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A Note on Principal Component Regression

Edward Greenberg *

The purpose of this note is to provide an interpretation for the
regression coefficients obtained when y is regressed on successive
principal components of a matrix of independent variables, X. v The
approach is motivated by Goldberger's suggestion (1) that when multi~
collinearity is present the statistician should interpret the X matrix
as a 'badly designed experiment' and attempt to find those linear
combinations of parameters which can be estimated with reasonably
good precision. A similar point was made by Silvey: ‘“Relatively
precise estimation is possible in the direction of the latent vectors
of X'X corresponding to large latent roots; relatively imprecise
estimation in these directions corresponding to small latent roots.” (5)

Specifically, our approach is to find that linear combination of
parameters which can be estimated with minimum variance; second, the
linear combination orthogonal to the first with minimum variance, gtc.
when multicollinearity is a serious problem, aftgr a few linear
combinations the variance may become sufficiently large that the

investigator decides not to estimate additional linear combinations.

I. Minimum variance linear combinations and principal components.
A 2 ) |

The variance of a linear combination, ¢' B, is ¢ c'(X'4) ¢

{2.P126, }. we ignore the constant 02 and impose the normalizing

rule c'c=1 to avoid the trivial solution c¢=0,

*  Thanks toc Steven Colby, Farouk El-Sheikh and Robert Parks.
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Minimizing (1) H = c'(X'X)-lc - w(c'e ~1) we obtain

(2) 6H =2(X'X)-1c- 2uc = O or

6C

(3) (X'X)-lc - uc = 0

@ & l-ur ¢ = o

Hence, U is a characteristic root of (X'X)-1 and ¢ is the associated

characteristic vector. Further since

(5) c'(X'X)_lc = uc'e =
we choose the smallest characteristic root, ul, and its associated
characteristic vector, v r (in Silvey's notation).

This result can also be derived from Silvey's expression for the

variance of c'B :
var (¢'B) = a? o2 +......a? (Silvey P.
1 2 b
2
o )\1 }‘2 )‘j

where the @ are the coefficients permitting the expression of ¢

intterms of the characteristic vectors, Vs That is,

2
c ulvl + 02v2 +....aj vj,amdi:mi 1. The 2

are the associated characteristic roots, Al > Az > ... >,
J

To minimize the variance, choose @, = 1, a, = 0, i # 1.

obtaining the result that var c'B  is proportional to 1/ Al

2
o
the reciprocal of the largest characteritic root of X'X. This

equals ul' the smallest characteristic root of (X'X)_1 .

The characteristic vector associated with the largest character—
istic root of X'X is, of course, the vector of loadings of the first
principal component of X. The ¢ which minimizes the variance of c'
is therefore the set of loadings associated with the first principal

component, 2/
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Continuing, the linear combination, orthogonal to vis having the
smallest variance corresponds to the secoud principal component etc.
It is of interest to relate these linear combinations of g to
regression on principal components. Consider the regression of y
on the first principal components, le, y = (le)y 1* 8ay- The

least squares estimator of Yy is

" (vi X'le)-lv

1] ]
i Xy

1

(v v' v) Ly
111

1/ Yl) Vi X'y

vi (X'X)-1 X'y

~

= vi B
Thus, the coefficient obtained when y is regressed on the first
principal component of X'X may be interpreted as that linear combiéation
of the elements of B which can be estimated with smallest variance,
given the sample of independent variables. Since the components

are orthogonal to each other, regressions of y on further principal

components may be interpreted analagously.
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II. Discussion and Illustrations.

Note that measuring X in standard units affects the linear
combinations which will be obtained in a nontrivial way. This
standardization has a convenient property, however; the characteristic
root of a variable orthogonal to the others will equal one. For
example, if each X'X = I, each Ay = 1, and each ] is of the form
(0,0,1,0,...0); thus each Bi is estimated with the same standard
error, and no transformation is necessary.

If X'X = ;1o

{rloj
'.\ f
w001/

the characteristic roots and vectors are

1+, 1//2 (1, 1, 0)

1, (0, 0, 1)
—

1-1x, 1/ v 2 (1,-1, 0)

The variances are therefore proportional to 1/(l+r), 1, and 1/(1-1r),
respectively. As r approaches 1, the linear combination Bl+ BZ
becomes relatively well estimated, and as r approaches -1, Bl = Bz
is well estimated.

Since zxi = n and all Ai > 0, if some Ai = 1 others will be
less than one. This suggests that one shculd not drop principal
components whose roots are greater than one, and that components
with roots a little smaller should alsc be considered to avoid
the danger that a variable which is highly correlated with y, but
not with the other X's is dropped from the analysis. Two published
studies using principal components appear to have avoided this
danger: Stone (6) included a component with a root of .3859, and

Meyer and Kraft (4) included ome as low as .299.
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Consider the data used by Malinvaud (3) to illustrate multi-
collinearity. He explains French imports from 1949 to 1959 as a
function of gross domestic product (GDP), stock formation and
consumption. Extracting principal components from these data, we

obtain the following results:

i N 1/;i v

1 2.0472 4884 (-.692, -.143, -.708)
2 .9502 1.0524 (-.213, .977, .010)
3 .0026 384.6153 (~.690, -.158, .706)

It is clear that estimating more than two linear combinations of
the B; will yield very imprecise results: the variance of the third
linear combination is some 800 times as large as the first, and
over 350 times as large as the second 3/ . This impression is

confirmed by the regression results obtained by Malinvaud: =

Independent Coefficient Standard t-Statistic
variable Error

Xl GDP -.078 J114 ~.6842

X, Stock fornation .648 .187 3,4652 *

x3 Consumption .329 .164 2.0061

* Significant at 5% level

The results indicate that stock formation is highly significant;
multicollinearity is suggested by the weak effects of GDP and consumption,
the high correlation between them (.9973), and the 95% confidence
ellipsoids displayed in FIGURES 1, 2 and 3. The ellipsoids reveal a
wide range of values possible for the coefficients of GDP and consumption,
The fact that the third characteristic root is close to O is a further

indication that multicollinearity is present.
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III. Conclusions

The regression coefficient of the first principal component
has been interpreted as that linear combination of the Bi which
can be estimated with minimum variance. In that context, comparison
of the characteristic roots with the diagomals of (X'X)m1 (as in
TABLE 1) provides information about how precisely various linear
combinations of B can be estimated. Although linear combinations
with low variances may have no 'matural' ecomomic interpretationm,
it appears desirable to examine them when multicollinearity is
viewed as a poorly-realized, unplanned experiment 4/. Examining
the characteristic roots and vectors may be uaeful.kor both
detecting multicollinearity indicated by large increases in the
variances of successive linear combinations and for suggesting

transformations which will permit relatively precise estimation

of economically meaningful parameters.



TABLE 1

Independent
Variable

First principal component
Second principal component
Stock formation (original regression)

GDP plus consumption, stock formation
X, + X 2 (transformed equation)

1 3?
Consumption (original regression)
GDP (original regression)

Third principal component

Diagonal element of
relevent (X'X)
matrix

4884
1.0524

1.07

1.3405
192,37
193.28
384.615
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Footnotes

1/ It is assumed that the elements of X are measured in standard
deviation units; hence X'X is the correlation matrix.

2/  Analagous results may be obtained using the generlazed inverse
of X'X if the matrix is singular.

3/ These and the following comparisons are in the terms of the
diagonal elements in the (X'X)-1 matrix. They must be multiplied
by an estimated 02 to obtain the estimated variance. For any
particular ;2 » the relative values of the estimated variances
are correct. In this example, ;2 does not differ greatly among
the various regressions estimated.

4/ 1t is, of course, preferable to find additional data sources

or other information to get around the multicollinearity problem.
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