likelihood of resulting in real-life romantic

attraction. Because of this, SBDPs like Tinder place a cap on the total number of right

swipes for each user, thus enabling this as a form of costly signalling. I refer to the

total number of right-swipes a user has left as its budget, b, which evolves dynamically

according to the law of motion:

bt+1 = bt − at

The budget sets for men and women are thus defined by Bs = {b ∈ Z : 1 ≤ b ≤ Bs}, for

each sex s = m,w, with budget caps Bm and Bw determined exogenously. Importantly,

agents depart from the platform in one of two ways: they can leave endogenously, if they

expend their swiping budget, or exogenously with probability (1− δ) in each time period.

This admits to the interpretation of a geometrically distributed lifetime, such that agents

discount future payments by a factor of δ ∈ (0, 1).

One final remark for this setup is that, in a continuum market with anonymous

interactions, the mean-field assumption established in subsection 2.3 effectively restricts

focus onto the set of (pure) symmetric stationary strategies. This is argued in more detail

in the following sections but, for now, denote these strategies by functions µ : Θ×Bm → A
for men and ω : Θ× Bw → A for women.
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2.2 The Dating Market

With the above framework in place, I now outline the platform state variables that make

up the SBDP market. Let Nmt(b), Nwt(b) denote the mass of male and female agents

(respectively) with a budget of b ∈ B in a given time period t. Since gender imbalances

can leave some agents in the long side of the market unpaired, a pairings process must also

be determined. Given the automated nature of SBDPs, I assume an efficient matching

technology and model pairings as a Bernoulli process parametrised by market tightness;

thus, the probability of being paired with a candidate is defined for both sides as:

τmt := min

{∑
b∈Bw Nwt(b)∑
b∈Bm Nmt(b)

, 1

}
, τwt :=

(∑
b∈Bm Nmt(b)∑
b∈Bw Nwt(b)

)
τmt

From the above, the platform state in time period t can be defined as Ψt = (Nmt, Nwt).

For most of this paper, I focus on characterising user behaviour and its resulting impli-

cations in a stationary setting (which is denoted by omitted time subscripts), although

some discussion of coupled strategy and market dynamics is provided in Section 4. As

a necessary requirement, the market steady state Ψt = Ψt+1 = ... = Ψ must satisfy the

balanced flow conditions 2 for our continuum model; these are presented below for the

female agents, but they apply analogously to the male side of the market. Firstly, the

entry flow of agents into the platform must equal the departure flow:

λw = (1− δ)
∑
b∈Bw

Nw(b)︸ ︷︷ ︸
Exogenous Outflow

+ Nw(1)δτw

ˆ
Θ

ω(θ, 1) dFm(θ)︸ ︷︷ ︸
Endogenous Outflow

(2.1)

Secondly, for both sides, the flow of agents into any particular budget level must equal

the outflow of agents from that same level. Thus, for all b ∈ Bw:

Nw(b+ 1)δτw

ˆ
Θ

ω(θ, b+ 1) dFm(θ)︸ ︷︷ ︸
Inflow into b

= Nw(b)
(

(1− δ) + δτw

ˆ
Θ

ω(θ, b) dFm(θ)
)

︸ ︷︷ ︸
Outflow from b

(2.2)

Finally, the entry flow of agents into the platform must equal the outflow from the

top budget level, hence:

λw = Nw(Bw)
(

(1− δ) + δτw

ˆ
Θ

ω(θ, Bw) dFm(θ)
)

︸ ︷︷ ︸
Outflow from Bw

(2.3)

Importantly, the above conditions take the strategy profile (µ, ω) as exogenously fixed.

2Formally, these conditions rely on the exact law of large numbers, which was rigorously developed
in discrete-time settings by Duffie et al. (2018), but a technical discussion of this lies outside the scope
of this paper.
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Over the next section, these are endogenously derived by characterising the agents’ best-

responses in an SDBP setting, which themselves depend on the market steady state Ψ.

2.3 The Search Problem

With the model framework outlined above, I now present the decision problem faced by

female agents in the market given some platform steady state Ψ, with analogous results

and implications for the male side. Consider now a woman i who is paired with a man

j in the platform. Since j’s swiping behaviour will depend on his own budget, which

is unknown to woman i, then (under strict rationality) she would have to compute her

expected payoff conditional on her beliefs for the market history.

This behaviour is both unreasonable and intractable in an SBDP setting, as explained

in subsection 1.1; instead, given a stationary platform and a continuum of anonymous

agents, it is reasonable to conjecture that the average swiping rate for men, µ, is also

stationary, and that any individual agent’s actions have a negligible effect on the platform

state dynamics3. As such, the expected ex-interim payoff for woman i is the following:

U(θ, a) = µau(θ)

The above imposes a mean-field assumption, such that woman i accounts for j’s

behaviour only through µ conditional on the platform state Ψ. This modelling choice,

which has been employed by Immorlica et al. (2021) and Iyer et al. (2014) among others,

simplifies the full dynamic game by collapsing it onto a pair of Markov Decision Processes

(MDPs), one for each side of the market, such that strategy ω is a best-response for women

iff it is an optimal policy for the corresponding MDP. Additionally, this also condenses

i’s state of payoff-dependent variables to include only the value θ that she observes for j

and her own budget b. Therefore, since all agents in the same side solve the same MDP,

which depends only on their individual state, this effectively justifies the restricted focus

on symmetric stationary strategies, as established in subsection 2.1.

Let the unrealized jump times of the pairing process for woman i be indexed by k.

Given that, at the time of pairing, this women has a budget of b right swipes left, she then

solves the constrained MDP presented below, captured by the value function Vw(θ, b):

Vw(θ, b) = max
{ak}∞k=0

Eθ

[
∞∑
k=0

δkU(θk, ak) | θ0 = θ, b0 = b

]
s.t. bk+1 = bk − ak

bk ∈ Bw ∪ {0},

ak ∈ A

3I also assume that µ > 0 to prune out degenerate equilibria where one side never swipes right.
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Importantly, the first two constraints, along with the exogenous departure process,

make this problem non-trivial: by limiting woman i’s right-swiping budget, the platform

imposes an opportunity cost for swiping right on j and foregoing potential future matches

with more attractive men, whilst the exogenous departure process removes the possibil-

ity of simply waiting around to swipe right on the top-Bw most attractive men in the

platform. By standard dynamic programming arguments, this problem can be captured

by two Bellman equations; one for when j is paired and another for when she isn’t:

V P
w (θ, b) = max

{
µu(θ) + δτw Eθ

[
V P
w (θ′, b− 1)

]
+ δ(1− τw)V NP

w (b− 1) ,

δτw Eθ
[
V P
w (θ′, b)

]
+ δ(1− τw)V NP

w (b)
} (2.4)

V NP
w (b) = δτw Eθ

[
V P
w (θ′, b)

]
+ δ(1− τw)V NP

w (b) (2.5)

With some straightforward algebra, the above two equations can be merged into the

full Bellman equation below. Note that the swiping budget constraint from the above

MDP imposes the boundary condition Vw(θ, 0) = 0 for all θ ∈ Θ, since agents who expend

their budget must leave the platform and can’t accumulate any additional payoffs:

Vw(θ, b) = max
{
µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, αEθ

[
Vw(θ′, b)

]}
(2.6)

Here, α is the effective discount rate accounting for the exogenous possibilities of both

departures and pairings, defined as:

α :=
δτw

1− δ(1− τw)
.

Upon inspection, it is clear that the value function is of a piecewise nature over Θ.

This is formally stated below (with the corresponding derivation included in Appendix A):

Proposition 1. Fix some b ∈ Bw. Then there exists some unique reservation value

ω̃b ∈ Θ such that Vw(θ, b) admits the following piecewise form over Θ:

Vw(θ, b) =


µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, θ ≥ ω̃b

αEθ
[
Vw(θ′, b)

]
, θ ≤ ω̃b

In the result above, all reservation values {ω̃}b∈Bw are such that woman i is indifferent

between swiping left or right. Therefore, an optimal policy for woman i’s MDP involves

swiping right for partners who exceed the reservation value for her current budget:
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Corollary 1. The following threshold policy ω̃, parametrised by {ω̃}b∈Bw , attains Vw(θ, b):

ω̃(θ, b) =

Swipe Right, θ ≥ ω̃b

Swipe Left, θ < ω̃b

Using both of these results, I now derive the following explicit characterisation for

reservation values {ω̃b}b∈Bw (with a corresponding proof included in Appendix A).

Proposition 2. The set of reservation values for women, {ω̃b}b∈Bw , uniquely satisfies the

recurrence relation and initial condition below, over the budget set Bw:

u(ω̃b) = αu(ω̃b)Fm(ω̃b) + αu(ω̃b−1)
[
1− Fm(ω̃b−1)

]
+

ˆ ω̃b−1

ω̃b

αu(θ′) dFm(θ′) (2.7)

u(ω̃1) = αu(ω̃1)Fm(ω̃1) + α

ˆ 1

ω̃1

u(θ′) dFm(θ′) (2.8)

This explicit characterisation allows for an improved computation of {ω̃b}b∈Bw over

traditional numerical methods such as value iteration (Bellman and Dreyfus, 2015), which

has a runtime complexity of O(|Bw×Θ|2|A|) and can become expensive for large budget

sets or fine discretisations of Θ. Using the recurrence relation in Proposition 2, the optimal

policy was computed for an arbitrary set of exogenous parameters, with results in Figure 2

showing a clear cut-off rule for swiping right. These cut-off values are decreasing in the

agent’s budget, which captures the notion that an agent’s current swipe is more valuable

than all preceding ones given the increasing opportunity cost.

Figure 2: The Optimal Swiping Rule
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3 Equilibrium & Comparative Statics

3.1 Stationary Equilibrium and Computation

Using the framework and results above, I now present a refined definition for stationary

market equilibria:

Definition 1. A Stationary Equilibrium (SE) is a triplet (µ∗, ω∗,Ψ∗) such that:

1. µ∗(θ, b) attains Vm(θ, b), for all pairs θ, b ∈ Θ× Bm, given ω∗,Ψ∗.

2. ω∗(θ, b) attains Vw(θ, b), for all pairs θ, b ∈ Θ× Bw, given µ∗,Ψ∗.

3. Ψ∗ satisfies Equations 2.1, 2.2, and 2.3 given the strategy profile (µ∗, ω∗).

Intuitively, the above definition establishes two requirements that must be satisfied

by an equilibrium market configuration. Firstly, it must be the case that µ∗ and ω∗

are mutual best responses given the platform state Ψ∗ for which, as previously outlined,

a necessary and sufficient condition would have them each solve the sex-specific MDP.

These two conditions alone demand partially rational expectations, as per Burdett and

Coles (1997), since they require agents to play optimally for some fixed steady state

Ψ∗, imposing rationality on all game aspects other than the platform state dynamics.

Furthermore, in line with other works in mean-field game theory, a consistency check is

imposed by the third condition, such that the platform state to which agents are best-

responding with (µ∗, ω∗) is sustained as a fixed point under that same strategy profile.

Although formal proofs for the existence and uniqueness of SE are outside the scope

of this paper, I rely on numerical procedures4 to approximate equilibria under various

exogenous settings. This approach has been frequently employed by related works (see

Iyer et al., 2014; Gummadi et al., 2011) as it can help uncover insights provided by mean-

field models. To compute model equilibria, I frame the recurrence relation presented in

Proposition 2, as well as Equations 2.1, 2.2, and 2.3, as a system of 2(|Bm|+ |Bw|+1) non-

linear equations, and solve this using a modified version of the hybrid Powell method,

as implemented by the MINPACK 1 routine (Moré et al., 1980). In what follows, I

present SE results for a number of comparative statics experiments. For all of these,

the exogenous settings used to calibrate the model are provided in Appendix B, and

convergence of numerical procedures was assured by computing the squared loss of the

above system, which was exactly equal to zero in all cases (although the runtime required

for convergence varied slightly across experiments).

4The code required to reproduce all the analysis presented in what follows is accessible under the
GitHub repository patohdzs/project-swipe.
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3.2 Best Response Analysis

Using the computational procedures outlined above, a number of insights can be uncov-

ered related to how exogenous parameters affect an agent’s optimal swiping behaviour.

The first parameter I analyse is the discount factor, which represents the probability of

remaining inside the platform for an additional time period, but is often interpreted as the

representative agent’s patience level. To determine the effects of changes in the discount

factor, I computed the best-response policy over a range of different values for δ (using

an arbitrary set of exogenous parameters), with results shown in Figure 3. Evidently, as

the agent becomes less patient, they ‘lower their standards’ for potential matches in the

platform, shifting their swiping curve downwards.

Figure 3: Comparative Statics on the Discount Factor

Another interesting parameter to examine is the absolute risk aversion of agents,

which I choose to interpret as their ‘desperateness’ for matching. In the platform, risk-

averse agents prefer a greater likelihood of matching (even if this yields relatively lower

payoffs), whilst risk-loving agents prefer to save their swipes for high-yield candidates. To

perform comparative statics on this parameter, I fix a CARA utility function for agents,

with parameter r corresponding to the Arrow-Pratt coefficient for absolute risk aversion.

I then compute the optimal swiping rule for various different values of r, with results

for this shown on Figure 4. From here, it is evident that as absolute risk aversion rises,

agents become ‘more desperate’ for matches, inducing them to lower their standards for

right-swiping on a candidate, and thus shifting their swiping curve downwards.

11



Why Do Men Keep Swiping Right?

Figure 4: Comparative Statics on Absolute Risk Aversion

3.3 Market Configuration Analysis

Finally, I perform comparative statics at the platform level to explore how different

exogenous factors affect market configurations. This is especially important as it considers

not only the effects on best-responses for one sex, but also how these propagate across the

market, ultimately affecting the other side’s swiping behaviour as well. More specifically,

I focus on the aforementioned ‘Fast-Swiping Men’ puzzle, investigating the discrepancies

in swiping rates and matching outcomes between men and women. There are a number of

potential explanations for this behaviour, most of which concern sex-specific differential

preferences which are compatible with my model. Indeed, it is reported that women spend

around 20% more time then men on a single Tinder session (The New York Times, 2018),

potentially indicating a higher level of patience which would induce ‘higher standards’

and a lower swiping rate, as explained above. Departing from these, I consider below a

scenario that could explain the ‘Fast-Swiping Men’ puzzle purely as a result of tightness-

induced search frictions, for which I analyse the market SE computed under a 6:1 ratio

between exogenous arrival rates λm and λw. This ratio was calibrated such that the steady

state mass of men in the platform is around ten times greater than that of women, in line

with demographic estimates for the UK (Business of Apps, 2022), and results for such

SE are shown in Figure 5.

Under the above scenario, men overcrowd the market and struggle to get paired

with female candidates, as evidenced by the top-center plot in Figure 5 which shows

that male agents are highly concentrated in the top budget levels. Due to the effect of

market tightness on the effective discount rate, male agents become more impatient than
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Figure 5: Market Configuration Under Differential Agent Inflows

women, and this shock is absorbed by their optimal swiping policy, which sits considerably

lower than the female swiping curve, effectively showing how a tight market lowers male

patience and by extension, their standards, leading them to swipe right on most women.

Ultimately, this explains the ‘Fast-Swiping Men’ puzzle given that, under this particular

SE, men swipe right with probability µ = 0.988, compared to ω = 0.491 for women, thus

replicating the observed phenomenon.

One potential intervention to correct this phenomenon would involve relaxing the

swiping cap for the shorter side of the market. To analyse such measure, the SE was

computed under the same conditions as above but with a 4:1 swiping cap ratio between

women and men; the results for this, shown in Figure 6, indicate the presence of two

separate effects that would help alleviate the above scenario. First, a larger budget set

would allow women to stay in the platform for longer by shrinking the number of en-

dogenous departures to zero (at the limit), thus leading to a larger steady state mass

of female agents that would reduce market tightness for men. This is corroborated by

the computed results, which show a 6:1 ratio between the male and female agent masses,

down from 10:1. Furthermore, because optimal reservation values are decreasing in the

agent’s budget, women in the top budget levels can now swipe right at considerably lower

thresholds, thus improving matching outcomes for men. This is highlighted in Figure 6,

which shows that female swiping policy quickly descends to a level comparable to its male

counterpart since it is allowed to extend over a larger budget set. Furthermore, under

this particular SE, men swipe right with probability µ = 0.906, compared to ω = 0.79

for women, therefore highlighting the effectiveness of this intervention, which could be
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of considerable importance given both its simplicity and its potential impact on user

experience, as research by Kanoria and Saban (2021) identifies asymmetric selectiveness

as a profound source of inefficiency in dynamic matching platforms. One potential draw-

Figure 6: Market Configuration Under Differential Swiping Caps

back of this intervention is that general selectiveness falls in the market, since the effect

prompting women to swipe more is of greater magnitude than the one prompting men

to swipe less. This could be easily avoided by lowering the swiping cap for men, instead

of raising the cap for women, to achieve the desired counterbalancing ratio, but such

intervention would be inevitably bounded as the swiping cap for men approaches zero.

4 Agent-Based Simulations

4.1 Steady State Convergence

Given the lack of accessible SBDP user data, I developed on agent-based simulation

environment to explore the evolution of both behavioural and market-level dynamics

under the above theoretical foundation. Agent-based modelling (ABM) is used to study

how “macro phenomena emerges from micro level behaviour among a heterogeneous set

of interacting agents” (Janssen, 2005), and it has been successfully applied by recent

work on matching platforms (Immorlica et al., 2021) to help identify and understand

the structure of equilibria, which can be computationally expensive to approximate (and

in some cases even non-existent). To start, I explore the convergence and stability of

the SBDP market under arbitrary exogenous settings. In particular, Figure 7 shows
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Figure 7: Agent-Based Simulation Convergence

the evolution of (sex-specific) agent masses for 10 independent simulation batches, over

300 time periods, and with a 2:1 ratio between male and female arrival flows. These

simulations were conducted under partially rational expectation conditions; that is, with

agents using optimal policies for some fixed steady state even when this is not actually

the current platform state. As evident from these results, this process converges onto the

SE computed using the procedures in subsection 3.1. Furthermore, the ABM simulations

show that the long side of the market (males) takes considerably longer to converge onto

its steady state level. One technical point worth noting is that the above simulations

involve a finite number of agents as opposed to agent masses, as per our continuum model.

Nevertheless, I examine the limiting case of these dynamics, with Figure 8 depicting how,

by the law of large numbers, stationary deviations around the steady state level become

negligible as the number of agents in the platform tends to infinity.

Figure 8: Agent-Based Simulation Convergence with Varying Sample Sizes
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4.2 Myopic Best-Response Dynamics

Finally, I simulate the SBDP market under myopic best-response dynamics (Fudenberg

et al., 1998) to explore whether if SE can be attained using a more robust process of

gameplay. For this simulation, agents re-compute their optimal policies at the start of

every time period given the current market state, unlike in the previous scenario where

optimal policies are computed once with respect to the SE for some given exogenous

settings. This process is myopic in the sense that agent policies account only for the

current platform state but not for its dynamic evolution; yet it is still more robust than

the previous experiment as echoing feedback between policy and state updates could

create outward-spiralling dynamics that prevent convergence onto SE. The results of

these simulations over 120 time periods are presented in Figure 9, showing that, both in

the case of balanced and unbalanced markets, the SE can be attained using myopic best

response dynamics.

Figure 9: Agent-Based Simulation Under Myopic Best Response Dynamics

5 Conclusion

This paper studied the strategic behaviour of users in SBDP markets by formulating a

model of two-sided search for agents with heterogeneous preferences and intertemporal

action constraints. Using mean-field assumptions that hold for large markets, I provided

an explicit characterisation of agent best-responses and used computational procedures

to approximate SSE, exploring the effects of different exogenous parameters on both in-

dividual behaviour and the aggregate SBDP market. Finally, I used ABM techniques

to asses the convergence properties of my model, as well as its robustness under my-

opic best-response dynamics, to determine if equilibria can be attained under relaxed
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gameplay conditions. I placed particular focus on explaining how the ‘Fast-Swiping Men’

phenomenon can arise in unbalanced markets due to the endogenous relation between

an agent’s patience, their swiping behaviour, and the market steady state. Crucially, I

identified that this puzzle is most likely the result of exogenous differences in sex-specific

arrival flows, which can be counterbalanced with opposite differences in their respective

swiping caps. Nevertheless, an interesting direction for future research could involve

studying why these inflow differences occur in the first place, perhaps by considering an

endogenous relation with competing SBDPs and alternative romantic search markets.

Overall, this work uncovers a number of actionable insights that could allow SBDPs to

enhance both their user experience and their profitability. The most direct application of

these probably involves subscription pricing, since the main benefits that Tinder provides

for its paid subscribers include: unlimited swipes, increased visibility, and the ability for

an agent to observe profiles that have already liked them (Tinder, 2022). These benefits

essentially equate to removing the three sources of search frictions explored by this paper:

swiping constraints, market tightness, and strategic considerations, respectively. As such,

the conclusions outlined above could provide guidance to future research, for example, by

motivating subscription pricing models that discriminate based on market tightness. On

a final note, one of the main benefits of the model presented in this paper is perhaps its

flexibility, admitting to a number of potential extensions that could be used to study more

focused aspects of SBDPs. One modification of particular interest would involve a richer

action set that allows for both multiple casual matches and a single long-term match (after

which agents leave the market permanently), which might uncover interesting insights on

romantic incompatibility and associated search frictions in SBDPs.

17



Why Do Men Keep Swiping Right?

References

Adachi, H. (2003). A search model of two-sided matching under nontransferable utility.

Journal of Economic Theory, 113(2):182–198.

Arnosti, N., Johari, R., and Kanoria, Y. (2021). Managing congestion in matching mar-

kets. Manufacturing & Service Operations Management, 23(3):620–636.

Becker, G. S. (1973). A theory of marriage: Part i. Journal of Political economy,

81(4):813–846.

Bellman, R. E. and Dreyfus, S. E. (2015). Applied dynamic programming. Princeton

university press.

Brandenburger, A. and Dekel, E. (1993). Hierarchies of beliefs and common knowledge.

Journal of Economic Theory, 59(1):189–198.

Burdett, K. and Coles, M. G. (1997). Marriage and class. The Quarterly Journal of

Economics, 112(1):141–168.

Burdett, K. and Coles, M. G. (1999). Long-term partnership formation: marriage and

employment. The Economic Journal, 109(456):F307–F334.

Burdett, K. and Wright, R. (1998). Two-sided search with nontransferable utility. Review

of Economic Dynamics, 1(1):220–245.

Business of Apps (2022). Tinder revenue and usage statistics. Last accessed 12 April

2022.

Calderone, D. and Sastry, S. S. (2017). Markov decision process routing games. In 2017

ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), pages

273–280. IEEE.

Chade, H. (2006). Matching with noise and the acceptance curse. Journal of Economic

Theory, 129(1):81–113.

Chade, H., Eeckhout, J., and Smith, L. (2017). Sorting through search and matching

models in economics. Journal of Economic Literature, 55(2):493–544.

Dawkins, R. and Davis, N. (2017). The selfish gene. Macat Library.

Duffie, D., Qiao, L., and Sun, Y. (2018). Dynamic directed random matching. Journal

of Economic Theory, 174:124–183.

Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K. (1998). The theory of learning

in games, volume 2. MIT press.

18



Why Do Men Keep Swiping Right?

Gummadi, R., Key, P. B., and Proutiere, A. (2011). Optimal bidding strategies in dy-

namic auctions with budget constraints. In 2011 49th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pages 588–588. IEEE.

Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run equilibrium. Econo-

metrica: Journal of the Econometric Society, pages 1127–1150.

Immorlica, N., Lucier, B., Manshadi, V., and Wei, A. (2021). Designing approximately

optimal search on matching platforms. In Proceedings of the 22nd ACM Conference on

Economics and Computation, pages 632–633.

Iyer, K., Johari, R., and Sundararajan, M. (2014). Mean field equilibria of dynamic

auctions with learning. Management Science, 60(12):2949–2970.

Janssen, M. A. (2005). Agent-based modelling. Modelling in ecological economics,

155(1):172–181.

Jovanovic, B. and Rosenthal, R. W. (1988). Anonymous sequential games. Journal of

Mathematical Economics, 17(1):77–87.

Kanoria, Y. and Saban, D. (2021). Facilitating the search for partners on matching

platforms. Management Science, 67(10):5990–6029.

Light, B. and Weintraub, G. Y. (2022). Mean field equilibrium: uniqueness, existence,

and comparative statics. Operations Research, 70(1):585–605.
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A Mathematical Appendix

To simplify notation for Appendix A, I denote the continuation value at budget b by:

Kb := αEθ [Vw(θ′, b)]

A.1 Proof for Proposition 1 and Corollary 1

Proof. Fix some b ∈ Bw and, starting from Equation 2.6, consider the following:

Vw(θ, b) = max
{
µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, αEθ

[
Vw(θ′, b)

]}
= max {µu(θ) +Kb−1 , Kb }

= Kb−1 + max {µu(θ) , Kb −Kb−1 }

First, note that the difference between any two consecutive continuation values Kb

and Kb−1 must necesarily lie between 0 and µu(1). This is true since the value function

denotes the expected lifetime sum of discounted payoffs, and an additional right-swipe

can provide an agent with, at most, an additional expected payoff of µu(1) and, at least,

an additional payoff of 0. Furthermore, since u(θ) is, by assumption, continuous and

increasing over Θ (and we assume µ > 0 to prune out degenerate equilibria), then, by

the Intermediate Value Theorem, there exists a unique root, ω̃b, satisfying:

µu(ω̃b) = Kb −Kb−1

Consider now two cases. First, if θ ≤ ω̃b, then:

Vw(θ, b) = Kb−1 + max {µu(θ) , Kb −Kb−1 }

= Kb−1 +Kb −Kb−1

= Kb.

Conversely, if θ ≥ ω̃b, then:

Vw(θ, b) = µu(θ) +Kb−1.

Thus, by considering the above function over the intervals [0, ω̃b] and [ω̃b, 1] separately,

and substituting back the expressions for Kb, Kb−1, we conclude that:

Vw(θ, b) =


µu(θ) + αEθ

[
Vw(θ′, b− 1)

]
, θ ≥ ω̃b

αEθ
[
Vw(θ′, b)

]
, θ ≤ ω̃b
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Furthermore, Corollary 1 follows trivially from the above by considering a cutoff policy

over the above intervals such that Vw(θ, b) is attained.

A.2 Proof for Proposition 2

Proof. Fix some b ∈ Bw and consider the result presented by Proposition 1, which guar-

antees the existence and uniqueness of some ω̃b satisfying:

Vw(θ, b) =

µu(θ) +Kb−1, θ > ω̃b

Kb, θ ≤ ω̃b
(A.1)

µu(ω̃b) = Kb −Kb−1 (A.2)

Starting out with Equation A.2 and expanding out the expectation operator, we

can use (A.1) to substitute in the piecewise definitions of Vw(θ, b) over the appropriate

intervals:

µu(ω̃b) = Kb −Kb−1

= α

ˆ 1

0

Vw(θ′, b)− Vw(θ′, b− 1) dFm(θ′)

= α

ˆ ω̃b

0

Kb dFm(θ′) + α

ˆ 1

ω̃b

µu(θ′) +Kb−1 dFm(θ′)

− α

ˆ ω̃b−1

0

Kb−1 dFm(θ′) − α

ˆ 1

ω̃b−1

µu(θ′) +Kb−2 dFm(θ′)

(A.3)

Furthermore, Equation A.2 implies that:

µu(ω̃b) +Kb−1 = Kb

µu(ω̃b−1) +Kb−2 = Kb−1

Then, by substituting these expressions into (A.3), we arrive at (A.4):

µu(ω̃b) = α

ˆ ω̃b

0

µu(ω̃b) +Kb−1 dFm(θ′) + α

ˆ 1

ω̃b

µu(θ′) +Kb−1 dFm(θ′)

− α

ˆ ω̃b−1

0

Kb−1 dFm(θ′) − α

ˆ 1

ω̃b−1

µu(θ′) +Kb−1 − µu(ω̃b−1) dFm(θ′)

(A.4)

With some algebra, this simplifies down to the recurrence relation in Equation 2.7:

u(ω̃b) = αu(ω̃b)Fm(ω̃b) + αu(ω̃b−1)
[
1− Fm(ω̃b−1)

]
+ α

ˆ ω̃b−1

ω̃b

u(θ′) dFm(θ′) (A.5)
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Furthermore, to obtain the initial condition for the above, note that the right-swiping

budget constraint imposes Vw(θ, 0) = 0,∀b ∈ Bw. Then, (A.1) and (A.2) simplify to:

Vw(θ, 1) =

µu(θ), θ > ω̃1

K1, θ ≤ ω̃1

(A.6)

µu(ω̃1) = K1 (A.7)

Beginning with Equation A.7, we simplify until arriving at Equation 2.8:

µu(ω̃1) = αEθ
[
Vw(θ′, 1)

]
= α

ˆ ω̃1

0

K1 dFm(θ′) + α

ˆ 1

ω̃1

µu(θ′) dFm(θ′)

= α

ˆ ω̃1

0

µu(ω̃1) dFm(θ′) + α

ˆ 1

ω̃1

µu(θ′) dFm(θ′)

= αµu(ω̃1)Fm(ω̃1) + α

ˆ 1

ω̃1

µu(θ′) dFm(θ′)

=⇒ u(ω̃1) = αu(ω̃1)Fm(ω̃1) + α

ˆ 1

ω̃1

u(θ′) dFm(θ′)

B Exogenous Model Specifications

Table 1: Exogenous Model Specifications

Model Reference λm : λw Bm, Bw Fm, Fw δ u(θ)

Figure 2 – 20 Uniform(0,1) 0.95 Linear

Figure 3 – 20 Uniform(0,1) (0.87, 1) Linear

Figure 4 – 20 Uniform(0,1) 0.95 CARA, with r ∈ [−15, 15]

Figure 5 6:1 10 Beta(2,2) 0.97 Logarithmic

Figure 6 6:1 10,40 Beta(2,2) 0.97 Logarithmic

Figure 7 2:1 10 Beta(2,2) 0.97 Logarithmic

Figure 8 1:1 10 Beta(2,2) 0.97 Logarithmic

Figure 9 2:1, 1:1 10 Beta(2,2) 0.97 Logarithmic
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