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Hierarchies of Beliefs for Many Player
Games

Venkata Tanay Kasyap Kondiparthy †

Abstract

Mertens and Zamir (1985) first provided the universal type space construction for finite
player games of incomplete information with a compact state space. Brandenburger and
Dekel (1993) complemented it for a Polish state space. This paper extends the construction
of Brandenburger and Dekel (1993) to games with infinitely many players for Harsanyi’s
notion of a type. The extension is formulated by randomly drawing a countably infinite
set of actual players from a continuum of potential players, represented by their labels in
[0,1]. The random distribution of the countably infinite set of actual players almost surely
converges to Lebesgue due to the Glivenko–Cantelli theorem. A coherent type is shown
to induce beliefs over other player’s types and common knowledge of coherency closes the
model of beliefs. Implications of dropping the Polish space assumption are discussed and
an informal extension to measurable spaces is provided for future work. The formalisation
provided here allows Harsanyi’s notion of type to be applied in classes of games with many
players such as Morris and Shin (2001).

JEL Classification: C70, D83.
Keywords:Higher Order Beliefs;Universal Type Space; Many Player Games.

†email: v.v.kondiparthy@lse.ac.uk, tanaykondiparthy@gmail.com
Online Appendix:Link. Please note all references to the Online Appendix within the text are hyperlinks.
The author thanks Prof Herakles Polemarchakis for his supervision and support. The author is grateful to Prof
Peter Hammond for his invaluable guidance and support throughout the project. The author thanks Joseph
Basford for discussions of the paper.

https://github.com/tanaykasyap/Appendix-HoB-paper/blob/main/HoB_for_Many_Player_Games__WESP_Appendix.pdf


1 Introduction

Harsanyi (1967) proposed for games of incomplete information the concept of a player’s type,
which summarises all the beliefs and characteristics concerning that player. Harsanyi’s for-
mulation helped overcome the issue of considering an infinite hierarchy of beliefs as is com-
mon in games of incomplete information by making it more tractable. Players are uncertain
about all the aspects which impact their strategies and payoffs. A Harsanyi type profile is an
infinite hierarchy of beliefs, as in a strategic game a player needs to form their own beliefs
about the parameters of the game, then beliefs about the beliefs of the other players regard-
ing the parameters of the game then beliefs about the other players’ beliefs about their own
beliefs on the parameters of the game and so on ad infinitum. Furthermore, each type in
Harsanyi (1967) implicitly induces a joint belief over the states of nature and the types of
other players.

In a seminal paper, Mertens and Zamir (1985) formalised the implicit notion of a type given
by Harsanyi (1967) to a corresponding explicit notion in terms of an infinite hierarchy of
beliefs, which corresponds to a universal type space for a finite number of players. Branden-
burger and Dekel (1993) proved the Mertens and Zamir (1985) results when starting with a
Polish space (𝑆)1 instead of a compact space for the states of nature. There have been many
papers in the literature replicating the results of Mertens and Zamir (1985) with various un-
derlying assumptions about the states of nature for a finite set of players, including when 𝑆 is
a general measurable space by Heifetz and Samet (1998). The results of Mertens and Zamir
(1985) and others remain yet to be extended in games with an infinite number of players.
There are many classes of games with incomplete information in economics which deal with
more than a finite set of players, e.g. the global games of Morris and Shin (2001).

The aim of the paper is to extend the construction of Brandenburger and Dekel (1993) to
games with infinitely many players. The Brandenburger and Dekel (1993) setup was chosen
for this extension because of the generality, applicability and mathematical tractability of Pol-
ish spaces. A novel method is proposed, motivated by Hammond (2017), to embed the count-
ably infinite set of actual players randomly into a continuum of potential players, represented
by their labels in [0,1]. The embedding serves two purposes: 1) It makes the model tractable
by allowing beliefs over [0, 1], which is a Polish space, 2) The stochastic labelling mechanism
as described in section (3.1) allows non-degenerate individual randomness without getting
non-measurable sets. The main results of this paper are proposition (1) and proposition (2)
which are analogues of the proposition of Brandenburger and Dekel (1993). Proposition (1)
proves that, the space 𝑇 ′

1, of coherent types is homeomorphic to Δ( [0, 1] × 𝑆 ×𝑇 ′
0) and proposi-

tion (2) shows that under the common knowledge of coherency, the space 𝑇 ∗, of all coherent
types is homeomorphic to Δ( [0, 1] × 𝑆 × 𝑇 ∗) thus extending the result of Brandenburger and
Dekel (1993), where 𝑇 ∗ is the universal type space in this extended framework. The need
for the Polish space assumption is discussed – proposition (1) holds when 𝑆 is weakened to a
separable metric space, but this result does not extend to proposition (2).

In the Online Appendix, an extension for future work is given, with 𝑆 as a measurable space,

1A Polish space is a complete, separable metric space, where a metric space is complete if every Cauchy
sequence in the space converges, and separable if there is a countable dense subset of the space.
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where the Ionescu-Tulcea theorem is used to show how to extend the hierarchy of beliefs to
an infinite order in this setup. Although as in Heifetz and Samet (1998) whether a universal
type space exists in this extended setup for the measurable case, and that it is a proper subset
of the space of infinite order hierarchies in section (3.1) is left to be proved for future research.

The interested reader may refer to the Online Appendix before proceeding, for a mathemat-
ical preliminary.

2 Literature review

Mertens and Zamir (1985) formalised the idea mathematically, they wrote when “Starting
from a set 𝑆 of all possible values of the parameters of the game, can one identify a math-
ematically well defined set 𝑌 of the ‘states of the world’ in which every point contains all
characteristics, beliefs and mutual beliefs of all players, such that any infinite hierarchy of
beliefs would lead to some point in 𝑌 .” They begin with a compact set 𝑆, so that Δ(𝑆), the
space of all probability distributions over 𝑆, is a compact metric space with the weak∗topology
Conway (2007). The weak∗topology is the coarsest topology such that for all functionals in
the dual space — linear maps from the original space into the real numbers — a sequence of
functionals converges if it converges on each individual point of the original space2.

Mertens and Zamir (1985) take Δ(𝑆) as the first space 𝑋1 in their belief hierarchy and then
recursively define their 𝑘𝑡ℎ order belief hierarchies as 𝑋𝑘 = 𝑋𝑘−1 × Δ(𝑆 × (𝑋𝑘−1)𝑛−1), where
𝜇𝑘 ∈ 𝑋𝑘 is called a belief of order 𝑘. They show that each space in this sequence is compact
in a metric space. Using their coherency condition, they recursively construct the space of
coherent belief hierarchies(𝑍𝑘 ) whose projective limit 3 is the definition of the universal type
space(𝑇 ). The coherency condition stipulates an element in 𝑍𝑘 is a coherent belief hierarchy
of order 𝑘 if 𝑍𝑘+1 B {[𝜇𝑘+1 = (𝜇𝑘 , 𝜈𝑘 ) ∈ 𝑍𝑘 × Δ(𝑆 × (𝑍𝑘−1)𝑛−1)] : marg𝜈𝑘Δ(𝑆 × (𝑍𝑘−1)𝑛−1) = 𝜈𝑘−1},
where 𝜇𝑘 = (𝜇𝑘−1, 𝜈𝑘−1). The coherency condition on marginals ensures that successive beliefs
in the belief hierarchy do not contradict each other. The pair 𝜇𝑘+1 = (𝜇𝑘 , 𝜈𝑘 ) is a coherent belief
hierarchy of order 𝑘 + 1 if in addition 𝜈𝑘 attaches probability one to 𝑆 × (𝑍𝑘 )𝑛−1 i.e. player 1
ascribes probability one to player 2 believing that player 3 believes . . . that the belief hierarchy
of order 𝑘 − 1 of player 𝑁 is coherent (Maschler et al., 2013). Mertens and Zamir (1985) show
that their universal type space is compact and is homeomorphic to the space Δ(𝑆 × 𝑇𝑛−1), of
joint probability distributions over 𝑆 and the types of other players(𝑇𝑛−1), thus completing the
formalisation and closing their model of beliefs.

A belief space in Mertens and Zamir (1985) for a finite set of players 𝑁 is an (𝑁 + 3) tuple
(𝑌, 𝑆, 𝑓 , (𝑡𝑖)𝑖∈𝑁 ), where the set of states of the world 𝑌 is a compact set, 𝑆 is a compact space,
𝑓 : 𝑌 ↦→ 𝑆 is a continuous mapping which maps each state of the world to a state of na-
ture and each player’s type, 𝑡𝑖 : 𝑌 ↦→ Δ(𝑌 ) is a continuous mapping from each state of the
world to a probability distribution over 𝑌 . Equivalently, for any compact non-empty subset
of the states of the world 𝑌 ∈ 𝑌 a belief subspace can be defined. A general definition of the

2Online Appendix
3The projective limit of the sequence of the spaces(𝑍𝑘 )∞

𝑘=1
is the space𝑇 of all the sequences (𝜇1, 𝜇2, . . .) ∈ ×∞

𝑘=1
𝑍𝑘 ,

where for every 𝑘 ∈ ℕ the belief hierarchy 𝜇𝑘 ∈ 𝑍𝑘 is the projection of the belief hierarchy 𝜇𝑘+1 ∈ 𝑍𝑘+1 on 𝑍 Maschler
et al. (2013)
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belief space which is equivalent to Aumann (1999a) is given in Maschler et al. (2013) with
(𝑌,Y, 𝑆, 𝑓 , (𝑡𝑖)𝑖∈𝑁 ), where (𝑌,Y) is a measurable space of states of the world and 𝑓 is a measur-
able function. The universal belief space of Mertens and Zamir (1985), generated by 𝑆 is 𝑌=
𝑆 × 𝑇𝑛. Therefore, a state of world 𝑦 ∈𝑌 is a list, whose first coordinate is the state of nature
𝑠 (𝑦) ∈ 𝑆 in that state of the world(𝑦), followed by a list of types (𝑡𝑖 (𝑤))𝑖∈𝑁 ∈ 𝑇𝑛, for the 𝑁 players
at that state of the world. Mertens and Zamir (1985) show that every belief space for a set
of 𝑁 players and set of states of nature 𝑆 is a belief subspace of the universal belief space.
Therefore, any belief space can be mapped into the universal belief space in a unique manner,
which preserves the manner in which states of nature and types are associated with states of
the world.

This result of Mertens and Zamir (1985) has strong implications. It provides a formal proof
for the Harsanyi (1967) notion of a type, that there is indeed an infinite hierarchy explicit
description for each player’s type and given any type, there are corresponding beliefs over
the states of nature and types of other players. Further, the Mertens and Zamir (1985) result
assures us that in a Harsanyi game of incomplete information, every type space with the same
states of nature and set of players can be traced back to a universal type space, i.e. there is
a unique belief-morphism, which preserves the beliefs of players and nature. Thus ensuring
any relevant types are not excluded in the game.

The Mertens and Zamir (1985) construction of the universal type space was a topological
construction in the sense that they started with a compact set 𝑆 of states of nature, recursively
defined 𝑘𝑡ℎ order belief hierarchies and showed they can be extended to an infinite hierarchy
of coherent beliefs on 𝑆, which is the universal type space. In a series of companion papers,
Heifetz and Samet (1998) and Heifetz and Samet (1999) discuss the construction of a universal
type space without any topological assumptions, starting with 𝑆 as a general measurable
space. Aumann (1999a) and Aumann (1999b) takes a semantic approach. Heifetz and Samet
(1999) showed that starting from a general measurable space 𝑆, an iterative construction of
coherent hierarchies of beliefs(𝐶) as in the topological case does not equate to a type in some
Harsanyi (1967) game of incomplete information. However, Heifetz and Samet (1998) showed
that even in the general measurable case, the unique universal type space(𝑇 ) exists and as in
Heifetz and Samet (1999) the universal type space is a subset or indeed a proper subset of the
space 𝐶 of coherent hierarchies and can be recovered from 𝐶 in a transfinite process.

Brandenburger and Dekel (1993) provide a similar construction complementary to Mertens
and Zamir (1985), with the change in assumption that the underlying space 𝑆 of uncertain-
ties(common) is compact with 𝑆 being a Polish space. Brandenburger and Dekel (1993) con-
struction is more elementary and makes the assumption of common knowledge of coherency
more explicit. Their recursive construction of the type space is similar to Mertens and Zamir
(1985) above. The construction for the two player case in their paper is now provided.
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Considering only player 𝑖 ’s belief hierarchies:

𝑋 𝑖
0 = 𝑆

𝑋 𝑖
1 = 𝑋 𝑖

0 × Δ(𝑋 𝑖
0)

𝑋 𝑖
2 = 𝑋 𝑖

1 × Δ(𝑋 𝑗

1)
.

𝑋 𝑖
𝑘
= 𝑋 𝑖

𝑘−1 × Δ(𝑋 𝑗

𝑘−1)

This requires that a player must first form belief Δ(𝑆) about the states of nature. As player
𝑖 only knows his beliefs about 𝑆, thus she must form a belief about player 𝑗 ’s beliefs about 𝑆.
Therefore, the second order belief of a player is Δ(𝑋 𝑗

1) and this process follows iteratively. This
construction is similar for player 𝑗 . Brandenburger and Dekel (1993) state their construction
generalises to 𝑛 players and do not explicitly present it, however for the sake of illustration
and to accustom the reader with the aim of the paper, it is presented as follows:

𝑋 1
0 = 𝑆

𝑋 1
1 = 𝑋 1

0 × Δ(𝑋 1
0 )

𝑋 1
2 = 𝑋 1

1 ×
𝑛∏
𝑗=2

Δ(𝑋 𝑗

1)

.

𝑋 1
𝑘
= 𝑋 1

𝑘−1 ×
𝑛∏
𝑗=2

Δ(𝑋 𝑗

𝑘−1)

A subtle point to note in the representation of the hierarchies, it is implicit that the beliefs
are independent. They can be presented more generally as e.g, 𝑋 1

2 = 𝑋 1
1 ×Δ(∏𝑛

𝑗=2(𝑋
𝑗

1)) allowing
for dependence between beliefs about other player’s first order beliefs. The implicit indepen-
dence representation was presented to be in line with the literature and for ease of notation,
it does impact any of the results.

Brandenburger and Dekel (1993) define the type of a player to be an infinite hierarchy of

beliefs, 𝑡 = (𝜋1, 𝜋2, 𝜋3, ...) ∈ 𝑇0 where 𝑇0 =
∞>
𝑘=0

Δ(𝑋𝑘 ), is the space of all possible type profiles for

all players. A player knows their own type but not the types of the other players. Thus, for
the model to be closed, a player’s type must determine their belief over the states of nature
and other player’s types — another level of belief hierarchy, a belief over other player’s types,
beliefs over other players belief about your type and so on. This is as in a standard model
of incomplete information where a player forms beliefs about the types of the other players
and state of nature given their own type. Brandenburger and Dekel (1993) show that their
coherency condition is required for a player to form a belief over 𝑆×𝑇0, given a player’s coherent

4



type. However, common knowledge of coherency is required for a player’s type to determine
higher order beliefs over types — a player’s belief over other player’s belief about their type.
This is because the coherency condition implies a player 𝑖 can form belief over player 𝑗 ’s type,
but if player 𝑖 does not know whether or not player 𝑗 ’s type is coherent, she cannot form a belief
over 𝑗 ’s belief on her type, as without the coherency condition it is not possible to coherently
extend the finite order hierarchy to the infinite order.

Brandenburger and Dekel (1993) refer to “common knowledge” in the probabilistic sense of
assigning probability one to other player types being coherent. Their coherency condition is
similar to Mertens and Zamir (1985) and states that given a type 𝑡 = (𝜋1, 𝜋2, ..) ∈ 𝑇0, the type
𝑡 is coherent if for every 𝑘 ≥ 2, marg𝑋𝑘−2𝜋𝑘 = 𝜋𝑘−1 where marg𝑋𝑘−2 is the marginal on the
space X𝑘−2. This coherency condition is what is often referred to as the consistency condition
in stochastic processes and Brandenburger and Dekel (1993) utilise Kolmogorov’s extension
theorem to show there is a homeomorphism from the space of coherent types to the space
of joint probability distributions over 𝑆 and 𝑇0. They then showed that for the space of all
coherent types where there is common knowledge of coherency(𝑇 ), there is a homeomorphism
to the space Δ(𝑆 ×𝑇 ), of joint probability distributions over 𝑆 and 𝑇 , thereby making the model
closed. It is further shown that the largest belief closed set is equal to the set satisfying
common knowledge of coherency, highlighting that common knowledge of coherency is the
minimum condition needed for closure4. In Brandenburger and Dekel (1993) the space 𝑇 of
all coherent types with common knowledge of coherency, which is a Polish space as well, is the
equivalent of the universal type space of Mertens and Zamir (1985). Thus, Brandenburger and
Dekel (1993) showed that the results of Mertens and Zamir (1985) hold even when we replace
the assumption that the states of nature 𝑆 is compact to 𝑆 being Polish, however with finite 𝑆,
the construction of Brandenburger and Dekel (1993) can be made a compact Polish space.

3 Model

The current literature as covered above is limited to games with a finite set of players. The
aim of this paper, is to extend the construction of Brandenburger and Dekel (1993) to games
with many players indexed by {𝐼 = ℕ}, who are randomly selected from a continuum of po-
tential players. Thus, there is a countably infinite set of actual players who are randomly
selected from continuum of potential players, given by their labels in [0,1]. The construction
provided in the paper thus extends the Brandenburger and Dekel (1993) model to games with
a continuum of potential players, allowing the consideration of the special case of a countably
infinite set of actual players, randomly selected from the continuum.

There are many models in economics with many players such as the global games framework
of Morris and Shin (2001), where there are infinite players and there is an underlying state
of fundamental(economy)- 𝜃 . The state 𝜃 is drawn from a common prior and each player
observes it with a noisy signal. Morris and Shin (2001) state that this noisy observation of the
underlying state creates strategic uncertainty in the equilibrium, stemming from uncertainty
regarding other player’s payoffs. Thus players form higher order beliefs— beliefs over the
other player’s payoffs, then beliefs over the beliefs of other players, and so on. Morris and

4In a 1985 working paper version of Brandenburger and Dekel (1993)
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Shin (2001) quote that “ their analysis using higher order beliefs implicitly assumes common
knowledge of the prior distribution of state 𝜃 and signalling technology”. Morris and Shin
(2001) citet Mertens and Zamir (1985) to support the common knowledge of the underlying
state space and to form higher order beliefs. However, as stated, Morris and Shin (2001)
is not applicable here as the number of players is not finite. No alternative construction is
provided in Morris and Shin (2001) or the subsequent many player games literature to amend
and apply the results of Mertens and Zamir (1985). The construction provided in this paper
is a first. It provides a framework and justification for forming higher order beliefs in games
with many players. In section (6) the applicability of the setup to many player games in the
literature like Morris and Shin (2001) is discussed in detail.

3.1 Extension to Many Players

In this section, a novel and mathematically tractable construction is proposed to extend the
construction, which involves embedding the set of countably infinite actual players(𝐼 ) into a
set of continuum of potential players.

The embedding described in Hammond (2017) is applied. Let the set of actual players be 𝐼 =

(1, 2, . . .) the countably infinite set of natural numbers. There will however be a continuum of
potential players in the form of a non-atomic probability space (𝐿,L, 𝜆), where 𝐿 is a topological
label space, with L as its completed Borel 𝜎-algebra— it contains not only all open sets, but
all subsets of 𝜆-null sets. Now each player 𝑖 ∈ 𝐼 will be given a random label 𝑙𝑖 chosen from
a non-atomic probability space (𝐿,L, 𝜆). This line on stochastic labelling essentially means
there is some underlying probability space (Ω, F ,ℙ) and for each player 𝑖 ∈ 𝐼 , label 𝑙𝑖 is a
random variable, 𝑙𝑖 : Ω ↦→ 𝐿 that maps into the topological label space above (𝐿,L) i.e. the
distribution of 𝑙𝑖 is governed by the non atomic probability measure 𝜆 in the label space (𝐿,L).
This random labelling embeds a model with a countable set of players into the standard notion
of a continuum model with 𝐿 as the set of potential players. In this continuum model, there
is an actual player labelled 𝑙 if and only if the label 𝑙 happens to equal one of the countable
random draws from (𝐿,L, 𝜆).

For the purposes of the paper, the non-atomic probability space (𝐿,L, 𝜆) is chosen to be
([0, 1],L([0, 1]), 𝜆) — the Lebesgue unit interval [0, 1] is the label space, with its 𝜎-algebra
as defined above, and the measure 𝜆 is the Lebesgue measure, implying labels are drawn uni-
formly from [0,1]. This set up means the continuum of potential players as represented by
their labels, are points in [0,1] and for each player 𝑖 ∈ 𝐼 , a label is randomly drawn uniformly
from [0,1], so there are countably infinite draws. The uniform draw is the most natural case to
consider, implying any label in [0,1] is equally likely to be realised as an actual player, but this
set up works for any non atomic distribution. It is important to stress the key feature of the set
up is that with the stochastic labelling process, we are randomly drawing countably infinite
times from [0,1] uniformly, thus it can be thought of as having a sequence of countably infinite
uniform random variables. Another key implication of this setup with a countably infinite set
of players drawn from a continuum of potential players, is it allows non-degenerate individual
randomness without getting non-measurable sets and measure zero sets (Hammond (2023)).
This is illustrated by example (1).
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To further illustrate the labelling and embedding, think of a simple case where there are two
players- 𝑖 and 𝑗 . Each player has two labels 𝑥 and 𝑦. From player 𝑖 ’s perspective, she knows
her own label(identity) and for example, attaches equal chance to the label of player 𝑗 being
𝑥 or 𝑦. In the setup above, the number of players is countably infinite, and their labels are a
continuum ([0,1]) and thus now probabilities are attached to subsets of [0,1], as any specific
point in [0,1] has zero probability of being chosen.

Given the setup, the extension of the Brandenburger and Dekel (1993) finite player frame-
work to the many players is ready to be provided. The 𝑆–𝑋 pairs in the hierarchy of the
Brandenburger and Dekel (1993) framework is replaced with a probability measure over a
triple product space whose members consist of : (i) The identities 𝑖 of other players (drawn
from [0, 1]), (ii) The underlying states of uncertainty 𝑆, and (iii) recursively defined belief hi-
erarchies similar to the original construction. Further the following initialisation condition is
assumed:

Definition 3.1 (Uniform Marginal Condition). Δ𝜆 B {Δ(𝑆 × [0, 1]) : marg[0,1]Δ(𝑆 × [0, 1]) = 𝜆}

Another key requirement of the setup as stated in Hammond (2017) is (3.1), which states
that the marginal on [0,1] of the measure on the Cartesian product 𝑆 × [0, 1] must be the
Lebesgue measure. This requirement as given in Hammond (2017) provides the existence
of a stochastic transition, which is essential for applying the Ionescu-Tulcea theorem in the
general measurable cases5. Intuitively, this requirement states when forming the first-order
belief over states and player labels, the uniform nature of the distribution of player labels
should not be violated. The Glivenko–Cantelli theorem in (3.2) provides further support that
it is rational to assume this condition.

The condition (3.1) can be stated as a coherency condition if starting with [0,1] as the base
space. However, since the base space in the setup, 𝑋 ′

0 = (𝑆 × [0, 1]) is a product, the coherency
conditions in the paper are stated for maintaining consistency as we move to higher order
spaces. Thus, for the remainder of the paper this condition holds as an initialisation require-
ment and is represented by Δ𝜆. Note, as mentioned in the setup, the players labels can be
drawn from any non-atomic distribution on [0,1], thus in a setting where that is the case, the
initialisation condition is updated to reflect the chosen non-atomic distribution.

The hierarchy under this proposed extension would be as follows:

𝑋 ′
0 = 𝑆 × [0, 1]

𝑋 ′
1 = 𝑋 ′

0 × Δ𝜆 (𝑋 ′
0)

.

𝑋 ′
𝑘
= 𝑋 ′

𝑘−1 × Δ𝜆 (𝑋 ′
𝑘−1)

The novelty and beauty of randomly embedding the countably infinite player case into a con-
tinuum of potential players in the Lebesgue unit interval is its tractability, as [0,1] is a com-
pact Polish space (with the standard metric) and the space Δ( [0, 1],B), of all Borel probability
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measures on [0,1] is also a Polish space given the topology of weak convergence of probability
measures or weak*topology(Prohorov theorem). Since [0,1] and 𝑆 are Polish spaces, 𝑋 ′

0 is a
product of two Polish spaces, thus Polish. As stated above the space of probability measures
of a Polish space is Polish with the weak*topology thus Δ𝜆 ( [0, 1] × 𝑆) is a Polish space as well.
The belief hierarchies are Polish spaces as any finite and a countable/uncountable Cartesian
product of Polish spaces is also a Polish space (Bertsekas and Shreve, 1996; Hammond, 2004).
Thus, the type space here would remain a Polish space as in the original Brandenburger and
Dekel (1993) construction.

Following Brandenburger and Dekel (1993) notation a type takes the form 𝑡 = (𝜋1, 𝜋2, 𝜋3, . . .) ∈
𝑇 ′
0 =

>
𝑘=0

Δ(𝑋 ′
𝑘
), where 𝑇 ′

0 is the analogue of all possible types in Brandenburger and Dekel

(1993). The main result of the paper is to establish suitable coherency conditions and show the
model is closed as in Brandenburger and Dekel (1993), which would involve showing there is
a homeomorphism from the space 𝑇 ′

1 of coherent types to Δ𝜆 ( [0, 1] × 𝑆 ×𝑇 ′
0). The interpretation

here would be that each coherent type is associated with a unique belief measure over the
space of player identities, the original states of uncertainty, and all possible extended types.
Then showing under the common knowledge of coherency we have a homeomorphism from
the space 𝑇 ∗ of all coherent types where this is true to Δ( [0, 1] × 𝑆 ×𝑇 ∗) extending their result
that common knowledge of coherency is the minimum condition for model-closure and 𝑇 ∗ is
the universal type space of Brandenburger and Dekel (1993) in this extended framework.
However, before presenting the coherency conditions the Glivenko–Cantelli Theorem is stated
which follows from the works of Parthasarathy (1967) and Varadarajan (1958) and serves as
a consistency check for the random labelling in the construction per Hammond (2017) as it
provides support to the initialisation condition Δ𝜆.

3.2 Glivenko–Cantelli Theorem

In the stochastic labels setup, a countably infinite numbers of labels are drawn randomly and
uniformly, constituting a countably infinite sequence of independent uniform random vari-
ables. Therefore, there is an infinite sequence of points, with each point in [0,1]. As in the
construction a player is forming beliefs over this countably infinite sequence we need to con-
sider the behaviour/ distribution over these points before defining the coherency conditions, to
support that the initialisation condition (3.1) was reasonable. The Glivenko-Cantelli theorem
thus provides us with a consistency check.

Let (𝑈 ,𝑑) be any separable metric space, and let 𝛼 be any probability measure on its Borel
𝜎-algebra. Let 𝛼𝑁 denote the infinite product measure on the collection 𝑈 𝑁 of countably many
copies of (𝑈 ,𝑑), equipped with its product 𝜎-algebra. For each infinite sequence 𝑢𝑁 = (𝑢𝑘 )𝑘∈ℕ ∈
𝑈 𝑁 and for each 𝑛 ∈ ℕ, let

𝛼𝑛 (𝑢𝑁 ) := 1

𝑛

𝑛∑︁
𝑘=1

𝛿𝑢𝑘 (1)

denote the empirical measure on 𝑈 which is generated by {𝑢1, 𝑢2, . . . , 𝑢𝑛}—i.e. the first 𝑛

elements of 𝑢𝑁 . Here 𝛿𝑢𝑘 is per the standard notation the degenerate measure satisfying
𝛿𝑢𝑘 ({𝑢𝑘 }) = 1. (Patrick Billingsley, 2012; Hammond, 2017).
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The Glivenko Cantelli Theorem: Let (𝑈 ,𝑑) be any separable metric space, and 𝛼 be any
probability measure on its Borel 𝜎-algebra. Then, for 𝛼𝑁 -a.e. 𝑢𝑁 ∈ 𝑈 𝑁 , the empirical measure
𝛼𝑛 (𝑢𝑁 ) defined by (1) converges weakly to 𝛼 . (Patrick Billingsley, 2012; Hammond, 2017).

The Glivenko–Cantelli theorem says that the empirical measure converges to the original
measure as 𝑛 increases. After 𝑛 draws of player labels, consider any sub interval, say [0.25,
0.5]. In the “true” uniform distribution, 25% of the numbers lie in this sub interval. The
Glivenko–Cantelli theorem states that as 𝑛 becomes larger and larger, the proportion of num-
bers from the draws that fall in the sub-interval [0.25, 0.5] will converge to 25%. Thus, as we
start with a finite subset of actual players and extend to the countably infinite subset of ac-
tual players, the empirical distribution of the countably infinite set of actual players converges
almost surely to the uniform distribution.

Example This is an example of how the Glivenko–Cantelli theorem is applicable to the
construction. (𝑈 ,𝑑) corresponds to ( [0, 1], 𝑑) where 𝑑 is a metric, in this setup. The Glivenko–
Cantelli theorem is helpful in the construction as follows: in the first order belief, player
1, forms beliefs over 𝑆 and who the actual set of players in the game are. Let’s assume for
simplicity 𝑆 is binary and player 1 attaches some probability to the two states, and she then
attaches probability 0.4 that the label of player 2 is in [0,0.4], 0.6 probability in the rest. With
probability 0.6 the label of player 3 is in [0,0.6], 0.4 probability in the rest, and so on for
the set of countably infinite players. Now the Glivenko—Cantelli theorem is telling us that
as 𝑛 becomes larger — the number of players about whose identities player 1 forms beliefs
becomes larger — the proportion’s [0,0.4], [0,0.6] etc. will truly have the proportion of labels
as prescribed by the uniform distribution, so 40% of the labels of player 2 lie in [0,0.4], 60%
of the labels of player 3 in [0,0.6] etc. The Glivenko–Cantelli theorem therefore provides a
consistency check that the label draws for the players are still behaving uniformly.

In a crude sense, the Glivenko–Cantelli theorem implies that it becomes “common knowl-
edge” that player labels are being drawn from a uniform[0,1], every player knows when form-
ing beliefs about the other countably infinite actual players, that their labels indeed follow a
uniform distribution in [0,1]. Thus, the result of the Glivenko Cantelli theorem is essential
and it supports that it is rational for players to hold the initialisation condition (3.1), as their
beliefs about the distribution of other player labels aligns with the true distribution of the
labels in the limit.

Note, the theorem is given for any metric space (𝑈 ,𝑑) and any probability measure, thus this
feature of the stochastic labelling setup is not a special case of the Lebesgue measure/ uniform
distribution. For instance, if the labels were instead drawn from a 𝛽 (2, 2) distribution, then
every player knows that the labels of players are drawn from the 𝛽 (2, 2) distribution. Further,
given the nature of the 𝛽 (2, 2) distribution a higher proportion of points are distributed around
0.5 than around 0 or 1, due to the Glivenko–Cantelli theorem whatever skewness is implied
by the distribution of the labels will be naturally reflected when the players form first-order
beliefs about the identities of the other players. This generality of the stochastic labelling
setup and the Glivenko–Cantelli theorem provides a rich framework which is applicable to
a wide class of games, where it is not necessary for all player labels to be equally likely and
any other non-atomic distribution may be adopted to suit the specific needs of the model. The
definition of a coherent type 𝑡 ∈ 𝑇 ′

0 is stated next.
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3.3 Coherency Conditions

Definition 3.2 (Coherent Type). A type is defined to be coherent if it meets the following two
conditions:

(i)Consistency of higher order beliefs: For each 𝑘 ≥ 2, a belief 𝜋𝑘 ∈ Δ𝜆 (𝑋 ′
𝑘−1) is coherent if

the marginal of 𝜋𝑘 on 𝑋 ′
𝑘−2 is 𝜋𝑘−1. This condition ensures that a player’s 𝑘𝑡ℎ-order belief about

lower-order beliefs (as encoded by 𝜋𝑘 ) is consistent with their (𝑘 − 1)𝑡ℎ-order belief 𝜋𝑘−1.

(ii)Consistency of player identity and state beliefs: For each 𝑘 ≥ 2, a belief 𝜋𝑘 is co-
herent if the marginal of 𝜋𝑘 on [0, 1] × 𝑆 is consistent with the marginal of 𝜋𝑘−1 on [0, 1] × 𝑆–
marg[0,1]×𝑆𝜋𝑘 = marg[0,1]×𝑆𝜋𝑘−1. This is the joint consistency condition and ensures that the
measure over the product space is consistent with the player’s identity and state of nature.

Condition (i) is a simple extension of the coherency definition of Brandenburger and Dekel
(1993) in this extended framework. It just states that in the hierarchy construction, the higher
order beliefs do not contradict lower level beliefs. This is akin to the stochastic consistency
condition referred to for stochastic processes. The second condition is the extended joint con-
sistency condition, given the extended framework which includes not just beliefs about the
underlying space of uncertainty 𝑆, but also beliefs about player identities. Condition (ii) im-
plies that the beliefs about player identities and 𝑆 should be preserved when you go from one
level of the belief hierarchy to the next. To facilitate understanding, a simplification of condi-
tion (ii) for the case of independence is provided. The homeomorphism results would trivially
be applicable to the independence case, however it is stated as a special case to facilitate
understanding and due to its application in the Ionescu-Tulcea theorem6.

(ii′)Independence of player identity and state beliefs:

For each 𝑘 ≥ 2, a belief 𝜋𝑘 is coherent if the marginal of 𝜋𝑘 on [0, 1] × 𝑆 is consistent with the
product measure of the marginal of 𝜋𝑘 on [0, 1] and the marginal of 𝜋𝑘 on 𝑆 i.e. 𝑚𝑎𝑟𝑔[0,1]×𝑆𝜋𝑘 =

marg[0,1]𝜋𝑘−1 ×marg𝑆𝜋𝑘−1. This is the joint consistency condition and ensures that the measure
over the product space is consistent with the player’s identity and state of nature.

Condition (ii′) implies that there is independence in 𝑘𝑡ℎ order beliefs about player identities
and 𝑆. When combined with condition (i), as one project’s down to lower order beliefs, the
independence relation is maintained until at the base level-𝑋 ′

1, thus, implying that the initial
belief of a player, about whom the other player’s in the game are and the player’s belief about
𝑆 are independent. The independence is maintained as one goes higher along the construc-
tion. The last line is the intuition one expects to be maintained when constructing the type,
whatever initial beliefs about player identities and 𝑆 are formed, must be maintained across
the hierarchy.

Condition (ii) is more general and allows for any form of dependence to exist between initial
beliefs about player identities and 𝑆. This might be useful in games where 𝑆 might reflect
the state of the economy and players are deciding whether to invest in a particular asset
class or not. If a player’s belief about the state of the economy is bad, then the player would
expect the other players in this investment game to be more risk taking (could be done by

6Online Appendix.
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modelling player identities closer to 1 as risk loving) thus, a player might have an initial joint
distribution over [0,1] and 𝑆, which reflects an inverse relationship.

4 Examples

In this section examples are provided to highlight the importance of the random labelling for
sensible results, the working of the construction and coherency condition. For all examples,
restrict to the case where the space 𝑆 is binary– 𝑆 = {𝑠1, 𝑠2} for simplicity. The construction is
provided from player 1’s perspective as it is the same construction for all players.

Example-1: Deterministic Labelling

This example illustrates the importance of random labelling for producing sensible results.
For simplicity, assume a player’s beliefs about the identities of the other players and states
is independent. Let [0, 1]ℚ denote the set of rational numbers in [0,1], the set of rational
numbers is a countably infinite subset of [0,1] and it is natural to think of using it to represent
the set of countably infinite actual players in [0,1], as it is a countably dense subset of the
reals. Thus, the labelling is deterministic and non-random.

The crudest example where a player 1 with label 𝑙=0.5 believes with probability 0.7 the state
is 𝑠1 and with probability 0.3 the state is 𝑠2. For simplicity, let’s assume regardless of the state
she believes with equal probability the set of countably infinite actual players in the game
are [0, 0.5]ℚ – 𝜆( [0, 0.5]ℚ) – and in (0.5, 1]ℚ–𝜆((0.5, 1]ℚ). The notation 𝜆[𝑎, 𝑏], corresponds to
the uniform distribution—attaching a probability equal to the length of the interval. In this
example, we thus have 0.5( [0, 0.5]ℚ).

The first-order belief of the player is:

𝜋1 = 0.7(𝑠1 ⊗ 𝜆) + 0.3(𝑠2 ⊗ 𝜆), 𝜆 = [𝜆( [0, 0.5]ℚ), 𝜆((0.5, 1]ℚ)]

The second-order belief of the player, is the first-order belief and a belief over the first-order
beliefs of all the other players in [0, 0.5]ℚ and (0.5, 1]ℚ which is assumed to be the same as her
first-order beliefs—the first order beliefs of all the other players in the game is the same as
the first-order belief of player 1. Due to notational complexity, 𝜋2 is not explicitly written, but
it follows a similar form as 𝜋1 and conveys the above information. The construction follows
iteratively for higher order beliefs. However, in this setup, deterministically taking the set of
actual players to be the set of rationals in [0,1] has the following issue. The set of rationals
has Lebesgue measure zero and in the first-order belief, player 1 ascribes a positive measure
to a measure zero set, implying there is a positive probability that a zero probability event
occurs, a mathematical impossibility. Thus, the first critique with such deterministic labelling
in the belief construction is we end up attaching non degenerate probabilities to measure zero
sets. Further, the infinitely many random draws of labels allowed the use of the Glivenko–
Cantelli theorem, and in the deterministic setting it is not applicable, and obviously in the
limit case the distribution of the actual set of player labels is not almost surely uniform.
Therefore, deterministic labelling is not applicable to the class of games such as Morris and
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Shin (2001) where one wants in the limit with a continuum of (potential) agents represented
by the Lebesgue unit interval, as a canonical non-atomic measure.

With the stochastic labelling mechanism as described in the setup, given the label space of
[0,1] and its completed Borel sigma algebra, which includes subsets of 𝜆-null i.e. measure
zero sets, allows the possibility for a subset of rationals in [0,1] to be chosen. However, given
the non-atomic nature of the measure on the labels in [0,1], no particular point in [0,1] has
a positive probability of being chosen, thus the probability a rational number is drawn as a
player’s label is zero, and given that the set of rationals is countable, rationals in [0,1] can
be enumerated as a sequence 𝑞1, 𝑞2, 𝑞3, ... The measure of each 𝑞𝑖 , 𝜆(𝑞𝑖)=0 from the non atomic
nature and the probability of a player’s label being a rational in a subset of [0,1] as in the
above example [0, 0.5]ℚ is equal to zero, as 𝜆( [0, 0.5]ℚ)= 𝑞1 + 𝑞2 + ..= 0. Thus, under stochastic
labels degenerate probabilities can be assigned to measure zero sets.

Example 2: Independence

The example illustrates when the initial belief about states and player-identities is independent—
regardless of the state, the beliefs about player identities is the same— how the construction
works, checking condition (3.1) and the coherency conditions.

Sub-case: Uniform Marginal Condition:
First, let’s illustrate the uniform marginal requirement (3.1). When the first-order belief
about 𝑆 and player identities is independent, (3.1) requires the subjective probabilities a
player forms about the labels of other players being in a subset of [0, 1] to be Lebesgue—
player 1 believes the labels of all other players is in [0,0.5] with probability 0.5 and in [0.5,1]
with probability 0.5, or equivalently, with probability 0.4 in [0,0.4] and probability 0.6 in
[0.4,1]. Let’s for simplicity, only focus on player 1’s belief about the label of player-2(𝑙2). Let
player 1 believe with probability 0.8, the state is 𝑠1 and 0.2 the state is 𝑠2. Regardless of the
states she believes with equal probability the label of player 2 is in [0,0.5] and [0.5,1] respec-
tively. The marginal of the first order belief on [0,0.5]= (0.8*0.5) + (0.2*0.5)= 0.5. Similarly
the marginal on [0.5,1]=0.5. Thus, the marginal of the first order belief on [0,1] is indeed
Lebesgue, satisfying condition (3.1).

The checking of the uniform marginal requirement is similar for the labels of the countably
infinite set of all other players. Now, an example on the construction and checking of the
coherency conditions is presented. Let player 1 with label 𝑙 = 0.6, believe with probability 0.7
the state is 𝑠1, and 0.3 the state is 𝑠2. Regardless of the state, player 1 believes with certainty
the label of player 2 is in [0,1]. Note, the spotlight is on player 2, for notational simplicity7, to
efficiently illustrate the checking of the coherency conditions.

The first-order belief of player 1 is:

𝜋1
1 = 0.7(𝑠1 × 𝜆(𝑙2)) + 0.3(𝑠2 × 𝜆(𝑙2))

7The example if presented for all players labels would be as follows: 𝜋1 = 0.7(𝑠1 ⊗ 𝜆) + 0.3(𝑠2 ⊗ 𝜆), 𝜆 =

[𝜆(𝑙2), 𝜆(𝑙3), . . .]. Where, 𝜆 is a list for the labels of all other countably infinite players, with each 𝜆(𝑙𝑖 ) implying
𝑙𝑖 ∈ [0, 1] with probability-1, ∀𝑖 ∈ 𝐼 .
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Where 𝜆(𝑙2) implies with probability-1 the label of player 2 is in [0,1]. This as stated above,
satisfies (3.1) as the first-order belief about player 2’s label is Lebesgue. The second-order
belief of player 1(𝜋1

2 ), is player 1’s first-order beliefs about player 2’s first-order beliefs. Let
player 1 believe after 𝑆 = 𝑠1 and 𝑙2 ∈ [0, 1], that player 2 believes with probability 0.6, the state
is 𝑠1 and probability 0.4, the state is 𝑠2. Regardless of state, player 2 believes with certainty
the label of player-1 lies in [0,1]. Player 1 has similar second-order beliefs after 𝑆 = 𝑠2 and
𝑙2 ∈ [0, 1].

𝜋2
1 = 0.6(𝑠1 × 𝜆(𝑙1)) + 0.4(𝑠2 × 𝜆(𝑙1))

𝜋1
2 = 0.7( [𝑠1 × 𝜆(𝑙2)] ⊗ 𝜋2

1 ) + 0.3( [𝑠2 × 𝜆(𝑙2)] ⊗ 𝜋2
1 )

𝜋2
1 is the first-order belief of player 2, from the perspective of player 1. Coherency condition

(i) requires the marginal of 𝜋1
2 on 𝑋 ′

0 is equal to 𝜋1
1 . To check, integrate/sum out the compo-

nents from Δ(𝑋 ′
0) as 𝑋 ′

1 = 𝑋 ′
0 × Δ(𝑋 ′

0) and the marginal of this on (𝑋 ′
0) is being taken. Thus,

integrate/sum over the inner beliefs(𝜋2
1 )— ignoring 𝜋2

1— to be left with:

marg𝑋 ′
0
𝜋1
2= 0.7(𝑠1 × 𝜆(𝑙2)) + 0.3(𝑠2 × 𝜆(𝑙2))= 𝜋1

1

The construction does satisfy the first coherency condition. Coherency condition (i) simply
ensures that, as player 1 form’s 𝜋2 she is not forgetting or changing her initial beliefs about
the state’s {𝑠1, 𝑠2} and the label of player 2(other players). Checking condition (i) is similar for
higher order beliefs, e.g. for third order beliefs, it requires marginal of 𝜋3 on 𝑋 ′

1 is equal to 𝜋2
and so on.

On the contrary, if in forming 𝜋1
2 , we had instead:

𝜋1
2 = 0.8( [𝑠1 × 𝜆(𝑙2)] ⊗ 𝜋2

1 ) + 0.2( [𝑠2 × 𝜆(𝑙2)] ⊗ 𝜋2
1 )

marg𝑋 ′
0
𝜋1
2= 0.8(𝑠1 × 𝜆(𝑙2)) + 0.2(𝑠2 × 𝜆(𝑙2)) ≠ 𝜋1

1

Since, regardless of the state, player 1’s beliefs about the label of player 2 was the same, the
example was designed to make player 1’s beliefs about labels and states independent.

Checking coherency condition(iib):

marg[0,1]×𝑆𝜋
1
2= 𝜋1

1 ; from condition(i).

marg[0,1]𝜋
1
1 = 𝜆(𝑙2); focusing only on the [0,1] component of 𝜋1

1

marg𝑆𝜋1
1 = [0.7(𝑠1) + 0.3(𝑠2)]

marg𝑆𝜋1
1 × marg[0,1]𝜋

1
1 = 0.7(𝑠1 × 𝜆(𝑙2)) + 0.3(𝑠2 × 𝜆(𝑙2)) = marg[0,1]×𝑆𝜋

1
2

The above example while simplistic shows that the belief construction as given would meet
the requirements of coherency. When explicitly stated for all players, instead of just player 2
would entail similar calculations, but they can be elicited through intuition, as the coherency
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conditions state when going across the hierarchy, the previous level beliefs should not change.
Further if started with a base belief about independence between player identities and states
of the world, this belief must be maintained throughout the hierarchy — once a higher level
hierarchy is reached, a player should not suddenly believe their beliefs about the state impacts
their belief about player identities.

Example 3: General

This example, illustrates the construction when the beliefs about player labels and states
are allowed to be any joint distribution Δ𝜆 (𝑆 × [0, 1]). Note, to meet condition (3.1) on the
first-order belief here, does not require the subjective beliefs about players to be Lebesgue.
For example, let player 1 ascribe a 0.5 probability to state 𝑠1 and given 𝑠1, a 0.4 chance 𝑙2 in
[0,0.5] and a 0.6 chance in [0.5,1]. A 0.5 probability to state 𝑠2 and given 𝑠2, a 0.6 chance 𝑙2
in [0,0.5] and a 0.4 chance in [0.5,1]. Then the marginal of 𝑙2 in [0,0.5] is 0.5*0.4+ 0.5*0.6=
0.5, marginal of 𝑙2 in [0.5,1] is 0.5*0.6 + 0.5*0.4= 0.5, thus maintaining the uniform marginal
condition. Condition (3.1) made the player form beliefs about 𝑠1 and 𝑠2 in a manner such that
this condition is met.

Let the first-order belief of player 1 be:

𝜋1
1 = 0.5(𝑠1 × 𝛿 [0,0.5] (𝑙2)) + 0.5(𝑠2 × 𝛿 [0.5,1] (𝑙2))

Here 𝛿 [0,0.5] (𝑙2) implies player 1 believes with certainty the label of player 2 is in [0,0.5]. In
this example, player 1’s beliefs about 𝑙2 are different under 𝑠1 and 𝑠2, in particular now in 𝑠1,
player 1 beliefs the label of player 2 can only be in [0,0.5] and in 𝑠2, believes the label can only
be in [0.5,1]. Let the first-order belief of player 2 from the perspective of player 1 be as follows:

𝜋2
1 = 0.8(𝑠1 × 𝛿 [0,0.8] (𝑙1)) + 0.2(𝑠2 × 𝛿 [0.8,1] (𝑙1))

Let the second order-belief of player 1 be:

𝜋1
2 = 0.5( [𝑠1 × 𝛿 [0,0.5] (𝑙2)] ⊗ 𝜋2

1 ) + 0.5( [𝑠2 × 𝛿 [0.5,1] (𝑙2)] ⊗ 𝜋2
1 )

In the second-order belief, player 1’s belief about the first-order belief of player 2 is the same
after 𝑠1, 𝑠2 and player labels as in the previous example. Checking coherency condition (ii)
only, checking condition (i) is straightforward.

marg[0,1]×𝑆𝜋
1
2 = marg[0,1]×𝑆𝜋

1
1 ; condition(ii).

marg[0,1]×𝑆𝜋
1
2 = 𝜋1

1 ; from condition(i).

marg[0,1]×𝑆𝜋
1
1 = 𝜋1

1 ; as 𝜋1
1 ∈ Δ( [0, 1] × 𝑆) and is the marginal of itself.

Unitl the second-order belief, it was trivial to check condition (ii), but for third-order beliefs
it requires marginal of 𝜋3 on 𝑋 ′

0 is equal to the marginal of 𝜋2 on 𝑋 ′
0 and so on.
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5 The Universal Type Space

The Kolmogorov extension theorem (KET) allows the construction of a unique probability
measure on an infinite family of random variables/ infinite product of measure spaces. The
KET is presented as in Cohn (2013):

Theorem 5.1 (Kolmogorov Extension Theorem). Let 𝐼 be a nonempty set, and let {(Ω𝑖 , 𝐴𝑖)}𝑖∈𝐼
be an indexed family of measurable spaces. Let I be the collection of all nonempty finite subsets
of 𝐼 . For each 𝐼0 ∈ I and each 𝑖 ∈ 𝐼 , define the product measurable spaces {(Ω𝐼0, 𝐴𝐼0)}𝐼0∈𝐼 and
(Ω, 𝐴), plus projections 𝑋𝐼0 : Ω → Ω𝐼0 and proj𝐼2,𝐼1 : Ω𝐼1 → Ω𝐼2 , where 𝐼0, 𝐼1, 𝐼2 ∈ I and 𝐼2 ⊆ 𝐼1. Let
{𝑃𝐼0}𝐼0∈𝐼 be an indexed family of probability measures on the spaces {(Ω𝐼0, 𝐴𝐼0)}𝐼0∈𝐼 . If

1. the measurable spaces {(Ω𝑖 , 𝐴𝑖)}𝑖∈𝐼 are all standard, and

2. the measures {𝑃𝐼0}𝐼0∈𝐼 are consistent, in the sense that they satisfy

𝑃𝐼2 = 𝑃𝐼1proj−1𝐼2,𝐼1 for all 𝐼1, 𝐼2 ∈ 𝐼 such that 𝐼2 ⊆ 𝐼1,

then there is a unique probability measure 𝑃 on (Ω, 𝐴) such that for each 𝐼0 in I the distribution
of 𝑋𝐼0 is 𝑃𝐼0 .

A standard measurable space is a Polish space (Cohn, 2013), in the setup Ω𝑖 are equal to
(𝑋 ′

𝑖 ) : 𝑖 ∈ (0, 1, 2..) which are all Polish spaces and thus meet condition (1) of the theorem.
Condition (2) of the theorem requires, when you project down(marginal distribution) from a
larger space ({(Ω𝐼2, 𝐴𝐼2)} to a smaller space ({(Ω𝐼1, 𝐴𝐼1)} i.e. (𝐼2 ⊆ 𝐼1), the marginal distribution
must be the same as the original distribution 𝑃𝐼1 , initialised on the 𝐼1 space. The coherency
condition (i) ensures when you project down from a larger space (𝑋 ′

𝑘
) to a smaller space (𝑋 ′

𝑘−1),
the marginal distribution on (𝑋 ′

𝑘−1) is same as the true distribution for (𝑋 ′
𝑘−1). However, each

(𝑋 ′
𝑘
) contains an (𝑆 × [0, 1]) component thus when projecting down it must be ensured that the

beliefs about (𝑆 × [0, 1]) are maintained as well. To illustrate via an example, 𝜋3 = Δ(𝑋 ′
2) =

Δ𝜆 [((𝑆 × [0, 1]) ×Δ𝜆 ((𝑆 × [0, 1])) ×Δ𝜆 ((𝑆 × [0, 1]) ×Δ𝜆 ((𝑆 × [0, 1]))] and when you project it down on
𝑋 ′
1, per coherency condition (i)– 𝜋2 = Δ𝜆 [((𝑆 × [0, 1]) ×Δ𝜆 ((𝑆 × [0, 1]))], here coherency condition

(ii) ensures that the inner belief component Δ𝜆 ((𝑆 × [0, 1])) in 𝜋3, when projected down must
match the original belief in 𝜋2.

The analogue of the first homeomorphsim result as in Brandenburger and Dekel (1993) is
stated. The proof is more descriptive but essentially the same as Brandenburger and Dekel
(1993).

Proposition 1. If (𝑍𝑘 )𝑘≥0 are Polish spaces and:

𝐷 := [𝜋 = (𝜋1, . . .) : 𝜋𝑘 ∈ Δ(𝑍0, . . . , 𝑍𝑘−1) and 𝜋 is coherent], then there exists a homeomorphism
(𝑓 : 𝐷 → Δ(×𝑘𝑍𝑘 )).

Proof. For any 𝜋 ∈ 𝐷, since 𝜋 is conherent, by the KET (5.1) there exists a unique probability
measure on (Δ(×𝑘𝑍𝑘 ) corresponding to this 𝜋 . Letting 𝑓 : 𝐷 → Δ(×𝑘𝑍𝑘 ) be defined as the
mapping induced by the KET (5.1) used on each 𝜋 ∈ 𝐷. The mapping 𝑓 is injective as (5.1)
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guarantees the uniqueness of corresponding product measures. Further, for 𝜋 ∈ Δ(×𝑘𝑍𝑘 ),
𝑓 (marg𝑍0

𝜋,marg𝑍0,𝑍1
𝜋, . . .) = 𝜋 thus 𝑓 is surjective. Thus by using (5.1) 𝑓 is a bijection is

obtained.

Bi-continuity of 𝑓 is left to be shown. To show 𝑓 is continuous, consider a sequence (𝜋𝑘1, 𝜋𝑘2, . . .)
∈ 𝐷 such that each probability measure (𝜋𝑘𝑖 → 𝜋𝑖) weakly. Aim is to show that 𝑓 (𝜋𝑘1, 𝜋𝑘2, . . .)

𝑘→∞−−−−→
𝑓 (𝜋1, 𝜋2, . . .). Let 𝜋𝑘 = 𝑓 (𝜋𝑘1, 𝜋𝑘2, . . .), 𝜋 = 𝑓 (𝜋1, 𝜋2, . . .), we want to show 𝜋𝑘 converges weakly to
𝜋 . Now note that 𝑓 (𝜋𝑘1, 𝜋𝑘2, . . .) and 𝑓 (𝜋1, 𝜋2, . . .) on cylinder sets are entirely determined by
(𝜋𝑘1, 𝜋𝑘2, . . .) and (𝜋1, 𝜋2, . . .) as cylinder sets from a basis for the topology and thus form a
convergence determining class8 and we are done.

The inverse mapping 𝑓 −1(𝜋) = (marg𝑍0
𝜋,marg𝑍0,𝑍1

𝜋, . . .) is continuous as the marginal maps
𝜋 ↦→ marg𝑍0,𝑍1,...,𝑍𝑘−1𝜋 , 𝑘 ≥ 1 are continuous. Since 𝜋𝑘 converges to 𝜋 weakly, it is to be shown
that its associated marginals converge weakly as well. A sequence of measures 𝜋𝑘 on the
product space (𝑍 = ×𝑘𝑍𝑘 ) converging to 𝜋 weakly or in the weak∗topology implies for every
bounded continuous function g on Z, we have:

∫
𝑔 𝑑𝜋𝑘 →

∫
𝑔𝑑𝜋 .

Let ℎ be a bounded continuous function over the entire product space 𝑍 , then its marginal
ℎ′, over a subset 𝑍0, 𝑍1, . . . 𝑍𝑘 , is obtained by integrating out the other factors and is thus as
follows: ℎ′(𝑧0, 𝑧1, . . . , 𝑧𝑘 ) =

∫
𝑧𝑘+1,...

ℎ(𝑧0, 𝑧1, . . .)𝑑𝑧𝑘+1𝑑𝑧𝑘+2 . . .. Because 𝜋𝑘 ’s converge to 𝜋 weakly:∫
ℎ 𝑑𝜋𝑘 →

∫
ℎ 𝑑𝜋 and

∫
ℎ′𝑑marg𝑍0,𝑍1,...,𝑍𝑘

𝜋 =
∫
ℎ 𝑑𝜋 ,

∫
ℎ′𝑑marg𝑍0,𝑍1,...,𝑍𝑘

𝜋𝑘 =
∫
ℎ 𝑑𝜋𝑘 from the

definition of marginals. Therefore it follows that
∫
ℎ′, 𝑑marg𝑍0,𝑍1,...,𝑍𝑘

𝜋𝑘 →
∫
ℎ′, 𝑑marg𝑍0,𝑍1,...,𝑍𝑘

𝜋

and thus the sequence of marginals converge weakly.

Corollary 1.1. There exists a homeomorphism 𝑓 : 𝑇 ′
1 → Δ𝜆 (( [0, 1] × 𝑆) ×𝑇 ′

0).

Proof. In the previous proposition, let 𝑍0 = 𝑋 ′
0 = 𝑆 × [0, 1] and 𝑍𝑘 = Δ𝜆 (𝑋𝑘 ). These are all Polish

and ×𝑘𝑍𝑘 = (𝑆 × [0, 1]) ×𝑇 ′
0. The set of coherent types 𝑇 ′ is exactly the set 𝐷 as it is the set of all

coherent hierarchies. Thus, the result immediately follows from the previous proposition.

A coherent player, given their type is able to form beliefs about the players identities, states
of nature and the types of other players from the above corollary, providing the analogue of
the first result of Brandenburger and Dekel (1993) in this extended framework. Please note as
stated by Brandenburger and Dekel (1993) the closure of the model of belief hierarchies is not
a pure measure theoretic result. This is as stated above, to apply the Kolmogorov extension
theorem (5.1) requires the space to be a standard measurable space, which is satisfied here,
as it was assumed to be Polish. Cohn (2013) states equivalently a standard measurable space
is one which is Borel isomorphic to a compact metric space9. Dellacherie and Meyer (1978)
give the Kolmogorov extension theorem for separable metric spaces only, which can be seen
to follow from the standard result that every separable metric space is homeomorphic to a

8As cylinder sets form basis for the topology, every open set in that topology can be written as a union of these
basis sets. This means that, for measures, if two measures agree on all the basis sets, they will also agree on
all the open sets (since every open set can be expressed in terms of these basis sets). In turn, since the Borel
sigma-algebra is generated by the open sets, two measures that agree on all open sets will agree on all Borel sets,
thus cylinder sets form a convergence determining class.

9Online Appendix
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subset of the Hilbert Cube, which is a compact metric space. Thus, the above result could be
obtained with 𝑆 as a separable metric space.

However, as detailed, a player knows only their type and not the types of other players and
thus a “second level” hierarchy is needed, which as elucidated before requires the “common
knowledge” of coherency. As in Brandenburger and Dekel (1993) define a sequence of sets,
𝑇 ′
𝑙
, 𝑙 ≥ 2 by: 𝑇 ′

𝑙
= {𝑡 ∈ 𝑇 ′

1 : 𝑓 (𝑡) (𝑆 × [0, 1] × 𝑇𝑙−1) = 1}. Each 𝑇 ′
𝑙

represents a deeper layer of
knowledge or belief. So here for e.g 𝑇 ′

2 corresponds to the set of all coherent types for a player,
who believe with probability one that the other player’s types are coherent. 𝑇 ′

3 would be a
the set of all coherent types for a player, who believes with probability one that all other
coherent type players believe with probability one, that the type of the player is coherent, so
on for 𝑇 ′

𝑙
. Thus as defined by Brandenburger and Dekel (1993) let 𝑇 ∗ = ∩∞

𝑙=1
𝑇 ′
𝑙

be the set of all
coherent types with common knowledge of coherency. As mentioned in Brandenburger and
Dekel (1985), for 𝑇 ′

𝑙
to be well defined, the space 𝑇 ′

𝑙−1 must be a Borel set as beliefs(probability
measures) over 𝑇 ′

𝑙−1 are being taken. Each 𝑇 ′
𝑙

is in fact a Borel Set and the proof follows from
following lemma:

Lemma 5.2. For each 𝑙 ∈ ℕ, the space 𝑇 ′
𝑙

is closed.

Proof. :
The set 𝐷 defined in proposition (1) is closed since closed since the maps 𝜋 ↦→ marg𝑍0,𝑍1,...,𝑍𝑘−1𝜋

are continuous, and by (1.1) it follows that 𝑇 ′
1 is closed. Now assume inductively that 𝑇 ′

𝑙−1
is closed, and consider a sequence 𝑡𝑚 → 𝑡 where 𝑡𝑚 ∈ 𝑇 ′

𝑙
∀𝑚. Since 𝑓 is continuous and

(𝑆 × [0, 1]) ×𝑇 ′
𝑙−1 is closed by assumption, lim sup𝑚 𝑓 (𝑡𝑚) ((𝑆 × [0, 1]) ×𝑇 ′

𝑙1
) = 𝑓 (𝑡) ((𝑆 × [0, 1]) ×𝑇 ′

𝑙
)

(this is criterion (iii) of the Portmanteau Theorem in Patrick. Billingsley (1999)). But by
assumption (𝑓 (𝑡𝑚) ((𝑆 × [0, 1]) ×𝑇 ′

𝑙−1) = 1 ∀𝑚) so 𝑓 (𝑡) ((𝑆 × [0, 1]) ×𝑇 ′
𝑙
) = 1 i.e. 𝑡 ∈ 𝑇 ′

𝑙
. So 𝑇 ′

𝑙
is closed

10.

lemma (5.2) is lemma A.1 in Brandenburger and Dekel (1985) adapted to the context of
this paper. The fact that 𝑇 ′

𝑙
is a Borel set also helps in seeing why 𝑇 ∗ is well defined. As

argued in Hammond (2004) the Borel set 𝑇 ∗ where there is common knowledge of coherency
can be expressed as an the limiting infinite intersection 𝑇 ∗ = ∩∞

𝑙=1
𝑇 ′
𝑙

of shrinking sequence
of cylindrical set 𝑇 ′

𝑙
B proj𝑇 ′

𝑙
𝑇 ∗ × ∏∞

𝑗=𝑙+1 Δ(𝑇 ′
𝑗 ). Here proj𝑇 ′

𝑙
𝑇 ∗ is the projection of 𝑇 ∗ onto its

first 𝑙 coordinates(or layers of knowledge) and
∏∞

𝑗=𝑙+1 Δ(𝑇 ′
𝑗 ) allows for any beliefs deeper than

𝑙 to be arbitrary. Thus in 𝑇 ′
1, one essentially fixes the first coordinate, and allows the rest to

vary. Therefore 𝑇 ′
𝑙
, is a shrinking sequence of cylinder sets which implies the sequences of

measures 𝜋𝑘 (proj𝑇 ′
𝑙
𝑇 ∗) is non increasing and bounded below, with a well defined limit. Thus,

𝑇 ∗ = {𝑡 ∈ 𝑇 ′
1 : 𝑓 (𝑡) (𝑆 × [0, 1] ×𝑇 ∗) = 1} and is well defined.

The following proposition is the analogue of the proposition of Brandenburger and Dekel
(1993) in this extended framework, which shows that the space 𝑇 ∗ closes the model and is
therefore the universal type space

Proposition 2. There is a homeomorphism 𝑔 : 𝑇 ∗ ↦→ Δ((𝑆 × [0, 1]) ×𝑇 ∗)

10The only additional aspect of the proof was [0,1] which is a closed set.
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Proof. The proof trivially follows from Brandenburger and Dekel (1993) and is stated for com-
pleteness.

𝑇 ∗ = {𝑡 ∈ 𝑇 ′
1 : 𝑓 (𝑡) (𝑆 × [0, 1] ×𝑇 ∗) = 1}; or

𝑓 (𝑇 ∗) = {𝜋 ∈ Δ((𝑆 × [0, 1]) ×𝑇 ′
0) |𝜋 ((𝑆 × [0, 1]) ×𝑇 ∗) = 1} as 𝑓 is onto

The set on the right hand side {𝜋 ∈ Δ((𝑆× [0, 1]) ×𝑇 ′
0) |𝜋 ((𝑆× [0, 1]) ×𝑇 ∗) = 1} is homeomorphic to

Δ((𝑆 × [0, 1]) ×𝑇 ∗) as for any metric space Z and measurable subset W of Z, {𝜋 ∈ Δ(𝑍 ) |𝜋 (𝑊 ) = 1}
is homeomorphic to Δ(𝑊 ). Similarly, on left hand side, 𝑓 (𝑇 ∗) is homeomorphic to 𝑇 ∗ as 𝑓 is a
homeomorphsim from 𝑇 ′

1 → Δ(( [0, 1] × 𝑆) × 𝑇 ′
0)) and since 𝑇 ∗ ⊂ 𝑇 ′

1 ⊂ 𝑇 ′
0 thus homeomorphic as

well. Thus it follows that 𝑇 ∗ is homeomorphic to Δ((𝑆 × [0, 1]) ×𝑇 ∗).

Remark 1. When 𝑆 is a separable metric space only proposition (1) holds.

The remark follows as in the proof of (5.2) the main property is that ((𝑆 × [0, 1]) × 𝑇𝑙−1)
is closed, this follows as 𝑆 is Polish space i.e. complete, separable and metrizable, where
completeness requires that any Cauchy sequence must converge to a point in the space. Since
every convergent sequence is Cauchy, this means the space contains all its limit points and so
is closed. [0, 1] is also closed similarly. If 𝑆 instead is assumed just to be a separable metrizable
space, then the closure of 𝑆 is not immediate without other assumptions. Thus when 𝑆 as a
separable metrizable space proposition (1) holds, but proposition (2) is not immediate without
further assumptions.

Proposition (2) completes the closure of model of beliefs in games with infinite players,
demonstrating, a player given her type is able to form beliefs about the labels, states of nature
and types of other players. It is to be noted, that the very special finite type-space, common
in economics, implies that after a certain 𝑘𝑡ℎ step in the hierarchy construction, there is no
additional information being added. As in the finite type-space case, if the infinite hierarchy
of beliefs results in a finite set, only finitely many non trivial expansions are possible.

6 Applications

There are many games in economics with a continuum of players, examples include William
S. Vickrey (1945) and Mirrlees (1971) and Aumann (1964), Aumann (1966), and Hildenbrand
(1974) where a continuum of economic agents are labelled by the points of the unit inter-
val, equipped with its Lebesgue measure, a framework standard in a spectrum of papers in
macroeconomics. There is the series of works in global games culminated in Morris and Shin
(2001), which served as the motivation for this paper and being considered as the prime ex-
ample in this section. Morris and Shin (2001) is the prime example where in the limit, a
continuum of (potential) agents represented by the Lebesgue unit interval, as a canonical
non-atomic measure.

Morris and Shin (2001) take the set of agents to be a continuum represented by the Lebesgue
unit interval. It is implicit in Morris and Shin (2001) that the continuum is of potential agents
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rather than actual, and thus the construction provided in the paper, covers the global games
framework and provides justification to considering higher-order beliefs in games with many
players. The implicit realisation that Morris and Shin (2001) refer to a continuum of potential
agents, follows from the following issue and proposition as given by Hammond (2023) 11.

Definition 6.1. Hammond and Sun (2008) A random process with a continuum of random
variables is a mapping 𝐿 × Ω ∋ (𝑡, 𝜔) ↦→ 𝑔𝑡 (𝜔) ∈ ℝ defined on the Cartesian product of the
Lebesgue unit interval (𝐿,L, 𝜆) with the probability space (Ω, F , 𝑃), and having the property
that for each Borel set 𝐵 ∈ B(ℝ):

1. For each 𝑡 ∈ 𝐿, the set 𝑔−1𝑡 (𝐵) := {𝜔 ∈ Ω | 𝑔𝑡 (𝜔) ∈ 𝐵} is F -measurable. In other words,
𝜔 ↦→ 𝑔𝑡 (𝜔) is a random variable on (Ω, F , 𝑃).

2. The mapping 𝐿 ∋ 𝑡 ↦→ (𝑃 ◦ 𝑔−1𝑡 ) (𝐵) = 𝑃 (𝑔−1𝑡 (𝐵)) is L-measurable.

Claim: Consider a continuum of a random variables determined by the process 𝑔 : 𝐿×Ω ↦→ ℝ.
Suppose that the random variables are independent and identically distributed, with mean
𝑚 B

∫
Ω
𝑔𝑡 (𝜔)𝑃 (𝑑𝜔),∀𝑡 ∈ 𝐿 then

∫
𝐿
𝑔𝑡 (𝜔)𝑃 (𝑑𝜔) =

𝑃−𝑎.𝑠.
𝑚, by the law of large numbers.

Hammond (2023) shows the above claim is false, unless the independent process is essen-
tially deterministic or the integral is interpreted as a Monte-Carlo integral.12

Intuitively, you have a process which generates a random number, at each point 𝑡 in the
Lebesgue unit interval, thus an uncountable set of random numbers. In a finite and a count-
ably infinite setting, calculation of the average, is standard or obtained with the law of large
numbers. However, it does not readily extend in consideration of averages for an uncountable
set of numbers. The following proposition from Hammond (2023) presents this formally.

Proposition 3. Given an i.i.d. process, 𝐿 × Ω ∋ (𝑡, 𝜔) ↦→ 𝑔𝑡 (𝑡, 𝜔) except when it is essentially
deterministic, the sample path 𝑡 ↦→ 𝑔(𝑡, 𝜔) is 𝑃 − 𝑎.𝑠 . non measurable and so

∫
𝐿
𝑔𝑡 (𝜔)𝑃 (𝑑𝜔) does

not exist as a Lebesgue Integral.

Proof. Theorem 1 in Hammond (2023)

When applying this to the global games framework of Morris and Shin (2001), the agents
are 𝑡 ∈ [0, 1] with the Lebesgue measure and there is an underlying fundamental(𝜃 ) which is
drawn from a common prior(uniformly distributed on ℝ or from a continuously differentiable
strictly positive density on ℝ). The agents observe a signal, as 𝜃 is observed with noise 𝜖𝑖
which is i.i.d. normal. This means an agent observing signal 𝑦, considers 𝜃 to be normally
distributed with mean 𝑦 and standard deviation of the noise Morris and Shin (2001). The
realisations of the signals are independent, conditional on 𝜃 Morris and Shin (2001). There is

11These results were first presented by Prof. Peter Hammond at SWET, 2018, and the author is thankful to
Prof. Peter Hammond for providing a copy of his presentation and the subsequent working paper Hammond
(2023).

12The process 𝐿 × Ω ∋ (𝑡, 𝜔) ↦→ 𝑔𝑡 (𝑡, 𝜔) is essentially deterministic in case there is non random measurable path
𝐿 ∋ 𝑡 ↦→ ℎ(𝑡) such that the sample path satisfies 𝑔(𝑡, 𝜔) =

𝑃−𝑎.𝑠.
ℎ(𝑡)∀𝑡 ∈ 𝐿
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a binary action set 𝑎 ∈ {𝑎0, 𝑎1} and the choice of the agent depends on their signal and beliefs
about the proportion of other agents choosing the action. Relating to the setup of the propo-
sition (3), Ω represents the state space from which the fundamental 𝜃 is drawn. The random
process 𝑔𝑡 (𝑡, 𝜔), is a function which maps each agent and a realisation 𝜔 (of 𝜃 ) to an action.
Thus, 𝑔𝑡 (𝑡, 𝜔) would indicate whether each agent chooses 𝑎0 or 𝑎1 based on their realisation 𝜔.
From proposition (3), unless the mapping 𝑡 ↦→ 𝑔(𝑡, 𝜔) is essentially deterministic—𝜃 is perfectly
observable, no noise and each agent observes the same signal— the sample path 𝑡 ↦→ 𝑔(𝑡, 𝜔)
is almost surely non-measurable and thus

∫
𝐿
𝑔𝑡 (𝜔)𝑃 (𝑑𝜔) does not exist as a Lebesgue Inte-

gral. The non existence of
∫
𝐿
𝑔𝑡 (𝜔)𝑃 (𝑑𝜔) implies, in particular when looking at the average

action or the proportion of agents choosing a particular action, is not well defined. Therefore,
statements claiming that the best response of an agent, is to choose an action 𝑎0 if it is ma-
joritarian is not well defined. Indeed, the payoffs in the game are also not well defined. Thus,
when referring to a continuum of agents in Morris and Shin (2001) it is implicit that there
are a potential continuum of agents, from which a countably infinite set of actual agents are
randomly selected, whose distribution in the limit converges almost surely to the canonical
non-atomic measure of the continuum of (potential) agents represented by the Lebesgue unit
interval. With a countably infinite set of actual agents, the claim above can be applied as
the law of large numbers can be invoked given the countable nature. Note,

∫
𝐿
𝑔𝑡 (𝜔)𝑃 (𝑑𝜔) can

be calculated by considering its Monte-Carlo Integral as in Hammond and Sun (2008). The
discussion of the Monte-Carlo integral is not presented as it is beyond the scope of this paper.

7 Conclusion

The paper provides a formal proof for Harsanyi (1967) notion of a type in games of incomplete
information with infinite players, extending from the work of Mertens and Zamir (1985) and
Brandenburger and Dekel (1993). A novel extension by considering a continuum of potential
players is provided. Suitable conditions are defined for a type to be coherent, and it is shown
as in Brandenburger and Dekel (1993) a coherent type with common knowledge of coherency
is able to form higher order beliefs over the types of other players, thus closing the model of
beliefs. The results of this paper allow the use and provide the framework for considering
higher order beliefs in games with many players. The mathematical tractability offered by
Polish spaces is justified by considering robustness of the results with separable metric spaces.
An informal extension for future work is provided for the general measurable case, to extend
the results of Heifetz and Samet (1998) for games with infinite players.
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