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Abstract 

Developments in Artificial Intelligence and Machine Learning technologies have had massive 

implications for labour automation. This paper builds on the task-based methodology first 

adopted by Frey and Osborne (2013) to predict how the risk of automation evolved in the UK 

labour between 2012 and 2017 using data from the UK Skills and Employment Survey. The 

analysis accounts for technological progress, making use of two sets of experts’ assessments 

for 70 occupations. The probability of automation is predicted for each individual using a set 

of self-reported job skills. It finds that the proportion of jobs at high-risk from automation has 

risen from 10.6% to 23.4%, and that this is largely due to better technology rather than changing 

job skill requirements. It also identifies sectors experiencing the greatest increase in automation 

risk between the two periods and, in contrast, those which appear complementary to 

technology, drawing on occupational case studies as evidence. 

 

Keywords: Employment, Skills Demand, Technology 

JEL Classifications: J01, J21, J24, J62, O33 

 

I. Introduction 
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Technological improvement is an ever-present aspect of the modern age. In 1965, Gordon 

Moore observed that the number of transistors in an integrated circuit doubled every two years. 

This high rate of technological improvement has been labelled ‘Moore’s Law’ and has become 

the standard for modelling the pace of technological progress. Such progress has brought 

increased scope for computers to carry out job tasks. For instance, the introduction of the ATM 

in the 1960s carried huge implications for bank tellers at the time. Or, more recently, we have 

seen a large proportion of retail checkout occupations being replaced by self-checkout 

machines.  

Many Economists have attempted to model how these technologies have impacted Labour 

demand across different occupations. Initially, the literature found evidence of the existence of 

a skill bias related to new technology (Acemoglu, 1998; Krusell et al, 2000). Autor et al (2003) 

contend that the routine nature of occupations determines substitution from technology. Further 

to this, more recent literature has cited routine middle-skilled occupations as being most 

susceptible to automation, contributing to job polarisation (Goos and Manning, 2007; 

Acemoglu and Autor, 2011; Goos et al 2014). Recently, Acemoglu and Restrepo (2020) find 

evidence of a negative impact of robot penetration on employment and wages within industries. 

However, recent developments in Artificial Intelligence, Machine Learning techniques and 

Mobile Robotics have rendered this simple routine vs non-routine framework outdated. For 

example, AI data analytics processor IMB Watson, launched in 2013, uses speech recognition 

and vast data stores to answer questions across a huge variety of business industries to help 

companies worldwide solve problems. 

Inspired by these fascinating developments, Frey and Osborne (2013) use a novel methodology 

with 70 expert-labelled occupations to predict the probability of automation for US 

occupations. This methodology has been adopted and improved by several studies since and 

forms the basis of my analysis. I draw on their expert’s assessment and make use of a more 

recent 2019 assessment to apply the methodology to two time periods, predicting the evolution 

of probability of automation for UK occupations. 

My data source is the UK Skills & Employment survey (SES) from 2012 and 2017, 

distinguishing my research from other studies that use OECD data. The datasets contain 

information on individual’s job characteristics and skill requirements, which I will use to model 

the probability that each individual’s work can be automated.  

The main finding of this paper is that the predicted proportion of jobs at ‘high-risk’ of 

automation rose between 2012 and 2017 from 10.6% to 23.4%. This rise is largely attributable 
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to technology improvements between the two time periods, arising from the change in expert’s 

assessment of automatable jobs, rather than changing characteristics of job tasks. It may also 

be a symptom of changing occupational structure in the UK, although this is likely limited due 

to the small timeframe. I also find that certain jobs and job sectors are indeed complementary 

to new technologies and identify others which face growing risk of displacement. 

Like existing studies, the focus of my paper is on feasibility of automation, rather than whether 

these occupations will be automated in practice. This is still extremely useful to policy makers 

as it identifies sectors facing growing risk and perhaps suggests what sectors and associated 

skills education should target in the long term. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. Literature Review 

As mentioned above, Autor et al (2003) argue the key issue relating to labour automation is 

whether work tasks are routine. By definition, routine tasks apply explicit rules to carry out a 

small set of well-defined activities. Using a task model, they conclude that computers are only 

substitutable for routine cognitive and manual labour tasks and are instead more 
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complementary to labour in non-routine cognitive situations. However, these conclusions soon 

became outdated, as technological development in the fields of AI and Robotics allowed for 

the automation of non-routine tasks (Brynjolfsson and McAfee, 2011). 

Frey and Osborne (2013) implement a novel methodology to predict the risk to labour from 

technology for US occupations from a feasibility perspective, arguing that technological 

development rendered previous studies less useful. Working together with Machine Learning 

researchers, they identify three “engineering bottlenecks” (Frey and Osborne 2013, p23) 

inhibiting task automation. Requirements for any of these abilities within job tasks limits the 

ability for computers to substitute for labour. 

The authors follow an occupation-level approach, utilising O*NET 2010 data on US 

occupations including variables corresponding with the three bottlenecks. Using a training 

dataset, from manual diagnosis of 70 occupations by experts based on whether each occupation 

can be automated with existing technology (which I will refer to as FO training dataset from 

now), the authors construct a model based on relevance of ‘engineering bottleneck’ skills in 

the job tasks and use it to predict automation probability for the remaining 702 occupations. 

They find an alarming 47% of US employment is at high-risk to automation. 

A key limitation of this high estimate is that heterogeneity of job tasks and characteristics 

within occupations isn’t factored in, as well as the fact that a given individual may work on 

tasks spanning multiple occupations. Arntz et al (2016) build on the analysis and estimate 

automatability for 21 OECD countries. They employ an individual-level approach to account 

for heterogeneity, utilising Programme for the International Assessment of Adult 

Competencies (PIAAC) survey data. By matching automatability from Frey and Osborne to 

US observations and regressing on similar job characteristic variables, they find that only 9% 

are at high-risk. Applying the model to other OECD countries, they find significant cross-

country variation in probabilities (hence why this paper is interested in the UK specifically) 

and estimate 10% of the UK are at high-risk. 

This variation is further validated by Nedelkoska and Quintini (2018) who expand and improve 

the analysis to 32 OECD countries. Using the same two step approach, they find that 14% of 

OECD jobs and 12% of UK jobs are at high-risk of automation. In addition, like this paper, 

they also use UK SES 2012 data to predict automation risk using a similar methodology. 

However, this is only to check robustness of their main analysis and uses minimal variables. 

A study by the ONS (Office for National Statistics, 2019) aims to estimate the probability of 

automation for the UK labour market specifically. They combine UK PIAAC data with Frey 
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and Osborne probabilities to predict automation risk for given job characteristics. They map 

these outcomes to the Annual Population Survey using common characteristics to carry out 

demographics analysis. They estimate that, in 2017, 7.4% of the 20 million analysed jobs in 

England are at high-risk. Repeating the methodology for 2011 yields 8.1%. However, they fail 

to draw any conclusions for why automation risk in England appears to have reduced and, 

critically, don’t account for technological change between the two periods. 

PWC conduct a comprehensive study (PWC, 2021) on the potential impact of AI on 

employment. As part of the study, they run an AI expert workshop (held in 2019) to reassess 

the 70 occupations originally assessed in Frey and Osborne (2013), notably changing the 

assessment of 6 occupations to become feasibly automatable. The study finds 7%, 18% and 

30% of UK jobs face high automation risk over the next 5, 10 and 20 years respectively, with 

the latter identified as the likely time horizon over which the FO assessments will occur in 

practice.   

An optimistic view of the impact of automation on employment is presented by Vermeulen and 

co-authors (2018) that is ignored in the above literature. They argue that job losses in sectors 

where technology substitutes for labour is limited, whilst the potential for job creation in 

existing and new sectors involving ‘making’ of such technology is great. In addition, Hughes 

(2017) argues that until human creativity and social intelligence is matched by AI, the 

employment opportunities utilising these skills may expand in the medium term due to 

technology being complementary.  

This paper contributes to the above literature in two key aspects. Firstly, benchmarking against 

existing studies that use PIACC data, I will use the UK SES to estimate UK automation risk. 

This dataset is only used by Nedelkoska and Quintini (2018), but this paper highlights 

weaknesses in their small set of variables.  

Secondly, this paper also adds a dynamic aspect which the above studies lack, modelling 

automation risk between two periods and consolidating findings with complementary vs 

substitutionary views for different occupation groups. I apply the FO and updated PWC 

assessment to the 2012 and 2017 surveys respectively to examine how risk has evolved over 

time. Unlike the 2019 ONS study, my analysis controls for technology improvement over time, 

inevitable from ‘Moore’s Law’. 
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III. Methodology 

My methodology continues to follow the assumptions from Frey and Osborne’s paper that 

technology cannot yet rival human labour in tasks which involve significant requirement for 

any one of the so-called ‘engineering bottlenecks’: perception or manipulation, creative 

intelligence and social intelligence. This is a standard assumption for proceeding literature and 

moves discussion away from routine vs non-routine. 

I follow a simple two-step analysis to predict the probability of automation for each of the 

individuals across the two datasets based on their job characteristics. Firstly, I match the 
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occupations in the datasets as closely as possible to the 70 expert-labelled occupations, 

assigning a value of 0 to those not deemed automatable and a value of 1 to those which are 

based on current technological capabilities. The 2012 dataset is matched with the FO 

assessment and the 2017 dataset with the PWC assessment. I hence assume that the 2013 

assessment of AI and robotic capability is applicable to 2012 and, similarly, the 2019 

assessment to 2017. 

These sets of observations form the training dataset for each period (table 1). I was able to 

match and identify individuals in 56 out of the 70 FO occupations within my survey data, with 

6 occupations deemed automatable in 2017 but not 2012. These six occupations indicate 

increased ability of AI to carry out both managerial and consumer-facing roles, as identified in 

PWC’s report (PWC 2021, p80). As is common for prediction analysis, I randomly split each 

training dataset into a ‘train’ and ‘test’ component in the ratio 7:3 to assess how well the model 

fits the expert’s assessment in each period. 

1
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f x
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+ −
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I perform a likelihood estimation to construct a model with the outcome, y, being the binary 

expert assessment for that individual’s occupation. The discriminant function (f) contains a set 

of variables (x) that describe the individual’s use of perception/manipulation, creative 

intelligence and social intelligence skills in their occupation (equation above), with weights 

attached to each variable to maximise the likelihood from the training data.  

Due to a large number of characteristics being insignificant in a simple regression, I use a lasso 

logit regression. Lasso stands for ‘least absolute shrinkage and selection module’. It is used to 

prevent overfitting of the prediction model, ‘penalising’ coefficients and selecting the variables 

which are highly relevant to the training data (appendix A). 

Secondly, I use this model to predict the probability of automation for the remaining individuals 

in each dataset. Those with a probability of automation of 70% or more are labelled ‘high-risk’, 

those with less than 30% are ‘low-risk’ and in-between are ‘medium-risk’. This can be 

interpreted as a predicted timeframe for when these individual’s occupations will be automated, 

with high-risk occupations facing threat of automation within 20 years. I analyse what sectors 

and demographics of the UK are at both highest and lowest risk, and how the risk they face has 

changed between the two periods. I also investigate specific occupations’ automation risk in 
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the two periods to validate the analysis and provide evidence for complementary or 

displacement theory. 

I repeat this methodology for a second specification. This to predict the probability of 

automation for each period assuming the FO assessment holds in both periods. This is to see 

how the susceptibility to automation has evolved between the two periods based only on 

changing job skills requirements and UK occupational structure without modelling 

improvement in technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. Data 

As mentioned, I use UK SES data from 2012 and 2017, contrasting with prior studies that use 

PIACC data. The surveys cover individuals in employment aged 20-65, with the 2012 and 2017 

editions comprising of 3,200 and 3,306 individuals respectively. The sampling was stratified 

across UK postcode sub-regions and, within sub-regions, across standard Socio-economic 

classification to ensure a representative sample. 

Our lasso logit model uses a set of 22 ordinal variables (table 2) which are similar to those used 

in prior studies and are linked to human-bias skills. For each individual, the interviewer asks: 

“In your job, how important is” followed by a job skill/characteristic. The individual can then 

respond with 1 – essential, 2 – very important, 3 – fairly important, 4 – not very important and 
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5 – not important at all. The self-reported nature of these variables leads to subjectivity. An 

individual may perceive an aspect of his/her job to be ‘essential’ which others may disagree 

with and vice versa, which may lead to attenuation bias in our lasso coefficient estimates. 

The chosen set of variables depicting the requirements of the three ‘engineering bottlenecks’ 

is similar but unique compared to other studies. In particular, the inclusion of the ‘caring’ 

variable, a job characteristic that requires significant social intelligence, gives an advantage 

over PIACC studies that don’t include such information, perhaps contributing to any 

differences in our risk predictions compared to prior studies.  

Figure 1: change in mean ordinal index value between 2012 and 2017 for each variable 

 

Figure 1 shows how the importance of each of the job characteristics/skills changes between 

the two datasets through the change its variable’s mean index value. Here, the scale been 

reversed so that an increase in a variable’s mean implies it is more important in 2017. 

It appears that most skills related to perception/manipulation (red) and creative intelligence 

(blue) have become slightly more important over the 5-year period, with the exception of 

operating tools and spotting problems or faults. However, the evidence regarding social 

intelligence skills (green) is more mixed. Notably, interpersonal, teaching, selling and caring 

skills all appear to have declined in importance slightly. Considering the set of variables 

overall, no clear inference can be made on whether jobs will become more or less susceptible 

to automation between the periods.  

Individuals in the training dataset make up 541 out of 3,200 observations for the 2012 dataset 

and 515 out of 3,306 observations for 2017 (table 3). Applying the FO assessment, 34.38% of 

the 2012 training dataset are deemed automatable, whilst 40.97% of the 2017 training dataset 
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are automatable after applying the updated PWC assessment. Table 4 shows a comparison of 

the job characteristic variables between the two training datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

V. Empirical Evidence 

Table 5: OLS regression results for two models: (1) includes only variables used by Nedelkoska 

& Quintini (2018) in their robustness check and (2) is the full 22 from this paper 

 
2012 2017  

(1) (2) (1) (2) 

Hands 0.065*** 0.039* 0.050*** 0.036*  
(5.16) (2.38) (3.82) (2.03) 

Faults -0.016 -0.022 -0.061** -0.067**  
(-0.78) (-0.94) (-2.85) (-2.72) 

Analyse 0.014 -0.001 0.054** -0.000  
(0.80) (-0.04) (2.91) (-0.02) 

Teach 0.066*** 0.033 0.071*** 0.033  
(4.11) (1.76) (4.25) (1.67) 

Persuade 0.077*** 0.063** 0.054** 0.010  
(4.06) (3.04) (2.67) (0.48) 

Selling -0.042*** -0.048*** -0.057*** -0.052***  
(-3.35) (-3.66) (-4.28) (-4.00) 

Caring 0.0271 -0.006 0.067*** 0.068***  
(1.82) (-0.34) (4.64) (4.35) 

Tools 
 

0.003 
 

-0.002   
(0.18) 

 
(-0.10) 

Stamina 
 

0.052* 
 

0.028 
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(2.55) 

 
(1.38) 

Strength 
 

0.005 
 

-0.026   
(0.26) 

 
(-1.21) 

Solution 
 

0.010 
 

0.052   
(0.38) 

 
(1.83) 

Ahead 
 

0.021 
 

0.058*   
(0.74) 

 
(2.16) 

Newthings 
 

0.069* 
 

0.157***   
(2.44) 

 
(4.62) 

People 
 

0.056 
 

-0.048   
(1.85) 

 
(-1.63) 

Speech 
 

0.017 
 

0.039*   
(0.92) 

 
(2.12) 

Teamwork 
 

0.020 
 

-0.020   
(0.83) 

 
(-0.74) 

Listen 
 

-0.061* 
 

-0.038   
(-2.44) 

 
(-1.34) 

Mytime 
 

0.020 
 

0.026   
(0.81) 

 
(1.01) 

Planothers 
 

0.030 
 

0.032   
(1.71) 

 
(1.73) 

Feelings 
 

0.040 
 

-0.001   
(1.72) 

 
(-0.02) 

Look 
 

-0.003 
 

0.029   
(-0.14) 

 
(1.25) 

Sound 
 

-0.014 
 

-0.049   
(-0.57) 

 
(-1.82) 

Constant -0.142* -0.397*** -0.032 -0.177  
(-2.27) (-4.72) (0.46) (-1.88) 

N 541 541 515 515 
Adj R^2 0.208 0.254 0.232 0.308 

Table 5 shows a simple regression of the binary FO expert assessment (1= feasibly 

automatable), on two sets of job characteristic variables. Model 1 is the limited set of variables 

used by Nedelkoska and Quinitini to predict automation risk as a robustness check. Model 2 is 

the full specification this paper uses. These models are run for both time periods.  

The inclusion of the additional set of characteristics has a big impact on the coefficient 

estimates in model 1. For the 2012 regression, running model 2 shrinks all coefficients except 

on spotting faults and selling, and the teaching variable is no longer statistically significant 

even at the 10% level. Similarly, in the 2017 regressions, model 2 shrinks all coefficients apart 

from on spotting faults and caring. The characteristics analysing, teaching and persuading 

become insignificant. There is a significant increase in the adjusted r-squared value from model 

1 to 2 for both periods. The lack of significance of many characteristics, highlights the 

requirement for lasso. 

Table 6: lasso logit model coefficient selection and penalised coefficient values 

Variable 2012 2017 

Hands 0.205 0.199 

Faults -0.027 -0.274 
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Analyse x x 

Teach 0.168 0.188 

Persuade 0.329 0.069 

Selling -0.26 -0.309 

Caring x 0.357 

Tools x x 

Stamina 0.296 0.108 

Strength 0.017 -0.082 

Solution x 0.191 

Ahead 0.078 0.338 

Newthings 0.322 0.86 

People 0.197 -0.263 

Speech 0.073 0.202 

Teamwork 0.021 -0.104 

Listen -0.193 -0.231 

Mytime 0.079 0.213 

Planothers 0.189 0.174 

Feelings 0.162 x 

Look x 0.08 

Sound x -0.17 

Constant -4.736 -3.773 

(x=variable omitted by lasso) 

Table 6 shows the variable selection from the lasso logit model and the ‘penalised’ coefficients 

for each period. Analysing complex problems and skills with tools are omitted by lasso in both 

periods, suggesting they don’t impact automation risk. We expect the coefficient on each 

variable to be positive because a greater index value implies that job skill is less important and 

hence technology will be more substitutable. This is the case for most of the selected variables. 

However, the ability to spot faults, to sell and to listen are associated with greater probability 

of automation for both datasets. Our model for 2017 suggests the biggest limiting factor is 

continuously learning new things. 

Using these two lasso logit models to predict the probability of automation for the remaining 

individuals yields our key results. Table 7 shows the statistics from the goodness-of-fit test for 

how well the model from the training data fit the test data. The results suggest the model fits 

the data much better for 2017 than 2012, suggesting the ‘bottleneck’ assumptions are more 

applicatable in the more recent time period. 

Figure 2: proportion of individuals in each dataset at each risk level 
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The proportion of individuals predicted at high-risk of automation has risen from 10.63% to 

23.38% between the periods. The proportion of individuals at medium and low-risk 

respectively has reduced from 44.15% to 42.01% and from 45.22% to 34.61% (figure 2). The 

evolution of the distribution of probabilities is demonstrated visually in the kernal density 

graphs in figure 3, highlighting the lower number of individuals falling in the low-risk band 

and a larger tail at the high-risk end. In 2017, the highest risk industry is wholesale and retail 

trade, with a mean probability of 64%. At the other end of the spectrum, only 7% of the 

Education industry were predicted high-risk (table 8). 

 

Figure 4: mean probability of automation by SOC 2-code occupation groups 
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Sales occupations have the highest mean risk of automation for 2017 (figure 4). The mean risk 

for occupations in this group has grown by an alarming 24 percentage points. Occupations here 

include sales/retail assistants, checkout operatives, merchandisers and telephone salespersons. 

‘Elementary trades, plant and storage’ occupations see an increase in mean probability of 19 

percentage points, the second largest. This group incorporates a variety of manufacturing 

process operators (e.g. food, textile or chemical manufacturing), product assemblers, routine 

inspectors/testers and sewing machinists. 

The analysis predicts that occupations in lower risk groups experienced lower rises in mean 

automation probabilities. We see very little change in probabilities for Health, social care, 

teaching, research, business, media and public service-related professionals or associate 

professionals, and for directors and managers. This is despite technology improvements 

between the periods, indicating these occupations increasingly rely on creative and social 

intelligence, with technology perhaps more complementary. The greatest indicator of this effect 
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are occupations in science, engineering and technology (including lab, IT and engineering 

technicians), which have actually experienced slight reduced probability of automation. 

Overall, this suggests the presence of a skill bias even for modern AI. 

I show how automation probabilities have changed by skill level in figures 5 and 6, 

distinguishing between low, medium and high skilled jobs (table 9) and further separating out 

the low and medium jobs into routine and non-routine. Despite AI improvement, the routine 

nature of occupations appears to still play a vital role in automation risk. Whilst probabilities 

for routine vs non-routine middle skilled jobs are very similar in 2012, routine middle skilled 

jobs become much more susceptible to automation in 2017 than their non-routine counterpart, 

and also, interestingly, than low-skilled non-routine jobs. The proportion of individuals in 

routine low and middle skilled jobs at high-risk has risen by 26 and 25 percentage points 

respectively. Testing the significance of the routine nature of an individuals’ occupation on the 

binary experts assessment evidences that it still plays a role. However, the F-statistic is far 

greater for 2012 than 2017 (table 10). 

We see a U-shaped relationship between age and job automation risk from figure 7 that is well 

documented in prior studies (ONS, 2019; Nedelkoska & Quintini, 2018). The model predicts 

young working individuals aged 20-24 as the most likely to be displaced by technology, 

followed by those aged 60+. Meanwhile those workers aged 35-44 face lowest risk and have 

been least affected by the improvements in technology between the two time periods.  

It appears that existing high-risk age bands have experienced a greater increase in risk than the 

lower risk bands between the periods.  The exception to this is the 30-34 band, who had the 

lowest proportion of individuals with high probability in 2012. The proportion of individuals 

at high-risk in this age band has risen from only 6% up to 22%. 

Our second specification for 2017, where we hold constant technological feasibility by using 

the FO assessment to construct our training dataset, yields proportions of 13.88%, 37.84% and 

48.28% of observations at high, medium and low-risk respectively. Although this prediction is 

a lot closer to that of 2012, the proportion at high-risk is still higher despite not modelling 

technology improvement. This implies that individuals in high-risk occupations are carrying 

out less tasks associated with engineering bottlenecks. However, the proportion of individuals 

at low-risk has increased between the two periods, suggesting jobs require more of these 

human-bias tasks and thus implying technology is complementary here. 

Figure 8: change in mean automation between 2012 and 2017 by SOC 2-code occupation group 

using the Frey and Osborne 2013 expert’s assessment for both time periods (ordered by original 

2017 specification predicted automation risk) 
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Figure 8 highlights the change in mean probability from this specification for each occupation 

group. This provides clear evidence for complementary effects in low-risk groups since 

changes in automation probability between the two periods is predominantly based on task 

structure for each individual. We see reduced automation risk and suggesting increased human-

biased tasks for occupations related to business, media, public service, teaching and healthcare.   

 

 

VI. Validation 

This section seeks to somewhat validate the model through occupational case studies. Well-

documented is the decline in secretarial related occupations, which can be at least partly 

explained by technologies such as automatic meeting scheduling or reminders, automatic 
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redirecting of phone calls and, notably, automatic gathering and organising of consumer 

information. We find that company secretaries have a mean probability of 0.75 in our 2017 

prediction, supporting this risk narrative.  

There have been instances of bars incorporating mobile robotics to carry out bartending drink-

making duties. Whilst this is not a widespread practice, we expect jobs in this field to be high-

risk, especially since our 2017 expert assessment deems waitering automatable. In our 2017 

prediction, bar staff have a mean probability of 0.72, with 10 of the 19 individuals falling into 

the high-risk band, reconciling well with reality. Note that some bar staff may have to use social 

intelligence regularly, hence contributing to heterogeneity in predicted probability. 

Intuitively, teaching cannot yet be feasibly replaced with AI due to the rigorous demand for 

social intelligence and the transfer of not just knowledge, but also wisdom. This is validated in 

our 2017 analysis, which predicts very low mean probabilities for Primary, Secondary and 

Higher Education teachers of 0.16, 0.16 and 0.17 respectively. 

For occupations that are technology compliments (Autor et al, 2003), we would expect a fall 

in automation risk and growing labour demand. This is because the use of technology in 

technology-biased tasks, which boosts productivity, allows an individual to focus more on 

‘human’ skills. This changing task structure will thus reduce our risk prediction. For 

occupations that are more likely to experience a displacement effect in the future, we are 

unlikely to see any decline in probability. 

On top of the extensive requirement for social and creative intelligence, Lawyers are required 

to carry out mundane tasks reviewing countless documents. Such tasks can now be more 

efficiently carried out by complex software, a trend that will likely grow in the future. We see 

evidence of this complementary effect in our prediction for the two time periods, as the mean 

probability of automation for solicitors in our sample has declined from 0.43 in 2012 (medium-

risk) to 0.30 in 2017 (low-risk). This evidences an increased prevalence of human-bias skills 

and less time spent on (e.g.) document reviewing. 

Programming and software development has also been aided by AI programs that can spot 

errors in code and automate tedious programming tasks (e.g. Deepcode or Software 2.0), 

allowing for such developers to focus on more complex problems requiring extensive creative 

intelligence. This complementary theory is also validated in our predictions, with mean 

probability declining from 0.52 to 0.44 despite technology improvement. 
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In contrast, we see no decrease in predicted automation risk for many occupations that can be 

feasibly replaced by technology, painting a more pessimistic picture for these individuals in 

the face of technology improvement. My analysis predicts a rise in probability of automation 

for receptionists from 0.44 to 0.64. Packers, bottlers, canners and fillers, representing manual 

occupations that can be robotised, see a rise in mean probability from 0.53 to 0.61. Finally, 

Individuals working as telephone salespeople now face an alarming mean probability of 0.89, 

up massively from 0.55, resulting from our model associating selling with greater risk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. Conclusion 

As quoted previously, the key finding from this paper is that the proportion of jobs at high-risk 

from being automated has increased from 10.6% in 2012 to 23.4% in 2017. From the second 

specification, where technology is constant between the datasets, the proportion at high-risk 

rose still, but only to 13.88%, whilst the proportion at low-risk actually reduced from 48.3% to 

45.2%. This suggests that the task structure of low-risk jobs increasly require human-bias skills, 
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meanwhile those at the high-risk end require less. It also indicates that the largest effect causing 

the rise in predicted risk comes from technology improving between the two periods. This 

explains why the 2019 ONS study, which did not account for changing technology, actually 

predicted a slight fall in the proportion of high-risk jobs between 2011 to 2017. 

This paper also finds evidence that occupational groups at highest average risk of automation 

are also, in general, the ones which have seen the greatest rises in predicted automation risk, 

suggesting they are most threatened by the latest developments in AI and robotics. This 

suggests the skill-bias technology change observed in prior decades (Acemoglu, 1998) will 

continue despite AI’s ability to perform more complex tasks.  

We can compare our 2012 prediction with other studies that use Frey and Osborne’s 

assessment. In line with other studies, our individual-level rather than standardised occupation 

approach has yielded a much lower high-risk prediction Frey and Osborne’s US prediction of 

47%. Our prediction is very similar to the PIACC prediction in both Arntz et al (2016) and 

Nedelkoska & Quintini (2018) of 10% and 12% for the UK respectively. Therefore, the new 

set of variables used in this paper to estimate automation risk validates the predictions from 

these studies for the UK.  

No studies have yet used the PWC 2019 experts assessment apart from the publication itself 

(PWC, 2021). Given PWC’s likely time frame of 20 years for the jobs to be replaced in practice, 

accounting for other factors such as labour vs technology costs, we can consolidate our result 

with PWC’s prediction of UK jobs which will likely be automated by the 2030s to see a lower 

prediction (23.38% vs 30%). 

From our 2017 model, the biggest limiting factors for whether a job is automatible appear to 

be skills in learning new things, caring for others, problem-solving and thinking ahead. Skills 

in learning new things are highly relevent also for the 2012 model, where persuasion, hand or 

finger dexterity and stamina were much greater limiting factors. 

Contrary to what was expected, the ability to spot faults, to sell and to listen are associated with 

greater probability of automation for both datasets. This result can perhaps be rationalised. 

Firstly, with respect to spotting faults, modern AI is now capable of spotting errors in 

equipment and can also predict the probability of machinery breakdown in a given time period. 

Secondly, whilst selling to customer requires significant social intelligence, sales process 

automation is now common, for example through automatic emails or customer relationship 

tools (e.g. Salesforce). Thirdly, and perhaps most intuitively, voice recognition software now 
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has the ability to receive and interpret dictation and is not far from rivalling human listening 

ability. 

Another finding from this paper is that the routine nature of an individuals’ occupation still 

massively impacts automation risk. Despite AI development, more routine occupations within 

skill levels are at far higher risk. The increase in proportion of high-risk individuals for both 

low and medium skilled routine occupations between 2012 and 2017 is much greater than for 

non-routine occupations. Greater risk for medium-skill routine jobs than ordinary low-skill jobs 

supports the job polarisation effect cited by Acemoglu and Autor (2011). I argue this is perhaps 

a symptom of technologies replacing routine tasks being simpler and thus much cheaper to 

implement. Meanwhile, more novel and complex AI is needed for non-routine settings. 

As with prior studies that have followed the broad methodology of Frey and Osborne (2013), 

this paper focuses on technological feasibility rather than whether occupations will be 

automated in reality. To make such a prediction depends on many factors, such as the cost of 

relevant technologies vs wages, legal barriers and regulatory policy, and is thus not limited to 

a focus on skill use. Studies which observe the actual automation process of jobs would be able 

to account for these, a likely direction for future economic research. Job creation, from growing 

use of AI and robotic technologies, may be substantial in some industries (Vermeulen et al, 

2018) and the prediction model also doesn’t consider general equilibrium effects (Bessen, 

2019) and increased consumer demand in some industries. In reality, these will likely play a 

role over the next 20 years and may mitigate displacement effects. 

Due to data limitations, this paper also lacks evidence from wages to support the 

complementary vs displacement narrative (Autor et al, 2003). For example, Autor and Dorn 

(2013) highlight a reallocation of labour from routine tasks to low-skilled service occupations 

which are harder to automate and show that wages in routine occupations have subsequently 

declined. Such wage evidence would help to provide evidence to support displacement effects 

here, with rising wages also evidencing a complementary effect. 

Finally, if history has taught us anything, the potential for shock developments within the field 

of technology is great. Future innovations in the realms of these areas may render the 

assumptions of this methodology outdated. If the scope for technologies to rival labour and 

carry out job tasks is no longer restrained by our so-called ‘engineering bottlenecks’, this will 

likely lead to much greater job displacement than predicted. 
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Appendix A 

Lasso regressions are used in a similar setting to ridge regressions to shrink coefficients towards zero 

by applying a penalty (James et al 2021, p241). This is particularly useful in settings with a large set of 

explanatory variables, many of which may be insignificant. Lasso helps improve the accuracy of 

prediction models and reduce bias, in particular when some of the control variables are highly correlated 

and the model could otherwise suffer from multi-collinearity. For p parameters over n observations, it 

solves the problem: 

2

0

1 1 1

min ( ) | |
p pn

i j ij j

i j j

y x


   
= = =

− − +    

Where llamda is a tuning parameter chosen through cross-validation. Here, the first term is simply the 

residual sum of squares, and the second is the lasso penalty. The higher the value of this parameter for 

coefficient j, the greater the coefficient penalty. The key difference between ridge and lasso is that lasso 

will shrink coefficients to zero for a sufficiently large llamda (i.e., drops variable). 
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The use of this lasso selection in a logistic regression is important for this paper since many job 

characteristic variables appear insignificant in the first stage regression. It is important to identify which 

job characteristics don’t explain variation in our training data binary assessment and remove them from 

our prediction. Lasso also helps to address concerns regarding high correlation of some of our job 

characteristics and the potential for multi-collinearity. For example, intuitively, the presence of both 

simple and complex problem solving in an occupation are likely to be highly correlated, as is the 

relevance of both teamwork and people skills. 

Appendix B 

Table 1: Occupations in the training dataset and their respective experts assessment 

UK 2010 Standard Occupational Classification Can this job be feasibly automated? 

Medical practitioner 0 

Dental practitioner 0 

Social welfare manager* 0 

Aged care services manager* 0 

Primary and nursery education teaching 0 

Clergy 0 

Nurses 0 

Counsellors 0 

Chief executives and senior officials 0 

Civil engineers 0 

Product, clothing and related designers 0 

Legal professionals 0 

Solicitors 0 

Conference & Exhibition Managers 0 (2012) and 1 (2017) 

Other Health Professionals 0 

Inspector of standards and regulation 0 (2012) and 1 (2017) 

Childminders and related occupations 0 

Chefs 0 

Electrical engineers 0 

Physical scientists 0 

Hairdressers 0 

Beauticians 0 

Athletes and sports competitors 0 

Biologists, Botanists, Zoologists and Related Professionals* 0 

Plumbers and heating and ventilating engineers 0 

Air travel assistant 0 (2012) and 1 (2017) 

Quantity surveyors 1 

Chartered surveyors 1 

Barristers and judges 0 

Estimators, valuers and assessors 1 

Managers/directors in transport and distribution** 0 (2012) and 1 (2017) 

Managers/directors in storage** 0 (2012) and 1 (2017) 
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Marketing associate professionals 1 

Marine and waterways transport operative 1 

Bus and coach drivers 1 

Housekeeping and related occupations 0 

Building and civil engineering technician 1 

Fishery workers, hunters and trappers* 0 

Assemblers of electrical and electronic products  1 

Sheet metal workers 1 

Medical secretaries 1 

Sewing machinists 1 

Taxi drivers and chauffeurs 1 

Personnel clerks (HR assistant) * 1 

Fork-lift truck drivers 1 

Chartered and certified accountants 1 

Waiters and waitresses 0 (2012) and 1 (2017) 

Postal workers, mail sorters, messengers + couriers 1 

Legal secretaries 1 

Telephone switchboard operators* 1 

Retail cashiers and checkout operatives 1 

Records clerks and assistants 1 

Credit controllers 1 

Credit and loans officer* 1 

Data entry clerk* 1 

Insurance underwriters 1 

*International Standard Classification of Occupations 2008 (ISCO) not SOC 2010 
**One occupation in Frey and Osborne (2013) 
Table 2: description of job characteristic variables which are used 

Variable Description Mean (s.d.) 2012 Mean (s.d.) 2017 

Hands Skill/accuracy using hands/fingers 3.10 (1.53) 3.04 (1.52) 

Faults Spotting problems or faults 1.95 (1.08) 2.00 (1.07) 

Analyse Analysing complex problems in 
depth 

2.64 (1.34) 2.57 (1.34) 

Teach Teaching individuals 2.41 (1.34) 2.49 (1.35) 

Persuade Persuading or influencing others 2.69 (1.27) 2.68 (1.30) 

Selling Selling a product or service 3.22 (1.59) 3.33 (1.57) 

Caring Advising, counselling or caring for 
customers or clients 

2.37 (1.46) 2.52 (1.49) 

Tools Knowledge of operation of tools 2.81 (1.57) 2.93 (1.57) 

Stamina Physical stamina 3.09 (1.40) 3.01 (1.45) 

Strength Physical strength 3.31 (1.42) 3.25 (1.46) 

Solution Thinking of solutions to problems 2.08 (1.11) 2.03 (1.10) 

Ahead Thinking ahead 1.80 (0.92) 1.80 (0.93) 

Newthings Constantly learning new things 1.86 (0.77) 1.82 (0.76) 

People Dealing with people 1.43 (0.81) 1.47 (0.84) 

Speech Making speeches or presentations 3.54 (1.37) 3.46 (1.39) 

Teamwork Working with a team of people 1.90 (1.14) 1.89 (1.15) 
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Listen Listening carefully to colleagues 1.89 (1.04) 1.89 (1.06) 

Mytime Organising own time 1.91 (1.08) 1.83 (1.01) 

Planothers Planning/organising for others 3.14 (1.37) 3.03 (1.38) 

Feelings Handling feelings of others 2.12 (1.07) 2.13 (1.04) 

Look Looking the part 2.48 (1.15) 2.52 (1.17) 

Sound Sounding the part 2.20 (1.11) 2.24 (1.11) 

 

Table 3: structure of the training dataset for 2012 and 2017 

Year Training observations Automatable = 1 Automatable = 0 

2012 541 186 355 

2017 515 211 304 

 

 

 

 

 

 

 

 

 

Table 4: comparison of mean values for a selection of variables between the training dataset from 

each period 

Variable 2012 2017 t-statistic 

Sex (1=female) 0.593 0.590 0.10 

Age 42.752 44.274 2.09* 

Hands 2.982 3.037 0.97 

Faults 1.962 2.043 1.19 

Analyse 2.595 2.588 0.12 

Teach 2.388 2.449 0.69 

Persuade 2.745 2.691 0.63 

Selling 3.312 3.512 2.12* 

Caring 2.142 2.307 1.90 

Tools 2.728 2.994 2.77* 

Stamina 2.945 3.049 1.30 

Strength 3.338 3.464 1.50 

Solution 2.078 2.113 0.44 

Ahead 1.739 1.697 0.71 

Newthings 1.750 1.726 0.43 

People 1.320 1.342 0.45 

Speech 3.466 3.334 1.67 

Teamwork 1.834 1.903 0.98 
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Listen 1.837 1.868 0.44 

Mytime 1.837 1.711 2.08* 

Planothers 3.092 2.983 1.32 

Feelings 1.969 1.948 0.33 

Look 2.266 2.313 0.60 

Sound 2.111 2.093 0.31 

Observations 541 515 
 

*reject null of two-sided t-test for equality of means at the 5% significance level 

 

Table 7: goodness-of-fit test results for the lasso logit model in both periods 

 
Datatype Deviance Deviance ratio Observations 

2012 Train 0.933 0.269 379 

Test 1.112 0.152 162 

2017 Train 0.938 0.31 360 

Test 1.033 0.227 154 

 

 

 

 

 

Figure 3: kernel density graph of the distribution of probabilities for each time period 

 

 

Table 8: probability of automation grouped by industry for 2017 
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Industry Mean 
Probability 

Proportion at 
High-Risk 

G: Wholesale and Retail Trade; Repair of Motor Vehicles 0.637 52% 

N: Administrative and Support Service Activities 0.579 38% 

H: Transportation and Storage 0.565 35% 

I: Accommodation and Food Service Activities 0.560 36% 

E: Water Supply; Sewerage and Waste Management 0.534 25% 

C: Manufacturing 0.511 27% 

A: Agriculture, Forestry and Fishing 0.502 25% 

K: Financial and Insurance Activities 0.486 22% 

L: Real Estate Activities 0.485 23% 

F: Construction 0.467 20% 

S: Other Service Activities 0.458 16% 

D: Electricity, Gas, Steam and Air Conditioning Supply 0.449 13% 

M: Professional, Scientific and Technical Activities 0.443 17% 

B: Mining and Quarrying 0.440 24% 

J: Information and Communication 0.438 17% 

O: Public Administration, Defence and Social Security 0.419 18% 

R: Arts, Entertainment and Recreation 0.349 12% 

U Activities of Extraterritorial Organisations and Bodies 0.319 20% 

P: Education 0.269 7% 

(Industry variable not available in 2012 dataset) 

 

Table 9: classification of low, medium and high skilled occupations 

SOC-2010 1-digit Occupation group Skill Level 

Managers, Directors and Senior Officials High 

Professional Occupations High 

Associate Professional and Technical Occupations High 

Administrative and Secretarial Occupations Medium 

Skilled Trades Occupations Medium 

Caring, Leisure and other service Occupations Medium 

Sales and Customer Service Occupations Medium 

Process, Plant and Machine Operatives Low 

Elementary Occupations Low 

 

 

Figure 5: mean probability of automation by individuals’ skill group (separating out routine 

and non-routine occupation*) 
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*Routine includes individuals in a semi-routine occupation whose task requirement contains a large 

routine component as described by the National Statistics Socio-economic classification 

 

 

 

 

 

 

 

 

Figure 6: proportion predicted as high-risk by skill group 
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Table 10: results from F-test of the joint significance of the routine and semi-routine dummy 

variables when added to our OLS regression model (2) (table 3) 

Year F statistic P-value Reject H0* 

2012 26.31 0.000 Yes 

2017 6.31 0.002 Yes 

*at the 1% significance level 

 

Figure 7: proportion of individuals predicted at high-risk by age group 

 

 

 


