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Introduction

Both in numerical calculation and in the formal development
of limit theorems in statistics the need often arises for &n
approximation to the number cf permutations of X items which can
be made from a collection of N items where N > X. This need is

usually met by the use of Stirling's approximation for a factorial.

Some difficulties attend the use of Stirling's approximation
and two of these led to the analysis presented in this papeb.
First, the derivations of Stirling's formula which are to be found
in the text books are of a degree of difficulty which is usually
beyond the grasp of students at the stage at which they are first
exposed to the need for such an approximation in statistical work.
In consequence, students are either asked to accept Stirling's
formula as an act of faith, or they are presented with less elegaht
methods of derivation of the important limit theorems. Secondly,
proofs of limit theorems, such as that of De Moivre /Laplace, based
on Stirling's approximation are not of themselves easy to follow.
Accordingly there is much to be said for a simpler way of deriving

such theorems if one can be found.

The purpose of this paper is first tc derive an appreximation
for permutations, i.e. for the ratio of twe factorials, and then to
use this approximation to derive (a) the binomial limit of a
hypergeometric distribution, (b) the Poisson limit of the binomial,
and (¢) the normal approximation to the binomial. Following these
three applications, the relationship between the approximation to
be derived and Stirling's formula is briefly discussed.



?
An approximation for N./(N—X)'

The number of permutations of X items which can be made from
N distinct items, where N > X, is N!/(n-X)!. This number arises
often in statistics, and for large N is cumbersome to calculate.
Accordingly there is a need in numerical work for an approximation
to it. Moreover, in some contexts the limit of the number is of
diprect interest and here an approximation can be useful in deriving

the limiting Form of relationships in which it occurs.

Let P(§ ,x) be the number of permutations N1/(g=X)!t and let
M(N,X) be an approximation to it. N(N,X) is to be such that

m(N,X) ~ P(N,X)

where ~ denotes that under conditions to be stated, the ratio of the
two sides tends to ome. It follows that

log P(N,X) =~ log I(N,X) - O

To derive N(N,X), we can write

P(N,X)

N!

w07

N(N-1)(N-2) .... (N=(X~1))

X 1 2 K=l
N (l"ﬁ')(l"ﬁ‘) seve (l"‘—-ﬁ,—

Hence the problem can be reduced to one of approximating the geometric
mean of the terms (1 - l/N), (1 - 2/N),...., (1~ §§£). And we can
do this by noting that the goemetric mean can be approximated by the
square root of the product of the first and last term of the series.

In other words
1

1 X=1, 1% . 1 2 X-1, X-1
{ (1 - /N)(l - “EFJ 12 2 { (1~ ﬁo(l - ﬁo ceos (1 = —ﬁ—) }

Alternatively, we can approximate the geometric mean by taking the
square root not of the first and last terms but of the term immediately
before the first term and the term immediately after the last term,

ji.e. of 1 and (1 - %J. This gives
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1

X-1, X-1
e |

&

X 3 1 2
(l-'ﬁr) T {(l“ﬁ)(l-ﬁ)..” (1~

and is the procedure we shall follow. From it we get

= owXeq 1y U2 _X-1
P(NQX) - N (l N)(l N) ov e e (l _""—N
X~1

X 2
Nx(l-ﬁ)

¥+1 X-1
N2 -x) 2

1"

= I(N,X)

The above defines il(N,X) but does not establish how good an
In particular we have yet to derive the

approximation it is.
conditions, if any, under which

P(N,X) =~ HO(N,X)

To establish the conditions, note that

(l -%")(l "'12"') s p o (l -‘XT;-]:’
P(N,X) = T n(N,X)
X, 2
(1 - T‘I-)
so that
X=1 .
i X-1 X
I log (1 "'ﬁ") === log (l-ﬁ)

log P(N,X) - log N(N,X)
i=1

seeesy X = 1, we can write log (1 -%—) as

Since 0<§-<1 for i=1
. .2 3
log (l ‘%) = -'I%' -"]é-' -'l"'2" - -13; ‘5"-3' ' esee ad inf-
N N



Hence

X-1 " X~1 = . p
z log(l--;-} = -I I ~l-(§-
i=1 i=1l r=1
L 1 X-=1
— o o
= =3 .7 L
r=1 N i
© Xr
Similarly log (1 - X/N) = = o
r=1
and so
° = Xl
log P(N,X) - lo, M(N,X) = I N pX (5- - i)
r=l i=
But
1 x x(=1) | O
z -2— - 3 I i
i=1 i=1
hence
“ -1;5 L ad r
log P(N,X) - log M(N,X) = £ 1N T 5 - it)
r=2 i=

From the above it follows that the error made in approximating
P by Il derives from the approximation of terms ifforizl1.... X~ 1,

on average, by Xr/ for values of r > 2.

2
X-1 i r
The expression (5- - i") for integer r > 2 is a polynomial
i=1

in X of order » + 1. It yields

n
N

for v ’ (X-1) X (X+1)/
6

3, (x-1) X2(x+1)

for v

/y

and so on. More generally, we have



log P(N,X) = log M(N,X) = I

r=2

P(X:r+l)

where P(X:r+l) denotes a polynomial in X of order r+i.

-]
approximation of P by I holds in the limit as I

to Zero.

. P
expression is X 7

N

whole expression tends to zero, i.e.

log N(N,X) - log P(
Consequently
M(N,X)
as
Xa
/ 2
N

N,X)

* P(N,X)

=2 N

an 5 5 0
N

Hence the

P(X:r+1)

Further, since N > X > 1, the largest term in this

tends

So if this term tends to zero, then the

For X = O or 1 the approximation NI(N,X) involves no error for

all N, as can easily be verified.

For larger values of X there is

an error which diminishes as N increases, as shown in the following

table.
N = 10 N =20

X P(N,X) (N, X) P(N,X) 1(N,X)

2 90 8.4 380 379. 44
3 720 700 6,840 6,800

4 5,040 4,647, 6 116,280 111,232

5 30,240 25,000 1,856,280 1,800,000

6 151,200 | 101,184 27,844x20°|  26,233x10°
7 " " 3se,619x10%|  351,520x10°
8 " " 5,067,644x10°| 1,292,675%x10°




 Limfted Theorems based on the Approximation

The onder of convergence of the approximation NM(N,X) is
sufficient to establish several well known limit theorems in

statistics. Three such proofs are given here.

I Binomial limit of hypergeometric

A population of size N contains a proportion, p, of elements
of type 1 and a proportion q = 1-p of elements of type 2. A
random sample, size X, is taken without replacement and found to

contain Xl elements of type 1 and X2 elements of type 2.

N. gN
. & 6o

N
)

In the limit as N > » for fixed X the approximation N(N,X) is applicable

since, with X fixed, X3/ 5 0. Hence by repeated application of the
- 'N

formula for @I it is easily shown that

Pr(X,,X,) ~ X! p 1gq ? (l'EF)Q (1-3}5)"—"2
I g e
1. 2. ‘x_l
Xy 2
(1 -}T)
X-1 X X,=1 = X r
: LR Mia e s |
Now —5 log (1 Eﬁo = - E - (pN)
r=1
XS
Since terms of order "l tend to zero we have
N
X-1 X X, (X,-1)

1 _a . ..

and likewise for other similar terms. Hence we get

S ¢

- 1 "2
Pr(X,,X,) 3(")‘2:')2"" P q exp {1 (X(x-1) - xl(xl_l)
l' 9° 2N .—?—

q



This is as far as we can get with convergence of terms of order Xa/ 2
N
to zero. If, however, we weaken the approximation to convergence

to zero of terms of order X2/ then the exponential term in the
' N

zbove expression vanishes and we have the standard bincmial approximation.

II Poisson limit of the Binomial

If X is a random variable which is binomial with parameters

N and p then
Po(x) = () p gl
3
Assuming that terms of order 55 vanish we can apply the approximation
N
M(N,X) to get
X X-1
- A Xy 2 A \N-X
Pr(X) T (1 -l\-]'—) (1 'f\f)

where A = NP = constant, implying p + 0 as N~ O .

Expanding the last two terms on the right-hand side without relaxing

the order of comnvergence yields

X
Pr(x) "~ ke exp (=2 -3 OF+x (X +2 -1

>

It follows that the order of convergence must be relaxed to allow terms

of order X2/ to vanish if we are to reach the standard result,
N

III dormal approximation to the Binomial

If X is binomial with parameters N and p, then

Pr(x) = (D piaql
and
X = Np+p-1¢



for some r such that 0 < 7 < 1 where X* is the modal value of X.

Hence

Po(X) . X#! (N-X*)! (on-x*

Lz ;e ° 30 TR

3
We wish to find the limit of this ratio as (z:gﬁg + 0, in which
N

event we have

3 3
R (W e ) P o
(X X) 0, (x %) 0 and Xe — X +0
X*2 N - X*)2 N

so that the conditions for applying the approximation N(N,X) are
satisfied. From this we get
X=X +1 X#-X~]

1
Pr(x) . x* 2 x 2 e
Br(x*) REX+L XF—X-1
(N-%) 2 w-xx) 2 %
X#=X+1 X%=¥-1
o opg Y 2 [ (xR-x) - (p-7)\ 2
_ Qa+Np ) - ¥ ;
- T XE-X+1 XN—X=1
. S 3
( (X%=-X) = (p=t); ! (p-2)
1+ Ng A 41 - Ng

Now expanding the logarithm of the right-hand side of the above and

ignoring all terms which vanish under the condition stated, we get

P e R ¢ ok
Pr(xX*) 2Npq

which yields

- (x-¥p)?2
Pr(X) ~ Pr(X*) e 2Npq

o (X-NE)2
= Ce 2Npq
where C is a constant, i.e. a function of N and p which is independent
of X.



It can now be shown that under the condition (X-Np)a/ P 0
N

e )2 X+ _ (Z.’.’R)z
wpq - J e Mpa 4
X-3
Hence
X+3 B (ﬂﬂ)z
Pr(X) ~ ¢ J e 2Npq dy
X~}
N
Since I Pr(X) = 1 it follows that ¢ is the reciprocal of
=0
N+3 2
I e Pd dy = (Npq) J e dt
b
-3
. 3
where a = Egi%% 5 b & - (§2123
(Npg)* ' (Npq)*
N+} - (y=Np)® » 2
O | =t/
Hence J e P dy ~ (Nog) I @ dt
-1 -
- (2mipg)?
Thus we reach the final result
X (yanp)?
Pr(x) -~ 1 Npg dy
(2anq)§ x-1
2



Relation to Stirling's Approximation

We have seen that for many purposes the approximation of

P(N,X) by H(N,X) is sufficiently powerful. If, however, we want

a more powerful approximation this can be obtained by recognising
explicitly the remainder terms.  Thus
1

® e X=-1 r

r +

log P(N,X) = log I(N,X) + £ =N° ¢ (%- - ih)
r=2 i=1
= ﬁ%&. log N + K%L log (N-X)
, oD x Gl (x=1) X2 (i)
128 18°
© -—l—-r- X-1 ol -
+ I rN X (-2— - 1i7)
=i i=1

Now we can proceed either by including more terms than are contained
in I in our approximation, or by seeking an approximation to the
remainder terms as such. In particular we can seek an approximation

for

(X=1) X (X+1) N (Xx-1) x? (%+1)
1282 128°

Such an approximation is in fact given by

log{enx(l---;-](-)2 }=-X+(N~§)E a
- r
r=l N
xS x* x°
. 7 T 3 0 n
12N 12N gN
r
+ (N - %9 z -3%;
r=5 N
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which incidentally demonstrates that (1 *-%J approximetes e”'x

N
as X3/N2 + 0 and is therefore a closer approximation than (1 - %) .

Trom this we have

(x-1) X (x+1) _ (X-1) X% (x+1)

1282 122
- ¥ x = ¥
1n? 1N 1w 128°
~X X %".N 2
= log {e (1- ﬁJ } - X - X
1282 1282
5 © o
L - I
8N r=5 oN
2 E-- N
5o LX=1) x_§x+1) , -1 x3(x+1) > log {e¥ (1- %J 2 }
12N 12N

XS
as = * 0. But under the same condition .,

N

2
128 12N
Hence
X
=X x,2 N
log P(n,X) -+ log M(N,X) + log { e (1~ ﬁJ }

N N+3 e ¥ :
log { e

(N=X)

and

P(N,X) -
(-x)N%*2

assuming that terms of order XS/Nu vanish. This then is a closer

approximation to P(N,X) than N(N,X). It is easily shown to be the
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approximation that would result from substituting Stirling's

approximation, in the form

1 —
Rt = (em)% R R R

into the formula P(N,X) = N! / (N-X)!



